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Chapter 1

Introduction

This thesis has been developed in the Graphics and Imaging Lab (Universidad de Zaragoza), and founded by

a grant from the Gobierno de Aragón (DGA). It is composed of two main topics, photorealistic skin rendering

and antialiasing, which will be introduced in the following sections.

1.1 Photorealistic Skin Rendering

It is common to see objects that possess translucency properties; from the subtle effect seen on some liquids

like milk or orange juice, to the more translucent appearance of tree leaves (see Figure 1.1). In a translucent

object, light falling onto it enters its body at one point, scatters within it, then exits the object at some other

point. This is in contrast with an opaque object, where light reflects in the same point where it hits the surface

(see Figure 1.2). This mechanism of the light transport is called subsurface scattering (SSS), and it is of crucial

importance for photorealistically rendering these materials.

A back lit hand is probably one of the best examples where we can see how apparent this effect can be on the

human skin (see Figure 1.3). Contrary to simpler translucent materials like marble, human skin is composed

of multiple layers that define how light is absorbed and scattered when interacting with it. Two of the most

important layers are the epidermis and dermis, which contain melanin and hemoglobin chromophores that

define the specific color of the skin, including African, Asian, and Caucasian skin types. The color of the

light exiting the skin surface will depend on how far it has traveled inside of these layers, and thus how much

light has been absorbed and scattered by these chromophores, and other small-scale structures of the skin.

Ultimately, this translates to colored gradients in the boundaries between light and shadows. Similarly, the

lighting on a skin surface is softened by this effect, making it less geometry dependent, given the fact that the

light is traveling inside of the object and not being reflected at the surface. This softens the appearance of skin

imperfections, creating a less harsh aspect: non-lit areas in the pores and imperfections are filled with light

coming from well-lit adjacent zones, reducing the shading contrast. And finally, light travels through thin slabs

like ears or nostrils, coloring them with the bright and warm tones that we quickly associate with translucency.

These complex interactions between light and human skin are natural phenomena to humans, given the fact

that we spend hours and hours interacting and communicating with others, directly looking at their faces. This

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Tree leaves show an apparent translucent effect, where light not only enters the surface, but

sometimes also exit at its back. Note how light attenuates as it travels through overlapping leaves, creating a

variety of colors and shading which enrich the appearance of these materials.

means that our visual system is especially well-tuned for detecting even the most slight error in human skin

simulations.

Photorealistic skin rendering is of extreme importance to create believable special effects in cinematography,

but it has been ignored to an extent by the game industry. However, in the last years, there is a trend towards

more character-driven, film-like games. This has lead to the usage of highly detailed normal and texture maps to

more faithfully represent human faces. Unfortunately, the usage of such detailed maps, without further attention

to light and skin interactions, inevitably leads the characters to fall into the much-dreaded uncanny valley,

looking worse to humans than less sophisticated systems. This has risen the interest towards photorealistically

depicting human characters. In contrast with the offline rendering technology used for films, where hours and

hours can be spent for rendering, in the practical real-time realm, the time alloted for skin rendering is in

the millisecond range (with even further constraints in games). Our challenge is, then, to match film-quality

skin rendering in runtimes of orders of smaller magnitude, taking into account very fine qualities of the skin

appearance, including SSS, facial color changes and wrinkles animation.

Subsurface scattering is usually described in terms of the Bidirectional Scattering Surface Reflectance Dis-

tribution Function (BSSRDF) [Nicodemus et al., 1977]. Unfortunately, directly evaluating this function is

prohibitively expensive. Jensen et al. [2001] approximate the outgoing radiance in translucent materials using

a dipole diffusion approximation, which made the BSSRDF evaluation practical in offline renderings, but still

2



1.1. PHOTOREALISTIC SKIN RENDERING

Figure 1.2: In an opaque object, light reflects in the same point where it hits the surface (left); on the other

hand, in a translucent object, light scatters inside of the object before exiting the surface (right). Figure adapted

from the work of Jensen et al. [Jensen et al., 2001].

far from achieving real-time performance. Borshukov and Lewis [2003] approximated the light diffusion in

texture-space, by blurring the irradiance map with artistically controlled kernels, yielding good results but still

not matching the accuracy of physically-based methods. In the work of d’Eon et al. [2007] the key obser-

vation was made that the diffusion profiles used in diffusion approximation can be approximated by a sum

of Gaussians, finally achieving real-time performance. Unfortunately, rendering a head took all the resources

of the most powerful GPU in that moment, which made it unsuitable for current generation of consoles and

previous generation of PC hardware. Additionally, the usage of light maps can be cumbersome to manage.

These disadvantages prevented its direct usage on games, given the fact that in such real-time environments,

skin is only a small piece of a really big system. Chapter 3 introduces an improved texture-space pipeline which

enables faster skin rendering. Chapters 4 and 5 describe a paradigm shift, translating the diffusion to screen

space, in an attempt to make real-time skin rendering practical in games. This further improves the performance

(specially on multi-character scenarios), and greatly reduces the integration complexity. Chapter 6 shows how

to decompose the exact 2D diffusion kernel with only two 1D functions, making it a practical option for even

the most challenging game scenarios (and current generation of consoles, including the Xbox 360).

Going further, the inner structures of the skin are in constant change as people talk, smile, show disgust or

simply alter their physical or emotional state. Mechanical deformations of the skin structure make blood to

fluctuate from some regions to others, modifying the hemoglobin concentration found in the epidermis, and

specially on the dermis, leading to changes in facial color. A simple example is a wrinkled area: peaks will

show a more reddish tone than the wrinkles’ valleys. Other skin conditions such as blushing, conveys emotions

such as shame, arousal or even joy, and modifies the internal hemoglobin state of the skin, and thus its color.

Another relevant example is a fear situation; in this case, blood is drained from the skin, and directed to more

important organs that may save our lives, like the lungs or the heart. This leads to less hemoglobin in the

facial skin, and thus, to a more pallid appearance. These dynamic changes, which are well know in the medical

field, are largely ignored in computer graphics (even in films). Taking these effects into account leads to more

emotional characters, where their skin reflects their internal feelings and thoughts (see Figure 1.4).

There has been extensive work aiming to model facial color changes [Kalra and Magnenat-Thalmann, 1994;

Jung and Knöpfle, 2006; Jung et al., 2009; Plutchik, 1980; Melo and Gratch, 2009; Yamada and Watanabe,

2007; Tsumura et al., 2003]. However, the results of these works are almost completely user-guided, with no

correlation to actual measurements of hemoglobin changes. In the Chapter 7, a physically-based, data-driven

model based on in-vivo measurements is described, which enables to accurately model these subtle yet apparent

3



CHAPTER 1. INTRODUCTION

Figure 1.3: Backlit hands show a very strong translucent appearance.

facial color fluctuations.

Without even realizing it, we often depend on the subtleties of facial expression to give us important contextual

cues about what someone is saying, thinking or feeling (see Figure 1.5). For example, a wrinkled brow can

indicate surprise, while a furrowed brow may indicate confusion or inquisitiveness. In the mid-1800s, a French

neurologist named Guillaume Duchenne performed experiments that involved applying electric simulation to

his subject’s facial muscles. Duchenne’s experiments allowed him to map which facial muscles were used

for different facial expressions. One interesting fact that he discovered was that smiles resulting from true

happiness not only utilize the muscles of the mouth, but also those of the eyes. It is this subtle but important

additional muscle movement that distinguishes a genuine happy smile from an inauthentic or sarcastic smile.

What we learn from this is that facial expressions are complex and sometimes subtle, but extraordinarily impor-

tant in conveying meaning and intent. In order to allow artists to create realistic, compelling characters we must

allow them to harness the power of subtle facial expression, which include the rendering of realistic wrinkle

deformations. In Chapter 8, methods for efficient and practical wrinkle animation will be introduced, which

4



1.2. EFFICIENT ANTIALIASING

Figure 1.4: Facial color changes like blushing accentuate expressions with emotions, in this case helping to

convey a shy smile.

allow to integrate such effects while introducing a minimal performance overhead and memory footprint.

1.2 Efficient Antialiasing

Aliasing is one of the longest-standing problems in computer graphics, producing clear artifacts in still images

(spatial domain) and introducing flickering animations (temporal domain). While using higher sampling rates

can ameliorate its effects, this approach is too expensive and thus not suitable for real-time applications. During

the last few years we have seen great improvements in real-time rendering algorithms, from complex shaders to

enhanced geometric detail by means of tessellation. However, aliasing remains as one of the major stumbling

blocks in trying to close the gap between off-line and real-time rendering [Andersson, 2010].

5



CHAPTER 1. INTRODUCTION

Figure 1.5: Wrinkles can convey emotions and feelings that go further than conventional, voluntary facial

expressions.

For more than a decade, supersample antialiasing (SSAA) and multisample antialiasing (MSAA) have been

the gold standard antialiasing solutions in real-time applications and video games. However, MSAA does not

scale well when increasing the number of samples and is not trivial to include in modern real-time rendering

paradigms as deferred lighting/shading [Jimenez et al., 2011b; Andersson, 2011; Jimenez et al., 2011a]. To

exemplify this problem with numbers, MSAA 8x takes an average of 5.4 ms in modern video games with

state of the art rendering engines (increasing to 7.7 ms on memory bandwidth intensive games), on a NVIDIA

GeForce GTX 470. Memory consumption in this mode can be as high as 126 MB and 316 MB, for forward and

deferred rendering engines respectively, taking a 12% and a 30% of a mainstream GPU equipped with 1GB of

memory. This problem is aggravated when HDR rendering is used, as these numbers may double.

Recently, both industry and academia have begun to explore alternative approaches, where antialiasing is per-

formed as a post-processing step [Jimenez et al., 2011a]. The original morphological antialiasing (MLAA)

method [Reshetov, 2009] gave birth to an explosion of real-time antialiasing techniques, rivaling in quality the

results of MSAA and with a performance within the [0.1 − 5] ms range.
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Original Image Edges texture Blending weights texture Antialiased Image

Figure 1.6: The complete antialiasing pipeline of GPU MLAA approach.

Following this trend, two antialiasing approaches were developed in this thesis: Jimenez’s MLAA, described

in Chapter 9, which is the first practical GPU-based MLAA approach (see Figure 1.6); and Enhanced Sub-

pixel Morphological Antialiasing (SMAA), described in Chapter 10, which showed, for the first time, how to

combine an improved morphological approach with classical multisampling and supersampling solutions.

1.3 Goals

The objective of this thesis is to develop efficient techniques to simulate photorealistic skin and antialiasing

in real-time. For the case of skin rendering, we focused on: a) achieving practical execution runtimes in

games while still obtaining photorealistic and life-like results; b) improving the realism of current methods by

taking into account color changes caused by emotions and mechanical deformation of facial skin; c) improving

and fine-tuning the whole real-time rendering pipeline in an attempt to bring real-time skin rendering to the

offline rendering level. On the other hand, we approached the antialiasing problem by developing alternative

techniques to classical solutions like multisampling and supersampling, more appropriate to current hardware

and rendering techniques (deferred engines). With this regard, the goals are: a) improving the quality and

performance of current morphological approaches, making them suitable for games; and b) showing, for the

first time, how to combine them with classic approaches like supersampling.

1.4 Contributions

The contributions of this thesis can be summarized as follows:

• We optimized the original real-time texture-space diffusion approach [d’Eon et al., 2007], attempting to

make it more appealing for the videogame industry. (Chapter 3).

• We developed a novel method for efficiently rendering skin on screen space, making it practical on game

contexts (Chapter 4).

• We extended the screen space technique to also include translucency effects in thin slabs like ears and

nostrils, by reducing transmittance calculations to a simple texture access (Chapter 5).

7
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• We further improved the runtime of our screen-space skin rendering approach, by allowing to the technique

to complete in just two passes, which is crucial in hardware like the Xbox 360, leading to the technique

separable subsurface scattering (Chapter 6).

• We created real-time model capable of simulating color variations in facial skin as it deforms due to facial

expressions, or as the emotion of the character changes, by capturing in-vivo measurements of hemoglobin

and melanin quantities. Observations made on the captured data allowed to simplify the mathematical

foundation of the model, achieving indistinguishable results in real-time (Chapter 7).

• We improved currently used wrinkle rendering algorithms by decoupling wrinkles from high frequency

details, allowing to greatly reduce their memory footprint (Chapter 8).

• We efficiently translated morphological antialiasing (MLAA) to the GPU, making it practical in CPU-bound

games for the first time. The method departs from the same underlying idea, but was developed to run in a

GPU, resulting in a completely different, extremely optimized, implementation (Chapter 9).

• We developed a novel antialiasing solution, Subpixel Morphological Antialiasing (SMAA), which improves

upon MLAA by: a) improving the edge detection; b) extending the pattern detection; and c) showing, for

the first time, how to combine it with spatial multisampling and temporal supersampling. This work was

done in collaboration with Crytek, and has been already integrated into CryEngine (Chapter 10).

1.5 Publications

During the thesis the following scientific papers have been published: four JCR-indexed journals, two SIG-

GRAPH courses, three book chapters, one article in a popular game developers magazine, and one paper on

a national conference. Additionally, I worked on other projects that yielded JCR-indexed journal publications

and one paper on an international conference, on topics not directly related with my thesis.

The following articles have been published during the duration of the thesis:

• SMAA: Enhanced Subpixel Morphological Antialiasing
J. Jimenez, Jose I. Echevarria, T. Sousa and D. Gutierrez

Computer Graphics Forum (Eurographics 2012), Vol. 31(2), 2012

JCR impact factor of 1.476

• Destroy all jaggies
J. Jimenez, J. I. Echevarria, B. Masia, F. Navarro, N. Tatarchuk and D. Gutierrez

Game Developer Magazine, UBM TechWeb, June/July Issue, 2011, pp. 13–20

No JCR impact factor

• A Practical Appearance Model for Dynamic Facial Color
J. Jimenez, T. Scully, N. Barbosa, C. Donner, X. Alvarez, T. Vieira, P. Matts, V. Orvalho, D. Gutierrez and

T. Weyrich

ACM Transactions on Graphics (SIGGRAPH Asia 2010), Vol. 29(5), 2010, pp. 141:1–141:10

JCR impact factor of 3.632

• Real Time Realistic Skin Translucency

8
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J. Jimenez, D. Whelan, V. Sundstedt and D. Gutierrez

IEEE Computer Graphics & Applications, Vol. 30(4), 2010, pp. 32–41

JCR impact factor of 1.75

• Screen-space perceptual rendering of human skin
J. Jimenez, V. Sundstedt and D. Gutierrez

ACM Transactions on Applied Perception, Vol. 6(4), 2009, pp. 23:1–23:15

JCR impact factor of 0.796

• Faster human skin
J. Jimenez and D. Gutierrez

In Proc. of Congreso Español de Informática Gráfica 2008 (CEIG 2008), 2008, Eurographics Association,

pp. 21–28

No JCR impact factor

A post-processing antialiasing course was organized, bringing experts from the field together, from both

academia and the game industry. Also, our latest skin research will be presented in the Advances in Real-

Time Rendering in 3D Graphics and Games, in SIGGRAPH 2012:

• Advances in Real-Time Rendering in 3D Graphics and Games
N. Tatarchuk, J. Jimenez (rest of the authors to be confirmed)

SIGGRAPH 2012 Course

• Filtering Approaches for Real-Time Anti-Aliasing
J. Jimenez, D. Gutierrez, J. Yang, A. Reshetov, P. Demoreuille, T. Berghoff, C. Perthuis, H. Yu, M. McGuire,

T. Lottes, H. Malan, E. Persson, D. Andreev and T. Sousa

SIGGRAPH 2011 Course

Aiming to disseminate our techniques in the game industry, efforts towards publishing on peer-reviewed, highly

relevant GPU technique books for games have been made:

• Practical Morphological Anti-Aliasing
J. Jimenez, B. Masia, J. I. Echevarria, F. Navarro and D. Gutierrez

GPU Pro 2, AK Peters Ltd., 2011, pp. 95–113

• Real-Time Facial Wrinkles Animation
J. Jimenez, J. I. Echevarria, C. Oat and D. Gutierrez

GPU Pro 2, AK Peters Ltd., 2011, pp. 15–27

• Screen-Space Subsurface Scattering
J. Jimenez and D. Gutierrez

GPU Pro, AK Peters Ltd., 2010, pp. 335–351

During my thesis, I had the chance to work part-time on other projects, not directly related to the topics of my

thesis. These yielded the following publications:

• Non-photorealistic, depth-based image editing
J. Lopez-Moreno, J. Jimenez, S. Hadap, E. Reinhard, K. Anjyo and D. Gutierrez

Computers & Graphics, Vol. 35(1), 2011, pp. 99–111
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JCR impact factor of 0.735

• Stylized Depiction of Images Based on Depth Perception
J. Lopez-Moreno, J. Jimenez, S. Hadap, E. Reinhard, K. Anjyo and D. Gutierrez

In Proc. of the 8th International Symposium on Non-Photorealistic Animation and Rendering, 2010, pp.

109–118 (Best Paper Award)

• Gaze-based Interaction in Virtual Environments
J. Jimenez, D. Gutierrez and P. Latorre

The Journal of Universal Computer Science, Vol. 14(19), 2008, pp. 3085–3098

JCR impact factor of 0.578

1.6 Industry Impact

Adding accurate subsurface scattering to human skin, especially on faces, can dramatically improve the overall

impression of realism. Since the ground-breaking skin rendering work of d’Eon et al. [2007], we have seen

an increasing interest in making skin rendering truly practical in game environments. Since then, each new

ShaderX release, one of the leading series in state of the art real-time techniques (and GPU Pro later), has

included at least one skin-related article: Fast Skin Shading (ShaderX7), Screen-Space Subsurface Scattering

(GPU Pro) and Pre-Integrated Skin Shading (GPU Pro 2). In a similar fashion, the publication of the original

MLAA article [Reshetov, 2009] has raised the interest of both industry and academia, bringing back the atten-

tion to alternative antialiasing solutions. Since its publication, a myriad of techniques have appeared [Jimenez

et al., 2011a], which aim for better performance and integration with current render technology. This shows

the growing interest of the gaming industry towards the two topics of this thesis: ultra-realistic skin rendering

and alternative, high-quality antialiasing solutions.

Our research has been done in tight collaboration with game companies, which leaded to very quick adoption

by the industry:

• The basic idea of our screen-space subsurface scattering method has been used in several game engines,

including Unreal Engine, CryEngine, Unigine and RawK.

• Game and hardware companies, including Activision, Microsoft, Ubisoft, ZeniMax, Criterion and Intel have

shown interest in our MLAA antialiasing approach. It has been used in various games, including Raving

Rabbids Alive and Kicking and the Torque 3D engine. It has been featured in very relevant gaming media:

Eurogamer [Leadbetter, 2010a], Games Industry [Leadbetter, 2010b] and the Game Developer Magazine.

Furthermore, this technique has generated extensive discussion over the Internet, with around 5400 pages

linking to our project page.

• Our SMAA technique has awaken the interest of the game community and industry, with the project page

being linked on 6460 sites on the Internet, and the movie being watched 36000 times. An injector for

enabling SMAA on already published games was independently developed by Andrej Dudenhefner, and

has been very well received by the enthusiastic gaming community, with 14500 references on Internet.

Furthermore, the game ARMA 2: Operation Arrowhead and Take on Helicopters (Bohemia Interactive

Studio) have been patched to incorporate SMAA 1x, and probably, SMAA T2x will be shipped with ARMA

3.
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1.7. RESEARCH PROJECTS AND STAYS

acm Transactions
on GraphicsDecember 2010

Volume 29 Number 6

Proceedings of ACM SIGGRAPH Asia 2010, Seoul, South Korea

Figure 1.7: Covers from Transactions on Graphics (left), and GPU Pro 2 (middle left) are based on images

from our works. It has been also featured in local Korean press (middle right), and as a full-text article in the

New Scientist journal (right).

• The movie of our separable subsurface scattering technique has been watched 580000 times, and raised

the interest of companies like Activision, Industrial Light and Magic, Epic Games, Ubisoft, EA Sports and

NVIDIA.

The impact of our antialiasing work lead us to an invitation to organize the SIGGRAPH course Filtering Ap-

proaches for Real-Time Anti-Aliasing, bringing experts from the field together, coming from AAA companies

including Sony, Intel, NVIDIA, AMD, Lucas Arts and Crytek. Our work has been featured in the covers of

journals and books, in local press and popular science journals (see Figure 1.7). Finally, we have been invited

to present our separable subsurface scattering technique in the SIGGRAPH 2012 course Advances in Real-Time

Rendering in 3D Graphics and Games, in Los Angeles (USA), and also in FMX 2012, in Stuttgart (Germany).

1.7 Research Projects and Stays

1.7.1 Research Projects

• GOLEM: Realistic Virtual Humans
From 06/2010 to the present day. Main researcher: Dr. Diego Gutierrez.

• MIMESIS: Low-cost techniques for material appearance model acquisition (TIN2010-21543)

From 06/2010 to the present day. Funded by the Spanish Ministry of Science and Technology. Main

researcher: Dr. Diego Gutierrez.

• TANGIBLE: Realistic humans and natural tangible interaction (TIN2007-63025)

From 12/2007 to 11/2010. Funded by the Spanish Ministry of Science and Technology. Main researcher:

Dr. Francisco J. Seron.

• Computational Photography: New algorithms for high dynamic range image processing (UZ2007-

TEC06)

From 01/2008 to 01/2009. Funded by the Universidad de Zaragoza. Main researcher: Dr. Diego Gutierrez.
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1.7.2 Research Stays

• Research on automatic facial color rendering. November 2010 (one month). University College London,

Department of Computer Science, London (United Kingdom).
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Chapter 2

SSS: Foreword

Lots of materials present a certain degree of translucency: paper, tree leaves, soap, a candle, fruit... these are

all common objects which present a certain degree of subsurface scattering (see Figure 2.1), and thus pose

a challenging problem in the field of computer graphics; light transport within the objects’ surface must be

correctly simulated in order to accurately capture their appearance.

Human skin is a particularly interesting translucent material. It is made up of multiple translucent layers, which

scatter light according to their specific composition [Igarashi et al., 2005]. This creates a very characteristic

appearance, to which our visual system seems to be specially well-tuned: slight errors in its simulation will be

picked up easier than, say, errors in the simulation of wax.

Correct depiction of human skin is important in fields such as cinematography and computer graphics. How-

ever, while the former can count on the luxury of off-line rendering, the latter imposes real-time constraints that

make the problem much harder. The main challenge is to compute an approximation of the complex subsurface

scattering effects, good enough to be perceptually plausible, but at the same time fast enough to allow for real-

time rendering and easy to implement so that it integrates well with existing pipelines. The key is to reduce

computational costs while leveraging the limitations of the human visual system.

Subsurface scattering (SSS) is usually described in terms of the Bidirectional Scattering Surface Reflectance

Distribution Function (BSSRDF) [Nicodemus et al., 1977]. The first attempts at simulating it were based on the

assumption that light scatters at a single point on the surface, adding a diffuse term to account for the overall

appearance of SSS effects. Hanrahan and Krueger [1999] only took into account single scattering, whilst Stam

[2001] extended the idea to simulate multiple scattering. Jensen and co-workers provided a huge step forward

and made SSS practical, publishing techniques that were rapidly adopted by the movie industry [Jensen et al.,

2001; Jensen and Buhler, 2002]. Based on a dipole approximation of light diffusion, they were able to capture

the subtle softness that translucency adds to the appearance of skin.

Recently, Donner and Jensen extended their dipole-based model to multiple dipoles, which can also capture

the effects of discontinuities at the frontiers of multi-layered materials [Donner and Jensen, 2005]. They show

results with a broad range of objects, and their skin simulations look particularly impressive. Unfortunately,

the model relies on a high number of parameters that need to be measured in advance, which makes its direct

application to rendering a bit cumbersome. The same authors partially overcome this issue in Donner and
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Figure 2.1: Tree leaves and candle showing high translucency properties.

Jensen [2006], presenting a physically-based spectral shading model for rendering human skin which requires

only four parameters. These parameters specify the amount of melanin, hemoglobin, and the oiliness of the

skin, which suffice to provide spectacular renderings.

However, the computation time needed for any of these models is still in the order of several seconds (or even

minutes) per frame, which rules out any real-time application. There is a good deal of research aiming to

provide SSS approximations which work sufficiently well, sacrificing physical accuracy in exchange of speed.

Most of them impose the burden of heavy precomputation times, though [Hao and Varshney, 2004; Wang et al.,

2005b,a]. One of the most popular techniques, Precomputed Radiance Transfer [Sloan et al., 2002] imposes ad-

ditional restrictions, such as fixed geometry that makes animation of translucent meshes impracticable. Modern

graphics hardware has also been used: Borshukov and Lewis [2003] use 2D diffuse irradiance textures, with

SSS simulated by a Gaussian function with a customizable kernel. The technique maps naturally onto GPUs,

but it still fails to capture the most complex subtleties of multiple scattering within materials. Dachsbacher

and Stamminger [2003] introduce the concept of translucent shadow maps, a modified version of shadow maps

extended with irradiance and surface normal information. In concurrent work, Mertens et al. [2005] presented

their own algorithm for local subsurface scattering, which is the same in spirit as Stamminger and Dachsbacher

[2003].

The work by d’Eon and colleagues at NVIDIA Corporation [D’Eon et al., 2007] simplifies the models of

Donner and Jensen [2005; 2006] combining them with the idea of diffusion in texture space [Borshukov and

Lewis, 2003; Stamminger and Dachsbacher, 2003]. They approximate the multiple dipole scheme with a sum

of Gaussian functions, obtaining separable multi-layer diffusion profiles which are combined in a final render

pass. Visual inspection of their results match the off-line renderings of Donner and Jensen, but they are achieved

at real-time frame rates.

Shah et al. [2009] solve the BSSRDF in screen-space, by using a splatting process rather than a gathering

process for computing the integration. The work of presented in Chapter 4 [Jimenez et al., 2009] can be seen

as a dual technique of this approach. Habel et al. [2007] managed to accurately represent SSS in plant leaves in

real-time for the first time. They precompute the expensive image convolution required to solve the BSSRDF,
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storing the results for real-time evaluation using the so-called Half Life 2 basis. François et al. [2008] introduce

a technique that enables the rendering of single scattering events within multi-layered materials in real-time.

Using relief texture mapping for modeling the material’s interior and two distance approximations for the

calculation of the reduced intensity Lri, they are able to produce images on par with ray tracing.

Recently, Penner and Borshukov [2011] pre-integrate the illumination effects of subsurface scattering due to

curvature and shadowing into textures. Additionally, the normal map is pre-blurred using the diffusion profile.

This technique gives very good results, but it assumes that normals can be pre-blurred, which is not always the

case. It also relies on soft shadows, which may not be available due to their high cost.

In the following section we provide an overview of the work by d’Eon and colleagues [2007], which is basis of

the techniques explained in the following chapters.

2.1 Efficient Rendering of Human Skin

The work by D’Eon et al. [2007] shows how texture-space diffusion [Borshukov and Lewis, 2003] can be

combined with translucent shadow maps [Stamminger and Dachsbacher, 2003] to create a very efficient, real-

time rendering algorithm for multi-layered materials with strong subsurface scattering. They apply it to human

skin, achieving impressive results.

The dipole model: To allow for an efficient simulation of light scattering in highly scattering materials, Jensen

et al. [2001] approximate the outgoing radiance L0 in translucent materials for a dipole diffusion approximation.

Thus, the costly Bidirectional Scattering Surface Reflectance Distribution Function (BSSRDF) becomes:

Sd(xi, �ωi; xo, �ωo) =
1

π
Ft(xi, �ωi)R(‖xi − xo‖2)Ft(xo, �ωo) (2.1)

Where xi and �ωi are the position and angle of the incident light, xo and �ωo are the position and angle of the

radiated light, Ft is the Fresnel transmittance and R is the diffusion profile of the material. The model is further

simplified in subsequent work by Jensen and Buhler [2002].

The multipole model: Donner and Jensen [2005] extend the dipole model to a multipole approximation,

defined as a sum of dipoles. The model works well for thin slabs (thus removing the semi-infinite geometry

restriction in Jensen et al. [2001]; Jensen and Buhler [2002]), and accounts for surface roughness and refrac-

tion effects at the boundaries. For each pair of slabs, they analyze the convolution of their reflectance and

transmittance profiles in frequency space (thus performing faster convolutions instead). They show how the

multipole approach provides a better fit with ground-truth Monte Carlo simulations than the simpler dipole

approximation. Fresnel reflectance accounts for differences in the indices of refraction for the boundaries of a

slab. In the presence of rough surfaces, the Torrance-Sparrow BRDF model [Torrance and Sparrow, 1967] is

used instead. Coupled with a Monte Carlo ray tracer, the authors show a wide range of simulated materials,

such as paper, jade, marble or human skin. Unfortunately, the model relies on involved precomputations, in the

order of a few seconds per frame, which rules out real-time applications of the method.

The Gaussian approximation: The recent work by d’Eon and colleagues [2007] is based on one key obser-

vation: the reflectance and transmission profiles that the multipole model predicts can be approximated by a

weighted sum of Gaussians. Let R(r) be a radial diffusion profile, then the error term:
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∫ ∞

0

r

(
R(r)−

k

∑
i=1

wiG(vi, r)

)2

dr (2.2)

must be minimized, where wi is the weighting factor and vi represents variance. Both parameters are user-

defined, along with the number of curves k, which is usually set between two and six. The authors report

errors between 1.52 and 0.0793 percent for the materials measured in Jensen et al. [2001]. This observation

allows for a much faster computations, given that 2D convolutions can now be separated into two cheaper, 1D

convolutions in x and y respectively.

Texture-space diffusion: The above mentioned desirable properties of the diffusion representation allow the

sum of Gaussians to be separated into a hierarchy of irradiance diffusion maps. These are rasterized into an

off-screen texture, using a fragment shader for lighting computations and a vertex shader for mesh-to-texture

mapping. The net result is a series of progressively smaller irradiance maps which when combined (weighted

sum) closely match the non-separable global diffusion profile by Donner and Jensen [2005].
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Chapter 3

SSS: Faster Texture-Space Diffusion

In this chapter three simple yet effective improvements implemented on top of the state-of-the-art, real-time

rendering algorithm published by d’Eon et al will be presented. We achieve maximum speed-ups in excess of

2.7x (on a NVIDIA GeForce 8800). Our implementation scales well, and is particularly efficient in multiple-

character scenarios. This should be specially useful for real-time realistic human skin rendering for crowds.

This research has been presented in Barcelona (Spain) at the Congreso Español de Informática Gráfica (CEIG

2008) [Jimenez and Gutierrez, 2008].

3.1 Overview

Figure 3.1 shows a scheme of the necessary steps involved in the NVIDIA shader. Our optimization techniques,

explained in the next sections, are applied during the two most expensive steps: the irradiance maps calculation

and the subsequent convolutions. Together with the cheaper shadow maps and sum of convolutions steps, these

four steps depend on the number of objects being rendered and/or light sources (note that only one head is

displayed in D’Eon et al. [2007], while our approach takes multiple objects into account). The final bloom

pass, not optimized with our algorithms, is performed on the final image and thus its computation time does

not increase as the number of objects grows.

3.2 First Optimization: Culled Irradiance Map

For sufficiently large textures, more than fifty percent of the rendering time is spent on obtaining the irradiance

maps and convolving them with the different Gaussian functions. We base our first optimization on the obser-

vation that these textures are obtained for the whole model, regardless of the current viewpoint for each frame.

We leverage the fact that of course not all the geometry will be seen at the same time, and thus we can take

advantage of backface culling techniques. For each pixel in the irradiance maps we can first check whether

it belongs to a point in the model which is visible in the current frame, since the surface normal is known at
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Figure 3.1: The five steps described in D’Eon et al. [2007]. We apply our three optimization techniques to the

irradiance map and convolution processes.

each point, and simply discard those pixels belonging to occluded parts of the geometry. Visibility information

is stored in the alpha channel (0.0 means occluded, 1.0 means visible). This simplifies the computation of

the maps and subsequent convolutions, given the reduced number of pixels containing meaningful irradiance

values.

During convolution, the Gaussian functions should not be applied beyond the boundaries of the visibility map

stored in the alpha channel. This would extend the convolution kernel to pixels where no irradiance information

has been stored, thus potentially producing visible artifacts. To circumvent this, we modify the backface culling

algorithm, extending it beyond the standard divergence of 90◦. We thus store an occlusion value if the angle

between the surface normal and the view vector is greater than 105◦, which produces good results. Figure 3.2

shows the difference between the irradiance map in D’Eon et al. [2007] and our approach, for a given viewpoint.

Occluded pixels have been highlighted in blue for visualization purposes (the red map belongs to the third

optimization, introduced later in the chapter).

We note that using vertex normals for backface culling can be a potential source of error: polygons conforming

the apparent profile of the object are likely to have both visible and occluded vertices at the same time, and thus

the algorithm would discard visible pixels. However, our experience shows that extending the culling angle

to 105◦ greatly avoids any visible errors, while still providing noticeable speed-ups. A second possibility to

circumvent this is to use attribute variables to store the normal of each polygon in the vertex shader.

Implementation issues: The following code illustrates the simple implementation of this optimization on

the GPU. First we show the vertex shader (Listing 3.1) and pixel shader (Listing 3.2) for the irradiance map,

followed by the convolution pixel shader (Listing 3.3). Visibility is computed on the vertex shader of the

irradiance map to take advantage of automatic hardware pixel interpolation.

void main ( ) {

vec4 eye = vec4 ( 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 ) ;

vec4 n = gl_NormalMatrix ∗ gl_Normal ;

n = normal ize ( n ) ;

e y e d o t = dot ( eye , n ) ;

/ / . . . t r a n s f o r m v e r t e x , e t c .

}

Listing 3.1: Irradiance vertex shader
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3.2. FIRST OPTIMIZATION: CULLED IRRADIANCE MAP

Figure 3.2: From left to right: irradiance map for a given viewpoint as described in D’Eon et al. [2007].

Culled and clipped irradiance maps: occluded and clipped pixels are highlighted in blue and red respectively

for visualization purposes. Final rendered image.

void main ( ) {

i f ( e y e d o t >= −0.2588) {

/ / cos(105◦)=-0.2588

/ / ... calculate pixel irradiance

gl_FragColor . a = 1 . 0 ;

} e l s e {

gl_FragColor . a = 0 . 0 ;

}

}

Listing 3.2: Irradiance pixel shader

void main ( ) {

vec4 v a l = texture2D ( i r r a d i a n c e m a p ,

gl_TexCoord [ 0 ] . s t ) ;

i f ( v a l . a > 0 . 0 ) {

gl_FragColor = vec4 ( vec3 ( 0 . 0 ) , 1 . 0 ) ;

/ / . . . a p p l y c o n v o l u t i o n k e r n e l

} e l s e {

gl_FragColor = vec4 ( vec3 ( 0 . 0 ) , 0 . 0 ) ;

/ / . . . no c o n v o l u t i o n

}

}

Listing 3.3: Convolution pixel shader

In OpenGL, it would seem obvious to implement this optimization using the depth buffer as a mask, as de-

scribed in Harris and Buck [2005], given that in modern graphics hardware pixels are discarded before the

pixel shader is executed. This depth buffer could be obtained during the computation of the irradiance map,

and then transferred to the different convolution frame buffers. Irradiance maps of the same size could share

the same depth buffer, thus limiting the number of necessary copies.

However, we have observed that the alpha channel implementation still performs about 10% better than the

shared depth buffer strategy. This may be due to the improvements in branching efficiency in the NVIDIA

GeForce 8800 used [NVIDIA Corporation, 2006]. We thus opt to use the alpha channel instead, and perform

an additional per-pixel check on it before convolving with the Gaussian functions.

23



CHAPTER 3. SSS: FASTER TEXTURE-SPACE DIFFUSION

Eye
d

nearest vertex

Figure 3.3: Distance from the camera (eye) to the nearest vertex in the bounding box.

3.3 Second Optimization: depth-based Irradiance Map

The main idea of our second proposed optimization is to adjust the size of the irradiance map according to the

depth of the object being rendered. In the optimal case, rasterizing algorithms obtain each pixel value once per

frame. However, several pixels in texture space (with a fixed texture resolution) may collapse into one final

pixel in image space. This results in lots of wasted calculations. It is therefore convenient to modulate the size

of the irradiance map according to the viewing distance of the object.

As opposed to mip-mapping techniques, where distances are considered individually for each pixel, we need to

compute only one distance, which will be used for all the pixels in the current frame. We apply a conservative

metric, adjusting the distance according to the pixel nearest to the camera. If that pixel is visualized correctly,

the rest (further away) will be as well. For fast computation of this distance, we approximate it by the distance

d to the nearest vertex of the object’s bounding box. This is shown in Figure 3.3.

Once d is found, we obtain the size T of the irradiance map on a per-frame basis by using:

s = min(
dre f

d
, 1.0) (3.1)

T = sTmax (3.2)

where Tmax is the maximum texture size, dre f is the reference distance for which the irradiance map should have

a size of Tmax ∗ Tmax pixels. In our implementation we have used values of dre f = 4.5 (this value is dependent

of both model scale and frame resolution) and Tmax = 2048, as used by d’Eon and colleagues [2007].
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Figure 3.4: The OpenGL pipeline. We perform an additional, user-defined optimization in eye coordinates

instead of clipping coordinates.

Implementation issues: Allocating frame buffer memory is a costly process, so performing this operation on

the fly adjusting its size according to the obtained Tmax value would be impractical. Thus, we only allocate

memory once for the maximum size Tmax, the same way we would do without this optimization, and use the

OpenGL function glViewport(0,0,T,T) instead while performing irradiance map calculations. During the

convolutions and final rendering phases, instead of working with texture coordinates (0..1) we limit texture

space to the range (0..s).

3.4 Third Optimization: Clipped Irradiance Map

In a traditional rendering pipeline, those parts of the model outside the view frustum would be logically clipped,

and no computations would be performed on them. The method proposed in D’Eon et al. [2007], however,

computes the complete irradiance maps for the complete model, regardless of which parts lie beyond the

screen limits. This is justified because during the irradiance maps computations each vertex is mapped to

texture space, and thus conventional clipping cannot be performed on them: their positions in texture space no

longer determine their visibility in the final render step.

We avoid this problem by proposing an additional clipping operation independently of the standard view frus-

tum clipping, to be performed during irradiance maps calculations. Given the following plane parameterization:

Ax + By +Cz + D = 0 (3.3)

we obtain a user-defined view frustum by its six planes Πi as follows (in clip coordinates):

Π1 = (1, 0, 0, 1)

Π2 = (−1, 0, 0, 1)

Π3 = (0, 1, 0, 1)

Π4 = (0,−1, 0, 1)

Π5 = (0, 0, 1, 1)

Π6 = (0, 0,−1, 1)

As done in the first optimization, we could use a value slightly greater than one for D, so that we calculate some

offscreen pixels that may have impact on the final pixels of the visible surface due to scattering. However, we
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have not observed any visible artifacts in our tests, and thus we use D = 1.

Figure 3.4 shows the traditional OpenGL pipeline: given that the coordinates of each vertex are already obtained

in eye coordinates, transforming them to clip coordinates would mean a costly, per-vertex multiplication by the

corresponding projection matrix. Instead, we transform the planes Πi in Equation 3.4 to eye coordinates, and

perform our clipping there. Let P be the matrix which transforms a vertex from eye to clip coordinates; we can

transform the vectors defining Πi by applying Shreiner et al. [1997]:

Πeye = ((P−1)−1)TΠclip = PTΠclip (3.4)

Figure 3.2 shows the resulting clipped pixels of the irradiance map.

Implementation issues:

OpenGL allows a user-defined clipping operation on top of the automatic clipping performed for the view

frustum. The clipping planes Πi are defined by using glClipPlane. However, this function transforms its

parameters to eye coordinates by default, by using the modelview matrix. It is then necessary to assign the

Identity matrix to the modelview matrix, before defining each clipping plane. We use the special output variable

in the vertex shader called gl_clipVertex to specify clipping coordinates independently from the transformed

vertex position. These will be used to perform the clipping operation with the clipping planes defined in

glClipPlane.

Listing 3.4 shows the code for the modified part of the vertex shader for the irradiance map:

void main ( ) {

vec4 pos = gl_ModelViewMatrix ∗ g l_Ver tex ;

/ / . . . c a l c u l a t e i r r a d i a n c e w i t h pos

g l _ C l i p V e r t e x = pos ;

}

Listing 3.4: Irradiance vertex shader

We initialize the alpha channel to 0 before computing the irradiance map. Thus, after obtaining it, all the

clipped pixels will still have a zero value in the alpha channel, since they are not written by the pixel shader.

This has the desirable effect of propagating the clipping to the Gaussian convolutions, given that, as explained

in the first optimization, the alpha channel is checked before any convolution takes place.

3.5 Results

We have implemented the technique proposed by d’Eon and colleagues [2007], modifying it to include the

three optimization techniques presented in this chapter. We have used a GeForce 8800 GTX on a Core 2 Duo

@ 2.4Ghz. Screen resolution was fixed at 1920x1200 pixels. The head model contains 25K triangles with

2048x2048 color and normal maps. We use six irradiance maps, with a maximum resolution of 2048x2048, the

same as for shadow maps. Figure 3.5 show the results, rendered in real-time. Figure 3.6 shows a side-by-side

qualitative comparison with the off-line technique by Donner and Jensen [2005] and the real-time shader of

d’Eon et al. [2007]: visual inspection yields similar quality in the final renders. We could not duplicate the
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Figure 3.5: Real-time rendering using two point light sources and two bloom passes.

exact settings for our rendering given that some necessary data like light position or intensity is not included in

the previously mentioned papers. Thus, some slight differences in tone are expected.

Table 3.1 shows the results of our tests, rendering images similar to Figure 3.7 with the three optimizations

described in the chapter. We varied the number of aligned heads from one to sixteen, as well as the distance

(measured as the distance from the camera to the center of the middle head). Our optimization techniques shows

great scalability, achieving greater speed-ups as the number of heads increases. This makes them specially

useful in multiple-character situations. Our depth-based irradiance map technique has a greater impact as the

objects move away from the camera, with the opposite behavior for the clipped irradiance map optimization.

All together, we achieve speed-up factors between 1.10 and 2.77. We have additionally performed similar tests

using an older GeForce 8600M GS: in that case the speed-up factor with respect to the non-optimized version

of the shader was even better, between 1.23 and 6.12.
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Figure 3.6: From left to right: images rendered by Donner and Jensen [2005], d’Eon et al. [2007] and our

optimized algorithm, for comparison purposes.

Figure 3.7: Example image used in our tests.
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3.6. CONCLUSIONS AND FUTURE WORK

Figure 3.8: Images rendered with our optimized algorithm without translucent shadow maps. Left: Scattering

within the ear is not captured properly. Middle: Same image as it appears in Donner and Jensen [2006] for

comparison purposes. Right: Backlit profile with dominant subsurface scattering still looks plausible.

Table 3.1: Speedup as distance and number of heads increases

Distance
Heads 2.5 5 10 20 50 100

1 1.17 1.10 1.39 1.48 1.53 1.61

2 1.40 1.10 1.46 1.63 1.88 1.88

4 1.66 1.39 1.58 1.89 2.10 2.26

8 1.86 1.67 1.95 2.01 2.34 2.59

16 2.01 1.90 2.28 2.41 2.50 2.77

3.6 Conclusions and Future Work

Our proposed optimization techniques are based on simple but effective ideas, and can be easily implemented

on top of the work by d’Eon and co-workers. We achieve speed-up factors of up to 2.77 on a GeForce 8800

GTX, and up to 6.12 on the 8600M GS. The optimizations scale better as the number of objects increases,

making them suitable for crowd simulations, games or any other multiple-character scenario.

We have not made use of translucent shadow maps [Stamminger and Dachsbacher, 2003] since scaling the

technique for more than one light source is potentially costly. As they are implemented in D’Eon et al. [2007],

they take up to 30% of the rendering time, so the performance of our proposed techniques would be expected

to drop similarly, since it does not optimize that part of the process. However, it is unclear whether the work

described in D’Eon et al. [2007] uses them for both light sources to render their images. Their influence is

limited to a number of specific situations, such as a thin translucent surface being lit from behind, although ad-

mittedly in those cases they can simulate very appealing subsurface scattering effects that we fail to capture (see

Figure 3.8, left). However, for most cases, the results without translucent shadow maps are very convincing,
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even in extreme situations where subsurface scattering dominates most of the simulated light field (see Figure

3.8, right). Even though their influence is marginal under most situations, efficiently implementing translucent

shadow maps for multiple lights is an interesting direction of future work which we are currently working on.
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Chapter 4

SSS: Screen-Space Diffusion

In the previous chapter, we presented a technique which improves the performance of state-of-the-art texture-

space diffusion. However, it still suffers from a series of problems, specially its cumbersome implementation

and management in multi-character scenarios, where it is faster than previous approaches but still suboptimal

performance wise. In this chapter we propose a novel skin shader which translates the simulation of subsurface

scattering from texture space to a screen-space diffusion approximation. It naturally scales well while maintain-

ing a perceptually plausible result. This technique allows us to ensure real-time performance even when several

characters may appear on-screen at the same time. The visual realism of the resulting images is validated using

a subjective psychophysical preference experiment. Our results show that, independent of distance and light

position, the images rendered using our novel shader have as high visual realism as a previously developed

physically based shader.

The work described in this chapter have been presented in Chania (Greece) at the Applied Perception on

Graphics and Visualization conference (APGV 2009), being selected for extension and publication as journal

on the ACM Transactions on Applied Perception [Jimenez et al., 2009].

4.1 Introduction

Several real-time algorithms to simulate skin already exist [Gosselin, 2004; D’Eon et al., 2007; Hable et al.,

2009; Jimenez and Gutierrez, 2008]. Their common key insight is the realization that subsurface scattering

mainly amounts to blurring of high-frequency details, which these algorithms perform in texture space. Whilst

the results can be quite realistic, they suffer from the fact that they do not scale well; more objects means more

textures that need to be processed, and thus performance quickly decays. Furthermore, the implementation of

some of these techniques can be very complex and error-prone. This is especially problematic in the case of

computer games, where a lot of characters may appear on-screen simultaneously, but real-time is still needed.

We believe that this is one of the main issues that is keeping game programmers from rendering truly realistic

human skin. The commonly adopted solution is to simply ignore subsurface scattering effects, thus losing re-

alism in the appearance of the skin. Additionally, real-time rendering in a computer game context can become

much harder, with issues such as the geometry of the background, depth of field simulation or motion blur

imposing additional time penalties.
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Figure 4.1: Top: existing algorithms blur high-frequency details in texture space. The image sequence shows

the initial rendered irradiance map and two blurred versions. Bottom: equivalent process in screen space,

where the blurring is applied to selected areas directly on the rendered image (see text for details).

To help solve these problems, we propose an algorithm to render perceptually realistic human skin, which

translates the simulation of scattering effects from texture to screen space (see Figure 4.1). We thus reduce the

problem of simulating translucency to a post-process, which has the added advantage of being easy to integrate

in any graphics engine. The main risk of this approach is that in screen space we have less information to

work with, as opposed to algorithms that work in 3D or texture space. We are interested in finding out how the

cognitive process that recognizes human skin as such is affected by this increased inaccuracy. Working within

perceptual limits, can we still obtain a model of human skin that is perceived as at least as photorealistic as

texture-space approaches?

We note that, while the perception of translucency has been studied before [Fleming and Bülthoff, 2005], there

has not been any previous research on the perception of the particular characteristics of human skin. We perform

a psychophysical evaluation comparing four different approaches: a) no simulation of subsurface scattering,

b) a state-of-the-art, texture-space algorithm from NVIDIA, c) a naive mapping of an existing algorithm into

screen space, and d) our novel screen-space algorithm. Results show that, independent of distance and light

position, our method performs perceptually on par with the method from NVIDIA (generally accepted as state

of the art in real-time skin rendering, and taken here as our ground-truth), while being generally faster and

scaling much better with multiple characters (see Figure 4.2).

Translucency is a very important characteristic of certain materials, and easy to pick up by the visual system.

Nevertheless, due to the complexity of the light transport involved, it is unlikely that the visual system relies on

any inverse optics to detect it [Fleming and Bülthoff, 2005]. Koenderink and van Doorn [2001] developed some

“rules of thumb" to help explain the perception of translucent materials, and hypothesize that more general laws
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Figure 4.2: Several heads rendered with our screen-space shader. Our psychophysical experiments show that

it ranks perceptually on par with the state-of-the-art NVIDIA shader [D’Eon et al., 2007], while scaling much

better as the number of heads increases.

SSS

Depth

Final Image

Blurred Maps

Diffuse

Matte

Specular

Figure 4.3: Overview of our screen-space algorithm.

may be utopic. Fleming and Bülthoff [2005] present a series of psychophysical studies and analyze low-level

image cues that affect perceived translucency. A more comprehensive overview can be found in Singh and

Anderson [2002]; however, no previous work has focused on the specific characteristics of the perception of

human skin.
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4.2 Screen-space algorithm

Our rendering algorithm is based on the idea of performing the diffusion approximation in screen space (as

opposed to texture space), to streamline the production pipeline and ensure real-time performance even as the

number of on-screen characters increases. We are inspired by two works that aimed to optimize texture-space

approaches, which we first describe briefly.

Optimizing the pipeline: Current state-of-the-art methods for real-time rendering of human skin are based

on the texture-space diffusion approximation discussed above. However, rendering irradiance maps in this

way for a given model means that the GPU pipeline cannot be used in the conventional way. This is due to

the fact that the vertex shader is not used as usual to transform object coordinates to clip coordinates, but to

assign to each vertex a pair of (u, v) coordinates on the unfolded geometrical mesh instead. As a consequence,

two optimizations that would otherwise be implicitly performed by the GPU right after the execution of the

vertex shader are now lost, namely backface culling and view frustum clipping. Jimenez and Gutierrez [2008]

reintroduce those two optimizations in the rendering pipeline proposed in D’Eon et al. [2007]. They perform

optimal, per-object modulation of the irradiance map size based on a simple, depth-based method.

Similar in spirit, Hable et al. [2009] also reintroduce backface culling, and propose an additional optimization:

instead of computing the twelve one-dimensional Gaussians to approximate the diffusion profile as in D’Eon

et al. [2007], they compute a single bidimensional convolution at thirteen jittered sample points, which account

for direct reflection (one point), mid-level scattering (six points) and wide red scattering (six points).

Texture- vs. screen-space: Texture-space diffusion has some intrinsic problems that can be easily solved when

working in screen space. We outline the most important ones:

• It requires special measures to bring back typical GPU optimizations (backface culling and viewport clip-

ping), and to compute an irradiance map proportional to the size of the subject on the screen. In screen

space, these optimizations are implicit.

• Each subject to be rendered requires her own irradiance map (thus forcing as many render passes as sub-

jects). In image space, all subjects are processed at the same time.

• The irradiance map forces the transformation of the model vertices twice: during the irradiance map calcu-

lation, and to transform the final geometry at the end. In screen space, only this second transformation is

required.

• Modern GPUs can perform an early-Z rejection operation to avoid overdraw and useless execution of pixel

shaders on certain pixels. In texture space, it is unclear how to leverage this and optimize the convolution

processes according to the final visibility in the image. In screen space, a depth pass can simple discard

them before sending them to the pixel shader.

• Depending on the surface orientation, several pixels in texture space may end up mapped on the same pixel

in screen space, thus wasting convolution calculations1. This situation is avoided altogether by working

directly in screen space; as our tests will show, the errors introduced by this simplification are not picked

up by the visual system.

1 Modulating the size of the irradiance map may reduce the problem somewhat, but will not work if the viewpoint (and thus the surface

orientation) changes in a dynamic environment.
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• Adjacent points in 3D world space may not be adjacent in texture space. Obviously, this will introduce

errors in texture-space diffusion that are naturally avoided in screen space.

Apart from fixing these problems, our psychophysical evaluation (Section 4.3) shows that errors introduced by

working in screen space are mostly unnoticed by a human observer.

As we will see in Section 4.5, our screen-space algorithm has some limitations:

• Adjacent points in 2D screen space may not be adjacent in 3D world space. This produces artifacts in the

form of small haloes around some areas of the model such as the ears or nose.

• It fails to simulate the light transmitted through high-curvature features, since we lack lighting information

from the back of the objects.

• It requires the usage of additional textures in order to store the specular channel and object’s matte.

Screen-space diffusion algorithm: Our algorithm follows the idea of optimizing the pipeline [Jimenez and

Gutierrez, 2008; Hable et al., 2009], and further simplifies the texture-space diffusion approximation by work-

ing in screen space. Recall that all previous real-time algorithms are based on the idea of convolving a diffusion

profile over the irradiance map for each model. In contrast, our algorithm takes as input a rendered image with

no subsurface scattering simulation, plus the corresponding depth and matte of the object. Since the subsurface

scattering effect should only be applied to the diffuse component of the illumination, not affecting specular

highlights, we take advantage of the multiple render targets capability of modern GPUs, and store the diffuse

and specular components separately. Depth is linearized following Gillham [2006]. We then apply our diffusion

profiles directly on the rendered diffuse image, as opposed to the irradiance map stored as a texture. Figure 4.3

shows an overview of our algorithm.

We have applied the convolution kernel in two different ways: using a single bidimensional convolution with

jittered samples (as proposed in Hable et al. [2009]) and using the six one-dimensional Gaussians described in

D’Eon et al. [2007], combining them with a weighted sum in a second pass. For all cases, we have run a psy-

chophysical evaluation to validate the results. For the specular component we have used the Kelemen/Szirmay-

Kalos model [Kelemen and Szirmay-Kalos, 2001]; additionally, we apply a bloom filter similar to the one used

by our reference texture-space algorithm [d’Eon and Luebke, 2007], which follows Pharr and Humphreys’s

recommendation [2004].

To apply the convolution only in the necessary parts of the image, and thus apply the pixel shader in a selective

way, we rely on the matte mask. Since we are working in screen space, the kernel width2 must be modulated

taking into account the following:

• A pixel representing a further away object should use a narrower kernel.

• Greater gradients in the depth map should also use narrower kernels. This is similar in spirit to using stretch

maps, without the need to actually calculate them.

We thus multiply the kernel width by the following stretch factors:

2 Jittered sample positions in case of the convolution with jittered samples and standard deviation in case of the convolutions with

Gaussians.
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Name Description
No SSS Rendered without subsurface scattering

TS Texture-space simulation [D’Eon et al., 2007]

SS Jittered Screen-space adaptation of Hable et al. [2009], with jittered samples

SS Full Our screen-space algorithm

Table 4.1: Names and description of the four shaders used in our psychophysical experiments.

sx =
α

d(x, y) + β · min(abs(∇xd(x, y)), γ)
(4.1)

sy =
α

d(x, y) + β · min(abs(∇yd(x, y)), γ)
(4.2)

where d(x, y) is the depth of the pixel in the depth map, α indicates the global subsurface scattering level in

the image, β modulates how this subsurface scattering varies with depth gradient and γ limits the effects of the

derivative. The operators ∇x and ∇y compute the depth gradient, and are implemented on the GPU using the

functions ddx and ddy respectively. Note that increasing depth gradients reduce the size of the convolution

kernel as expected; in practice, this limits the effect of background pixels being convolved with skin pixels,

given that in the edge, the gradient is very large and thus the kernel is very narrow. The value of α is influenced

by the size of the object in 3D space, the field-of-view used to render the scene and the viewport size (as these

parameters determine the projected size of the object), whereas γ only depends on the size of the object. All the

images used in this work have empirically fixed values of α = 31.5, β = 800 and γ = 0.001; these values were

chosen empirically for a head 1.0 units tall, a field-of-view of 20◦ and a viewport height of 720 pixels. Figure

4.4 shows the influence of α and β in the final images. As noted in D’Eon et al. [2007], where a similar stretch

factor is used in texture-space to modulate the convolutions, filtering is not separable in regions where stretch

varies. However, we have not noticed any visual artifacts as result of this stretched one-dimensional Gaussian

convolutions.

To illustrate its efficiency, Figure 4.5 top, shows a scheme of the necessary steps involved in a generalized

texture-space skin shader. The stretch and irradiance maps, the Gaussian convolutions and the render must be

performed once per character. In contrast, our algorithm only requires the rendering step to be performed on

a per-character basis; no stretch nor irradiance maps are needed, and convolutions are performed only once

directly in screen space (Figure 4.5 bottom). The final bloom pass, not optimized with our algorithm, is also

performed on the final image and thus its computation time does not increase as the number of objects grows.

It simulates the point-spread-function of the optical system used to capture (render) the image.

Listing 4.1 shows the implementation of previous equation for the case of the horizontal blur. Our subsurface

scattering approach just requires two short shaders, one for the horizontal blur and a similar one for the vertical

blur.

Certain areas of the character, such as hair or beard, should be excluded from these calculations; we could

therefore want to locally disable subsurface scattering in such places. For this purpose, we could use the alpha

channel of the diffuse texture to modulate this local subsurface scattering level. We would need to store the

alpha channel of this texture into the alpha channel of the main render target during the main render pass. Then,

in our post-processing pass we would use the following modified stretch factors:
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Figure 4.4: The influence of the α and β parameters. Top: fixed β = 800, γ = 0.001 and varying α of 0, 15.75

and 31.5, respectively. Note how the global level of subsurface scattering increases. Bottom: fixed α = 31.5,

γ = 0.001 and varying β of 0, 1200 and 4000, respectively. Note how the shadow under the nose gets readjusted

according to the depth gradient of the underlying geometry.

Shadow Maps Stretch Map Convolutions Final Render BloomIrradiance Map

Shadow Maps Final Render Convolutions Bloom

Repeated for each model

Repeated for each model

Figure 4.5: Top: scheme of the pipeline described in D’Eon et al. [2007]. Bottom: our simplified screen-space

strategy. Notice how less steps are performed on a per-character basis.
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f l o a t wid th ;

f l o a t s s s L e v e l , c o r r e c t i o n , maxdd ;

f l o a t 2 p i x e l S i z e ;

Texture2D co lo rTex , dep thTex ;

f l o a t 4 BlurPS ( PassV2P i n p u t ) : SV_TARGET {

f l o a t w[ 7 ] = { 0 . 0 0 6 , 0 . 0 6 1 , 0 . 2 4 2 , 0 . 3 8 2 ,

0 . 2 4 2 , 0 . 0 6 1 , 0 .006 } ;

f l o a t d e p t h = depthTex . Sample ( Po i n t S a m p l e r ,

i n p u t . t e x c o o r d ) . r ;

f l o a t 2 s_x = s s s L e v e l / ( d e p t h + c o r r e c t i o n ∗
min ( abs ( ddx ( d e p t h ) ) , maxdd ) ) ;

f l o a t 2 f i n a l W i d t h = s_x ∗ wid th ∗ p i x e l S i z e ∗
f l o a t 2 ( 1 . 0 , 0 . 0 ) ;

f l o a t 2 o f f s e t = i n p u t . t e x c o o r d − f i n a l W i d t h ;

f l o a t 4 c o l o r = f l o a t 4 ( 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ) ;

f o r ( i n t i = 0 ; i < 7 ; i ++) {

f l o a t 3 t a p = c o l o r T e x . Sample ( L i n e a r S a m p l e r , o f f s e t ) . rgb ;

c o l o r . rgb += w[ i ] ∗ t a p ;

o f f s e t += f i n a l W i d t h / 3 . 0 ;

}

re turn c o l o r ;

}

Listing 4.1: Pixel shader that performs the horizontal Gaussian blur.

s′x = sx · di f f use(x, y).α (4.3)

s′y = sy · di f f use(x, y).α (4.4)

4.2.1 Implementation details

Depth-Based Gaussians Level of Detail

Performing the diffusion in screen space allows us to disable Gaussians on a per-pixel basis as we fly away

from the model. Narrow Gaussians are going to have little effect on pixels far away from the camera, as most

of the samples are going to land on the same pixel. We can exploit this to save computations.

For this purpose we use the following inequality, based on the final kernel width equation from the previous

section, where we are making the assumption of camera facing polygons which have zero-valued derivatives:

√
v · α

d(x, y)
> 0.5, (4.5)

where v is the variance of current Gaussian. If the width of the kernel for the current pixel is less than 0.5,

that is a half a pixel, all samples are going to land on the same pixel and thus we can skip blurring at this pixel
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0.5
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�
yxd

�v0.5

MRT

Figure 4.6: Left: if a Gaussian is narrower than a pixel, the result of its application will be negligible. Right:

alpha blending workflow used to enhance memory usage. Multiple Render Targets (MRT) is used to render to

RT1 and RTF simultaneously.

(Figure 4.6, left).

We can use depth testing to efficiently implement this optimization. If we solve the previous inequality for

d(x, y):

2 · √v · α > d(x, y) (4.6)

then we just need to render the quad used to perform the convolution at a depth value of 2 · √v · α and configure

the depth testing function to greater than. However, we have found that using a value of 0.5 · √v · α instead

allows us to disable them much faster without any noticeable popping.

Though we have a copy of the depth-stencil buffer in linear space, the original depth-stencil buffer is kept in

non-linear space for precision issues. This means that we have to transform the left side of previous inequality

into the same non-linear space [Gillham, 2006], and clamp the resulting non-linear depth values to [0..1].

Alpha Blending Workflow

Using n Gaussians to approximate a diffusion profile means we need n render targets for irradiance storage.

In order to keep the memory footprint as low as possible, we accumulate the sum of the Gaussians on the fly,

eliminating the need to sum them in a final pass.

In order to accomplish this task, we require two additional render targets. The first render target is used to store

the widest Gaussian calculated thus far (RT1) and the second for the usual render target ping-ponging (RT2).

Applying one of the Gaussians consists of two steps:

1. Perform the horizontal Gaussian blur into RT2.

2. Perform the vertical Gaussian blur by sampling from the horizontally blurred RT2 and outputting into both

RT1 and RTF (the final render target) using multiple render targets. For RTF we use an alpha blending

operation in order to mix the values accordingly. The exact weight required for the blending operation will

be examined in the following paragraphs.
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Figure 4.6 (right) shows the alpha blending workflow used by our algorithm. We need to sum the n Gaussians

as follows:

R =
n

∑
i=k

wiGi (4.7)

where wi is the weight vector (different for each RGB channel) of each Gaussian Gi, and k is the first Gaussian

that is wide enough to have a visible effect on the final image, as explained in the previous section.

As we may not calculate all Gaussians, we need to find a set of values w′
i that will produce a normalized result

at each step i of the previous summatory:

w′
i =

wi

∑i
j=1 wi

(4.8)

Then we just need to configure alpha blending to use a blend factor as follows:

cout = csrc · a + cdst · (1 − a), (4.9)

where cout is the output color, csrc is the incoming color from the pixel shader, cdst is the existing color in the

framebuffer and a is the blending factor. In this case, a is assigned to w′
i.

Table 4.2 shows the original weights of 4-Gaussian and 6-Gaussian skin fits (wi), alongside with the modified

weights used by our screen-space approach (w′
i).

In the case of skin, the first Gaussian is too narrow to be noticeable, thus the original unblurred image is used

instead, saving the calculation of one Gaussian. Note that the weight of the first Gaussian for both fits is 1.0;

the reason for this is that the first Gaussian does not need to be mixed with the previously blended Gaussians.

Note that as we are performing each Gaussian on top of the previous one, we have to subtract the variance of

the previous Gaussian to get the actual variance; for example, for the widest Gaussian of the skin fit, we would

have: 2.0062 − 0.2719 = 1.7343. Also keep in mind that the width that should be passed to the shader shown

in the Listing 4.1 is the standard deviation, thus in this case it would be
√

1.7343.

Antialiasing and Depth-Stencil

When using MSAA, for efficiency reasons, we might want to use the resolved render targets (downsampled

to MSAA 1x) for performing all the post-processing, in order to save memory bandwidth. However this im-

plies that we cannot use the original MSAA stencil buffer to perform the depth-based blur modulation or the

stenciling.

We explored two approaches to solve this problem:

1. Use dynamic branching to perform the stenciling by hand.
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Skin (4-Gaussians) wi w′
i

Variance R G B R G B
0.0064 0.2405 0.4474 0.6157 1 1 1

0.0516 0.1158 0.3661 0.3439 0.3251 0.45 0.3583

0.2719 0.1836 0.1864 0 0.34 0.1864 0

2.0062 0.46 0 0.0402 0.46 0 0.0402

Skin (6-Gaussians) wi w′
i

Variance R G B R G B
0.0064 0.233 0.455 0.649 1 1 1

0.0484 0.1 0.336 0.344 0.3 0.424 0.346

0.187 0.118 0.198 0 0.261 0.2 0

0.567 0.113 0.007 0.007 0.2 0.007 0.007

1.99 0.358 0.004 0 0.388 0.004 0

7.41 0.078 0 0 0.078 0 0

Table 4.2: Gaussian variances and original weights (wi) of our Gaussian fits that approximate the three-layer

skin diffusion profile, alongside with the modified weights used by our algorithm (w′
i).

2. Downsample the depth-stencil buffer to be able to use hardware stenciling.

Both methods rely on generating multi-sample render targets containing depth and stencil values during the

main pass, for which multiple render targets can be used3.

We found that in our implementation using hardware stenciling outperforms the dynamic branching method.

4.3 Perceptual Validation

The realism of the rendered images was validated using a subjective psychophysical experiment. The experi-

ment was based on comparing four different shaders, namely: no SSS, TS, SS Jittered, and SS Full (see Table

4.1 for a brief summarizing description). The conditions used to render each shader are further described in

Section 4.3.2. The images rendered using the TS shader were always used to compare the other shaders against.

Human subjects were used to evaluate the realism of the shaders using a subjective two-alternative forced-

choice (2AFC) preference experiment. The research hypothesis in the experiment was that the images rendered

using the no SSS, SS Jittered, and SS Full shaders would produce as high visual realism as the ground-truth TS

shader.

4.3.1 Participants

Sixteen volunteering participants (14 male and 2 female; age range: 23-43) were recruited for the experiment.

All of the participants were naïve as to the purpose of the experiment. The subjects had a variety of experience

3 When using DirectX 10.1 we can sample from the MSAA depth-stencil buffer directly, with no need to output depth and stencil values

using multiple render targets.
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Figure 4.7: Example stimuli used in our psychophysical tests: zoom, near and far images with light at 0◦, for

the case of TS vs. SS Full. In this figure, the TS version appears always on the left, and our shader on the right

for comparison purposes.

with computer graphics, and all self-reported normal or corrected-to-normal vision. Seven subjects reported

that they did not have any expertise in art (drawing, photography, computer graphics, or digital art, video, etc.),

whereas nine participants reported that they did. It was hypothesised that the participants with knowledge in

computer graphics would be better at judging which of the images were the most realistic ones in theory.

4.3.2 Stimuli

The head model used in the experiment was the head obtained from XYZRGB4. This model was used to create

stimuli images for the experiment using the four shaders. Each participant viewed 72 trials in total. The

number of images rendered for each shader was twelve (1 shader x 3 camera distances x 4 light angles). The

three camera configurations used were at 28, 50 and 132 distance units, which in the chapter are referred to

zoom, near, and far (for reference, the head is 27 distance units tall).

Four different lighting configurations were used for each camera distance. These had a fixed elevation angle

θ of 45◦ and a varying azimuth angle φ with values 0◦ (just in front of the head), 60◦, 110◦, and 150◦ (almost

behind of the head). Examples of the different configurations used in the experiment can be seen in Figure 4.7.

The 72 trials were displayed in random order for each participant. Counterbalancing was used to avoid any

order bias. This meant that each participant saw each comparison pair twice. Half the trials the TS shader was

displayed first and half the trials it was displayed second.

All stimuli images were displayed on a monitor with a 1650 x 988 resolution. The lighting was dimmed

throughout the experiment. The participants were seated on an adjustable chair, with their eye-level approxi-

mately level with the centre of the screen, at a viewing distance of approximately 60 cm.

4.3.3 Procedure

After filling in a consent form and questionnaire the participants were given a sheet of instructions on the

procedure of the particular task they were to perform. The task description given to the participants is shown

in the end of this chapter. The participants were asked to perform a 2AFC task, that assessed the realism of the

4 http://www.xyzrgb.com/
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No SSS SS Jittered SS Full
Configuration chi-value p-value chi-value p-value chi-value p-value
TS - Far - 0◦ 21.125 0.000 21.125 0.000 3.125 0.077
TS - Far - 60◦ 28.125 0.000 18 0.000 3.125 0.077
TS - Far - 110◦ 24.5 0.000 15.125 0.000 0.125 0.724
TS - Far - 150◦ 32 0.000 15.125 0.000 0 1
TS - Near - 0◦ 32 0.000 28.125 0.000 0 1
TS - Near - 60◦ 32 0.000 28.125 0.000 0.125 0.724
TS - Near - 110◦ 24.5 0.000 28.125 0.000 1.125 0.289
TS - Near - 150◦ 32 0.000 21.125 0.000 0.125 0.724
TS - Zoom - 0◦ 28.125 0.000 28.125 0.000 0.5 0.480
TS - Zoom - 60◦ 28.125 0.000 18 0.000 2 0.157
TS - Zoom - 110◦ 32 0.000 15.125 0.000 4.5 0.034

TS - Zoom - 150◦ 32 0.000 18 0.000 0.5 0.480

Table 4.3: Output for the Chi-square analysis (df=1, 0.05 level of significance). Values in bold indicate no

significant difference.

skin rendering. A no reference condition [Sundstedt et al., 2007] was used in which the participants were asked

to discriminate which of two consecutively displayed images (TS and either No SSS, SS Jittered, or SS Full)

looked most like real human skin.

Since the aim was to find out which shader looked most like real skin a reference condition was not used, which

would have displayed the TS image at the same time as a TS and other shader image. In a real application, such

as a computer game, the shader would not be directly compared with a physically based shader.

Upon viewing each trial the participants wrote down their responses (1 or 2) in a table depending on which

image they thought looked most like real skin. They controlled the loading of the next trial themselves by using

the space bar. A 50% grey image was shown between the images in the pair with a duration of two seconds.

This image was used to let the participants know that a new stimuli was being displayed.

The participants could watch each experiment image for as long as they liked, but were encouraged to spend

around 10 seconds looking at each image. A previous pilot study had also suggested that the rougher appearance

of the No SSS shader output could make the person look older. Due to this the participants were also instructed

that the person in each image had the same age.

4.4 Results

Figure 4.9 shows the overall results of the experiment for the different light angles and camera distances re-

spectively. The results are normalized in the Y-axis. In each group of conditions, a result of 1 indicates that

the TS shader was always chosen over the second option, while a result of 0.5 is the unbiased ideal. This is

the statistically expected result in the absence of a preference or bias towards one shader, and indicates that no

differences between the TS and the other shader images were perceived.

The results were analysed statistically to determine any significance. To find out whether the number of partici-

pants who correctly classified the TS shader images is what would be expected by chance, or if there was really

a pattern of preference, we used the Chi-square nonparametric technique. A one-sample Chi-square includes

only one dimension, such as the case as in our experiments.
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Figure 4.8: Zoom-in configuration with lighting in an angle of 110◦. Although the Chi-square technique

showed a significant difference for this configuration, the images are perceptually very similar.

The obtained (TS/No SSS, TS/SS Jittered, and TS/SS Full) frequencies were compared to an expected 16/16

(32 for each comparison) result to ascertain whether this difference would be significant. The Chi-square values

were computed and then tested for significance, as shown in Table 4.3.

The obtained values show that when participants compared the No SSS shader with the TS shader they always

managed to identify the TS shader correctly (p < 0.05). This was also true for the SS Jittered shader under all

camera distances and lighting angles. However, for the SS Full shader comparison with the TS shader there

was no significant difference (p > 0.05) in all conditions apart from when the configuration was zoomed in on

the skin and the lighting was in an angle of 110◦. This indicates that the SS Full shader can produce images that

are as realistic looking as the physically based TS shader. Although the result showed a significant difference

for the angle of 110◦, it is believed this may be due to chance, since the images are perceptually very similar

(see Figure 4.8). The use of a few additional participants or stimuli repetitions could potentially have clarified

this result; nevertheless, the fact that the light angle in combination with camera distance possibly can alter the

threshold is also an interesting outcome which warrants future work. Overall the correct selections for the SS

Full shader are very much different from the comparisons with the other shaders and the physically based TS

shader.
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Figure 4.9: Results of our psychophysical experiments for varying light position (left) and distance to the

camera (right). The shaders No SSS, SS Jittered and SS Full are compared against TS. Our SS Full shader out

performed the other two. Although TS was chosen over SS Full slightly above chance, they consistently showed

no statistical difference (p > 0.05), while SS Full is faster and scales better.

4.5 Discussion and Conclusions

We have presented a novel real-time shader which can be used for efficient realistic rendering of human skin.

We have demonstrated how screen-space subsurface scattering produces results on par with current state-of-the-

art algorithms, both objectively (see Figure 4.10) and subjectively: a psychophysical experiment was conducted

which showed that the images rendered using this new shader can produce stimuli that have as high visual

realism as a previously developed physically based shader.

Our screen-space algorithm has two main limitations. Firstly, as Figure 4.11 shows, it fails to reproduce light

transmitted through high-curvature, thin features such as the ears or nose, due to the fact that in screen space we

have no information about incident illumination from behind. Secondly, under certain configurations of lights

and camera, small haloes may appear when using our screen-space algorithm, for instance scattering from the

nose incorrectly bleeding onto the cheek. These are usually small and masked by the visual system (see Figure

4.11).

Our psychophysical evaluation suggests that the two most important perceptual characteristics of translucency

in human skin that a shader should reproduce are the general softening of the high-frequency features and

the overall reddish glow. These seem to be more important than transmission of light in certain areas, as our

psychophysical tests suggest.

The absence of the reddish glow truly hampers perception of human skin: we noted that the SS Jittered shader

correctly softness the overall appearance but sometimes fails to capture most of this reddish glow. Interestingly,

it consistently obtained a lower overall ranking. In contrast, the absence of high-frequency feature softening

tends to be taken as a sign of age: this insight could potentially guide some age-dependant future skin shaders.

The results also show that there was no statistical difference in the number of error selections by participants

with experience in computer graphics and participants reporting no experience (p > 0.05). This indicates

that although participants with computer graphics experience have been shown to have easier detect errors

in rendering [Mastoropoulou et al., 2005], even people with no such experience are as good at detecting the

realism of rendered skin. This is probably due to the fact that humans have evolved to detect anomalies in the

real world and are used to see other humans in daily life.
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Nr. of heads No SSS SS Jittered SS Full TS
1 51 42 29 26

3 41 32 24 13

5 40 33 25 9

Table 4.4: Performance (frames per second) of the skin shaders used in our psychophysical experiment.

Table 4.4 shows performance (in frames per second) of the four shaders used in the psychophysical experiment.

The data have been obtained with a single light source, a shadow map resolution of 512x512, 4x MSAA, 2988

triangles per head, rendered at 1280x720 (which is becoming a standard resolution for most console games).

The size of the irradiance map for the TS shader was 1024x1024. All the images were rendered on a machine

with a Core 2 Duo @2GHz. and a GeForce 8600M GS.

Increasing the number of heads from one to five, our SS Full algorithm only drops by 13%, compared to

65%, 21% and 22% for the TS, SS Jittered and No SSS respectively. Although the SS Jittered and No SSS

shaders yield more frames per second, they do so at the cost of lowering perceived visual quality, as our

experiments have shown. Thus, our screen-space approach provides a good balance between speed, scalability

and perceptual realism.

For future research it would be necessary to study how the shader would work on different skin types, varying

parameters such as race or age. It would also be interesting to study how the different shaders would perform

in more complex, dynamic environments and contexts such as computer games; further shader simplifications

may be possible in those cases. A more targeted evaluation of the perceptual importance of individual skin

features -including general softening, reddish glow or transmittance- would be interesting, to help establish a

solid foundation about what makes skin really look like skin. Further tests could also possibly compare the

results of a shader with gold-standards in the form of real pictures, as opposed to comparing against other

existing shaders.

In summary, our psychophysical experiments show that the obvious loss of physical accuracy from our screen-

space approach goes mainly undetected by humans. Based on our findings, we have hypothesized what the

most important perceptual aspects of human skin are. We hope that these findings motivate further research on

real-time, perceptually-accurate rendering.

Task description given to the participants

This test is about selecting one image in a set of two images (72 pairs in total). You will be shown the two

images consecutively with a grey image being displayed for 2 seconds between them. A trial nr (1-72) will

separate each trial.

You task is to choose the image which you think look most realistic (i.e. most like real human skin). You can

view the images for an unlimited time, but we recommend that you spend around 10 seconds before making

your selection. You should also keep in mind that the person in each image has the same age (around 45 years

old).

If anything is unclear please ask any questions you might have before the study starts.
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Figure 4.10: Differences between the No SSS, SS Jittered and SS Full shaders (left, middle and right respec-

tively) and the TS shader. Top: angle at 0◦. Bottom: angle at 110◦ (contrast enhanced by a factor of 75 for

visualization purposes). Our shader most closely matches the TS shader.

Figure 4.11: Limitations of our screen-space shader: it fails to capture transmission of light from behind the

object (left, using our shader, and middle, using D’Eon et al. [2007]). It can also create small haloes in certain

areas under specific combinations of lights and camera position, such as scattering from the nose falling onto

the eyelid (right). However, our tests show that these do not usually hamper perception of skin.
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Chapter 5

SSS: Translucency

Diffusion theory allows the production of photorealistic skin renderings. The dipole/multipole models allow us

to solve challenging diffusion theory equations in a very efficient manner. By using texture-space diffusion, a

Gaussian-based approximation, and programmable graphics hardware real-time photorealistic skin renderings

can be achieved. Performing this diffusion in screen space (as introduced in previous chapter) instead offers

additional advantages that make the diffusion approximation practical in scenarios like games, where having the

best possible performance is crucial. However, unlike the texture-space counterpart, the screen-space approach

is in principle unable to simulate transmittance of lighting through thin geometry, yielding unrealistic results in

those cases.

In this chapter we introduce a transmittance algorithm that turns the screen-space approach into a very efficient

global solution, capable of simulating both reflectance and transmittance of light through a multi-layered skin

model. We derive our transmittance calculations from physical equations, which are finally implemented by

means of a simple texture access. Our method performs in real-time requiring no additional memory usage,

minimal extra processing power and memory bandwidth. Despite its simplicity our practical model manages

to reproduce the look of images rendered with other techniques (both off-line and real-time) such as photon

mapping or the diffusion approximation.

This research has been published in the IEEE Computer Graphics & Applications [Jimenez et al., 2010].

5.1 Introduction

Simulation of SSS is a challenging problem in the field of computer graphics. The light transport beneath

the surface of objects must be correctly simulated in order to accurately capture their appearance, as shown in

Figure 5.1. The real-world effect of SSS in objects is shown in Figure 5.2.

With the objective of developing a practical skin rendering model, and thus solving the scalability issues that

arise in multi-character scenarios, we developed the screen-space technique presented in previous chapter,

where the simulation of scattering effects was translated from texture to screen space [Jimenez et al., 2009].

The problem of simulating translucency is therefore reduced to a post-process, which has the added advantage
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CHAPTER 5. SSS: TRANSLUCENCY

Figure 5.1: A comparison between ignoring SSS (left) and taking it into account (middle left). The reflectance

component of the skin is softened as result of being scattered within the skin (right). Light travels through thin

parts of the skin, which is accounted by the transmittance component (right). Additionally, the images on the

right compare raw screen-space diffusion [Jimenez et al., 2009] (middle right) against screen-space diffusion

with transmittance simulation, calculated using the algorithm proposed in this work.

of being easy to integrate in any graphics engine. The main side effect of this approach is that we have less

information to work with in screen space, as opposed to algorithms that work in 3D or texture space. One piece

of information that is lost is the irradiance in all points of the surface, as only the visible pixels are rendered.

Because of this, the transmittance of light can no longer be calculated through thin parts of an object.

D’Eon and colleagues [2007] propose a solution based on translucent shadow maps [Stamminger and Dachs-

bacher, 2003] with good results, although it takes up to 30% of the total computation time (inferred from the

performance analysis in their paper) and requires the use of irradiance maps, which are not available when

simulating diffusion in screen space. We aim to simulate forward scattering through thin geometry with much

lower computational costs, similar in spirit to how reflectance was made more practical in the previous chapter

[Jimenez et al., 2009]. Based on observations of the transmittance phenomenon, we derive several assumptions

which are used to build a heuristic that allows us to approximately reconstruct the irradiance on the back

of an object. This in turn allows us to approximately calculate transmittance based on the multipole theory

[Donner and Jensen, 2005]. The results show that we can produce images which quality-wise are on par with

photon mapping and other diffusion based techniques. Our technique also requires minimal to no additional

processing, nor memory resources performance-wise.

5.2 Diffusion Profiles and Convolutions

The subsurface scattering mechanism and the related papers have been already discussed in Chapter 2. How-

ever, for the sake of clarity, some of the basic concepts will be reintroduced in this section.

For a multi-layered material such as human skin, light enters an object, interacts with each of its layers, and

exits at various points around the incident point (or else is transmitted as we will see). Each layer absorbs and
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Figure 5.2: Several objects showing varying degrees of translucency. Note how light transmitted through an

object can have a great impact in its final appearance (middle and right images).

scatters the light in a different way, resulting in a rather complex process. However, it is possible to describe

this interaction in a simple form using diffusion profiles. A diffusion profile R(x, y) is a function that describes

how the light attenuates at each position around the incident point. If we consider homogeneous materials, the

attenuation is radially symmetric. It is therefore possible to define the diffusion profile as a function of distance

r to the incident point R(r). There exist several techniques that allow to obtain such diffusion profiles [Jensen

et al., 2001; Donner and Jensen, 2005, 2006].

Applying a diffusion profile is done as described in the following text. Lets consider a point P(x, y) on the

surface. We want to obtain the contribution of all the points around such point P. As we have seen, part of

the light arriving at such adjacent points will penetrate into the object and exit at point P, with the specific

attenuation given by the diffusion profile R(r). For this, the following integral needs to be calculated:

M(x, y) =
∫∫

E(x, y)R(r) dx dy (5.1)

where M(x, y) is the radiant exitance at point P, and E(x, y) is the irradiance around P. The integral is basically

summing the contribution of each point around point P, each one weighted by its own attenuation factor given

by the diffusion profile R(r). Equation 5.1 can be written as a two-dimensional convolution:

M(x, y) = E(x, y) ∗ R(r) (5.2)

Two-dimensional convolutions are quite costly for real-time applications. Fortunately, some two-dimensional

convolutions are separable, which means they can be separated into two faster one-dimensional convolutions.

Gaussian convolutions are one of these separable convolutions. In the work of d’Eon et al. [2007], the obser-

vation is made that a diffusion profile resembles the aspect of a Gaussian. With this observation in mind, the

full 2D convolution by a sum of Gaussians is approximated:
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Figure 5.3: Comparison of Green [2004] (red lines) vs. d’Eon et al. [2007] (blue lines) approaches. Green

only stores depth information (z) whereas d’Eon et al. stores z and the (u, v) coordinates of the points of the

nearest surface to the light. Figure adapted from Green [2004] and d’Eon and Luebke [2007].

R(r) =
k

∑
i=1

wiG(vi, r), (5.3)

which can be separated into faster one-dimensional convolutions.

5.3 Real-Time Transmittance Approaches

This section outlines the two techniques that our algorithm builds upon. The first one is the depth-map-based

technique described by Green [2004], which relies on the usage of depth maps to estimate the distance traveled

by a light ray inside of an object. The scene is rendered from the point of view of the light, in order to create

a depth map that stores the distance from the nearest objects to the light (see Figure 5.3). While rendering,

for example zout1, the depth map is accessed to obtain the depth of the nearest point zin1 to the light. A similar

operation to the one used in shadow mapping is performed, but instead of evaluating a comparison to determine

if a pixel is shadowed, the depth zin1 is simply subtracted from the depth zout1 of the pixel being shaded, obtain-

ing the actual distance s1 that the light traveled inside the object. Once this distance is calculated, Green offers

two approaches to calculate the attenuation as a function of the distance s: a) using an artist-created texture

that maps distance to attenuation, and b) attenuating light according to: T (s) = e−sσt , where σt is the extinction

coefficient of the material being rendered and T (s) is the transmission which relates the incoming and outgoing

lighting. An inherent problem with this approach to transmittance, which most approaches based on shadow

mapping also have, is that in theory it only works for convex objects. In practice however, it approximates the

solution well enough with arbitrary geometries.

The second one is the texture-space approach of d’Eon et al. [2007], where the idea behind translucent shadow

maps [Stamminger and Dachsbacher, 2003] is extended to leverage the fact that the irradiance is calculated at

each point of the surface being rendered. Texture-space diffusion, per se, does not take into account scattering

in areas that are close in 3D space but far in texture space, thus special measurements are required for this

effect to be simulated. Translucent shadow maps store depth z, irradiance and normal of each point on the
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Eye

Light

B
C

N
L

r
A

s d
(r2+d2)1/2

Figure 5.4: In d’Eon et al. [2007] approach the radiant exitance at point C is approximated by the radiant

exitance at point B –where it is faster to calculate– using the irradiance information E around point A. Figure

adapted from d’Eon et al. [2007] and d’Eon and Luebke [2007].

surface nearest to the light, whereas the proposed modified translucent shadow maps store z and the (u, v)
coordinates of these points (see Figure 5.3). Then while rendering, for example zout2, the shadow map can

be accessed to obtain the (uin2, vin2) coordinates, which can be used to obtain the irradiance at the back of the

object. The distance traveled through the object is calculated using the depth information from the shadow map

in a similar fashion as done in Green’s approach. As shown in Figure 5.4, the method can approximate the

radiant exitance at point C by the radiant exitance M(x, y) at point B –where it is faster to calculate– using the

irradiance information E(x, y) around point A in the back of the object:

M(x, y) = E(x, y) ∗ R(
√

r2 + d2) (5.4)

As we saw, d’Eon et al. [2007] calculate R(
√

r2 + d2) using the gaussian-sum approximation (see Equation

5.3):

R(
√

r2 + d2) =
k

∑
i=1

wie
−d2/vi G(vi, r) (5.5)

which allows to reuse the irradiance maps convoluted by each G(vi, r), used for reflectance calculation, also for

transmittance computations.

Using shadow-map-based transmittance techniques, high frequency features in the depth of the shadow map

may turn into high frequency shading features. This is in general a problem when rendering translucent objects,

since generally a softer appearance is expected. Green recommends sampling multiple points from the shadow

map to soften these high frequency depth changes. In the texture-space approach by d’Eon et al. the distance

traveled by the light inside the object is stored in the alpha channel of the irradiance maps and blurred together
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with this irradiance information. The downside with this approach is that there is no obvious way to extend to

multiple lights, since only the distance of one light can be stored in the alpha channel.

Though Green’s approach [Green, 2004] is physically based if we use Beer’s law instead of artist-controlled

attenuation textures, it does not take into account the attenuation of the light in multi-layer materials. On

the other side, the approach by d’Eon et al. [2007] requires the usage of texture-space diffusion, because in

screen space there are no irradiance maps anymore, nor information of irradiance in the back of the object.

Furthermore, the method requires storing three floats in each shadow map (depth and texture coordinates),

whereas regular shadow mapping only requires storing depth; this implies 3x memory usage and 3x bandwidth

consumption for each of the shadow maps.

5.4 Our Algorithm

Building on these ideas, we present a simple yet physically-based transmittance shader. For this we need to

find a physically based function T (s) that relates the attenuation of the light with the distance traveled inside

an object. To do so, we first make four observations:

1. For a great range of thin objects, we can approximate the normal at the back of the object to the reversed

normal of the current pixel normal; note this approximation will be exact when the front and back surfaces

are parallel.

2. When looking at a backlit object from the front –which we believe to be the most interesting scenario of

transmittance–, the viewer does not have accurate information of the irradiance at the back.

3. For materials with a tiny mean free path, or for geometry with moderately thick surfaces, –like skin– trans-

mittance is a very low frequency phenomenon, as the light is diffused as it travels inside of an object, hiding

most of its high frequency features.

4. In human skin, the albedo does not vary dramatically over its surface, maintaining a similar skin tone.

From these observations we make three assumptions:

1. First, because of observation 1, we assume that we can replace the exact normal Na at point A by the reversed

normal Nc of the current point C (Figure 5.4):

Na = −Nc (5.6)

2. Second, because of observation 2, we assume that we can predict the irradiance at the back using some

heuristic, in such a way that it will be difficult to notice the difference. This heuristic will be explained in

the following text.

3. Finally, because of observations 2 and 4, we can safely use the albedo αc at the front to approximate

irradiance at the back of the object. Also, because of observation 3, even if we use high frequency nor-

mals to calculate irradiance around A, we still get low-frequency transmitted lighting. Then, we make the

assumption that we can use low frequency normals, and obtain similar results.

If we calculate the irradiance in the back using vertex normals –instead of normals from the normal map–,
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we assure this irradiance will be free of high frequencies (for real-time usage the high frequency details are

in the normal map and not in the vertex normals). In this case, the irradiance in the back –around A– will

change slowly, so just taking a single irradiance value will produce a similar result to performing the full

convolution.

We can assume, then, that irradiance in the back is approximately localy constant: all the points around the

point A in Figure 5.4 will have the same value as the point A:

E(x, y) = E = αc max(−Nc · L, 0.0) (5.7)

Given a diffusion profile R(r), the transmitted radiant exitance M(x, y) through a planar slab is the convolution

of the incoming irradiance with the diffusion profile (see Figure 5.4) [d’Eon et al., 2007]:

M(x, y) =
∫∫

E(x, y)R(
√

r2 + d2) dx dy (5.8)

By our first assumption, E(x, y) = E, so we have:

M(x, y) = E

∫∫
R(
√

r2 + d2) dx dy =

= E

∫ ∞

0

2πrR(
√

r2 + d2) dr (5.9)

Replacing equation 5.5 into equation 5.9, and taking into account the fact that we define our Gaussian functions

to have a unit total diffuse response [d’Eon et al., 2007], we obtain:

M(x, y) = E

∫ ∞

0

k

∑
i=1

wie
−d2/vi 2πrG(vi, r) dr =

= E
k

∑
i=1

wie
−d2/vi

∫ ∞

0

2πrG(vi, r) dr =

= E
k

∑
i=1

wie
−d2/vi (5.10)

which only depends on E and d. Approximating d by s and rewriting this equation we can obtain the function

T (s) we wanted:

M(x, y) = E T (s) (5.11)

T (s) =
k

∑
i=1

wie
−s2/vi (5.12)

The function T (s) can now be precalculated and stored in a look-up texture (see Figure 5.5), in order to be

used as the attenuation texture of Green’s approach. As we will see in the results, using this T (s) texture we

manage to produce similar results to the physically based approach [d’Eon et al., 2007], while leveraging a

simpler technique.
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Figure 5.5: Left: texture T (s) that encodes the transmitted lighting as function of distance. In the left corner

of the texture we have s = 0, in the right s = 4. Right: a translucent prism rendered using this texture.

For rendering we simply need to add the contributions from the reflectance (obtained as usual) and the trans-

mittance. Note that we can safely sum reflected and transmitted lighting instead of blending them –as done

by other methods–, because we are using the reversed normal for transmittance calculations which implies

that reflected and transmittance cannot happen simultaneously, thus avoiding double contribution. It is also

important to note that while our reflectance subsurface scattering calculations are performed in screen space,

the transmittance term is obtained in the conventional rendering pass.

As we explained in Section 5.3, it is recommended to blur high frequency features in the depth map to simulate

how light diffuses as it travels trough an object. Instead of blurring the distance traveled inside of the object,

as done in previous works, we simply store the transmittance and reflectance together. These are then blurred

using the screen-space Gaussian convolutions, which yields good results.

5.5 Implementation details

Although using the reversed normal for transmittance calculations avoids double contribution, it also causes

non smooth transitions between areas illuminated by reflectance to areas of transmittance-only illumination. In

these transitions the dot product between the normal N and the light vector L is zero for both N and −N. To

avoid these abrupt changes in the illumination we increase the range of the object covered by the transmittance

component using the following formula:

E = αc max(0.3 + (−Nc · L), 0.0) (5.13)

which means that the transmittance dot product will begin approximately 17◦ before than using the usual N · L

product. The minus comes from the fact that we are using the reversed normal for transmittance calculations.

A problem of using shadow maps for depth approximations is that artifacts can appear around the edges of the

projection, since pixels from the background are projected onto the edges of the object. To solve this problem,

Green [2004] recommends growing the vertices in the direction of the normals while rendering the shadow

maps. This ensures that all points fall onto the object while querying the depth from the shadow map. We

opted for shrinking the object instead in the normal direction, while querying the depth map. This yields the

same result but has the additional advantage of using standard, unmodified shadow maps.
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Listing 5.1 shows the 25 lines of code that execute the transmittance calculations of our skin shader, which

highlight its simplicity.

f l o a t d i s t a n c e ( f l o a t 3 pos , f l o a t 3 N, i n t i ) {

f l o a t 4 s h r i n k e d p o s = f l o a t 4 ( pos − 0 .005 ∗ N, 1 . 0 ) ;

f l o a t 4 shwpos = mul ( s h r i n k e d p o s , l i g h t s [ i ] . v i e w p r o j ) ;

f l o a t d1 = shwmaps [ i ] . Sample ( sample r , shwpos . xy / shwpos .w ) ;

f l o a t d2 = shwpos . z ;

re turn abs ( d1 − d2 ) ;

}

/ / T h i s f u n c t i o n can be precomputed f o r e f f i c i e n c y

f l o a t 3 T ( f l o a t s ) {

re turn f l o a t 3 ( 0 . 2 3 3 , 0 . 4 5 5 , 0 . 6 4 9 ) ∗ exp(− s∗s / 0 . 0 0 6 4 ) +

f l o a t 3 ( 0 . 1 , 0 . 3 3 6 , 0 . 3 4 4 ) ∗ exp(− s∗s / 0 . 0 4 8 4 ) +

f l o a t 3 ( 0 . 1 1 8 , 0 . 1 9 8 , 0 . 0 ) ∗ exp(− s∗s / 0 . 1 8 7 ) +

f l o a t 3 ( 0 . 1 1 3 , 0 . 0 0 7 , 0 . 0 0 7 ) ∗ exp(− s∗s / 0 . 5 6 7 ) +

f l o a t 3 ( 0 . 3 5 8 , 0 . 0 0 4 , 0 . 0 ) ∗ exp(− s∗s / 1 . 9 9 ) +

f l o a t 3 ( 0 . 0 7 8 , 0 . 0 , 0 . 0 ) ∗ exp(− s∗s / 7 . 4 1 ) ;

}

f l o a t s = s c a l e ∗ d i s t a n c e ( pos , Nver tex , i ) ;

f l o a t E = max ( 0 . 3 + d o t (−Nver tex , L ) , 0 . 0 ) ;

f l o a t 3 t r a n s m i t t a n c e = T ( s ) ∗ l i g h t s [ i ] . c o l o r ∗
a t t e n u a t i o n ∗ s p o t ∗ a l b e d o . rgb ∗ E ;

/ / We add t h e c o n t r i b u t i o n o f t h i s l i g h t

M += t r a n s m i t t a n c e + r e f l e c t a n c e ;

Listing 5.1: Transmittance code of our shader (HLSL). Depth values obtained from shadow maps are expected

to be linear.

5.6 Results

We have developed a skin rendering algorithm able to simulate the complex mechanics of subsurface scattering.

It extends the screen-space based reflectance-only approach [Jimenez et al., 2009], by adding transmittance.

This is an important feature that adds great realism to the images, as the results in this chapter show.

The main advantages of our transmittance algorithm, besides its inherent simplicity, are the following:

• It does not require irradiance textures as input.

• It only requires standard shadow maps as input, which means the rendering pipeline is almost left unaltered.

This is important since it greatly simplifies adding this feature to any existing pipeline.

• Our approach requires less memory storage than previous approaches. We only require z information,

lifting the need to store also (u, v) coordinates for each pixel of the shadow map. This means a reduction in

memory usage of 2/3.

• As far as bandwidth goes, we only require to access the memory twice per pixel (one float each time), once

for obtaining the depth in the back of the object (z) and the other for obtaining the T (s) value. This amounts

to a total of 2 · 4 = 8 bytes per pixel. The work by d’Eon and colleagues [2007] requires three memory

accesses (only the three widest Gaussians are used for transmittance calculations), to access z and the (u, v)
coordinates. This amounts to a total of 3 · 3 · 4 = 48 bytes per pixel, which means a reduction of 84% of

the memory bandwidth.

59



CHAPTER 5. SSS: TRANSLUCENCY

Figure 5.6: Comparison between photon mapping [Donner and Jensen, 2007] (left) and our algorithm (right).

Though our algorithm is unable to exactly match the colors of the photon mapping image, it manages to

represent the most characteristic visual cue: the yellow to red gradients.

For the creation of our renderings we used an Intel Core i7 CPU 920 @ 2.67GHz and a NVIDIA GeForce GTX

295. The head model has 25K triangles with 2048 × 2048 color, shadow and normal maps. We used up to five

lights to illuminate the model. Because we only perform a simple texture access, enabling transmittance in a

real-time application is an almost free operation. We have measured a performance drop of only 0.97% when

activating transmittance in our application.

Figure 5.6 shows a side-by-side comparison of a hand rendered using photon mapping [Donner and Jensen,

2007] and our approach. Though there exist some difference in the colors of the photon mapping image, it

preserves the characteristic translucency and yellow-to-red gradients very well. These gradients are the result

of the varying thickness traveled by the light. When the thickness is thin, the light does not get colored by

the dermis. This is the layer of the skin that colors the light by a reddish tone, as it mostly absorbs other

wavelengths. Thus the light is only influenced by the epidermis, resulting in a yellowish tone. In the thicker

areas the light gets colored by both layers, resulting in a more reddish tone. Notice that the photon mapping

images require 15 minutes to be computed whereas our algorithm only requires 5 milliseconds per frame.

Figure 5.7 compares an ear rendered using the multipole model [Donner and Jensen, 2006] and our simplified

approach. Visual inspection yields similar perceived features, although they are inherently different because

the difference in the geometry (we did not have access to the model used in Donner and Jensen [2006] and used

a model kindly provided by RGBXYZ instead). Both ears exhibit similar red-to-black gradients, which are the

result of the underlying physical model.

Figures 5.8 and 5.9 show additional renderings featuring the transmission of light in the ear, nostril, and fingers,

that account for the most evident cases of subsurface scattering.

Given some of the assumptions employed, our algorithm may not work in all cases. First, transmittance

through overlapping geometry cannot be accurately represented, a limitation shared with all shadow map based

approaches [Green, 2004; d’Eon et al., 2007]. Second, high frequency features in the shadow maps may be

visible; blurring both transmittance and reflectance ameliorates this, a solution we believe to be acceptable

in game contexts. However, a better solution would be blurring the thickness from the light point of view
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Figure 5.7: Comparison between the multipole application [Donner and Jensen, 2006] (left) and our simplified

approach (right). As the underlying geometry is different the look of both does not match exactly. Although,

notice the similar red to black gradients in both images.

with a Gaussian, to soften the appearance of transmittance-enabled objects. Despite these two limitations, our

simplified approach creates very realistic renderings of human skin, including difficult scenarios involving the

ears, nostrils and hands, where transmittance becomes important. As we have shown, our algorithm compares

well against other techniques such as multipole diffusion approximation or photon mapping.

5.7 Conclusions and Future Work

In this chapter we present a novel skin rendering algorithm, which is practical in the context of gaming. Our

algorithm is able to simulate the complex mechanics of subsurface scattering, taking into account both re-

flectance and transmittance of the light. We extend the screen-space based reflectance approach [Jimenez et al.,

2009] to incorporate the transmission of light through thin parts like nostrils or ears. We make observations of

the transmittance phenomenon, upon which we model a heuristic that allows us to approximately reconstruct
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Figure 5.8: Our rendering model is able to simulate the transport of light through thin parts like the nostril

(left). Lighting a hand with a powerful light source generates intense red gradients at the boundaries of the

fingers, where the distance traveled by the light inside of the object is the least (right).

the irradiance on the back of an object. By means of the multipole diffusion theory and using this reconstructed

information we are able to approximate the transmittance of light.

Our approximated transmittance is implemented by a simple texture access. It can be generalized to other

materials using different profiles as basis. As our results show, we obtain images on par with photon mapping

and other diffusion based techniques. From a performance standpoint it imposes little to no memory and

processing requirements, making it suitable for gaming environments. It plugs well into existing pipelines as

it only requires standard shadow maps as input. We believe that the quality of the images produced by our

algorithm, and its simplicity, efficiency, and pluggability, makes it a good choice for rendering truly realistic

skin in the next generation of games.
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Figure 5.9: Additional rendering showing realistic skin under different lighting configurations. Note how even

with high-frequency detail in the normal map –as the specular reflections in the images reveal– our simulation

of SSS manages to produce a soft diffuse appearance.
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Chapter 6

SSS: Separable Subsurface Scattering

Graphics in games are continuously improving, due to the parallel development of both hardware and software.

Still, for a 60 fps game, everything contained in a frame must be computed in just about 16 milliseconds. Given

this tight time budget, certain effects cannot be computed and are simply not simulated, sacrificing realism to

reallocate resources to other aspects of the game. Previous real-time approaches simulate it by approximating

the non-separable diffusion kernel using a sum of Gaussians (including preceding chapters), which required

several (usually six) 1D convolutions.

In this chapter we decompose the exact 2D diffusion kernel with only two 1D functions. A technique to simulate

subsurface scattering for human skin is proposed that runs in just over 1 millisecond per frame, making it a

practical option for even the most challenging game scenarios (including current generation of consoles). This

allows to render subsurface scattering with only two convolutions, reducing both time and memory without a

decrease in quality. Our 1D functions are defined in an intuitive way with just three parameters, allowing for

easy edits.

The work described in this chapter has been submitted to the Eurographics Symposium on Rendering.

6.1 Introduction

Accurate depiction of skin is very important in film and game industries to display realistic humans. However,

rendering realistic skin with subsurface scattering implies simulating how light travels and scatters through a

multi-layered complex material, which turns out to be an expensive process. While offline rendering scenarios

(such as movies) can afford long computation times, real-time applications such as video games impose very

severe time constraints, which go well beyond the definition of real-time. For a game running at 60 fps, all the

computations necessary to produce in a frame, not only including the rendering pipeline, but other aspects of

the game like physics simulation or AI, must be done in just about 16 ms. This gives each desired rendering

effect (e.g. subsurface scattering, lighting, anti-aliasing) a very limited time budget; any millisecond saved can

be used to improve or include other tasks to help improve the game. Thus, in game scenarios not only real-

time, but practical real-time rendering is required, where every millisecond spent counts. This means that the
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CHAPTER 6. SSS: SEPARABLE SUBSURFACE SCATTERING

Figure 6.1: Renderings of a human face with our real-time separable subsurface scattering shader running

at 112.5 frames per second on a GeForce GTX580 at 1080p, with multiple lights, depth of field, state-of-the-

art morphological antialiasing and high-quality textures and geometry. Our separable approximation takes

only 1.05 ms to simulate subsurface scattering, while getting high-quality results. This makes the technique

practical for challenging game scenarios.
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common solution in games with respect to subsurface scattering is to simply ignore it. The result is an obvious

loss of quality in how virtual humans are depicted.

One of the most common approaches exploits the fact that subsurface scattering blurs high-frequency details

and illumination. This means that simulating subsurface scattering can be approximated as a convolution

with a diffusion kernel. The exact diffusion kernel is non-separable, though, which in principle requires an

expensive two-dimensional convolution. d’Eon et al. [2007] showed that this kernel can be approximated by

a sum of Gaussians, which are separable functions. This transforms the 2D convolution into a set of cheaper

1D passes, which allows high-quality skin rendering in real-time. This approach has been applied in both

texture [d’Eon et al., 2007] and screen-space, modulating the variance of the kernel according to per-pixel

depth information [Jimenez et al., 2009].

However, in order to get good results, several Gaussians need to be used to approximate the diffusion profile,

which translates into several convolutions per frame. This does not fit well in some hardware (e.g. Xbox 360

or PS3) and is usually still too expensive for games. Specially on the Xbox 360, given the fact that multi-pass

shaders require to move the frame buffer from eDRAM to main memory for each pass by means of a memory

resolve. In this work we present an practical approach for rendering skin with subsurface scattering effects in

just two passes, suitable for game scenarios. It is based on the observation that, although exact diffusion kernels

might be mathematically non-separable, they can be approximated with a separable kernel without a perceived

decrease in quality. This allows to reduce the number of convolutions, saving precious milliseconds while

getting high-quality results. Figure 7.1 shows an example of skin rendered with our separable approximation,

where subsurface scattering is calculated in just 1.06 ms on a GTX 580; in contrast, a six-pass sum-of-Gaussian

approach performed in screen-space takes 3.07 ms. This effectively means that we can add for instance a state-

of-the-art morphological antialiasing technique using the free extra two milliseconds.

We formulate the separable kernel from a base 1D diffusion profile, which is defined by three parameters.

These parameters define the global level of subsurface scattering, the width of the gradients and the amount of

light that gets into the skin, on a per-channel basis. We optimize these three parameters to find the kernel that

fits best for the exact diffusion kernel. Our formulation allows intuitive editing and tweaking of the appearance

of the skin while preserving realism.

Using only two convolutions results into a significant boost of performance, especially in close-up renders

where the effect of subsurface scattering counts the most. The lower preset of our shader is implemented

using a regular 9-sample separable convolution, making of it a very cheap solution even on very low-end

hardware. Additionally, fixed costs (i.e. scenes with no visible scattering) are neglectable: on a 580 GTX,

our implementation imposes only a 0.1 ms overhead, compared with the 0.71 ms needed by the screen-space

technique (this difference increases on slower cards). Last, our approach is much simpler to implement, without

the need for complex alpha blending pipelines or Gaussian levels-of-detail [Jimenez and Gutierrez, 2010]. We

believe our technique is very attractive for in-game rendering pipelines, beyond game cinematics.

6.2 Algorithm

We focus on subsurface scattering inside skin, for which the exact diffusion kernel is non-separable. Thus,

to convolve the irradiance it is necessary in principle to perform a two-dimensional convolution. This is a

expensive process, which is not suitable for real-time applications.

Our key idea to accelerate this process is very simple: inspired by recent work in the context of ambient
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occlusion [Huang et al., 2011] and mesh filtering [Vialaneix and Boubekeur, 2011], we decompose the exact,

mathematically non-separable 2D diffusion kernel into two 1D kernels that avoid the costly sum of Gaussians

(for skin, this required about six convolutions for good results), while being easy to tweak for different types

of skin.

In the following, we first describe the formulation adopted to model the separable approximation of the diffu-

sion kernel, and then the optimization process performed to get the best fit to the actual kernel.

6.2.1 Separable approximation

Separability is a desired property for multidimensional filters. For two-dimensional filters it means that a

filter F [x, y] can be decomposed into two one-dimensional signals, a vertical and a horizontal kernel, such

that F [x, y] = v[x]× h[y]. This transforms the two-dimensional convolution into two cheaper one-dimensional

passes.

Although the diffusion kernel is non-separable, its matrix form S[x, y] is low rank, with the first eigen value

storing most of the total energy (∼ 80%) (see Figure 6.2). This property, together with the circular symmetry of

the diffusion profile, suggests that it can be approximated with a separable kernel defined by a one-dimensional

filter s[x] such that S[x, y] ≈ s[x]× sT [y], where sT [y] is the transpose of s[x].

Figure 6.2: Percentage of energy stored by the eigen values of the diffusion kernel used to simulate subsurface

scattering in skin. Each curve corresponds to channels red, green and blue, respectively.

We formulate s[x] by using an initial 1D diffusion profile p[x] which is modified using a small set of trans-

formations. The parameters of these transformation are adjusted to obtain the kernel that best fits the target

diffusion profile. These parameters are: width, strength and falloff. Width specifies the global level of subsur-

face scattering, i.e. the width of the filter; it is the same for the red, green and blue channels. Strength specifies

68



6.2. ALGORITHM

Parameter R G B

Width 0.014

Strength 0.7800 0.7000 0.7500

Falloff 0.5700 0.1300 0.0800

Table 6.1: Parameters obtained by optimizing our model to minimize the error with the actual diffusion profile

of the skin.

how much diffuse light penetrates the skin, per channel, and thus contributes to subsurface scattering. Finally,

falloff defines the per-channel falloff of the gradients. The kernel s[x] is defined as a function of these three

parameters and the initial diffusion profile p[x]:

s(w, t, f )[x] = p[
x ∗ w

0.001 + f
] ∗ t + δ(x) ∗ (1 − t) (6.1)

where w, t and f are the parameters weight, strength and falloff respectively, and δ(x) is a delta function that

returns 1 if x = 0 and 0 otherwise.

The initial 1D diffusion profile p[x] used in this work is the red channel of the original skin profile defined in

[d’Eon et al., 2007]. We make the observation that it can also be used for green and blue channels (scaled using

the falloff parameter) without introducing noticeable differences and allowing for total control over the profile.

The effects of each of these parameters are illustrated in Figure 6.5.

6.2.2 Optimization

We search the space defined by the parameters described above to find the separable kernel S̃[x, y] = s[x]× sT [y]
that best approximates the exact diffusion kernel S[x, y]. The parameters are obtained by applying a constrained

nonlinear optimization over the function:

f (w, T,F) =
∫

A
∑
c∈C

(Sc[x]− S̃c(w, Tc,Fc)[x])
2dx (6.2)

where A is the area around the center of the kernel, C = {r, g, b} is the set of color channels, T and F are the

vectors containing the parameters strength and falloff for each channel respectively (remember that w remains

a scalar) and Tc and Fc are individual components of such vectors.

In order to reduce the cost of the optimization, we only evaluate the function over a limited discretized space.

This space is centered in 0 and is more densely sampled in the areas close to the center, since the diffusion

profile has more importance in these areas. Thus Equation 6.2 is approximated by:

f (w, T,F) ≈ fs(w, T,F) = ∑
a∈As

∑
c∈C

(Sc[a]− S̃c(w, Tc,Fc)[a])
2 (6.3)

where As is the discrete set of samples in area A. We optimize Equation 6.3 using the function fmincon from

the Matlab Optimization Toolbox [Mathworks]. The parameters obtained after optimizing Equation 6.3 are

sumarized in Table 6.1.
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6.3 Rendering

We simulate subsurface scattering in screen-space using the separable approximation of the diffusion profile

explained in Section 6.2. First, the irradiance over the visible geometry is obtained and stored in the frame

buffer. Then, this irradiance is blurred by convolving it with the diffusion profile: first, the horizontal convolu-

tion is saved into an intermediate buffer; then, the vertical pass convolves this intermediate buffer and stores the

final result into the back buffer. Similar to d’Eon et al. [2007], we use 16-bits render targets to store irradiance

in linear space, since all our subsurface scattering computations must be performed in linear space before tone-

mapping. Our algorithm is implemented as a short HLSL post-process shader. This makes it easy to implement

and integrate in existing render engines. The full shader is listed in the end of the chapter.

Working in screen-space imposes the limitation of being unable to simulate translucency through thin slabs,

since we have no information about back-face irradiance. To include translucency in our implementation we

use the technique by Jimenez et al. [2010]. This technique simulates translucency by using an heuristic derived

from a set of observations, which is used to approximate the amount of light traveling through the medium.

This technique is performed in the initial pass (when irradiance is calculated), before the subsurface scattering

computations, so it imposes no additional cost. In this initial pass, we make use of multiple render targets

of modern graphics hardware to decouple diffuse and specular components, which is common in deferred

engines. This is needed to avoid including specular irradiance in the subsurface scattering simulation. The

specular irradiance is calculated using the Kelemen/Szirmay-Kalos model, as suggested by d’Eon et al. [2007].

Since we are working in screen-space, the size of the kernel depends on the projected surface area in the pixel,

which depends on depth and surface orientation. This area is specified in world-space units, instead of pixels,

making the definition of the kernel size more intuitive for artists. To deal with large depth variations, the effect

of the surface orientation is modulated using a technique similar to previous work on ambient occlusion [Filion

and McNaughton, 2008]: if the depth variation between the sample and the center of the convolution is larger

than the diffusion profile, the contribution of the sample is linearly interpolated with the original color.

To avoid blurring pixels that display non-translucent objects, a matte mask can be used. If multisampling is

not used, this mask is defined with the stencil buffer, to optimize computations. If multisampling is used, we

use a different approach: the first pass is guided by the matte mask stored in the alpha channel of the frame

buffer, and initializes the stencil buffer. Then, the stencil buffer masks which pixels should be convolved in the

second pass. Additionally, if multisampling is used, pixel depths are calculated by averaging the depth of the

subsamples, to avoid artifacts in the silhouette of the object.

As previous screen-space approaches [Jimenez et al., 2009], the scale of the subsurface scattering can be mod-

ulated on a per-pixel basis. The per-pixel scale is stored in an additional texture. It allows using variable kernel

sizes, and removing the effect of subsurface scattering in eyebrows or facial hair. In the geometry rendering

pass, this scale is stored in the alpha channel of the render buffer, so it can be accessed in subsequent passes.

Last, we have used the recent SMAA technique [Jimenez et al., 2012] in T2x mode for anti-aliasing.

6.4 Results

Figure 6.7 shows some results obtained using our subsurface scattering technique on a scanned head model.

We compare our results with a six-pass screen-space subsurface scattering technique based on the sum-of-

Gaussians approximation [Jimenez and Gutierrez, 2010], in a range of GPUs. Table 6.2 shows that our
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GTX580 GTX470 GT130M

mid close mid close mid close

Ours 1.05 0.1 4.6 0.13 13.66 0.81

[Jimenez and Gutierrez, 2010] 3.07 0.71 10.38 0.89 40.02 3.94

Table 6.2: Comparison of timings (in milliseconds) between our technique and the screen-space subsurface

scattering by Jimenez and Gutierrez [2010], for close and mid shots.

separable approximation is much faster than the sum-of-Gaussians approach. In close views, where the head

almost fills the screen, the cost is around a millisecond using high-end hardware. This type of shot occurs

typically in game cinematics, which are more forgiving in terms of resources used; for medium shots, where

subsurface scattering has to be calculated in less pixels, the two-pass algorithm is almost free on high-end

computers. As argued in the introduction, the fixed costs of the technique are very low, which makes this

technique practical for both game cinematics and in-game rendering. As shown in Figure 6.3 and Figure 6.6,

the error from approximating the exact diffusion kernel with our separable kernel is very low, and translates

into no visible differences in the final images.

(a) (b)

Figure 6.3: The error introduced by our separable approach does not produce visible differences in the images.

Top: images rendered with the exact kernel; bottom: our separable approximation.

The quality of the simulation can be adjusted by setting the number of samples in the kernel, which gives a

trade off between quality and cost. Unless it is explicitly stated, all our results use 17 samples for each pass.

Figure 6.4 shows quality differences in close-up renderings varying number of samples. Good results can be

achieved with as few as nine samples under certain lighting conditions.

Editing. Figure 6.5 shows examples of subsurface scattering customization by modifying the parameters used

to model our separable kernel (see Section 6.2.1). The formulation used (based on the parameters width,
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Figure 6.4: The effect of number of samples on the quality of subsurface scattering (from left to right: head

rendered with 17 samples, detail rendered with 9, 17 and 33 samples respectively). With predominant ambient

lighting (top), the differences are practically indistinguishable. In sharper illumination conditions (bottom)

banding starts to be visible with 9 samples (note the effect on the gradient in the shadow). The timings are

1.02, 1.77 and 3.15 ms for 9, 17 and 33 samples respectively on a GTX470 at 1080p.

strength and falloff ) allows to intuitively modify the subsurface scattering to match the desired look, while

keeping a physically realistic appearance.

6.5 Conclusions

We have presented a practical method to simulate subsurface scattering for skin rendering. It yields state-of-the-

art results in just over one millisecond per frame, which makes it affordable in game environments where every

desired effect has a few-milliseconds budget, and real-time is just not enough. It is based on approximating

the exact diffusion profile by a separable kernel. This allows to perform only two passes, as opposed to the

six passes needed by the established sum-of-Gaussians approximation, saving significant time and memory

resources. Since the algorithm works as a post-process, it is very easy to integrate in existing game engines,

suitable for the current generation of consoles and practically free in modern graphics hardware. Additionally,
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(a) (b) (c) (d)

Figure 6.5: Examples of editing the appearance of subsurface scattering: from left to right, (a) the original

kernel; (b) width increased up to .025, allowing the light to travel further inside the skin; (c) strength increased

up to strength = {1, 0.71, 0.51}, note that the skin appears softer; (d) the falloff of the red channel has been

reduced to 0.5, note that the red gradient is more narrow in the shadow produced by the nose. The texture of

the model has been removed to better depiction of the effect of subsurface scattering.

the proposed formulation opens up intuitive editing capabilities, tweaking the appearance of the skin while

keeping visually realistic results.

For skin rendering, mathematically non-separable filters can be approximated with separable kernels and pro-

duce good visual results. We hope that this observation can be extended to accelerate other computer graphics

and image processing algorithms. As a future work, we would like to generalize our separable subsurface

scattering approximation to a wider range of translucent materials.
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HLSL shader

f l o a t 4 SSSSBlurPS ( f l o a t 2 t e x c o o r d , SSSSTexture2D co lo rTex ,

SSSSTexture2D depthTex , f l o a t sssWidth ,

f l o a t 2 d i r , bool i n i t S t e n c i l ) {

/ / Fe tch c o l o r o f c u r r e n t p i x e l :

f l o a t 4 colorM = SSSSSamplePoint ( co lo rTex , t e x c o o r d ) ;

/ / I n i t i a l i z e t h e s t e n c i l b u f f e r i n case i t was n o t

/ / a l r e a d y a v a i l a b l e :

i f ( i n i t S t e n c i l )

i f (SSSS_STREGTH_SOURCE == 0 . 0 ) d i s c a r d ;

/ / Fe tch l i n e a r d e p t h o f c u r r e n t p i x e l :

f l o a t depthM = SSSSSamplePoint ( depthTex , t e x c o o r d ) . r ;

/ / C a l c u l a t e t h e s s s W i d t h s c a l e ( 1 . 0 f o r a u n i t p l a n e

/ / s i t t i n g on t h e p r o j e c t i o n window ) :

f l o a t dis tToPro jWindow = 1 . 0 /

tan ( 0 . 5 ∗ rad ians ( SSSS_FOVY ) ) ;

f l o a t s c a l e = dis tToPro jWindow / depthM ;

/ / C a l c u l a t e t h e f i n a l s t e p t o f e t c h t h e s u r r o u n d i n g

/ / p i x e l s :

f l o a t 2 f i n a l S t e p = s s s W i d t h ∗ s c a l e ∗ d i r ;

/ / Modulate i t u s i n g t h e a lpha c h a n n e l :

f i n a l S t e p ∗= SSSS_STREGTH_SOURCE ;

/ / D i v i d e by 3 as t h e k e r n e l s range from −3 t o 3 :

f i n a l S t e p ∗= 1 . 0 / 3 . 0 ;

/ / Accumula te t h e c e n t e r sample :

f l o a t 4 c o l o r B l u r r e d = colorM ;

c o l o r B l u r r e d . rgb ∗= k e r n e l [ 0 ] . rgb ;

/ / Accumula te t h e o t h e r samples :

SSSS_UNROLL

f o r ( i n t i = 1 ; i < SSSS_N_SAMPLES ; i ++) {

/ / Fe tch c o l o r and d e p t h f o r c u r r e n t sample :

f l o a t 2 o f f s e t = t e x c o o r d + k e r n e l [ i ] . a ∗ f i n a l S t e p ;

f l o a t 4 c o l o r = SSSSSample ( co lo rTex , o f f s e t ) ;

# i f SSSS_FOLLOW_SURFACE == 1

/ / I f t h e d i f f e r e n c e i n d e p t h i s huge , we l e r p

/ / c o l o r back t o " colorM " :

f l o a t d e p t h = SSSSSample ( depthTex , o f f s e t ) . r ;

f l o a t s = 300 .0 f ∗ dis tToPro jWindow ∗
s s s W i d t h ∗ abs ( depthM − d e p t h ) ;

s = S S S S S a t u r a t e ( s ) ;

c o l o r . rgb = SSSSLerp ( c o l o r . rgb , colorM . rgb , s ) ;

# e n d i f

/ / Accumula te :

c o l o r B l u r r e d . rgb += k e r n e l [ i ] . rgb ∗ c o l o r . rgb ;

}

re turn c o l o r B l u r r e d ;

}
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(a) (b)

Figure 6.6: Error per channel due to approximating the kernel, for (a) and (b) of Figure 6.3 respectively (from

top to bottom, red, green and blue).
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Figure 6.7: Our technique is capable to generate very realistic skin with very low overhead, achieving good

results even in scenes with low ambient light (top).
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Chapter 7

Facial Color Appearance

Facial appearance depends on both the physical and physiological state of the skin. As people move, talk,

undergo stress, and change expression, skin appearance is in constant flux. One of the key indicators of these

changes is the color of skin. Skin color is determined by scattering and absorption of light within the skin

layers, caused mostly by concentrations of two chromophores, melanin and hemoglobin.

In this chapter we present a real-time dynamic appearance model of skin built from in vivo measurements

of melanin and hemoglobin concentrations. We demonstrate an efficient implementation of our method, and

show that it adds negligible overhead to existing animation and rendering pipelines. Additionally, we develop

a realistic, intuitive, and automatic control for skin color, which we term a skin appearance rig. This rig can

easily be coupled with a traditional geometric facial animation rig. We demonstrate our method by augmenting

digital facial performance with realistic appearance changes.

The results of this chapter has been presented in Seoul (Korea) at SIGGRAPH Asia and published in the ACM

Transactions on Graphics (SIGGRAPH Asia 2010) [Jimenez et al., 2010a].

7.1 Introduction

Facial appearance constantly changes as people talk, change expression, or alter their physical or emotional

state. Previous work mainly focuses on the geometric aspects of these changes, such as animating the facial

surface (e.g. wrinkle structures, skin stretching). We refer the reader to the survey by Ersotelos and Dong for

a comprehensive cross section of the different techniques [Ersotelos and Dong, 2008]. Equally important are

changes in skin color caused by differences in hemoglobin concentration [Moretti et al., 1959], which may also

occur due to histamine reactions or other skin conditions such as rashes and blushing. Blushing in particular

conveys a number of emotions such as shame, arousal, and joy. Figure 7.1 illustrates several of these physical

and emotional states. Despite their ability to transmit emotion, these dynamic changes in skin pigmentation are

largely ignored by existing skin appearance models.

The creation of dynamic skin shading in film and game workflows depends mostly on artists, who carefully cre-

ate all necessary skin textures. In the context of dynamic shading, an appearance rig is a structure that defines
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CHAPTER 7. FACIAL COLOR APPEARANCE

Figure 7.1: Example results of our automatic changes in skin appearance predicted by our method. Changes

are due both to mechanical deformations and to involuntary dilation or constriction of blood vessels caused by

emotions; all affect the skin’s hemoglobin distribution. Our real-time model allows simulation of both, based

on in vivo measurements of real subjects, and runs in real-time (this scene with five heads runs at 53 frames

per second). Our method is easily adopted into existing animation pipelines. From left to right, we show a sad

smile, anger, the neutral pose, fear and disgust. The different hemoglobin maps produced by our model are

shown in Figure 7.2.

Figure 7.2: Hemoglobin maps controlling the skin color in Figure 7.1. These maps are generated automatically

by our method. Darker areas of the maps indicate higher concentrations of hemoglobin.

the details of the skin textures of 3D facial models. As models become more and more complex, it becomes in-

creasingly difficult to define a consistent appearance rig that works well for many different characters; textures

for each character must be created individually by hand, a slow and costly process that requires experienced

digital artists. (Alternative facial animation techniques circumvent this difficulty by relying on performance

capture [Sagar, 2006; Bradley et al., 2010] to simultaneously obtain dynamic geometry and appearance, but

they are not designed to derive a generic, transferable model.)

In this work, we develop a real-time, dynamic facial color appearance model, using the common approxi-

mation of skin as a two-layered translucent material. Color appearance is defined by the distribution of two

chromophores: melanin and hemoglobin. While this model is an approximation, it has proven to well describe

a wide range of natural skin appearances [Donner and Jensen, 2006; Donner et al., 2008]. We drive this model

with in vivo measurements of melanin and hemoglobin concentrations for different facial expressions and

conditions. The results of our measurements are highly-detailed hemoglobin and melanin maps for a variety of

expressions, without the need for artist intervention.
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We assume that the thickness of the skin epidermis is not affected by surface deformations during facial

expression as it tightly adheres to the underlying deeper tissue [Ryan, 1995]. Note that the facial melanin

concentration and distribution is static within the skin during animation. This is because melanin is embedded

within the keratinocyte cells of the epidermis, and the timeframe of change for melanin concentration is hours

to weeks [Park et al., 2002], not the short periods associated with facial movement. This leaves the distribution

of hemoglobin (the primary carrier of oxygen in the blood) as the only potentially varying factor that affects

skin color. We also aim to separate local phenomena that change the perfusion of hemoglobin in a characteristic

pattern from global effects that change the overall perfusion. Accurately modeling the dynamics of blood flow

in the face would ultimately require a dynamic model of human blood circulation. A complete model, however,

would be prohibitive, as it would require modeling not only the entire network of vessels and capillaries, but

also the dynamic flow, defined by the interplay of fluid dynamics with vascular compliance and body mechanics.

To obtain a compact model of hemoglobin perfusion yielding realistic results even under real-time constraints,

we build base melanin and hemoglobin maps. We then code only hemoglobin changes in our model by using a

novel localized variant of the histogram matching technique. This allows us to treat the characteristic local pat-

terns in hemoglobin distributions independently of the overall effect. Naive computation of this approach would

involve prohibitive recalculation and storage of the cumulative distribution functions of the histograms, since it

involves analyzing a window around each pixel. Instead, we make the key observation that typical hemoglobin

concentrations resemble a Gaussian distribution, which allows us to store only its mean and standard deviation.

To render different expressions, we couple an efficient, yet realistic, skin shader with our appearance rig. This

provides automatic pigmentation changes according to changes in facial expression. As the overhead of our

model is low, these realistic effects come at essentially no additional cost. While our approach is general

enough to complement most existing animation techniques, we focus on blend shapes consisting of the six

universal facial emotions: anger, disgust, fear, happiness, sadness and surprise [Ekman, 1972], plus the effects

of physical exhaustion and alcohol consumption.

7.2 Related Work

Appearance models for faces have attracted much attention in recent years. In this section we focus on those

techniques most closely related to our work. For a more thorough treatment we refer the reader to the survey

by Igarashi et al. [2007].

7.2.1 Physical Appearance Models

The following techniques are all capable of reproducing skin realistically, and can be controlled heuristically

to various degrees (e.g. parameter maps, scaling, etc.). None of these techniques, however, is tied to any real

measure of mechanical deformation or physiological state of the skin itself.

Through independent component analysis, it is possible to extract hemoglobin and melanin pigmentation from

a single skin image [Tsumura et al., 1999]. Adding a pyramid-based texture analysis/synthesis technique allows

very realistic effects such as alcohol consumption and tanning [Tsumura et al., 2003]. Weyrich et al. [2006]

analyze variations in the reflectance of facial skin under varying external conditions of a subject (hot, cold,

sweaty, etc.); using a histogram interpolation technique [Matusik et al., 2005], they achieve color transfers and

face changes between conditions.
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Donner et al. [2008] simulate skin reflectance by accounting for lateral inter-scattering of light between skin

layers. Using known chromophore spectra, they derive spatial chromophore distributions from multi-spectral

photographs of skin through inverse rendering. Ghosh et al. [2008] use structured light and polarization to de-

termine skin layer properties using an additive multi-layered scattering model. They capture the heterogeneous

appearance of the face, and vary it through scaling of their model components.

The multi-image texture representation of skin presented by Cula et al. [2005] focuses on surface microgeom-

etry, and takes into account appearance variations caused by changes in illumination and viewing direction.

In the field of dermatology, Cula et al. [2004] use bidirectional imaging to create the Rutgers Skin Texture

Database, focusing mainly on skin disorders, for medical applications.

In principle, mechanisms underlying facial perfusion changes have been studied in dermatology. Such reports

are based on ex vivo histological examination of thin sections of biopsied tissue, or in vivo non-invasive point

measures of blood derivatives (such as reflectance spectrophotometric measures of skin color or laser Doppler

velocimetric measurements of blood flow) [Matts, 2008]. The novelty of our work lies in the direct in-vivo

mapping of hemoglobin concentration and distribution across large areas of the skin, and how changes cor-

relate with dynamic facial expression. It is precisely this large-scale phenomenon that drives the subtle, yet

noticeable, dynamic changes in facial skin color.

7.2.2 Emotional Appearance Models

Kalra and Magnenat-Thalmann [1994] describe a texture-based model to simulate skin changes from blushing

and pallor. Regions in the face are separated by masks in the texture; the user interactively defines different

shading functions within each mask, and linearly weights these masks to achieve different looks.

Jung and Knöpfle [2006] accumulate pre-designed 2D textures in a 3D stack, from palest to reddest. Each

emotion correlates to a given depth, and the fetched texture is then used as the base color for a skin shader. In a

follow-up publication [Jung et al., 2009], they parameterize skin changes via a set of fourteen emotional states

[Plutchik, 1980], along with a high-level description of each (such as rosy cheeks or red blotches in the face).

Melo and Gratch [2009] forgo textures, directly applying a user-defined color change in different areas of the

face to simulate blushing.

Yamada and Watanabe [2007] investigate blood flux due to anger and dislike. They simultaneously measure

changes in facial skin temperature and color for these emotions, and map them to an average facial color image.

Hue and saturation are multiplied by an arbitrary enhancement coefficient to make changes more distinct.

The results of the works discussed above are almost completely user-guided, with no correlation to actual

hemoglobin measures. In contrast, we propose a compact, linear model of hemoglobin perfusion based on in

vivo observations of facial performances, and under different global conditions. This makes our model well

suited for real-time renderings of facial appearance.

7.3 Acquisition

Here we describe our acquisition setup, method, and observations, which will lead to the development of our

model. We use a custom reconstruction of the non-contact SIAscopeTM system [Cotton et al., 1999], to capture
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Figure 7.3: Samples of images captured to analyze changes in blood perfusion (first and third rows), with the

corresponding hemoglobin maps (second and fourth rows).

accurate reconstructions of the hemoglobin and melanin distribution within the facial skin. The system uses

a Fuji Finepix S2 Pro and two Portaflash 336VM flashes, with the flashes cross-polarized and positioned on

each side of the camera. This setup is low-cost, and using the reconstruction method of Cotton et al. [1999]

we obtain hemoglobin and melanin maps that, in contrast to other methods, are quantitatively calibrated [Matts

et al., 2007].

This method is based on a spectral, multi-layered model of skin coloration [Cotton and Claridge, 1996]. A

limitation of this model is that it does not account for lateral scattering and thus over-estimates the blur of the

underlying chromophore distribution. This feature has little impact on the analysis presented here but in fact

allows a valuable optimization for our real-time renderer (see Section 7.6).

We acquired data from four subjects (one Caucasian female, 33 years old; three Caucasian males, 26, 33, and

35 years old) under a number of different, partially extreme facial expressions, as shown in Figures 7.3 and 7.4.

To cover a representative range, we included expressions of the six basic emotions [Ekman, 1972]. Each
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Figure 7.4: Facial hemoglobin distribution of a 33-year-old Caucasian female and of a 26-year-old Caucasian

male. Dark pixels denote high concentration.

expression was acquired multiple times, with other varying expressions in between. In addition, we measured

one subject under two “global” conditions: at high exercise level (after descending and climbing 9 flights of a

staircase; subsequent measurements for one minute) and under alcohol consumption (500 ml beer, spread over

one hour; regular measurements during this period).

7.3.1 Initial Findings

Throughout the experiments, the changes induced by a given expression were highly repeatable. As expected,

melanin concentrations stayed constant across measurements of an individual. Hemoglobin, however, varied

greatly. In studying the variations in blood flow, we made the following core observations:

1. Visible blood is mainly contained within the ascending and descending capillaries originating from the

relatively superficial sub-papillary plexus. This becomes apparent when studying hemoglobin maps such

as the high-resolution examples in Figure 7.4 and is consistent with the fact that visible light (400–700 nm)

cannot penetrate deeply into the optically turbid dermal layers [Anderson and Parrish, 1981].

2. The mechanical deformation of facial expressions may lead not only to drainage of blood in compressed

regions, but also to a perfusion increase in other regions. This is most noticeable over the cheek bones,

where, for instance, the blood concentration increases during a smile.
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Figure 7.5: Perfusion changes of five representative points denoted in Figure 7.7. Top Row: Two global factors

(high exercise level and high alcohol level). Bottom Row: Concentration changes in the denoted areas during

the temporal sequence shown in Figure 7.6.

3. While the qualitative changes connected with a single expression correspond well across subjects, there are

large differences in each individual’s spatial pattern of perfusion.

4. Conversely, this subject-specific pattern appears to be very static and only subject to decrease or increase of

local blood concentration.

5. Global effects cannot be simulated by simply globally increasing blood concentrations. Figure 7.5 (top

row) plots the temporal perfusion variations due to high exercise level and to alcohol consumption at five

representative facial positions, showing two distinctly different spatial distributions of perfusion increase.

A core question of our investigation was whether the expression-induced transitions between different perfusion

levels take place at noticeable time scales. Our measurement device, however, does not offer the temporal

resolution to measure such effects directly: the acquisition speed is limited by the camera read-out, which

amounts to 5.5 seconds per image. To work around this issue, we used a time-multiplexing scheme often

used to measure periodic motions (see, e.g., Xu and Aliaga [2007]): we performed two acquisition sequences,

where the subject was alternating between a neutral and a smile expression, synchronized by an acoustic signal

of period pe that prompted an expression change. At the same time, the camera would take an image every pa

seconds. The resulting images for this sequence (pe = 5s, pa = 5.5s) are shown in Figure 7.6. Reordering the

acquired images as shown in the figure allows reconstruction of an up-sampled version of the cyclic expression

changes with an effective sampling rate of 0.5 seconds (see Figure 7.6). We later increased the sampling rate to

(pe = 5s, pa = 5.25s), which effectively samples at 0.25-second intervals. Both rearranged sequences observe

two full expression cycles, which results in 22 and 44 captures in total, respectively.

Figure 7.5 (bottom row) shows that despite the long duration of the experiment, the expression-induced blood

variations were highly reproducible; our subjects were able to consistently produce the same expressions
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1 5 9 13 17

2 6 10 14 18

3 7 11 15 19

4 8 12 16 20

Figure 7.6: Our time multiplexing scheme. Top: We sample the expressions at varying time offsets from the

expression transition. Bottom: The images were taken in column-major order (as numbered), with a short

phase shift between acquisition and expression changes. This gives a consistent 5-image temporal sequence of

four expressions (neutral/smile/neutral/smile) when arranged in row-major order.

multiple times. In addition, neither sequence exhibits transitional phases between the neutral and the smile

expression. This leads us to propose that:

6. Dynamic effects in the transition of expression-induced perfusion changes are of lesser visual importance

and may hence be ignored in a practical model.
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In the next section we use the above six observations to develop a simple, practical model for blood variation.

7.4 Color Appearance Model

The principal quantity controlled by our color appearance model is the spatially-varying concentration of

hemoglobin. As any changes in blood concentration are bound to the location of vessels and capillaries

(observations 1 and 4 from the previous section), we express perfusion variations by dynamically modifying a

static, “neutral” hemoglobin texture map Hn. This map may be hand-painted, or acquired from real subjects.

We use our measurements of different facial expressions and conditions to derive the relative changes that must

to be applied to Hn to produce a desired appearance. Thus, our model is data-derived, not data-driven; we do

not directly apply the measured maps when rendering.

Our approach is to use a localized variant of histogram matching (HM) to modify the neutral hemoglobin map

Hn. To transform Hn to the blood distribution H of a joyful smile, for example, we must alter each pixel

value in Hn, such that locally, within a radius r region, that pixel would contribute to a new distribution of

concentrations which matches the histogram of the corresponding region in H. Traditional HM achieves this

globally by determining the percentile q of each pixel’s intensity in a source image’s histogram, and mapping

q to a new intensity that corresponds to the qth percentile in a destination image’s histogram. This involves

looking up the cumulative distribution function (CDF) of the source histogram and the inverse CDF of the

destination histogram [Heeger and Bergen, 1995]. To localize this approach, we use histogram CDFs within a

sliding window around each pixel in Hn. This would normally require recomputation (or storage) of two CDFs

per pixel, which would be prohibitive for real-time applications.

7.4.1 Approximate Local Histogram Matching

In order to turn localized HM into a tractable problem, we leverage the observation that for a wide range of

skin appearances, hemoglobin distribution is near-Gaussian (see Figure 7.7). This allows us to approximate

hemoglobin histograms with Gaussian distributions, thus compressing each local histogram to a two-valued

description of mean μ and standard deviation σ . For a given radius r, these descriptors are easily extracted for

every pixel x in a hemoglobin map H, as:

μ(x) =
(
H ∗ f

)
(x) ,

σ(x) =
√(

H2 ∗ f
)
(x)− μ(x)2 , (7.1)

with the averaging convolution kernel f (u) = 1
πr2

(‖u‖ ≤ r
)
.

Adjusting a pixel’s concentration Hn(x) from a distribution (μn(x), σn(x)) to a target distribution (μ(x), σ(x))
now involves the CDFs of two Gaussian distribution:

H(x) = CDF−1
σ(x),μ(x)

[
CDFσn(x),μn(x)

(
Hn(x)

)]
. (7.2)

Due to the affine similarity of Gaussians, this mapping simplifies to a scale and bias:

H(x) = μ(x) +
σ(x)
σn(x)

(
Hn(x)− μn(x)

)
. (7.3)
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Figure 7.7: Example hemoglobin distributions and their Gaussian approximation for representative areas of

the face. (The origin of the histograms and their approximations are color-coded; yellow is referred to by

Figure 7.5, its histogram is omitted for space reasons.)

This simplification represents a physiologically plausible yet computationally efficient model to blend between

perfusion distributions, yet maintaining the structural characteristics of the underlying vascular system. In the

following subsection we show how to control this mechanism in the context of facial animation.

7.4.2 Model Parameters

Equipped with Equation (7.3), it is now possible to span an appearance space defined by a palette of target

hemoglobin distributions Hi, i = 1 . . . k. We define a mean-free base concentration:

H0 = Hn − μn , (7.4)

and a set of scales and biases:

bias0 = μn, biasi = μi, i > 0 ,

scale0 = 1, scalei =
σi

σn

, (7.5)

the argument “(x)” being ommitted for readability. These allow the seamless transformation of the neutral

hemoglobin distribution to any desired blend of texture characteristics of a set of basis distributions Hi, by

applying an affine combination of scales and biases,

H =
k

∑
i=0

wibiasi + H0

k

∑
i=0

wiscalei , (7.6)
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where wi are relative weights that sum up to one. The main benefit of this representation is storage efficiency,

as the low-frequency nature of these biases and scales can be exploited (see Section 7.6). Following existing

terminology in geometric animation, we refer to the set of wi as parameters of an appearance rig.

In order to acquire a given subject’s basis set of hemoglobin distributions, we gather the respective perfu-

sion maps using our measurement setup and manually warp them to align with a photograph of the neutral

expression. The complex deformations during expression changes make it prohibitive to align the acquired

maps at pixel accuracy. This precludes simply interpolating between pre-captured distributions. Instead, using

Equation (7.1), we determine the statistics used to derive the parameters in (7.5). Thus, even when image

alignments are not perfect, we still achieve good results.

The non-local support of the histograms implicitly leads to a natural separation of low-frequency changes

from high-frequency details (as opposed to frequency-based approaches to separate global changes from local

structure [Guo and Sim, 2009]). This has two additional advantages: First, it becomes possible to apply rel-

ative changes derived from an existing subject’s native hemoglobin map to other (for instance hand-painted)

maps. This allows for appearance transfer between characters. Second, as the hemoglobin scale si and bias

bi textures store relatively low-frequency information (see Figure 7.8), we can downsample them to minimize

their memory footprint, without significant loss of information. This makes our approach practical for real-time

applications.

Melanin Mean-Free Hemoglobin Hemoglobin
Hemoglobin Scale Bias

Figure 7.8: Different maps used by our algorithm. The hemoglobin scale and bias maps shown here belong to

the smile expression (Hemoglobin Scale shown at 90x scale for visualization purposes).

7.5 Geometry-dependent Rigging

Our appearance model considers hemoglobin changes that are either tightly bound to the geometric deforma-

tions of the skin, or controlled by a global state that incorporates emotional and physiological parameters.

Accordingly, we use a common rig for geometry and appearance control where these are correlated, and intro-

duce independent parameters for the global state. As global effects are unique to facial expressions, we model

both expression-related and global effects using a basis of hemoglobin statistics, as described in the previous

section.

There are a number of different geometric animation approaches that either globally or locally control geometry

[Ward, 2004]. The three most common approaches create animation rigs based on blend shapes, bones, or a
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combination of both. Many of these approaches use either global or local weights of influence; our weight-

based, linear model can be adapted to most existing techniques. While there are no intrinsic limitations to any

of these approaches, our method lends itself particularly well to global blend shapes [Deng et al., 2006], an

approach commonly used in production environments [Richie et al., 2005]. We demonstrate the applicability

of our model in a production pipeline in Section 7.7, with an implementation in Autodesk R© Maya R© 2010.

7.6 Implementation

Our real-time facial color animation rig has four components (in execution order):

1. interpolation of facial shapes

2. obtaining hemoglobin change from the scale and bias textures

3. computing the base color of the skin

4. simulation of subsurface scattering in the skin

To compute the animation as efficiently as possible, we use graphics hardware and stream out blend shapes

using DirectX R© 10. This circumvents the limitation that only four blend shapes can be packed into per-vertex

attributes at once. We store a set of transformed vertices into a buffer, which allows us to apply an unlimited

number of blend shapes using multiple passes [Lorach, 2007]. Wrinkles are rendered using the partial derivative

normal mapping approach of Jimenez et al. [2011], which is based on masking wrinkle zones and efficiently

adding the influence of multiple normals coming from different zones using partial derivative normal maps.

We precompute the actual color of skin using the spectral model of Donner et al. [2008]. This model predicts

spectral absorption σa and reduced scattering σ ′
s coefficients based on the volume concentrations of hemoglobin

in the dermis and epidermis, and the volume concentration and type of melanin in the epidermis. Table 7.1

summarizes these parameters to this model.

Parameter Description Range
Cm Melanin fraction 0 − 0.5
βm Melanin type blend 0 − 1

Che Hemoglobin fraction (epi) 0 − 0.1
Chd Hemoglobin fraction (dermis) 0 − 0.32

Table 7.1: Physiological parameters describing skin spectral absorption and scattering.

For the simulation of subsurface scattering, we use the method by Jimenez et al. [2009, 2010b]. We perform the

sum-of-gaussians texture-space diffusion [d’Eon et al., 2007] as a postprocess in screen-space, by modifying

the width of the convolution kernel according to depth gradient information. The method scales well with

geometric detail, yet still retains high visual fidelity. Since lateral color bleeding due to subsurface scattering

is already explicitly captured as part of the acquisition process, we use post-scattering texturing [d’Eon et al.,

2007] to avoid blurring the albedo twice. We describe this in more detail below. As the screen-space ap-

proximation depends on pre-scattering blur, we separate the diffuse illumination, the albedo, and the specular

reflectance into different render targets, and then selectively apply subsurface scattering only to the diffuse

component. We then composite these components back together to produce the final image.
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Recall that the parameter maps obtained as part of the acquisition process are blurred due to light scattering in

the skin layers (see Section 7.3). This intrinsic blurring of the maps allows us to further optimize the rendering

process: we use a precomputed skin color lookup table that is indexed by the local value in the melanin and

hemoglobin parameter maps. Note that this is a departure from previous work, where these maps are used as

inputs to a heterogeneous subsurface scattering simulation, as in Donner et al. [2008]. Were we to use the maps

in this fashion, there would be excessive blurring of the chromophore contributions.

Our skin color lookup table contains RGB color values which are pre-computed across the space of parameters

shown in Table 7.1. We compute each entry using the total diffuse reflectance predicted by the two-layered

translucent skin model, with Che = 0.25Chd. As the skin model is spectral, and is highly non-linear with respect

to the effects of chromophores on RGB color, we sample the space of melanin and hemoglobin cubicly to help

maximize the use of the texture space. This allows us to use a smaller table, while still spanning the space of

useful parameters. To find the index (u, v) in the space of the texture given a melanin and hemoglobin volume

fraction, we apply:
u = 3

√
Cm , v = 3

√
Chd (7.7)

where melanin varies along the u axis, and hemoglobin varies along the v axis. Figure 7.9 shows this lookup

table.
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Figure 7.9: Skin color lookup texture. The melanin blend (βm) is 61% eumelanin and 39% pheomelanin, and

epidermal hemoglobin (Che) is 25% of dermal hemoglobin (Chd).

The hemoglobin scale si and bias bi textures are downsampled to 256x256 resolution, as justified in Section

7.4. During rendering, we perform a standard subsurface scattering simulation using parameters for colorless

skin. We then modulate the resulting value with the color from the lookup table, indexed by the melanin and

hemoglobin values at each point. We use the specular model of Kelemen and Szirmay-Kalos [2001] with

spatially-varying parameters for roughness and specular intensity [Weyrich et al., 2006].

7.7 Results

Here we demonstrate our novel skin appearance rig under various expressions and conditions. All of the images

in this section use hemoglobin maps of the 26-year-old male subject and were rendered in real-time. In many

of our examples, the hemoglobin maps are inset into the lower-left corner of the images. Note that due to the
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delicacy of skin color and the widely-varying gamut of display devices we suggest viewing the PDF version of

this thesis on a color-calibrated monitor.

Figure 7.1 shows five emotional basis states, a sad smile, anger, the neutral pose, fear, and disgust. The

hemoglobin maps generated by our rig are shown in Figure 7.2. Note the wide variation in appearance across

the expressions. Some of the color is caused by blood perfusion due to deformation, while some is due to

capillary dilation. In reality, extreme emotions like anger or fear trigger a very strong dilation or constriction

of blood vessels. This causes significant involuntary blushing or pallor [Goldstein, 2006], which is difficult to

measure experimentally. With our model, these effects are easily simulated by scaling the global hemoglobin

with respect to the neutral pose, as shown for the anger and fear poses. The global hemoglobin was scaled by

127% and 81% respectively in those cases, adding more expressiveness and realism to the images.

Figure 7.10 shows two additional physiological states, exercise and alcohol consumption, applied to a neutral

pose. Although these changes may appear subtle, they increase realism and convey emotions, and free anima-

tors from the cumbersome tweaking of skin textures. Figure 7.13 shows close-up comparisons of the neutral

and disgust poses, where the automatic changes predicted by our model are clearly shown. Our approach is

general enough that any expression, emotion or state may be added, and allows for multiple combinations of

poses (see Figure 7.11).

As shown in this section, the encoded hemoglobin changes are directly transferrable to different characters.

Neutral Exercise Alcohol

Figure 7.10: The neutral geometric pose of a face rendered with a neutral hemoglobin map (left), and predicted

hemoglobin perfusion after exercise (middle) and after alcohol consumption (right).

Figure 7.11: Example of blending poses: from left to right, the character transitions from the neutral pose to

full anger (third image), to a combination of full anger and full surprise (fifth image). The last image adds the

changes after physical exercise.
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Figure 7.12: Various emotional states predicted by our model. The top row uses our method to dynamically

predict the hemoglobin perfusion. The bottom row uses the neutral state hemoglobin map (best viewed on a

calibrated monitor).

They can also be applied to a different neutral map, either captured from a real subject or created manually

by an artist. We believe this feature can greatly improve the workflow in production environments, as it hides

the details of facial color animation, but exposes useful controls. As a proof-of-concept integration, we have

implemented it as a shader in mental ray R© within Autodesk R© Maya R© 2010, and used it to render a small

cartoonish animation. The artist has immediate feedback on the color variation of the skin, and can render final

results off-line.

Finally, we make neutral hemoglobin and melanin maps available at ACM Portal, together with the skin color

lookup table. The maps can be directly used for rendering or taken as a starting point to create different

variations.

7.8 Conclusions

We have demonstrated an efficient, low-overhead skin appearance rig for predicting skin color changes during

facial animation. Our dynamic model uses a novel local histogram matching technique, allowing efficient

calculation of blood perfusion in skin layers. The model is anatomically motivated, and is based on statistical

information gathered from in vivo measurements of hemoglobin perfusion. We have validated our model using

these measurements, and shown potential applications, such as appearance transfer, and the synthesis of novel

poses with realistic variations.

Due to the intrinsic chromophore blurring in our measurements, our rendering method adds minimal overhead,

and lends itself to a real-time GPU implementation. While we have used blend shapes, our model integrates

well with any standard geometric rig; we have demonstrated it in a pre-existing workflow pipeline of a common

commercial software package (please refer to the video).

The current model focuses on skin color only. There exist other equally important aspects to skin appearance,

such as wrinkles and pores. These, however, present geometric and topographic as well as rendering challenges.
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Figure 7.13: Close-up of the neutral and the disgust poses. The changes in hemoglobin distribution are

generated by our model.

Coupling these to chromophore changes would be one direction for future work. Using a more standardized

expression classification system, such as FACS [Sagar, 2006], would simplify the use of our appearance rig in

other fields, such as the behavioral and cognitive sciences. Our method could also be used in an inverse fashion,

to detect emotions based on deformation and color cues.

One limitations lies in the use of the SIAscope algorithms. They are able to detect overall concentrations of

melanin and hemoglobin, but not depth of deposition, or other features, such as hemoglobin oxygenation. We

plan to develop a more robust system capable of providing more detailed and accurate physiological informa-

tion.
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Chapter 8

Facial Wrinkles Animation

Virtual characters in games are becoming more and more realistic, with recent advances for instance in the fields

of skin rendering [d’Eon and Luebke, 2007; Hable et al., 2009; Jimenez and Gutierrez, 2010] or behavior-based

animation [NaturalMotion, 2005]. To avoid lifeless representations and help the user engage in the action,

more and more sophisticated algorithms are being devised that capture subtle aspects of the appearance and

motion of these characters. Unfortunately, facial animation and the emotional aspect of the interaction have not

been traditionally pursued with the same intensity. We believe this is an important missing aspect in games,

especially given the current trend of story-driven AAA games and their movie-like real-time cutscenes.

In this chapter we present a method to add expressive animated wrinkles to characters, helping enrich stories

through subtle visual cues. Our system allows the animator to independently blend multiple wrinkle maps

across regions of a character’s face. We demonstrate how combining our technique with state-of-the-art real-

time skin rendering can produce stunning results that bring out the personality and emotional state of a character

(see Figures 8.1 and 8.2).

The work presented in this chapter has been published in the GPU Pro 2 book [Jimenez et al., 2011].

8.1 Introduction

Bump maps and normal maps are well known techniques for adding the illusion of surface features to otherwise

coarse, undetailed surfaces. The use of normal maps to capture the facial detail of human characters is con-

sidered standard practice for the past several generations of real-time rendering applications. However, using

static normal maps unfortunately does not accurately represent the dynamic surface of an animated human

face. In order to simulate dynamic wrinkles, one option is to use length-preserving geometric constraints along

with artist-placed wrinkle features to dynamically create wrinkles on animated meshes [Larboulette and Cani,

2004]. Since this method actually displaces geometry, the underlying mesh must be sufficiently tessellated to

represent the finest level of wrinkle detail. A dynamic facial wrinkle animation scheme presented recently [Oat,

2007] employs two wrinkle maps (one for stretch poses and one for compress poses) and allows them to be

blended to independent regions of the face using artist animated weights along with a mask texture. We build

upon this technique, demonstrating how to dramatically optimize the memory requirements. Furthermore, our
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Without wrinkles With wrinkles

Figure 8.1: The same scene without and with animated facial wrinkles. Adding them helps to increase visual

realism and conveys mood to the character.

technique allows to easily include more than two wrinkle maps when needed, as we no longer map negative

and positive values to different textures.

8.2 Algorithm

The core idea of this technique is the addition of wrinkle normal maps on top of the base normal maps and blend

shapes (see Figure 8.3, left and center for example maps). For each facial expression, wrinkles are selectively

applied by using weighted masks (see Figure 8.3, right, and Table 8.1 for the mask and weights used in our

examples). This way, the animator is able to manipulate the wrinkles on a per-blend-shape basis, allowing art-

directed blending between poses and expressions. We store a wrinkle mask per channel of a RGBA texture; this

way we can store up to four zones per texture. As our implementation uses 8 zones, we only require storing and

accessing two textures. Note that when the contribution of multiple blend shapes in a zone exceeds a certain

limit, artifacts can appear in the wrinkles. In order to avoid this problem, we clamp the value of the summation

to the [0, 1] range.

While combining various displacement maps consists of a simple sum, combining normal maps involves com-

plex operations that should be avoided in a time-constrained environment like a game. Thus, in order to

combine the base and wrinkle maps a special encoding is used: partial derivative normal maps [Acton, 2008].

It has two advantages over the conventional normal map encoding: a) instead of reconstructing the z value of

a normal, we just have to perform a vector normalization, saving valuable GPU cycles; b) more important for

our purposes, the combination of various partial derivative normal maps is reduced to a simple sum, similar to

combining displacement maps.
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Figure 8.2: This figure shows our wrinkle system in action for a complex facial expression composed of multi-

ple, simultaneous blend shapes.
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This encoding must be run as a simple pre-process. Converting a conventional normal n = (nx, ny, nz) to a

partial derivative normal n′ = (n′x, n′y, n′z) is done by using the following equations:

n′x =
nx

nz

n′
y =

ny

nz

Base Map Wrinkle Map Mask Map

Figure 8.3: The wrinkle map is selectively applied on top of the base normal map by using a wrinkle mask.

The usage of partial derivative normal maps reduces this operation to a simple addition. The yellowish look

is due to the encoding and storage in the R and G channels that this technique employs. Wrinkle zone colors

in the mask do not represent the actual channels of the mask maps, they are put together just for visualization

purposes.

Red Green Blue Brown Cyan Magenta Orange Gray
Joy 1.0 1.0 0.2 0.2 0.0 0.0 0.0 0.0

Surprise 0.8 0.8 0.8 0.8 0.0 0.0 0.0 0.0

Fear 0.2 0.2 0.75 0.75 0.3 0.3 0.0 0.6

Anger -0.6 -0.6 -0.8 -0.8 0.8 0.8 1.0 0.0

Disgust 0.0 0.0 -0.1 -0.1 1.0 1.0 1.0 0.5

Sad 0.2 0.2 0.75 0.75 0.0 0.0 0.1 1.0

Table 8.1: Weights used for each expression and zone (see color meaning in the mask map of Figure 8.3).

In runtime, reconstructing a single partial derivative normal n′ to a conventional normal n̂ is done as follows:

n = (n′x, n′y, 1)

n̂ =
n

‖n‖

Note that in the original formulation of partial derivative normal mapping there is a minus sign both in the

conversion and reconstruction phases; removing it from both steps allows to obtain the same result with the

additional advantage of saving another GPU cycle.

Then, combining different partial derivative normal maps consists on a simple summation of their (x, y) com-

ponents before the normalization step. As Figure 8.3 reveals, expression wrinkles are usually low frequency.

Thus, we can reduce map resolution to spare storage and lower bandwidth consumption, without visible loss

of quality. Calculating the final normal map is therefore reduced to a summation of weighted partial derivative

normals (see Listing 8.1).
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f l o a t 3 WrinkledNormal ( Texture2D < f l o a t 2 > baseTex ,

Texture2D < f l o a t 2 > wr ink leTex ,

Texture2D maskTex [ 2 ] ,

f l o a t 4 w e i g h t s [ 2 ] ,

f l o a t 2 t e x c o o r d ) {

f l o a t 3 base ;

base . xy = baseTex . Sample ( A n i s o t r o p i c S a m p l e r 1 6 , t e x c o o r d ) . g r ;

ba se . xy = −1.0 + 2 . 0 ∗ base . xy ;

ba se . z = 1 . 0 ;

# i f d e f WRINKLES

f l o a t 2 w r i n k l e s = w r i n k l e T e x . Sample ( L inea rSample r ,

t e x c o o r d ) . g r ;

w r i n k l e s = −1.0 + 2 . 0 ∗ w r i n k l e s ;

f l o a t 4 mask1 = maskTex [ 0 ] . Sample ( L inea rSample r , t e x c o o r d ) ;

f l o a t 4 mask2 = maskTex [ 1 ] . Sample ( L inea rSample r , t e x c o o r d ) ;

mask1 ∗= w e i g h t s [ 0 ] ;

mask2 ∗= w e i g h t s [ 1 ] ;

ba se . xy += mask1 . r ∗ w r i n k l e s ;

ba se . xy += mask1 . g ∗ w r i n k l e s ;

ba se . xy += mask1 . b ∗ w r i n k l e s ;

ba se . xy += mask1 . a ∗ w r i n k l e s ;

ba se . xy += mask2 . r ∗ w r i n k l e s ;

ba se . xy += mask2 . g ∗ w r i n k l e s ;

ba se . xy += mask2 . b ∗ w r i n k l e s ;

ba se . xy += mask2 . a ∗ w r i n k l e s ;

# e n d i f

re turn normal ize ( ba se ) ;

}

Listing 8.1: HLSL code of our technique. We are using a linear instead of an anisotropic sampler for the

wrinkle and mask maps because the low-frequency nature of their information does not require higher quality

filtering.

A problem with facial wrinkle animation is the modeling of compound expressions, where the resulting wrin-

kles come from the interactions between the basic expressions they are built upon. For example, if we are

surprised, the Frontalis muscle contracts the skin producing wrinkles in the forehead. If we then suddenly

became angry, the Corrugator muscles would be triggered, which would expand the skin in the forehead, thus

causing the wrinkles to disappear. To be able to model this kind of interactions, we let mask weights take

negative values, allowing to cancel each other. Figure 8.5 illustrates this particular situation.

8.2.1 Alternative: using normal map differences

An alternative to the usage of partial derivative normal maps for combining normal maps, is to store differences

between the base and each of the expression wrinkle maps (see Figure 8.4, right), in a similar way to how blend

shape interpolation is usually performed. As differences may contain negative values, we perform a scale and

bias operation so that all values fall in the [0, 1] range, enabling its storage in regular textures:

d(x, y) = 0.5 + 0.5 · (w(x, y)− b(x, y)),
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where w(x, y) is the normal at pixel (x, y) of the wrinkle map, and b(x, y) is the corresponding value from

the base normal map. When DXT compression is used for storing the differences map, it is recommended

to renormalize the resulting normal after adding the delta, in order to alleviate the artifacts caused by the

compression scheme.

Base Map Wrinkle Map Difference Map

Figure 8.4: We calculate a wrinkle difference map by subtracting the base normal map from the wrinkle map.

In runtime, the wrinkle difference map is selectively added on top of the base normal map by using a wrinkle

mask (see Figure 8.3, right, for the mask). The grey color of the image on the right is due to the bias and scale

introduced when computing the difference map.

Partial derivative normal mapping has the following advantages over the differences approach:

• It can be a little bit faster as it saves one GPU cycle when reconstructing the normal and also allows to only

add two-component normal derivatives instead of a full (x, y, z) difference; these two-component additions

can be done two at once in only one cycle. This translates to a measured performance improvement of

1.12x in the GeForce 8600GT, whereas we have not observed any performance gain in either the GeForce

9800GTX+ nor in the GeForce 295GTX .

• It only requires two channels to be stored vs. the three channels required for the differences approach. This

implies higher quality as 3Dc can be used to compress the wrinkle map for the same memory cost.

On the other hand, the differences approach has the following advantages over the partial derivative normal

mapping approach:

• It uses standard normal maps, which may be important if this cannot be changed in the production pipeline.

• Partial derivative normal maps cannot represent anything that falls outside of a 45 degree cone around

(0, 0, 1). Nevertheless, in practice, this problem proved to have little impact on the quality of our renderings.

The suitability of each approach will depend on both the constraints of the pipeline and the characteristics of

the art assets.
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Neutral Surprise

Anger Surprise and anger

Figure 8.5: The net result of applying both surprise and anger expressions on top of the neutral pose is a

wrinkleless forehead. In order to accomplish this, we use positive and negative weights in the forehead wrinkle

zones, for the surprise and angry expressions respectively.
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Shader execution time
GeForce 8600GT 0.31 ms

GeForce 9800GTX+ 0.1 ms

GeForce 295GTX 0.09 ms

Table 8.2: Performance measurements for different GPUs. The times shown correspond specifically to the

execution of the code of the wrinkles shader.

8.3 Results

For our implementation we used DirectX 10, but the wrinkle animation shader itself could be easily ported to

DirectX 9. However, to circumvent the limitation that only four blend shapes can be packed into per-vertex

attributes at once, we used the DirectX 10 stream out feature, which allows us to apply an unlimited number

of blend shapes using multiple passes [Lorach, 2007]. The base normal map has a resolution of 2048 × 2048,

whereas the difference wrinkle and mask maps have a resolution of 256 × 256 and 64 × 64 respectively, as

they only contain low-frequency information. We use 3Dc compression for the base and wrinkle maps, and

DXT for the color and mask maps. The high-quality scanned head model and textures were kindly provided by

XYZRGB, with the wrinkle maps created manually, adding the missing touch to the photorealistic look of the

images. We used a mesh resolution of 13063 triangles, mouth included, which is a little step ahead from current

generation of games; however, as current high-end system become mainstream, it will be more common to see

such high polygon counts, specially in cinematics.

To simulate the subsurface scattering of the skin, we use the recent screen-space approach [Jimenez and

Gutierrez, 2010; Jimenez et al., 2010b], which transfers computations from texture space to screen space by

modulating a convolution kernel according to depth information. This way, the simulation is reduced to a simple

post-process, independent of the number of objects in the scene and easy to integrate in any existing pipeline.

Facial color animation is achieved using a recently proposed technique [Jimenez et al., 2010a], which is based

on in vivo melanin and hemoglobin measurements of real subjects. Another crucial part of our rendering system

is the Kelemen/Szirmay-Kalos model, which provides realistic specular reflections in real-time [d’Eon and

Luebke, 2007]. Additionally, we use the recently introduced Filmic tone mapper [Hable, 2010], which yields

really crisp blacks. For the head shown in the images, we have not created wrinkles for the zones corresponding

to the cheeks because the model is tessellated enough in this zone, allowing to produce geometric deformations

directly on the blend shapes.

Figure 8.6 shows different closeups that allow appreciating the wrinkles added in detail. Figure 8.7 depicts

a sequence showcasing the blending between compound expressions, illustrating how adding facial wrinkle

animation boosts realism and adds mood to the character.

This enhanced realism has little performance impact. In fact our implementation has a memory footprint of

just 96 KB. Table 8.2 shows the performance of our shader using different GPUs, from the low-end GeForce

8600GT to the high-end GeForce 295GTX. An in-depth examination of the compiled shader code reveals that

the wrinkle shader add a per-pixel arithmetic instruction/memory access count of 9/3. Note that animating

wrinkles is mostly useful for near to medium distances; for far distances it can be progressively disabled to

save GPU cycles. Besides, when similar characters share the same (u, v) arrangement, we can reuse the same

wrinkles improving further the usage of memory resources.

Finally, it is simple enough to be easily added to existing rendering engines without requiring drastic changes,

even allowing to reuse existing bump/normal textures, as our technique builds on top of them.
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Nasalis Frontalis Mentalis

Figure 8.6: Closeups showing the wrinkles produced by Nasalis (nose), Frontalis (forehead) and Mentalis

(chin) muscles.

8.4 Discussion

From direct observation of real wrinkles, it may seem natural to think that shading could be enhanced by

using techniques like ambient occlusion or parallax occlusion mapping [Tatarchuk, 2007]. However, we have

found that wrinkles exhibit very little to no ambient occlusion, unless the parameters used for its generation

are pushed beyond its natural values. Similarly, self-occlusion and self-shadowing can be thought to be an

important feature when dealing with wrinkles, but in practice we have found that the use of parallax occlusion

mapping is most of the times unnoticeable, for the specific case of facial wrinkles.

Furthermore, our technique allows the incorporation of additional wrinkle maps, like the lemon pose used in

Oat [2007], which allows to stretch wrinkles already found in the neutral pose. However, we decided not to use

them because they had little impact in the expressions we selected for this particular character model.

8.5 Conclusions

Compelling facial animation is an extremely important and challenging aspect of computer graphics. Both

games and animated feature films rely on convincing characters to help tell a story and a critical part of char-

acter animation is the character’s ability to use facial expression. We have presented an efficient technique for

achieving animated facial wrinkles for real-time character rendering. When combined with traditional blend-

target morphing for facial animation, our technique can produce very compelling results that enable virtual

characters to be much more expressive in both their actions and dialog. Our system requires very little texture

memory and is extremely efficient, enabling true emotional and realistic character renderings using technology

available in widely adopted PC graphics hardware and current generation game consoles.
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Figure 8.7: Transition between various expressions. Having multiple mask zones for the forehead wrinkles

allows their shape to change according to the animation.
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Chapter 9

Practical Morphological Antialiasing

The use of antialiasing techniques is crucial when producing high quality graphics. Up to now, multisampling

antialiasing (MSAA) remains the most extended solution offering superior results in real time. However, there

are important drawbacks to the use of MSAA in certain scenarios. First, the increase in processing time

it implies is not negligible at all. Further, limitations of MSAA include the impossibility, in a wide range

of platforms, of activating multisampling when using multiple render targets (MRT), on which fundamental

techniques such as deferred shading [Shishkovtsov, 2005; Koonce, 2007] rely. Even on platforms where MRT

and MSAA can be simultaneously activated (i.e. DirectX 10), implementation of MSAA is neither trivial nor

cost-free [Thibieroz, 2009]. Besides, MSAA poses a problem for the current generation of consoles. In the

case of the Xbox 360, memory constraints force the use of CPU-based tiling techniques in case high resolution

frame buffers need to be used in conjunction with MSAA; whereas on the PS3 multisampling is usually not even

applied. Another drawback of MSAA is its inability to smooth non-geometric edges such as those resulting

from the use of alpha testing, frequent when rendering vegetation. As a result, when using MSAA, vegetation

can only be antialiased if alpha to coverage is used. Finally, multisampling requires extra memory, which is

always a valuable resource, especially on consoles.

In this chapter an alternative technique will be introduced that avoids most of the problems described above

(Jimenez’s MLAA). The quality of our results lies between 4x and 8x MSAA at a fraction of the time and

memory consumption. It is based on morphological antialiasing [Reshetov, 2009], which relies on detecting

certain image patterns to reduce aliasing. However, the original implementation is designed to be run in a CPU

and requires the usage of list structures which are not GPU-amenable.

The technique described in this chapter has been published in the GPU Pro 2 book [Jimenez et al., 2011b], and

in the June/July 2011 issue of the Game Developer Magazine [Jimenez et al., 2011a].

9.1 Introduction

As a response to the limitations previously described, a series of techniques have implemented antialiasing so-

lutions in shader units, the vast majority of them being based in edge detection and blurring. In S.T.A.L.K.E.R

[Shishkovtsov, 2005], edge detection is performed by calculating differences in the 8-neighborhood depth
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values and the 4-neighborhood normal angles; then, edges are blurred using a cross-shaped sampling pattern.

A similar, improved scheme is used in Tabula Rasa [Koonce, 2007], where edge detection uses threshold values

that are resolution independent, and the full 8-neighborhood of the pixel is considered for differences in the

normal angles. In Crysis [Sousa, 2007], edges are detected using depth values, and rotated triangle samples

are used to perform texture lookups using bilinear filtering. These solutions alleviate the aliasing problem but

do not mitigate it completely. Finally, in Killzone 2 samples are rendered into a double horizontal resolution

G-buffer. Then, in the lighting pass, two samples of the G-buffer are queried for each pixel of the final buffer.

The resulting samples are then averaged and stored in the final buffer. However, this implies executing the

lighting shader twice per final pixel.

Since our goal is to achieve real-time practicality in games with current mainstream hardware, our algorithm

implements aggressive optimizations that provide an optimal trade-off between quality and execution times.

Reshetov searches for specific patterns (U-shaped, Z-shaped and L-shaped patterns) which are then decom-

posed into simpler ones, an approach which would be impracticable on GPU. We realize that the pattern type,

and thus the antialiasing to be performed, only depends on 4 values, which can be obtained for each edge pixel

(edgel) with only two memory accesses. This way, the original algorithm is transformed so that it uses texture

structures instead of lists (see Figure 9.1). Furthermore, this approach allows to handle all pattern types in a

symmetric way, thus avoiding the need to decompose them into simpler ones. In addition, pre-computation of

certain values into textures allows for an even faster implementation. Finally, in order to accelerate calculations,

we make extensive use of hardware bilinear interpolation for smartly fetching multiple values in a single query,

and provide means of decoding the fetched values into the original unfiltered values. As a result, our algorithm

can be efficiently executed by a GPU, has a moderate memory footprint and can be integrated as part of the

standard rendering pipeline of any game architecture.

Some of the optimizations presented in this work may seem to add complexity at a conceptual level, but as

our results show, their overall contribution makes them worth including. Our technique yields image quality

between 4x and 8x MSAA, with a typical execution time of 3.79 ms on Xbox 360 and 0.44 ms on a NVIDIA

GeForce 9800 GTX+, for a resolution of 720p. Memory footprint is 2x the size of the backbuffer on Xbox 360

and 1.5x on the 9800 GTX+. According to our measurements, 8x MSAA takes an average of 5 ms per image

on the same GPU at the same resolution, that is, our algorithm is 11.80x faster.

In order to show the versatility of our algorithm, we have implemented the shader both for Xbox 360 and PC,

using DirectX 9 and 10 respectively. The code presented in this chapter is that of the DirectX 10 version.

9.2 Overview

The algorithm searches for patterns in edges which then allow us to reconstruct the antialiased lines. This

can, in general terms, be seen as a re-vectorization of edges. In the following we give a brief overview of our

algorithm.

First, edge detection is performed using depth values (alternatively, luminances can be used to detect edges; this

will be further discussed in Section 9.3.1). We then compute, for each pixel belonging to an edge, the distances

in pixels from it to both ends of the edge to which the edgel belongs. These distances define the position of

the pixel with respect to the line. Depending on the location of the edgel within the line, it will or will not be

affected by the antialiasing process. In those edgels which have to be modified (those which contain yellow or
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Original Image Edges texture Blending weights texture Antialiased Image

Figure 9.1: Starting from an aliased image (left) edges are detected and stored in the edges texture (center

left). The color of each pixel depicts where edges are: green pixels have an edge at their top boundary, red

pixels at their left boundary, and yellow pixels have edges at both boundaries. The edges texture is then used

in conjunction with the precomputed area texture to produce the blending weights texture (center right) in the

second pass. This texture stores the weights for the pixels at each side of an edgel in the RGBA channels. In

the third pass, blending is performed to obtain the final antialiased image (right).

green areas in Figure 9.2, left) a blending operation is performed according to the following equation:

cnew = (1 − a) · cold + a · copp, (9.1)

where cold is the original color of the pixel, copp is the color of the pixel on the other side of the line, cnew is the

new color of the pixel, and a is the area shown in yellow in Figure 9.2, left. The value of a is a function of both

the pattern type of the line and the distances to both ends of the line. The pattern type is defined by the crossing

edges of the line, i.e. edges which are perpendicular to the line and thus define the ends of it (vertical green

lines in Figure 9.2). In order to save processing time we precompute this area and store it as a two-channel

texture which can be seen in Figure 9.2, right (see Section 9.4.3 for details).

The algorithm is implemented in three passes, which are explained in detail in the following sections. In the

first pass edge detection is performed, yielding a texture containing edgels (see Figure 9.1, center left). In the

second pass the corresponding blending weight1 (that is, value a) for each pixel adjacent to the edge being

smoothed is obtained (see Figure 9.1, center right). To do this, we first detect the pattern types for each line

passing through the north and west boundaries of the pixel and then calculate the distances of each pixel to the

crossing edges; these are then used to query the precomputed area texture. The third and final pass involves

blending each pixel with its 4-neighborhood using the blending weights texture obtained in the previous pass.

The last two passes are performed separately to spare calculations, taking advantage of the fact that two adjacent

pixels share the same edgel. To do this, in the second pass, pattern detection and the subsequent area calculation

are performed on a per-edgel basis. Finally, in the third pass, the two adjacent pixels will fetch the same

information.

Additionally, using the stencil buffer allows us to perform the second and third passes only for the pixels which

contain an edge, considerably reducing processing times.

1 Throughout the chapter blending weight and area will be used indistinctively.
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Figure 9.2: Left: antialiasing process. Color copp bleeds into cold according to the area a below the blue

line. Right: Texture containing the precomputed areas. The texture uses two channels to store areas at each

side of the edge, i.e. for a pixel and its opposite (pixels (1, 1) and (1, 2) on the left). Each 9 × 9 subtexture

corresponds to a pattern type. Inside each of these subtextures (u, v) coordinates encode distances to the left

and to the right, respectively.

9.3 Detecting Edges

We perform edge detection using the depth buffer (or luminance values if depth information is not available).

For each pixel, the difference in depth with respect to the pixel on top and on the left is obtained. We can

efficiently store the edges for all the pixels in the image this way, given the fact that two adjacent pixels have

a common boundary. This difference is thresholded to obtain a binary value, which indicates whether an edge

exists in a pixel boundary. This threshold, which varies with resolution, can be made resolution independent

[Koonce, 2007]. Then, the left and top edges are stored, respectively, in the red and green channels of the edges

texture, which will be used as input for the next pass.

Whenever using depth-based edge detection, a problem may arise in places where two planes at different angles

meet: the edge will not be detected because of samples having the same depth. A common solution to this is

the addition of information from normals. However, in our case we found the improvement in quality obtained

when using normals was not worth the increase in execution time it implied.

9.3.1 Using luminance values for edge detection

An alternative to depth-based edge detection is the use of luminance information to detect image discontinuities.

Luminance values are derived from the CIE XYZ standard:

L = 0.2126 · R + 0.7152 · G + 0.0722 · B (9.2)

Then, for each pixel, the difference in luminance with respect to the pixel on top and on the left is obtained, the

implementation being equivalent to that of depth-based detection. When thresholding to obtain a binary value,

we found 0.1 to be an adequate threshold for most cases. It is important to note that using either luminance- or

depth-based edge detection does not affect the following passes.

Although quality-wise both methods offer similar results, depth-based detection is more robust, yielding a more

reliable edges texture. Besides, our technique takes, on average, 10% less time when using depth than when

114



9.4. OBTAINING BLENDING WEIGHTS

f l o a t 4 EdgeDe tec t ionPS ( f l o a t 4 p o s i t i o n : SV_POSITION ,

f l o a t 2 t e x c o o r d : TEXCOORD0 ) : SV_TARGET {

f l o a t D = depthTex . SampleLevel ( P o i n t S a m p l e r ,

t e x c o o r d , 0 ) ;

f l o a t D l e f t = dep thTex . SampleLevel ( P o i n t S a m p l e r ,

t e x c o o r d , 0 , − i n t 2 ( 1 , 0 ) ) ;

f l o a t Dtop = depthTex . SampleLevel ( P o i n t S a m p l e r ,

t e x c o o r d , 0 , − i n t 2 ( 0 , 1 ) ) ;

/ / We need t h e s e f o r u p d a t i n g t h e s t e n c i l b u f f e r .

f l o a t D r i g h t = depthTex . SampleLevel ( P o i n t S a m p l e r ,

t e x c o o r d , 0 , i n t 2 ( 1 , 0 ) ) ;

f l o a t Dbottom = depthTex . SampleLevel ( P o i n t S a m p l e r ,

t e x c o o r d , 0 , i n t 2 ( 0 , 1 ) ) ;

f l o a t 4 d e l t a = abs (D. xxxx −
f l o a t 4 ( D l e f t , Dtop , Dr igh t , Dbottom ) ) ;

f l o a t 4 edges = s t e p ( t h r e s h o l d . xxxx , d e l t a ) ;

i f ( dot ( edges , 1 . 0 ) == 0 . 0 ) {

d i s c a r d ;

}

re turn edges ;

}

Listing 9.1: Edge Detection Shader.

using luminances. Luminances, in turn, are useful when depth information cannot be accessed, thus making

it a more universal approach. Further, when performing depth-based detection, edges in shading will not be

detected, whereas luminance-based detection allows us to antialias shading and specular highlights. In general

terms, one could say that luminance-based detection works in a more perceptual way, as it smoothes visible

edges. As an example, when dense vegetation is present, using luminances is faster than using depth (around

12% faster for the particular case shown in Figure 9.5, bottom row), since a lot more edges are detected when

using depth. Optimal results in terms of quality, at the cost of a higher execution time, can be obtained by

combining luminance, depth and normal values.

Listing 9.1 shows the source code of this pass, using depth-based edge detection. Figure 9.1, center left, is the

resulting image of the edge detection pass, in this particular case using luminance-based detection, as depth

information is not available.

9.4 Obtaining Blending Weights

In order to calculate the blending weights we first search for the distances to the ends of the line the edgel

belongs to, using the edges texture obtained in the previous pass (see Section 9.4.1). Once these distances are

known, we can use them to fetch the crossing edges at both ends of the line (see Section 9.4.2). These crossing

edges indicate the type of pattern we are dealing with. Both the distances to the ends of the line and the type of

pattern are used to access the pre-calculated texture (see Section 9.4.3) in which we store the areas which are

used as blending weights for the final pass.
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f l o a t 4 B l e n d i n g W e i g h t C a l c u l a t i o n P S (

f l o a t 4 p o s i t i o n : SV_POSITION ,

f l o a t 2 t e x c o o r d : TEXCOORD0 ) : SV_TARGET {

f l o a t 4 w e i g h t s = 0 . 0 ;

f l o a t 2 e = edgesTex . SampleLevel ( P o i n t S a m p l e r ,

t e x c o o r d , 0 ) . rg ;

[ b r a n c h ]

i f ( e . g ) { / / Edge a t n o r t h

f l o a t 2 d = f l o a t 2 ( Sea rchXLef t ( t e x c o o r d ) ,

Sea rchXRigh t ( t e x c o o r d ) ) ;

/ / I n s t e a d o f s a m p l i n g be tween e d g e l s , we sample a t −0.25 ,

/ / t o be a b l e t o d i s c e r n what v a l u e each e d g e l has .

f l o a t 4 c o o r d s = mad ( f l o a t 4 ( d . x , −0.25 , d . y + 1 . 0 , −0.25) ,

PIXEL_SIZE . xyxy , t e x c o o r d . xyxy ) ;

f l o a t e1 = edgesTex . SampleLevel ( L inea rSample r ,

c o o r d s . xy , 0 ) . r ;

f l o a t e2 = edgesTex . SampleLevel ( L inea rSample r ,

c o o r d s . zw , 0 ) . r ;

w e i g h t s . rg = Area ( abs ( d ) , e1 , e2 ) ;

}

[ b r a n c h ]

i f ( e . r ) { / / Edge a t wes t

f l o a t 2 d = f l o a t 2 ( SearchYUp ( t e x c o o r d ) ,

SearchYDown ( t e x c o o r d ) ) ;

f l o a t 4 c o o r d s = mad ( f l o a t 4 ( −0.25 , d . x , −0.25 , d . y + 1 . 0 ) ,

PIXEL_SIZE . xyxy , t e x c o o r d . xyxy ) ;

f l o a t e1 = edgesTex . SampleLevel ( L inea rSample r ,

c o o r d s . xy , 0 ) . g ;

f l o a t e2 = edgesTex . SampleLevel ( L inea rSample r ,

c o o r d s . zw , 0 ) . g ;

w e i g h t s . ba = Area ( abs ( d ) , e1 , e2 ) ;

}

re turn w e i g h t s ;

}

Listing 9.2: Blending Weights Calculation Shader.

As mentioned before, to share calculations between adjacent pixels, we take advantage of the fact that two

adjacent pixels share the same boundary and perform area calculation on a per-edgel basis. However, even

though two adjacent pixels share the same calculation, the resulting a value is different for each of them: only

one has a blending weight a, whereas for the opposite one a equals zero (pixels (1,2) and (1,1) in Figure 9.2,

respectively). The one exception to this is the case in which the pixel lies at the middle of a line of odd length

(as pixel (2, 1) in Figure 9.2); in this case both the actual pixel and its opposite have a non-zero value for a.

As a consequence, the output of this pass is a texture which, for each pixel, stores the areas at each side of its

corresponding edgels (by the areas at each side we refer to those of the actual pixel and its opposite). This

yields two values for north edgels and two values for west edgels in the final blending weights texture. Finally,

the weights stored in this texture will be used in the third pass to perform the final blending. Listing 9.2 shows

the source code of this pass, while Figure 9.1, center right, is the resulting image.
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f l o a t Sea rchXLef t ( f l o a t 2 t e x c o o r d ) {

t e x c o o r d −= f l o a t 2 ( 1 . 5 , 0 . 0 ) ∗ PIXEL_SIZE ;

f l o a t e = 0 . 0 ;

/ / We o f f s e t by 0 . 5 t o sample be tween e d g e l s , t h u s f e t c h i n g

/ / two i n a row .

f o r ( i n t i = 0 ; i < maxSearchS teps ; i ++) {

e = edgesTex . SampleLevel ( L inea rSample r , t e x c o o r d , 0 ) . g ;

/ / We compare w i t h 0 . 9 t o p r e v e n t b i l i n e a r a c c e s s p r e c i s i o n

/ / prob lems .

[ f l a t t e n ] i f ( e < 0 . 9 ) break ;

t e x c o o r d −= f l o a t 2 ( 2 . 0 , 0 . 0 ) ∗ PIXEL_SIZE ;

}

/ / When we e x i t t h e loop w i t h o u t f i n d i n g t h e end , we r e t u r n

/ / −2 ∗ maxSearchS teps .

re turn max(−2.0 ∗ i − 2 . 0 ∗ e , −2.0 ∗ maxSearchS teps ) ;

}

Listing 9.3: Distance Search Function (search in the left direction case).

9.4.1 Searching for Distances

The search for distances to the ends of the line is performed using an iterative algorithm, which in each iteration

checks whether the end of the line has been reached. To accelerate this search, we leverage the fact that the

information stored in the edges texture is binary –as it simply encodes whether an edgel exists–, and query at

positions between pixels using bilinear filtering for fetching two pixels at a time (see Figure 9.3). The result of

the query can be: a) 0.0, which means that neither pixel contains an edgel, b) 1.0, which implies an edgel exists

in both pixels, or c) 0.5, which is returned when just one of the two pixels contains an edgel. We therefore stop

the search if the returned value is lower than one2. By using a simple approach like this, we are introducing

two sources of inaccuracy: a) we do not stop the search when encountering an edgel perpendicular to the line

we are following but when the line comes to an end instead; and b) when the returned value is 0.5 we cannot

distinguish which of the two pixels contains an edgel. While these introduce an error in some cases, it is

unnoticeable in practice and the speed-up is considerable, as this allows us to jump two pixels per iteration.

Listing 9.3 shows one of the distance search functions.

In order to make the algorithm practical in a game environment, we limit the search to a certain distance. As

expected, the greater the maximum length, the better the quality of the antialiasing. However, we have found

that, for the majority of cases, distance values between 8 and 12 pixels give a good trade-off between quality

and performance.

In the particular case of the Xbox 360 implementation we make use of the tfetch2D assembler instruction,

which allows to specify an offset in pixel units with respect to the original texture coordinates of the query.

This instruction is limited to offsets of −8 and 7.5, which constrains the maximum distance that can be

searched. When searching for distances greater than eight pixels we cannot use the hardware so efficiently

and the performance is thus affected negatively.

2 In practice we use 0.9 due to bilinear filtering precision issues.
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Figure 9.3: Hardware bilinear filtering is used when searching for distances from each pixel to the end of the

line. The color of the dot at the center of each pixel represents the value of that pixel in the edges texture. In

the case shown here, distance search of the left end of the line is performed for the pixel marked with a star.

Positions where the edges texture is accessed, fetching pairs of pixels, are marked with rhombuses. This allows

us to travel double the distance with the same number of accesses.

0.0 0.25 0.75 1.0

Figure 9.4: Examples of the four possible types of crossing edge and corresponding value returned by the

bilinear query of the edges texture. The color of the dot at the center of each pixel represents the value of

that pixel in the edges texture. The rhombuses, at a distance of 0.25 from the center of the pixel, indicate the

sampling position, while their color represents the value returned by the bilinear access.

9.4.2 Fetching Crossing Edges

Once the distances to the ends of the line are calculated they are used to obtain the crossing edges. A naive

approach for fetching the crossing edge of an end of line would imply querying two edgels. Instead, a more

efficient approach is to use bilinear filtering for fetching both edgels at a time, in a similar way to how the

distance search is done. However, in this case we must be able to distinguish the actual value of each edgel, so

we query with an offset of 0.25, allowing us to distinguish which edgel is equal to 1.0 when only one of the

edgels is present. Figure 9.4 shows the crossing edge corresponding to each of the different values returned by

the bilinear query.

9.4.3 The Precomputed Area Texture

With distance and crossing edges information at hand, we now have all the required inputs to calculate the area

corresponding to the current pixel. As this is an expensive operation, we opt to precompute it in a 4D table

which is stored in a conventional 2D texture (see Figure 9.2). This texture is divided in subtextures of size

9 × 9, each of them corresponding to a pattern type (codified by the fetched crossing edges e1 and e2 at each

end of the line). Inside each of these subtextures, (u, v) coordinates correspond to distances to the ends of the

line, 8 being the maximum distance reachable. Resolution can be increased if a higher maximum distance is

required. See Listing 9.4 for details on how the precomputed area texture is accessed.
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# d e f i n e NUM_DISTANCES 9

# d e f i n e AREA_SIZE (NUM_DISTANCES ∗ 5)

f l o a t 2 Area ( f l o a t 2 d i s t a n c e , f l o a t e1 , f l o a t e2 ) {

/ / ∗ By d i v i d i n g by AREA_SIZE − 1 . 0 below we are

/ / i m p l i c i t e l y o f f s e t t i n g t o a lways f a l l i n s i d e a p i x e l .

/ / ∗ Rounding p r e v e n t s b i l i n e a r a c c e s s p r e c i s i o n prob lems .

f l o a t 2 p i x c o o r d = NUM_DISTANCES ∗
round ( 4 . 0 ∗ f l o a t 2 ( e1 , e2 ) ) + d i s t a n c e ;

f l o a t 2 t e x c o o r d = p i x c o o r d / ( AREA_SIZE − 1 . 0 ) ;

re turn a reaTex . SampleLevel ( P o i n t S a m p l e r , t e x c o o r d , 0 ) . rg ;

}

Listing 9.4: Precomputed Area Texture Access Function.

To query the texture, we first convert the bilinear filtered values e1 and e2 to an integer value in the range

0..4. Value 2 (which would correspond to value 0.5 for e1 or e2) cannot occur in practice, which is why the

corresponding row and column in the texture are empty. Maintaining those empty spaces in the texture allows

for a simpler and faster indexing. The round instruction is used to avoid possible precision problems caused

by the bilinear filtering.

Following the same reasoning –explained at the beginning of the section– for which we store area values for

two adjacent pixels in the same pixel of the final blending weights texture, the precomputed area texture needs

to be built on a per-edgel basis. Thus, each pixel of the texture stores two a values, for a pixel and its opposite

(again, a will be zero for one of them in all cases but those of pixels at the center of lines of odd length).

9.5 Blending with the 4-neighborhood

In this last pass, the final color of each pixel is obtained by blending the actual color with its four neighbors

according to the area values stored in the weights texture obtained in the previous pass. This is achieved by

accessing three positions of the blending weights texture: a) the current pixel, which gives us the north and

west blending weights; b) the pixel at the south; and c) the pixel at the east. Once more, to exploit hardware

capabilities, we use four bilinear filtered accesses to blend the current pixel with each of its four neighbors.

Finally, as one pixel can belong to four different lines, we perform an averaging between the contributing lines.

Listing 9.5 shows the source code of this pass, while Figure 9.1, right, shows the resulting image.

9.6 Results

Quality-wise, our algorithm lies between 4x and 8x MSAA, while only requiring a memory consumption of

1.5x the size of the backbuffer on PC and of 2x on Xbox 3603. Figure 9.5 shows a comparison between our

algorithm, 8x MSAA and no antialiasing at all on images from Unigine Heaven Benchmark. A limitation of

our algorithm with respect to MSAA is the impossibility of recovering subpixel features. More results of our

technique on images from Fable R© III are shown in Figures 9.6 and 9.7.

3 The increased memory cost in the Xbox 360 is due to the fact that two-channel render targets with 8-bit precision cannot be created in

the framework we used for that platform, forcing the usage of a four-channel render target for storing the edges texture.
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f l o a t 4 NeighborhoodBlend ingPS (

f l o a t 4 p o s i t i o n : SV_POSITION ,

f l o a t 2 t e x c o o r d : TEXCOORD0 ) : SV_TARGET {

f l o a t 4 t o p L e f t = blendTex . SampleLevel ( P o i n t S a m p l e r ,

t e x c o o r d , 0 ) ;

f l o a t r i g h t = blendTex . SampleLevel ( P o i n t S a m p l e r ,

t e x c o o r d , 0 ,

i n t 2 ( 0 , 1 ) ) . g ;

f l o a t bot tom = blendTex . SampleLevel ( P o i n t S a m p l e r ,

t e x c o o r d , 0 ,

i n t 2 ( 1 , 0 ) ) . a ;

f l o a t 4 a = f l o a t 4 ( t o p L e f t . r , r i g h t , t o p L e f t . b , bot tom ) ;

f l o a t sum = dot ( a , 1 . 0 ) ;

[ b r a n c h ]

i f ( sum > 0 . 0 ) {

f l o a t 4 o = a ∗ PIXEL_SIZE . yyxx ;

f l o a t 4 c o l o r = 0 . 0 ;

c o l o r = mad ( c o l o r T e x . SampleLevel ( L inea rSample r ,

t e x c o o r d + f l o a t 2 ( 0 . 0 , −o . r ) , 0 ) , a . r , c o l o r ) ;

c o l o r = mad ( c o l o r T e x . SampleLevel ( L inea rSample r ,

t e x c o o r d + f l o a t 2 ( 0 . 0 , o . g ) , 0 ) , a . g , c o l o r ) ;

c o l o r = mad ( c o l o r T e x . SampleLevel ( L inea rSample r ,

t e x c o o r d + f l o a t 2 (−o . b , 0 . 0 ) , 0 ) , a . b , c o l o r ) ;

c o l o r = mad ( c o l o r T e x . SampleLevel ( L inea rSample r ,

t e x c o o r d + f l o a t 2 ( o . a , 0 . 0 ) , 0 ) , a . a , c o l o r ) ;

re turn c o l o r / sum ;

} e l s e {

re turn c o l o r T e x . SampleLevel ( L inea rSample r , t e x c o o r d , 0 ) ;

}

}

Listing 9.5: 4-neighborhood Blending Shader.

As our algorithm works as a post-process, we have run it on a batch of screenshots of several commercial

games, in order to gain insight about its performance in different scenarios. Given the dependency of the edge

detection on image content, processing times are variable. We have noticed that each game has a more or less

unique look-and-feel, so we have taken a representative sample of five screenshots per game. Screenshots were

taken at 1280 × 720, which we take as the typical case in the current generation of games. We used the slightly

more expensive luminance-based edge detection, since we did not have access to depth information. Table

9.1 shows the average time and standard deviation of our algorithm on different games and platforms (Xbox

360/DirectX 9 and PC/DirectX 10), as well as the speed-up factor with respect to MSAA. On average, our

method implies a speed-up factor of 11.80x with respect to 8x MSAA.

9.7 Discussion

This section includes a brief compilation of possible alternatives that we tried, in the hope that it be useful for

programmers dealing with this algorithm in the future.

Two-pass implementation. As mentioned in Section 9.2, a two-pass implementation is also possible, joining

the last two passes into a single one. However, this would be more inefficient, due to repetition of calculations.
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Without antialiasing With our algorithm With 8x MSAA

Figure 9.5: Examples of images without antialiasing, processed with our algorithm and with 8x MSAA. Our

algorithm offers similar results to 8x MSAA. A special case is the handling of alpha textures (bottom row). Note

that in the grass shown here, alpha to coverage is used when MSAA is activated, which provides additional

detail, hence the different look. As the scene is animated, there might be slight changes in appearance from one

image to another. Images from Unigine Heaven Benchmark courtesy of Unigine Corporation.
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Figure 9.6: Images obtained with our algorithm. Insets show close-ups with no antialiasing at all (left) and

processed with our technique (right). Images from Fable R© III courtesy of Lionhead Studios.
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Figure 9.7: More images showing our technique in action. Insets show close-ups with no antialiasing at all

(left) and processed with our technique (right). Images from Fable R© III courtesy of Lionhead Studios.
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Edges Texture Compression. This is perhaps the most obvious possible optimization, allowing to save

memory consumption and bandwidth. We tried two different alternatives: a) using one bit per edgel, and

b) separating the algorithm into a vertical and a horizontal pass and storing the edgels of four consecutive

pixels in the RGBA channels of each pixel of the edges texture (vertical and horizontal edgels separately). This

has two advantages: first, the texture takes up less memory; second, the number of texture accesses is lower, as

several edgels are fetched in each query. However, storing the values and –to a greater extent– querying them

later, becomes much more complex and time-consuming, given that bitwise operations are not available in all

platforms. Nevertheless, the usage of bitwise operations in conjunction with edges texture compression could

further optimize our technique in platforms where they are available, like DirectX 10.

Storing crossing edges in the edges texture. Instead of storing just the north and west edgels of the actual

pixel, we tried storing the crossing edges situated at the left and at the top of the pixel. The main reason

for doing this was that we could spare one texture access when detecting patterns, but we realized that using

bilinear filtering we could also spare the access, without requiring to store those additional edgels. The other

reason for storing them was that by doing so, when searching for distances to the ends of the line, we could stop

the search when we encountered a line perpendicular to the one we were following, which is an inaccuracy of

our approach. However, the current solution yields similar results, requires less memory and processing time

is lower.

Storing distances instead of areas. Our first implementation calculated and stored only distances to the ends

of the line in the second pass, and they were then used in the final pass to calculate the corresponding blending

weights. However, directly storing areas in the intermediate pass allows us to spare calculations, reducing

execution time.

9.8 Conclusion

In this chapter, we have presented an algorithm crafted for the computation of antialiasing. Our method is based

on three passes that detect edges, determine the position of each pixel inside those image features and produce

an antialiased result that selectively blends the pixel with its neighbourhood according to its relative position

within the line it belongs to. We also take advantage of hardware texture filtering, which allows to reduce the

number of texture fetches by half.

Our technique features execution times which make it usable in actual game environments, and which are

far below the ones needed for MSAA. The method presented has a minimal impact on existing rendering

pipelines and is entirely implemented as an image post-process. Resulting images are between 4x and 8x

MSAA in quality, while requiring a fraction of their time and memory consumption. Furthermore, it can

antialias transparent textures such as the ones used in alpha testing for rendering vegetation, whereas MSAA

can only smooth vegetation when using alpha to coverage. Finally, when using luminances to detect edges, it

can also handle aliasing belonging to shading and specular highlights.

The method we are presenting solves most of the drawbacks of MSAA, which is the current most extended

solution to the problem of aliasing, and its processing time is one order of magnitude below that of 8x MSAA.

We believe that the quality of the images produced by our algorithm, its speed, efficiency and pluggability,

make it a good choice for rendering high quality images in today game architectures, including platforms
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Xbox 360 GeForce 9800 GTX+
Avg. Std. Dev. Avg. Std. Dev. Speed-up

Assasin’s Creed 4.37 ms 0.61 ms 0.55 ms 0.13 ms 6.31x�

Bioshock 3.44 ms 0.09 ms 0.37 ms 0.00 ms n/a

Crysis 3.92 ms 0.10 ms 0.44 ms 0.02 ms 14.80x

Dead Space 3.65 ms 0.45 ms 0.39 ms 0.03 ms n/a

Devil May Cry 4 3.46 ms 0.34 ms 0.39 ms 0.04 ms 5.75x

GTA IV 4.11 ms 0.23 ms 0.47 ms 0.04 ms n/a

Modern Warfare 2 4.38 ms 0.80 ms 0.57 ms 0.17 ms 2.48x�

NFS Shift 3.54 ms 0.35 ms 0.42 ms 0.04 ms 14.84x

Split/Second 3.85 ms 0.27 ms 0.46 ms 0.05 ms n/a

S.T.A.L.K.E.R. 3.18 ms 0.05 ms 0.36 ms 0.01 ms n/a

Grand Average 3.79 ms 0.33 ms 0.44 ms 0.05 ms 11.80x

Table 9.1: Average times and standard deviations for a set of well-known commercial games. A column

showing the speed-up factor of our algorithm with respect to 8x MSAA is also included for the PC/DirectX

10 implementation. Values marked with � indicate 4x MSAA, since 8x was not available, and the grand average

of these includes only values for 8x MSAA.

where benefiting from antialiasing together with outstanding techniques like deferred shading was difficult

to achieve. In summary, we present an algorithm which challenges the current gold standard for solving the

aliasing problem in real time.
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Chapter 10

SMAA: Enhanced Subpixel
Morphological Antialiasing

In the previous chapter a practical approach to antialias images in real-time as a postprocess was presented.

However, it is still lacking features like diagonal and sharp geometric features processing, a robust temporal

stability and the ability to deal with subpixel features. In this chapter a new image-based, post-processing

antialiasing technique is presented, which offers practical solutions to the common, open problems of existing

filter-based real-time antialiasing algorithms. Some of the new features include local contrast analysis for more

reliable edge detection, and a simple and effective way to handle sharp geometric features and diagonal lines.

This, along with our accelerated and accurate pattern classification allows for a better reconstruction of silhou-

ettes. Our method shows for the first time how to combine morphological antialiasing (MLAA) with additional

multi/supersampling strategies (MSAA, SSAA) for accurate subpixel features, and how to couple it with tempo-

ral reprojection; always preserving the sharpness of the image. All these solutions combine synergies making

for a very robust technique, yielding results of better overall quality than previous approaches while more

closely converging to MSAA/SSAA references but maintaining extremely fast execution times. Additionally,

we propose different presets to better fit the available resources or particular needs of each scenario.

The work described in this chapter will be presented in Cagliari (Italy) at Eurographics 2012 and published on

the Computer Graphics Forum [Jimenez et al., 2012].

10.1 Introduction

Recently, both industry and academia have begun to explore approaches where antialiasing is performed as

a post-processing step [Jimenez et al., 2011a]. The original morphological antialiasing (MLAA) method

[Reshetov, 2009] gave birth to an explosion of real-time antialiasing techniques, rivaling in quality the results

of MSAA and with a performance within the [0.1 − 5] ms range. However, analyzing the current generation of

filter-based antialiasing techniques, they all share at least some of the following problems:

• Most edge detection methods only take into account numerical differences between pixels, ignoring the fact
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Figure 10.1: Example of SMAA 4x integrated in the Crysis 2 game. The insets show the differences between

MLAA [Jimenez et al., 2011b], our novel SMAA T2x and 4x algorithms and MSAA 8x as reference. For 1080p

frames, the average cost of SMAA T2x is 1.3 ms and 2.6 ms for SMAA 4x, measured on a NVIDIA GeForce

GTX 470.

that the surroundings of an edge also affect how humans perceive them.

• The original shape of the objects is not always preserved; an overall rounding of the corners is most of the

times clearly visible in text, sharp corners and subpixel features.

• Most approaches are designed to handle horizontal or vertical patterns only, ignoring diagonals.

• Real subpixel features and subpixel motion are not properly handled.

• Specular and shading aliasing is not completely removed, especially when it happens at subpixel level.

Addressing all these issues while maintaining practical real-time performance poses a real challenge. We

propose a novel post-process antialiasing technique, Enhanced Subpixel Morphological Antialiasing (SMAA).

Our approach follows the divide-and-conquer paradigm, and tackles these complex problems separately, offer-

ing simple, modular solutions. First, we extend the number and type of edge patterns in order to keep sharp

geometric features while processing also diagonal lines. Second, by adding multi/supersampling and temporal

reprojection to morphological antialiasing, we are able to reconstruct real subpixel features and handle subpixel

motion. Last, we introduce a robust edge detection that exploits local contrast along with accelerated yet precise

distance searches for a more accurate pattern classification.

Given the modular nature of our approach, specific features can be enabled or disabled, adjusting to the needs

of each particular scenario and hardware configuration. We propose four different modes, from the simplest

to the more sophisticated version, which includes a novel combination of antialiasing as a post-process fil-

ter, and both spatial and temporal supersampling. This flexibility allows for direct, practical use of our

technique even in current mainstream hardware. Furthermore, we have made public all the source code at

http://iryoku.com/smaa/, including very exhaustive comments for both implementation and integration,

to ensure both reproducibility and an easy and fast adoption of the technique.
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10.2 Related Work

The simplest form of real-time antialiasing is supersampling antialiasing (SSAA), which involves rendering

the scene at a higher resolution, then downsampling to the final resolution. It is also the basis of multisampling

antialiasing (MSAA) [Akeley, 1993], where the color of a pixel is only calculated once instead of running at

subsample frequencies. To display the scene, all samples are aggregated using some filter (a resolve opera-

tion). Although recent related techniques like CSAA [Young, 2006] and EQAA [AMD, 2011] reduce bandwidth

and storage costs by decoupling coverage from color, depth and stencil, these methods still inherit MSAA

drawbacks.

The addition of new real-time rendering paradigms such as deferred shading [Deering et al., 1988; Hargreaves,

2004; Geldreich et al., 2004] and the lighting pre-pass [Engel, 2008], along with current limitations in graph-

ics hardware, have recently motivated a great amount of exciting new research in this field [Jimenez et al.,

2011a]. Most of the recent antialiasing solutions handle the aliasing problem as a post-process, devising filters

that are applied over the final, aliased image, usually rendered at final display resolution. The basic idea is

to find discontinuities on the image and to blur them in clever ways, in order to smooth the jagged edges.

While the approach is not entirely new [Bloomenthal, 1983; Van Overveld, 1992; Isshiki and Kunieda, 1999],

some advanced versions of it have been only recently applied in games [Shishkovtsov, 2005; Koonce, 2007;

Sousa, 2007]. All these techniques alleviate the aliasing problem, although the sharp definition of the edges is

obviously lost to a degree. More refined solutions like directionally localized antialiasing (DLAA) [Andreev,

2011], use smarter blurs that produce very natural results and good temporal coherence. Nevertheless, these

approaches still yield blurrier results than MSAA.

Other solutions, such as morphological antialiasing (MLAA) [Reshetov, 2009], try to estimate the pixel cov-

erage of the original geometry based on the color discontinuities found in the final image. Reshetov’s original

work provides great results, but the proposed CPU implementation is not fast enough to be used in real-time.

This triggered a number of real-time implementations that run on different hardware platforms, such as the

GPU [Biri et al., 2010; AMD, 2010; Jimenez et al., 2011b], Playstation 3 SPUs and hybrid approaches that use

both CPU and GPU [Jimenez et al., 2011a; De Pereyra, 2011]. Topological reconstruction antialiasing (TM-

LAA) [Biri, 2011] uses topological information to recover subpixel features from the final image. However,

this reconstruction can only fill one-pixel-sized holes, and it is not clear how well its assumptions work for

animated sequences. Fast approximate antialiasing (FXAA) [Lottes, 2011] approaches the subpixel problem

by simply attenuating such features, which enhances the perceived temporal stability. However, its resulting

images are still not at the quality level of standard methods like MSAA.

Deviating from pure image-based solutions, in the distance-to-edge antialiasing technique (DEAA) the for-

ward rendering pass calculates and stores the distances of each pixel to near triangle edges with subpixel

precision [Jimenez et al., 2011a]. The post-process pass uses this information to derive blending coefficients.

Similar in spirit, Persson’s GPAA [Persson, 2011] and GBAA [Jimenez et al., 2011a] use additional geometric

information for coverage calculation. This produces almost perfect gradients with great temporal stability.

However, working at final display resolution means they cannot handle subpixel features. Furthermore, they

require either additional output buffers in the main pass or additional geometry passes. Providing better han-

dling of subpixel features in deferred engines, subpixel reconstruction antialiasing (SRAA) [Chajdas et al.,

2011] combines regular shading at final display resolution with supersampled geometry maps (normals and

depth). Then, a super-resolution color image is built propagating the shaded samples over those maps; the

resulting image is finally down-sampled again to final screen resolution. Despite bringing subpixel features

to the table, they are based on heuristic estimations and the resulting gradients are in general of lower quality

when compared with other approaches. Directionally adaptive edge antialiasing [Iourcha et al., 2009] leverages
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Figure 10.2: MLAA first finds edges by looking for color discontinuities (green lines), and classifies them

according to a series of pre-defined pattern shapes, which are then virtually re-vectorized (blue line), allowing

to calculate the coverage areas a for the involved pixels. These areas are then used to blend with a neighbor.

For example, the pixel Copp fills the area a of the pixel Cold: cnew = (1 − a) · cold + a · copp.

MSAA subsample values for better gradient and color estimation. However, execution times are on the high

side limiting the viability of the method to specific projects.

Finally, in very demanding realtime scenarios with complex shading and geometry, temporal antialiasing ap-

proaches have regained interest recently [Nehab et al., 2007; Yang et al., 2009][Jimenez et al., 2011a] (see

section Anti-Aliasing Methods in CryENGINE 3). The main idea is to distribute the cost of supersampling

over contiguous frames. Our work also takes this aspect into account, handling subsamples via temporal

reprojection. In a different context, the work of Yang and colleagues [2011] aims at restoring jagged edges

that occur after nonlinear image processing filters, for which they require that the original, alias-free image be

available.

Table 10.1 provides a detailed summary of the features supported for a representative selection of filter-based

antialiasing techniques, including our work. This selection covers most of the recent major publications in

the field, and includes all those for which implementations are available and are currently in use, in order

to perform fair comparisons. It can be seen how each existing technique aims at solving a subset of all the

problems involved, at the cost of leaving others out. In contrast, we provide a more holistic approach and

systematically tackle all of them, while maintaining modularity by design.

10.3 Morphological Antialiasing

Morphological antialiasing (MLAA) [Reshetov, 2009], tries to estimate the pixel coverage of the original

geometry. To accurately rasterize an antialiased triangle, the coverage area for each pixel inside the triangle

must be calculated to blend it properly with the background (assuming a back-to-front rendering order). MLAA

begins with an image without antialiasing (no coverage taken into account during rasterization), so it reverses

the process by re-vectorizing the silhouettes, in order to estimate such coverage areas. Then, since the back-

ground cannot be known after rasterization, MLAA blends with a neighbor, assuming that its value is similar

to the original background. Figure 10.2 describes this process; we refer the reader to the original publication

for a more detailed explanation [Reshetov, 2009].

Several morphological antialiasing implementations appeared after Reshetov’s original paper [Jimenez et al.,

2011a]. Jimenez’s MLAA [Jimenez et al., 2011b], presented in previous chapter, is one of the fastest and
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Figure 10.3: MLAA overview. (a) Input image, with the intended approximation outlined by red lines and

the coverage areas shown in green. (b) Predefined patterns in the original algorithm [Reshetov, 2009]. (c)

Precomputed areas texture in Jimenez’s GPU implementation [Jimenez et al., 2011b]. (d) Detected edges. (e)

Calculated coverage areas. (f) Final blending. Our SMAA algorithm overhauls the whole pipeline by extending

(b) and (c) for sharp geometric features and diagonals handling. Local contrast adaptation removes spurious

edges in (d). Extended patterns detection and accurate searches improve accuracy in (e). SMAA can handle

additional samples in (f) for accurate subpixel features and temporal supersampling.

most documented. Its key feature is the use of novel texture structures for great performance improvements.

These textures are used to encode the location of the edges and coverage areas, as well as the precomputed

areas for blending. The algorithm works in three passes: edge detection (which is performed using depth or

luma information), pattern detection plus calculation of coverage areas, and final blending. Pattern detection

is performed by searching both ends of an edge (distance searching), halving the necessary iterations by using

hardware bilinear filtering. Once the ends are reached, the algorithm looks at the crossing edges, which provide

a mechanism for straightforward pattern classification; these crossing edges are the perpendicular edges with

respect to the direction of a search (see for example the vertical green lines in Figure 10.2). With length and

crossing edges information, the coverage area is retrieved with a single access to a precomputed texture, and

used for the final blending. Figure 10.3 exemplifies the different steps and components of the pipeline. We

choose this MLAA implementation as a starting point for our algorithm, and refer the reader to the original

publication for a more comprehensive description [Jimenez et al., 2011b].

10.4 SMAA: Features and Algorithm

In this section we present the core components of SMAA, their motivation and the main algorithmic ideas

(see Figure 10.4). We build on Jimenez’s MLAA pipeline, improving or completely redefining every step. In

particular, we improve edge detection by using color information with local contrast adaptation for cleaner

edges. We extend the number of patterns handled for sharp geometric features preservation and diagonals

processing. In a similar fashion, we enhance pattern handling with accurate and fast distance searches for a

more reliable edge classification. Last, we show how morphological antialiasing can be accurately combined

with multi/supersampling and temporal reprojection. Although our new technique shares some of the core

ideas of MLAA, it constitutes a major overhaul in terms of quality and robustness (see Figure 10.3).

10.4.1 Edge detection

Edge detection is critical in all AA filters, since each undetected edge will remain aliased on the final image.

On the other hand, too many blurred edges can reduce the quality of the antialiased image, while imposing
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Figure 10.4: Overview of the key weaknesses of post-processing antialising filters (columns) and how the core

elements of SMAA handle them (rows).

unnecessary performance penalties. Different information can be employed for edge detection: RGB color,

luma, depth, surface normal, object ID... or combinations of them. We choose to use luma based on four

observations: first, MLAA expects edges to come specifically from color-based (either luma or RGB) discon-

tinuities; otherwise artifacts may appear [Jimenez et al., 2011a] (see section MLAA on the PS3). Second, as

opposed to depth and normals, color information is always available. Third, it can handle shading aliasing.

And fourth, it is faster than RGB color while usually yielding similar results. For efficiency, we only search

for edges at the top and left boundaries of each pixel, since the bottom and right ones can be retrieved from the

neighbors.

Local contrast adaptation: The human visual system tends to mask low contrast edges in the presence of

much higher contrasts in the surrounding area. Thus, a naive color edge detection based exclusively on local

numerical differences will produce spurious edges (usually undetected by humans) that will affect pattern

classification, downgrading image quality and temporal stability (see Figure 10.5, top). To avoid these spurious

edges, we perform an adaptive double threshold which allows to: a) prevent line searches from stopping at

non-perceptually-visible crossing edges; and b) choose the dominant (much higher contrast) edge when there

Figure 10.5: Top: Dominant contrast in green edges should mask the spurious red crossing edges (left). Not

taking this local contrast into account leads to artifacts (center). Our SMAA algorithm corrects them (right).

Bottom-left: left boundary (orange) of a given pixel (marked with a dot) and surrounding candidate edges

(blue) that may dominate it, making it non-visible for human viewers. Bottom-middle: top boundary scenario.

Bottom-right: candidate surrounding edges actually calculated.
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Figure 10.6: Left: Comparison between no antialiasing (top), a regular MLAA approach (middle), and the

SMAA results (bottom). Notice how SMAA keeps the original shape of the object much better, while MLAA

tends to round its shape. Right: Corners have crossing edges of length at least two (see the second pixel

column), while aliased contour lines have crossing edges of just one pixel in length (staircase towards the

right). Fetching extended crossing edges (orange), in addition to regular edges (red), allows to discern between

both cases, yielding a more accurate re-vectorization (pink), instead of rounding off corners (blue).

are two parallel edges on a pixel (top-bottom, or left-right). This differs from previous approaches that take into

account local contrast by simply checking the range of lumas found in the current pixel and its 4-neighborhood,

and thus do not allow the notion of perceptual masking between edges [Lottes, 2011].

Figure 10.5, bottom-left, shows the case for left edge (orange) of a given pixel (grey dot), plus the surrounding

candidate edges (blue) that may dominate (mask) it. We calculate the maximum contrast cmax for all these

edges and compare it with the contrast for the left edge. If the latter is above a threshold of 0.5 · cmax the edge

is preserved; otherwise, it is ignored. The threshold was chosen empirically and provides good results in all

our tests. The bottom-middle image shows the similar case for the top edge. Since computing all these edges

involves too many memory accesses, we select a subset that yields satisfactory results (bottom-right).

For the case of the left boundary, a straightforward algorithm would calculate el = |L − Ll |> T , where el is

the boolean value that codes whether the edge is active, L and Ll represent luma values at the current and left

pixels respectively, and T is a given threshold (usually between 0.05 and 0.2). We refine this naive approach

with an additional test that can be expressed as:

cmax = max(ct , cr, cb, cl , c2l)

e′l = el ∧ cl > 0.5 · cmax (10.1)

where ct , cr, cb, cl , c2l are the contrast deltas for the edges shown in Figure 10.5, and e′l represents the final

boolean value (active or not) for the left edge boundary. The edge at the top boundary, e′t , is calculated in a

similar fashion.

10.4.2 Pattern handling

Our new pattern detection allows to preserve sharp geometric features like corners, deals with diagonals and

enables accurate distance searches.

Sharp geometric features: The re-vectorization of silhouettes of MLAA tends to round corners on the image

(see Figure 10.6, left). Given that the crossing edges used for pattern detection are just one pixel long, it is not

possible to distinguish a jagged edge from the actual corner of an object, which may be wrongly processed.

133



CHAPTER 10. SMAA: ENHANCED SUBPIXEL MORPHOLOGICAL ANTIALIASING

To avoid this, we make the key observation that crossing edges in contour lines have a maximum size of one

pixel, whereas for sharp corners this length will most likely be longer. We thus fetch two-pixel-long crossing

edges instead; this allows to detect actual corners and apply a less aggressive processing, thus retaining more

closely the true shape of the object (see Figure 10.6, right). The degree of processing applied is defined by

a rounding factor r, which scales the original coverage areas obtained by one-pixel-long crossing edges (blue

lines in Figure 10.6, right). The recommended range for r is [0.0 − 1.0]. For example, values of r = 1.0, 0.5

and 0.0 yield the blue, yellow and pink lines respectively.

For the (academic) case of an horizontal line, we modify Jimenez’s MLAA coverage areas calculation as

follows:

1. We perform the original pattern detection, using the regular crossing edges (red edges on Figure 10.6, right).

This yields two areas ab and at per pixel belonging to the pattern. ab is used to blend the bottom pixel pb

with its top neighbor pt , whilst at is used to blend pt with pb (see Jimenez et al. [2011b] for details).

2. We refine the areas at and ab according to the following:

a′t =

⎧⎨
⎩

r · at if dl < dr ∧ e1

r · at if dl ≥ dr ∧ e2

at otherwise

(10.2)

a′b =

⎧⎨
⎩

r · ab if dl < dr ∧ e3

r · ab if dl ≥ dr ∧ e4

ab otherwise

(10.3)

where a′t and a′
b are the modified area values, dl and dr are the distances to the left and to the right of the line

for the current pixel, and ei are booleans that indicate if an edge is active (see Figure 10.6).

Diagonal patterns: Most of the existing filter-based techniques search for patterns made exclusively of hor-

izontal and vertical edges (orthogonal patterns). This translates into badly aliased results (in space and time)

for diagonal lines (see Figure 10.7).

We introduce a novel diagonal pattern detection that allows to detect these scenarios. In these cases, a diagonal

re-vectorization (Figure 10.7, center) is used to yield coverage areas, instead of the original orthogonal re-

vectorizations (Figure 10.7, left). The mechanism developed to handle diagonal patterns is inspired by the

orthogonal patterns handling of Jimenez’s MLAA. We introduce a precomputed texture that takes as input the

diagonal pattern, defined by the distances to both ends of the diagonal line and the diagonal crossing edges

information (Figure 10.7, right); and outputs the accurate coverage areas. Figure 10.8 shows the possible

Figure 10.7: MLAA (left) and SMAA (center) re-vectorizations (blue lines) of near-45◦ diagonals. Thanks to

our handling of diagonal patterns (green lines), SMAA reconstructs the edge accurately. Right: our approach

just requires the same information as for the orthogonal case: distances dl and dr; and crossing edges e1 and

e2 (right).
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diagonal patterns and their corresponding pre-calculated areas.

Calculating diagonal coverage areas consists of the following steps, for both the top-left to bottom-right and

the bottom-left to top-right diagonal cases:

1. We search for the diagonal distances dl and dr to the left and and to right end of the diagonal lines.

2. We fetch the crossing edges e1 and e2.

3. We use this input information (dl , dr, e1, e2), defining the specific diagonal pattern, to access the precom-

puted area texture, yielding the areas at and ab.

We perform this diagonal pattern detection before the orthogonal one in the coverage area calculation. If the

diagonal pattern detection fails, we trigger the orthogonal detection. Otherwise, the areas produced by the

diagonal pattern detection are used. This model allows to seamlessly perform the last blending step (step f in

Figure 10.3) in a symmetric way for both orthogonal and diagonal patterns, given the fact that the semantics of

the produced areas at and ab are the same in both cases.

Figure 10.8: Diagonal patterns map (left) and their precomputed area texture (right).

Accurate distances search: Key to pattern detection and classification is obtaining accurate edge distances

(lengths to both ends of the line). Jimenez’s MLAA makes extensive use of hardware interpolation (bilinear

filtering) to accelerate this process. Hardware bilinear filtering can be used as a way of fetching and encoding up

to four different values with a single memory access (otherwise it would be necessary to perform one memory

access per value to fetch). This is exploited to fetch two edges at once, allowing to partially reduce bandwidth

usage (see Figure 10.9, bottom-left). However, it does not check crossing edges during the search, which may

lead to inaccuracies in pattern detection [Jimenez et al., 2011b].

Unfortunately, fetching the crossing edges in the search loop following their scheme would imply two linearly

filtered accesses per iteration, doubling the bandwidth usage. We generalize the approach for two dimensional

accesses, being able to fetch four different values with a single memory access (Figure 10.9, bottom-right).

Jimenez’s MLAA uses a linear interpolation of two binary values producing a single floating point value:

fx(b1, b2, x) = x · b1 + (1 − x) · b2, (10.4)

where b1 and b2 are two binary values (either 0 or 1, given that the edges texture marks each edge as activated
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Figure 10.9: Top-left: Example of a search to find the left end of a horizontal edge (starting position marked

with a dot). Top-right: Hardware filtered accesses performed by Jimenez’s MLAA (orange dots) just check

the orange edges. SMAA bilinear accesses (green dots) are able to additionally check all the crossing edges

(green). In this example, this will make the search stop when the first crossing edge is found, instead of finishing

at the left end of the horizontal edge. Bottom-left: The different iterations of the search (represented by different

colors) and the values fetched by Jimenez’s MLAA. Note how it misses all the crossing edges (in blue). Bottom-

right: The same iterations and the values fetched by SMAA. It can be seen how SMAA is able to check four

different pixels (shaded pixels) with just a single memory access.

or not), and x is the interpolation value. If x = 0.5, this produces a set of four unique values: {0, 1 − x, x, 1}.

So, it is possible to find a decoding function f−1 that recovers the original b1 and b2 binary values. Instead

SMAA performs bilinear interpolation of four binary values as follows:

fxy(b, x, y) = fx(b1, b2, x) · y + fx(b3, b4, x) · (1 − y), (10.5)

where y is the interpolation value in the second dimension. By choosing a value of y = 0.5x, it is possible to

create a binary base that allows to encode a bilinear interpolation between four binary values into a single one,

and still be able to recover the sixteen possible original values. We exploit this fact to fetch the four b1, b2,

b3 and b4 binary edge values (see Figure 10.9, bottom-right). We refer the reader to the source code for the

specific details of this feature.

10.4.3 Subpixel rendering

MLAA algorithms work with a single sample per pixel. This translates into subsampling, which makes it

impossible to recover real subpixel features (see Figure 10.10, no AA and MLAA). Having more samples

per pixel allows for a better reconstruction of the antialiased image. A naive extension would involve using

MLAA in conjunction with MSAA, applying it over each subsample group separately and then averaging them

together. However, using such a simple approach leads to blurry results (see Figure 10.10, MSAA 4x with

MLAA). This is due to MLAA and MSAA making different assumptions about the coverage of the samples,

so they cannot converge even increasing the samples per pixel count:

• MLAA is designed to work on the silhouettes of objects and not with thin lines and features, as found in

distant objects with high-frequency details (see Figure 10.10, MLAA). As it can be seen, not taking into

account sharp geometric features leads to blurry results (with unnatural glows). Thus, sharp geometric fea-

tures detection (Subsection 10.4.2) is critical when applying MLAA over subpixel features. Ultimately, this

allows for corners to be conservatively reconstructed, in order to allow multi/supersampling to reconstruct

their real shape (see Figure 10.10, SMAA 1x; notice how non-silhouette features are ignored).

• Given that MLAA assumes the positions of all the samples to be at the center of the pixel for the re-

vectorization, this simply does not work due to the under-/overestimation of the corresponding coverage
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No AA MLAA SMAA 1x SMAA S2x SMAA 4x MSAA 4x MSAA+MLAA MSAA+FXAA

Figure 10.10: A difficult case for no AA, MLAA [Jimenez et al., 2011b] and SMAA 1x: a white grid over a

black background at mid-distance (top), prevents the reconstruction of accurate coverage; at a longer distance

(bottom, zoomed in), the continuity of the grid is broken, preventing its recovery. Using extended patterns to

deal with sharp geometric features and correct offsets allows for a more accurate area estimation, making

SMAA S2x and 4x converge to the MSAA 4x reference. Note how the naive application of MLAA over samples

from MSAA 4x improves the connectivity of the grid, but blurring artifacts appear. We have also performed the

same test using FXAA 3.11 (preset 39, max. quality) since it is one of the most used MLAA-like solutions.

areas, producing gradients that do not match in the resolve step, which translate into a blurry appearance of

distant objects.

In addition to sharp features detection, our solution is to take into account the offset position of each subsample

inside the pixel, in order to calculate properly their coverage areas. This way, when the different subsample

groups are blended together, we obtain the average color at the center of the pixel (see Figure 10.11, left and

middle). Then, the only required change to the pipeline is to use different precomputed areas textures for

each subsample position. This approach is general enough to handle additional samples coming from standard

approaches like temporal supersampling and spatial multisampling, so several configurations are possible. In

particular, we have found the following modes to be the most interesting from a performance/quality perspec-

tive:

• SMAA 1x: includes accurate distance searches, local contrast adaptation, sharp geometric features and

diagonal pattern detection.

• SMAA S2x: includes all SMAA 1x features plus spatial multisampling.

• SMAA T2x: includes all SMAA 1x features plus temporal supersampling.

• SMAA 4x: includes all SMAA 1x features plus spatial and temporal multi/supersampling.

The SMAA 4x mode requires to temporally jitter the SMAA S2x mode, as shown in Figure 10.11 (right).

Figure 10.10 shows how SMAA 4x converges better to MSAA 4x than simply combining MLAA with MSAA.
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Figure 10.11: Left, top: usual MSAA 2x pattern, with offsets at (−0.25, 0.25) and (0.25,−0.25). Left, bottom:

For combining multi/supersampling with MLAA (SMAA S2x and T2x), we have to offset the area calculations

so that the average between the subsamples on top and bottom (pink and orange) corresponds to the color at

the center of the pixel (blue). Middle: MLAA area calculations are devised to estimate the re-vectorization at

the center of the pixel (blue). For SMAA S2x and T2x, these areas must be offset by −0.25 (pink) and +0.25

(orange). Right: Example of combining four subsamples (SMAA 4x) coming from both spatial multisampling

and temporal supersampling, using two jittered results of SMAA S2x (purple and green).

10.4.4 Temporal reprojection

While temporal supersampling allows to efficiently render subpixel features, coupling it with a naive resolve

approach like linear blending results in very noticeable residual artifacts, commonly referred to as ghosting

(see Figure 10.12, left).

A better solution is to re-project instead the previous frames’ subsamples into the current frame [Nehab et al.,

2007; Yang et al., 2009][Jimenez et al., 2011a] (Section Anti-Aliasing Methods in CryENGINE 3). However,

disoccluded regions (occluded regions in the previous frame now visible in the current frame) still suffer from

residual artifacts (see Figure 10.12, middle). To minimize them, we weight the previous subsample by w, which

depends on the difference in velocity with respect to the current subsample:

w = 0.5 · max(0, 1 − K ·
√

|‖vc‖ − ‖vp‖|), (10.6)

where vc and vp are the velocity of current and previous frames, and K is a constant that determines how much

we attenuate previous frame according to velocity differences (we use a value of 30 for all our examples). Then,

the final resolve is performed as follows:

c = (1.0 − w) · cc + w · cp. (10.7)

where c is the final resolved color, cc the color in current frame, and cp the color in the previous frame. Such

a solution robustly handles disoccluded regions but at the expense of no antialiasing on such regions (see Fig-

ure 10.12, right). Nevertheless, the other components of our technique (either MLAA or spatial multisampling)

will usually antialias these regions, effectively eliminating the problem.

A remaining problem of combining velocity weighting with a morphological strategy is that morphological

antialiasing is actually blending pixels from both sides of the silhouette of an object at subpixel level. However,

the velocity map remains aliased and so velocity is not propagated to the antialiased pixels, which leaves trails

of blended pixels behind objects in motion. The solution is to apply SMAA also over the velocity buffer,

in order to propagate velocities to the blended pixels. To efficiently perform this step, we coarsely store the

velocity module in the alpha channel of the color buffer, so SMAA processes it for free.
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10.5 Results

Figure 10.13 shows a comparison of the subpixel modes of our technique against MLAA and SSAA 16x.

Figure 10.14 contain a more detailed comparison with a large number of selected antialiasing methods. We

recommend the digital version of the thesis for proper examination. Performance metrics are measured on a

NVIDIA GeForce GTX 470 using 1080p images. Typical execution times for our technique are of 1.02 ms for

SMAA 1x, 1.32 ms for SMAA T2x, 2.04 ms for SMAA S2x and 2.34 ms for SMAA 4x. Subpixel modes allow

higher thresholds for edge detection (see better fallbacks below), which lowers execution times without visible

loss of image quality. Table 10.1 presents performance numbers and features sets of all the techniques used in

our tests and comparisons.

Figure 10.15 demonstrates how offset positions must be taken into account for the area calculations when

several samples per pixel are used. In this case, we test FXAA applied pre-resolve over each subsample

coming from MSAA 4x. As can be seen, not taking into account the exact position of each sample leads to

blurry results that do not converge to the MSAA reference. Additionally, we test FXAA and MLAA applied

post-resolve (Figure 10.16) over a resolved MSAA 2x input. The results show how suboptimal (even incorrect)

it is to apply these antialiasing filters over an already antialiased input.

Local contrast: The first column of Figure 10.13 shows how a conventional edge detection approach (MLAA)

usually fails to properly detect patterns in the presence of gradients. Note how our approach is able to detect

and correctly antialias these difficult zones for smooth gradients.

Diagonal pattern detection: Our algorithm accurately reconstructs a perfectly straight diagonal line for the

Figure 10.12: Left: Using a naive resolve results in visible ghosting. Middle: Reprojection mitigates these

artifacts but does not completely remove them. Right: The addition of velocity weighting allows to completely

remove ghosting.
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Local Contrast Diagonals Sharp Geom. Acc. Searches Subpixels (a) Subpixels (b) Fallback
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Figure 10.13: SMAA can produce results close to SSAA 16x, with SMAA T2x having a performance on par

with the fastest MLAA implementation [Jimenez et al., 2011b]. The improved edge/pattern detection allows

to antialias difficult cases (first column). Diagonal pattern detection allows accurate reconstruction of such

shapes (second column). The detection of sharp geometric features allows to better reconstruct corners and

intersections (see second window in the first column, and bases of the aerials on the third column). Accurate

searches allow to detect patterns in difficult scenarios (fourth column). Subpixel features handling allows

to preserve connectivity and accurately represent distant objects (fifth and sixth columns). In zones with

low-contrast edges, we fall back to MSAA 2x (seventh column), which provides good results and improves

performance.

streetlamp silhouette. Traditional post-processing approaches generate aliasing artifacts, which can be clearly

seen when looking at the image at native pixel resolution and in motion.

Sharp geometric features: Our technique manages to preserve the sharp corners in the base of the aerials

(specially the one of the satellite dish), whereas most filter-based antialiasing techniques introduce some degree

of roundness. This information is vital for multi/supersampling to reconstruct the accurate shape of an object.

Also text present on textures or the user interface is better preserved.

Accurate searches: Blindly following edges without checking crossing edges at each step causes pattern de-

tection to fail in some scenarios, as shown in the MLAA image. Our accurate search allows to enhance the

antialiasing quality without increasing the number of memory accesses.

Subpixel features: Post-processing techniques using 1x (final display resolution) color inputs are unable to

reconstruct accurate subpixel features (which accounts for all selected techniques with the exception of SSAA),

producing artifacts like spurious pixels, gaps in surfaces and distracting effects due to subsampling. In contrast,

our SMAA T2x mode is able to better preserve the connectivity of the lines, resembling more faithfully the

results obtained with SSAA 16x. SMAA S2x and 4x modes also provide real subpixel features at the expenses

of multisampling, an approach with varying viability depending on the complexity of the shaders.

Better fallbacks: Subpixel SMAA modes not only allow actual handling of subpixel features, but also provide

better fallbacks for additional robustness. If the morphological component of SMAA leaves any edge unpro-
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Figure 10.14: Comparison of the features (rows) of our approach with a selection of anti-aliasing techniques

(columns). To help the reader navigate through this image matrix, we have color-coded the performance of each

method for each particular feature tested, although this is ultimately a subjective criterion. Green, orange and

red dots mark accurate, regular and inaccurate handling of a feature. Gradients from SSAA 16x are hampered

in this case because of the use of an ordered grid SSAA. In the case of FXAA, we used preset 39 (maximum

quality). Zoom into the digital version of this thesis to see the details.
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Table 10.1: Supported features for a selection of filter-based antialiasing techniques. Memory footprint in

terms of: backbuffer size/depth buffer/additional render targets. Performance is given for 1080p on a NVIDIA

GeForce GTX 470, with exception of: a) Reshetov’s CPU-based implementation [Reshetov, 2009], which is

measured on a Core i7 2620M @ 2.7GHz; b) AMD’s exclusive MLAA [AMD, 2010], which is measured on a

AMD Radeon HD 6870; and c) SRAA [Chajdas et al., 2011], whose times come from a GeForce GTX 480 (more

powerful than the GeForce GTX 470). Please note that our SMAA T|S2x and 4x times include the resolves.

MSAA performance numbers, calculated as the overhead over the same scenes without antialiasing, are 1.57

ms for MSAA 2x, 2.3 ms for MSAA 4x and 4.3 ms for MSAA 8x. Brute force SSAA overhead grows linearly

with the number of samples, SSAA 16x takes an additional cost of 285 ms for the example in Figure 10.1. 1For

fairness, we measured the 4x mode of our algorithm on the same GPU, yielding a performance of 1.82 ms. 2

We measured the times of FXAA 3.11 in default (12) and extreme (39) presets.

[Reshetov, 2009] [AMD, 2010] [Jimenez et al., 2011b] [Lottes, 2011] [Andreev, 2011] [Chajdas et al., 2011]

MLAA MLAA MLAA FXAA 3.11 DLAA SRAA

Sharp geometric features yes

Diagonals

Subpixel features yes

Supersampled shading

Local contrast adaptation implicit implicit yes (n/a)

Accurate distance searches yes yes depends yes yes (n/a)

Accurate gradients∗ yes yes yes yes yes

Sharpness preservation∗ medium low high medium medium low

Ghosting-free yes yes yes yes yes yes

Input (color/depth) 1x n/a 1x n/a 1x 1x 1x n/a 1x n/a 1x 4x

Memory footprint 1x/1x/n/a 1x/1x/n/a 1x/1x/1.5x 1x/1x/0x 1x/1x/1x 1x/4x/0x

Performance 350 ms 6.6 ms1 0.98 ms 0.62 ms /0.83 ms2 2.12 ms 2.5 ms

SMAA

1x S2x T2x 4x

Sharp geometric features yes yes yes yes

Diagonals yes yes yes yes

Subpixel features yes yes yes

Supersampled shading yes yes

Local contrast adaptation yes yes yes yes

Accurate distance searches yes yes yes yes

Accurate gradients∗ yes yes yes yes

Sharpness preservation∗ high high high high

Ghosting-free yes yes

Input (color/depth) 1x n/a 2x n/a 1x n/a 2x n/a

Memory footprint 1x/1x/2x 2x/2x/2x 1x/1x/4x 2x/2x/4x

Performance 1.02 ms 2.04 ms 1.32 ms 2.34 ms

cessed, the MSAA component of S2x and 4x modes will back that up. If the temporal reprojection present

in T2x and 4x modes fails due to changes in the occlusion of objects between frames, the morphological and

MSAA components will reduce aliasing. And the possible shading aliasing of S2x will be made up by temporal

SSAA and MLAA in SMAA 4x, making it the most robust mode.

Discussion: Most of the features we have described solve limitations of not just MLAA in particular, but of

all post-processing antialiasing filters in general. Performance-wise, in a forward rendering scenario SMAA

4x and SMAA T2x are about 1.46x and 4.09x faster than MSAA 8x respectively (the first taking into account

the required multisampling 2x overhead). With respect to memory consumption, the most demanding con-

figuration requires only 43% and 17% of the memory used by MSAA 8x, in a forward and deferred context

respectively. Note that we are able to perform better than MSAA 8x, while delivering superior overall quality,

both in gradients and shading, resembling more accurately the results of SSAA 16x. In the case of a deferred
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MLAA FXAA SMAA 4x MSAA 4x MSAA 8x

Figure 10.15: AA filters applied pre-resolve to each sample of a MSAA 4x input. Unlike SMAA, FXAA and

MLAA do not take into account the offset position of the additional samples, thus leading to blurry results when

compared against the MSAA 4x and 8x references. FXAA 3.11 preset 39 (max. quality) and Jimenez’s MLAA

were used in this test.

MLAA FXAA MSAA 2x SMAA S2x MSAA 8x

Figure 10.16: AA filters applied post-resolve over a resolved MSAA 2x input. It can be seen that when FXAA

or MLAA are not fed with clean edges, they introduce artifacts that make the final image look not to converge

to the MSAA reference. SMAA S2x and MSAA 8x included as a higher quality reference. FXAA 3.11 preset 39

(max. quality) and Jimenez’s MLAA were used in this test.

engine, using MSAA 8x would incur an excessive drop of performance given the massive bandwidth required

[Andersson, 2011], along with the requirement of supersampling the edges at 8x.

In SMAA 1x and T2x modes, the execution times are within the same 1 ms ballpark as other solutions. The

S2x and 4x modes are obviously more expensive due to multisampling (an average of 1.57 ms overhead for

rendering at 2x, minus the resolve time), but they are still on-par with other techniques that handle subpixel
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features (SRAA and MSAA 8x), still yielding smoother results. Note that SRAA requires additional 4x multi-

sampled depth and/or normal maps and possibly two geometry passes; while our approach multisamples color

information at 2x. In the case of a deferred renderer, our approach would require supersampling the edges;

however, stencil-masked implementations allow for efficient performance.

The overhead introduced by each of our solutions is either negligible or very affordable. In particular, local

contrast adaptation is 0.08 ms, the sharp geometric features detection and accurate distance searches take less

than 0.01 ms; diagonals processing and temporal supersampling introduce a small overhead of 0.12 ms and 0.3

ms respectively. Spatial multisampling adds 1.02 ms for filtering the second sample, and an additional average

of 1.57 ms to render the scene at 2x. The delta that SMAA 4x adds on top of a 2x forward-rendered scene is as

little as 2.09 ms, making it an attractive option for any scenario that can afford such a small multisample count.

10.6 Conclusions

We have presented a technique that tackles all the weak points remaining in filter-based antialiasing solutions.

We have shown for the first time how to combine a filter-based antialiasing technique with standard multi/-

supersampling approaches and temporal reprojection. This novel combination of improved MLAA strategies

with spatial and temporal multi/supersampling accounts for a very robust solution, combining the different

synergies for better fallbacks. SMAA 1x delivers very accurate gradients, temporal stability and robustness,

while introducing minimal overhead, making it an obvious choice for low-end configurations. SMAA T2x, for

little additional cost, offers a very attractive tradeoff for any kind of rendering engine (deferred or forward),

avoiding 2x multisampling while still reconstructing subpixel detail. SMAA S2x and SMAA 4x are the best

options regarding image quality. We believe that SMAA will finally enable deferred engines to match the

antialiasing quality of forward rendering engines.
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Chapter 11

Conclusions and Future Work

11.1 Skin Rendering

In this thesis, various techniques have been presented whose aim is to break the boundary between offline and

real-time rendering. A very complete subsurface scattering solution have been described, capable of accurately

depicting reflectance and transmittance effects. Our latest unpublished advances (Chapter 6) have reduced even

further the runtime requirements to just two screen-space passes instead of 12, greatly simplifying the imple-

mentation as a side effect. This skin rendering solution runs extremely fast in today’s graphics architectures,

and is even viable for current generation of consoles. It’s already deployed in some game engines, or even

directly on some upcoming games, which assess the practicability of these techniques in real-world projects.

On the other hand, very efficient wrinkle animation techniques has been developed, allowing to greatly reduce

the memory footprint by decoupling the wrinkle structures from fine skin details like pores or other imperfec-

tions, while still having very good runtimes and compatibility with current assets and technologies.

A novel physically-based method for rendering color changes in skin has been created, allowing to faithfully

represent emotions and other hemoglobin fluctuations on the facial skin of virtual characters. This is the first

method to actually use measured data to replicate the state of the chromophores that compose the inner layers

of the skin, allowing for a photorealistic appearance of such color changes.

Probably, one of the most important conclusions learned during the thesis is the fact that efforts towards ren-

dering ultra realistic skin are futile, if not coupled with HDR, high quality bloom, depth of field, film grain,

tone mapping, ultra high quality models, parametrization maps, high quality shadow maps and a high quality

antialiasing solution. Failing on any of them breaks the illusion of looking at a real human filmed by a real-

world camera. Specially on close-ups at 1080p resolution, that is where the real skin rendering challenge is.

Rendering realistic skin is only the first step towards believable humans. As future work, efforts towards real-

time photorealistic eyes and facial hair rendering are still required to have a complete representation of human

faces. On the other side, the introduction of real-time tessellation will open new possibilities for more realistic

wrinkle animations. Furthermore, developing methods for automatically derive color changes from geometric

deformations would make of our dynamic facial color technique a more general approach.
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Finally, rendering humans is only half of the problem, so attention to develop faithfully animation techniques

will be of extreme importance in order to maintain the illusion of realism in motion, which probably will be a

very challenging problem.

11.2 Antialiasing

Classical solutions like multisampling antialiasing (MSAA) and supersampling antialiasing (SSAA) have been

the only high-quality antialiasing solutions in real-time applications like games. The introduction of new

techniques like deferred shading, or the inability of current generation of consoles to deliver high-quality

antialiasing have opened new possibilities where post-processing antialiasing or even hybrid solutions can

offer better performance and/or quality.

Two novel antialiasing solutions have been introducing in this thesis. The quality of the first approach,

Jimenez’s MLAA, has risen the interest on postprocessing antialiasing on GPU platforms, being the first high-

quality GPU antialiasing approach in this category. Its quality rivals MSAA with high sample counts, in a fair

amount of scenarios, and its performance is considerably superior on modern GPU platforms. This method has

been very well received by the industry, and has been deployed in several games. However, subpixel features

are not properly handled by this technique, and it still suffers from temporal instability to a certain degree.

These drawbacks lead us to evolve that technique into Subpixel Morphological Antialiasing (SMAA), which

aims to solve the temporal stability problem by enhancing the edge detection and pattern handling, and to solve

the subpixel handling by making a strong synergy with low sample count spatial multisampling and temporal

supersampling. This allows each method to complement each other, providing a solid solution for today’s

hardware and rendering technology.

As future work, a possible direction is to improve shading aliasing, which is still one of the biggest aliasing

problems in real-time applications. Developing temporal antialiasing methods capable of incorporating more

than two samples is extremely challenging, but could lead to big improvements in regards to the image quality,

while probably introducing minimal overhead. And finally, exploiting the human visual system to better discern

if edge is detected as such by our brain, would lead to more stable antialiasing.
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