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Abstract
We present a new, high-quality compositing pipeline and navigation approach for variable resolution imagery. The motivation
of this work is to explore the use of variable resolution images as a quick and accessible alternative to traditional gigapixel
mosaics. Instead of the common tedious acquisition of many images using specialized hardware, variable resolution images can
achieve similarly deep zooms as large mosaics, but with only a handful of images. For this approach to be a viable alternative,
the state-of-the-art in variable resolution compositing needs to be improved to match the high-quality approaches commonly
used in mosaic compositing. To this end, we provide a novel, variable resolution mosaic seam calculation and gradient domain
color correction. This approach includes a new priority order graph cuts computation along with a practical data structure to
keep memory overhead low. In addition, navigating variable resolution images is challenging, especially at the zoom factors
targeted in this work. To address this challenge, we introduce a new image interaction for variable resolution imagery: a pan
that automatically, and smoothly, hugs available resolution. Finally, we provide several real-world examples of our approach
producing high-quality variable resolution mosaics with deep zooms typically associated with gigapixel photography.

Keywords: image segmentation, image and video processing, interaction techniques, interaction, matting and compositing,
image and video processing

ACMCCS: • Computing methodologies → Image processing; Image segmentation; • Human-centered computing → Interac-
tion techniques

1. Introduction

Gigapixel mosaics quickly became popular several years ago after
the introduction of both the consumer hardware [Gig10] and scal-
able algorithms [KUDC07, KH08, BL07, Aga07] needed for their
creation. These large images can give the context of scale of a nat-
ural vista [BBB*15] or a cityscape [LUC15], while also allowing
people to zoom and explore the details captured by the billions of
pixels contained in each.While initially well-received, these images
have not gained wide adoption due primarily to the costs and diffi-
culties associated with their creation.

First, creating a gigapixel image is costly in many respects. These
mosaics often require specialized hardware [Gig10] that acquires
hundreds to thousands of images. Photographers must put in signifi-
cant effort to plan, transport, and configure this hardware. After con-
figuration, the acquisition itself can take hours or even days. More-
over, the creation process of the final mosaic can require additional

gigabytes of permanent and temporary storage. For instance, spe-
cialized processing systems are often needed to scale sophisticated
creation algorithms to these large images [PST*15, KH08, KSH10,
SSJ*11]. These time, effort, and storage costs prevent spur-of-the-
moment or novice acquisition.

Second, photographers generally lack control of both acquisition
and processing. Common acquisition approaches [Gig10] perform a
brute-force sampling of a scene through robotic collection of many
high-zoom images. Given the sheer number of images acquired, de-
tecting and fixing bad captures (blur, bad composition, etc.) is an
exceedingly difficult task.

As further motivation, Figure 1a illustrates a 3.3 gigapixel mosaic
composed of 624 raw images, captured using a robotic tripod head
(acquisition time: 1h43m) and processed using a standard mosaic
stitching pipeline [BL07]. Figure 1b details quality issues in this
image: subjects can move between images leading to twins (green);
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robotic acquisition can raise privacy concerns given its methodical
sampling of a view (yellow); and processing may take approaches
which are less costly, but also less sophisticated, creating difficult-
to-catch artefacts (purple). Next, given themany hours or days of ac-
quisition time, lighting conditions often change, and these changes
can lead to a final product with a less-than-realistic exposure. See
Figure 1c.

As a final motivation, one that we leverage in this work, we note
that the standard brute-force sampling of the view can be wasteful
for certain applications. As Figure 1d shows, standard sampling can
produce high resolution brick, sky, or gravel, which a photographer
may not find interesting. Although important for coarse context, the
resolution in these areas adds cost and complexity to the creation
and storage of the final image.

Our work is motivated by this common sparsity of interesting
detail in large mosaics. We will show how a quality alternative to
gigapixel imagery can be formed at a fraction of the above costs
with photographers having more control in the process. To this end,
we will explore creating and storing an image that has variable
resolution [EM10, EESM10, AFM09] throughout, saving the cost
of acquiring and storing resolution only for important details. In
variable resolution approaches, photographers capture several im-
ages at varying zoom levels which are stitched into a final image
at non-uniform resolution. Higher zoom levels directly correspond
to more detailed resolution. This acquisition approach, when com-
pared to gigapixel captures, is extremely fast and low cost. In ad-
dition, through their captures, photographers have direct control of
what detail is acquired. However, as we detail in this paper, previous
approaches to variable resolution image creation, in particular their
compositing, are insufficient to provide the quality necessary to be
viable alternatives to gigapixel imagery. Moreover, how to easily
navigate an image with variable detail is an open challenge.

In this work, we will describe a novel pipeline that adapts proven
approaches from high-quality mosaic compositing to variable reso-
lution images. In addition, we provide a novel approach to navigat-
ing these images, allowing a user to easily find and explore detail
areas. In particular, the contributions of this paper are:

• an efficient variable resolution compositing pipeline that avoids
excess memory overhead;

• variable resolution seams with a novel priority-order graph cuts
segmentation;

• approaches for navigating variable resolution imagery, including
a novel resolution hugging pan; and

• real-world examples of variable resolution images that provide
faster and less costly alternatives to gigapixel photography.

2. Related Work

Since the introduction of gigapixel imagery [KUDC07], advances
in the algorithms that drive their processing have allowed massive
mosaics to reach terapixels [KSH10] in size and even incorporate
video into the composition [HLSH17]. Their construction often re-
quires specialized hardware [KUDC07, CMN11, BH09, BGS*12,
GVK*12] with the most common being a robotic panoramic tripod
head [Gig10] with an attached camera set to its maximum zoom.

Figure 1: Gigapixel mosaics are generated from a large collection
of images acquired over several hours or days (a). Given the sheer
number of images it is difficult to resolve issues in quality and/or
privacy (b). Changes in lighting due to long acquisition times re-
quire color correction that can be unnatural (c). Often these images
have resolution wasted on uninteresting regions (d).

The mosaic stitching pipeline consists of two processing steps.
First, the captures are registered into a common coordinate system,
often using sets of sparse feature points [Low99, Low04] to compute
the image-to-image correspondences. The deformations for the reg-
istration are then computed based on these correspondences [BL03,
BL07]. These deformations need not be simple homography matri-
ces, and in fact others have used dual-homographies [GKB11] and
meshes [LLM*11, ZL14] for better local alignments. Standard ap-
proaches to registration have already been shown to work well in
the space of variable resolution images [EESM10]. Therefore, we
assume a registered set of images as input and advance the second,
critical part of this pipeline.

After registration, the deformed, overlapping individual images
need to be merged (composited) into a single, seamless image. This
could be as simple as a blending of all of the colors for overlapping
pixels. However, this approach often leads to artefacts (ghosting)
in the blended regions for objects that move between captures. A
higher-quality approach is to compute mosaic seams [ADA*04,
KSE*03, STP12]. Seam computation produces a labeling of pixels
in the final mosaic such that each pixel is given a distinct label de-
noting which input image provides its colour. This labeling removes
the overlap without blending and is often produced to minimize
the transition between labels. Seams are commonly computed
using graph cuts [BVZ01, BK04, KZ04] segmentation [ADA*04,
KSE*03]. The standard seam computation [ADA*04] often as-
sumes regions of a mosaic for which only one capture is valid
(< 100% overlap for all images). This assumption can be partially
alleviated by locking mosaic pixels to enforce that their color comes
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Figure 2: Overview of our variable resolution compositing pipeline. From an input of registered images, an adaptive variable resolution graph
is constructed (Section 3.2) for seam generation (Section 3.3) and gradient domain colour correction (Section 3.4) to produce a seamless
composition. Finally, this image is viewed using our variable resolution image navigation (Section 4).

from a particular image (effectively hardcoding a < 100% overlap).
This is often done through manual user painting [ADA*04]. For this
work, these requirements are problematic. For users, intervention
should be minimal and, preferably, optional. In addition, our images
will often have 100% overlap.

Computing seams to minimize the transition between segmented
images is commonly insufficient to create a truly seamless final
composite due to the fact that exposure and lighting conditions
change between the individual captures. To this end, the final step
of compositing is often a colour correction to fix this discontinu-
ity. Gradient domain blending [PGB03, LZPW04, KH08, SSJ*11]
has provided the highest-quality solution to this colour correction
step. Of particular note is the work of Agarwala [Aga07], which
uses an adaptive quadtree to accelerate the gradient domain compu-
tation. In Agarwala’s work, the quadtree is refined at the panorama
seams where the solution is non-smooth. In this work, we will use a
quadtree mesh that is independent of this calculation and is refined
adaptively by our input imagery.

Asmentioned previously, interesting detail in largemosaics is fre-
quently sparse. Therefore, most viewing systems use UI elements
to allow users to avoid a tedious search through uninteresting de-
tail. For example, systems give the option to manually set snap-
shots or locations of interesting regions. In addition, there has been
work [IV11] to automatically find snapshots in large images.

Variable resolution imagery. The concept of variable resolu-
tion imagery has been previously applied to medical image acqui-
sition [Ann81, CL92]; photographs with simple blending [SP06,
AFM09]; encoding of depth information in multi-perspective
panoramas [ZH04, ZKCS07]; and querying multiresolution image
hierarchies [GJG*11]. These techniques provide high-resolution
processing for selected detail regions, without requiring less inter-
esting regions to be upsampled to match. However, as many of these
techniques use blending, ghosting artefacts can result.

The most relevant previous work to our approach is Zipmaps as
proposed in Eisemann and Magnor [EM10], which provides texture
artists with a means to render variable-resolution textures. Zipmaps’
suggested construction technique, named Photo Zoom [EESM10],
uses the registration [BL07] information to generate a hierarchy of
images. The technique then follows with a compositing pipeline
that greedily operates on each parent-child pair in the hierarchy.
For each pair, the pipeline performs a local seam computation, a
gradient domain colour correction with Dirichlet boundary condi-
tions, and a final alpha blend. While this technique provides the best
current solution to variable resolution compositing, it has several
limitations.

Figure 3: Our mesh uses pixels at the coarsest zoom level as roots
of quadtrees (a). Images are treated as patches (b) with implicit
intra-patch neighbours and parents (c). Patches are saved in con-
tiguous blocks of memory with metadata needed for traversal (d).

One limitation of this approach is emphasis on the single coarsest
level image in a composition. While this emphasis is valid for static
scenes at modest zoom levels, it is problematic for our application.
If detail only appears in fine level images and not in the coarsest, this
detail is effectively lost. For example, given the large zoom levels
targeted in this work, it is almost guaranteed that an interesting detail
will not appear in the pixels of the smallest zoomed image. More-
over, interesting detail is often dynamic and therefore will move
during acquisition. The second limitation is in their local seam com-
putation, which can produce artefacts. Photo Zoom uses a sum-of-
squared-differences seam computation which performs well when
object motion is small, but performs poorly on larger differences or
motion between images. We provide comparison examples for both
of these limitations in Section 5. A third limitation is the reliance
on the hierarchy to determine which pairs of images get processed.
Notably, overlapping sibling images will not get proper treatment,
as the Photo Zoom pipeline operates only on parent-child pairs, and
will either ignore sibling images, or risk losing detail by cropping
one sibling to fit within the other. We discuss how our technique
handles arbitrary image overlap in section 3. Finally, Photo Zoom’s
gradient domain colour correction greedily applies the coarse im-
age’s colour to the fine resolution images through Dirichlet condi-
tions. A more flexible approach would be to perform the gradient
domain colour correction on all mosaic pixels at the same time. For
example, Neumann conditions [ADA*04] are common for mosaic
colour correction, but are impossible for a greedy, coarse-to-fine ap-
proach.

Finally, there is still a general open problem in how to navigate a
variable resolution image: finding a needle of detail in a haystack of
coarse imagery. When details are spread out, users unfamiliar with
the composition will necessarily have to search for the detail. If a
variable resolution image is truly created seamlessly, then divining
where detail exists from a coarse view should be impossible. If the
scale difference in resolutions is large, which would be the case for
a gigapixel-equivalent variable resolution image, then a viewer may
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need to comb through a large amount of boring, missing resolution
before detail is found.

3. Variable Resolution Compositing

Belowwe detail the components of our new variable resolution com-
positing pipeline as illustrated in Figure 2.

3.1. Registered input

The acquisition of images and their registration [BL07] proceeds
similarly to prior work [EM10, EESM10]. As mentioned, our ap-
proach differs in that our compositing pipeline can handle arbi-
trary sets of overlapping images as input without an assumed struc-
ture. The registration inputs for our variable resolution compositing
pipeline are provided as supplemental figures. To aid our discussion,
we will define the effective zoom of our composites as the greatest
difference in zoom factors between all input images.

3.2. Variable resolution graph

The collection of images with varying zoom levels needs a com-
mon domain on which to composite the final result. The standard
approach uses a graph, G = (V, E ), where p ∈ V are the pixels in
the final mosaic and the edges (p, q) ∈ E denote pixel neighbours.
In the standard pipeline, G is a uniform grid to which each image
is projected and resampled. Choosing the right resolution for this
uniform grid is challenging for our application. The first choice,
and the only one that guarantees no loss of pixel information, is
to form G by upsampling all images to the space of the image with
the highest zoom level. We define this potential data increase as the
implied resolution for our images (mosaic size at coarsest level ×
effective zoom2). Note that this term also defines the size of a gi-
gapixel mosaic necessary to achieve the same effective zoom of one
of our images without loss. The data increase would have a com-
mensurate impact on the pipeline as well. In particular, the gco

graph cuts library would need to store and process a 250 GB graph
for an upsampled Beach mosaic. As the results in Section 5 show,
this data increase can often be orders of magnitude and, therefore,
should be avoided. The second choice is to set G’s resolution to be
some intermediate zoom level down to and including that of the
coarsest level. This approach will involve downsampling of some or
most images with a loss of pixel information. We compare against
this intermediate resolution approach in Section 5. For this work,
we use an approach that will not require the domain to blow up
to gigapixel resolutions, but will also not lose detail in the pro-
cess. Moreover, it can handle arbitrary arrangements of overlapping
images.

We take inspiration from Adaptive Mesh Refinement
(AMR) [BC89, BO84] used in physical simulation. Rather than
adaptively refine a mesh based on computational needs, we refine
our mesh based on projection of the registered images. We describe
this graph by detailing both its construction and the fundamental
operations needed for the compositing pipeline: finding parents
and neighbours.

Figure 4: Purple illustrates the lookup from a parent to the first of
its children and yellow illustrates the lookup from a child node to its
parent. Same colour nodes use the same lookup table entry LKγ .

3.2.1. Adaptive graph construction

To construct our graph, we first build a quadtree mesh. Given the im-
age deformations, we build a uniform grid at the level of the coars-
est image, then refine each grid cell to match the needed resolu-
tion for all detail images. In other words, each grid cell is the root
of a quadtree. Fig. 3a illustrates the mesh for 3 images: a coarse
image and 2 detail images (2x and 4x zoom; level 1 and 2 of the
refinement, respectively). An image’s zoom is rarely a power-of-
two; therefore we upsample an image to the lowest next power-
of-two (ceiling). This increases our data footprint, but by no more
than four times the number of pixels. This refinement is akin to a
patch-based AMR [BO84] where each quadtree level can be con-
sidered a patch. Each patch layout can be considered a stack with
implicit connections between a node and its parent in the refine-
ment (see Fig. 3b and 3c). Each patch is saved contiguously as
blocks in memory (fig. 3d) with metadata for a given patch (width,
height, zoom/quadtree level). The graph needed by the compositing
pipeline, G, is the quadtree dual of this mesh. Rather than saving the
neighbour and parent/child relations explicitly, as we detail in the
following subsections, all edges in E are implicit in our approach.
We have found that, for our examples, using a patch-based approach
has a 37%–46% memory improvement over the efficient adjacency
list graph data structure provided in the gco library [BVZ01, BK04,
KZ04].

3.2.2. Finding parents and children

Since our patch-based quadtree is not uniform, we need to save
the transformations necessary to move from one block to another.
Specifically, we need to store the translation and scale that trans-
forms a node’s index to the space of its parent and/or child block.
Using this transformation along with pointers to the starting index
of the appropriate block, the parents and children of a node can be
efficiently found with standard quadtree indexing. Each pairing of
pointers and transformations forms a lookup entry, LKγ . In Fig. 4,
the same colour pixels have the same lookup entry. This compact
storage does not explicitly store intermediate quadtree levels where
no valid pixels exist; therefore the complexity for lookups that re-
quire traversing a quadtree is bounded by the number of images, not
the height of the tree.

Fig. 4 also illustrates the process of finding a parent (yellow) and
its children (purple). For example, to compute the parent for the
yellow node, the index of its parent’s block (blockC), scale (dsC),
and translation (txC, t

y
C) into the space of the parent block are found

by using the node’s lookup table entry LKC. Then we compute the
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parent’s pixel coordinates as (iC, jC ) = (txC + i ∗ dsC, tyC + j ∗ dsC ).
Using this formula, the index of the parent is found as idC =
blockC + iC + widthC ∗ jC, with widthC being the width of the par-
ent block. Finding the children of a node works similarly with the
index calculation corresponding to the top-leftmost child node.

3.2.3. Finding neighbours

Finding a node’s neighbour within a block is simple implicit image
indexing. Note that the majority of neighbourhoods in the graph are
calculated this way. When the neighbourhood spans different res-
olutions, the traversal is more complex but still straightforward. If
a neighbour does not exist at the current resolution for a node in
a given direction, its ancestors are traversed until a parent is found
with a valid neighbour in that given direction. That neighbour is then
refined until the highest resolution is reached, refining only in the
direction opposite of the neighbour lookup direction.

3.3. Variable resolution seams

Often the most interesting details in a scene are dynamic, there-
fore it is advantageous to compute seams for our variable resolu-
tion images to ensure the highest quality composition. To this end,
our approach targets a popular method for mosaic seams [ADA*04,
KSE*03] based on graph cuts segmentation [BVZ01, BK04, KZ04].
For graph cuts, given a graph, G = (V, E ), and a set of mosaic im-
ages, I(1...N), this optimization computes a labeling, L, such that all
p ∈ V are given a single label lp ∈ (1 . . .N ), where the label denotes
which image in I gives the node, p, its colour. To compute this la-
beling, graph cuts minimizes the following energy [ADA*04]:

E(L) =
∑
p∈V

Ed (p, lp) +
∑

(p,q)∈E
Es(p, lp, q, lq). (1)

The Ed (p, lp) (data) term is the cost to give p label lp with the
Es(p, lp, q, lq) (smoothness) term denoting the cost if neighbours p
and q have labels lp and lq respectively. Typically if lp = lq, then Es
is 0 and therefore the smoothness term encodes the cost to transition
between labels (images) in the final segmentation. These transitions
are called the seams. For the standard mosaic problem, Es is set to
minimize the transition between images [ADA*04]. In our case, Es
minimizes the change in pixel value between images:

Es(p, lp, q, lq) = ‖Ilp (p) − Ilq (p)‖ + ‖Ilp (q) − Ilq (q)‖ (2)

The traditional approach sets Ed to be small (0) if Ilp (p) is a valid
pixel of Ilp or large (∞) if it is not [ADA*04]. This data term re-
lies on the fact that there are regions in a mosaic for which only one
image has valid pixels. This is a valid assumption for traditional mo-
saics, but for our images the inverse is true. These images are often
constructed completely inset with 100% overlap. In this scenario,
in the absence of a user manually providing a mask [ADA*04] to
enforce that all images are included, the above formulation is ill-
posed since the minimum labeling is one in which the inset images
are completely removed. In addition, it would be better for users to
have input masks be optional. Therefore, we need to develop an en-
ergy that automatically maintains these images while still providing
a minimal transition. In fact, what we need is a graph cuts segmen-
tation that can operate on a priority order of images.

Figure 5: The effect of the λ term in our priority order graph cuts
segmentation. Increasing λ allows users to trade high-priority pixels
in favor of smoother transitions between images.

Figure 6: An image of fish in an aquarium (a). Several layers of fish
are copied and given a priority order (b). Our priority order graph
cuts segmentation can ‘flatten’ the layers while still minimizing the
transition between all (c). Note how the orange fish at the center of
the background layer is removed due to priority order. Image cour-
tesy of Flickr user @Averain.

3.3.1. Priority order graph cuts segmentation

First, since our optimization involves the minimization of costs, let
us assume that a priority is given as an integer value per image, Plp

for image Ilp ∈ I(1...N), such that 1 is the highest priority and N is
the lowest. With this assumption, the initial step to ensure that graph
cuts honors this priority is to set Ed (p, lp) = Plp . While this will
enforce the priority, it does so at the expense of a smooth transition
between images. In fact, with this simple change the data term will
now dominate the calculation with often no smoothness term being
optimized. This can be counteracted by adjusting the smoothness
term from Agarwala et al. [ADA*04]:

Ẽs(p, lp, q, lq) = max
(
1,

∣∣Plp − Plq

∣∣)Es(p, lp, q, lq). (3)

In this new term, Es is scaled by the magnitude of the difference in
priority values between labels. Not only does this addition allow for
the smoothness term to factor into the optimization, but additionally
allows it to scale equivalently as the difference between the prior-
ity values increases. This counteracts the situation where, if there is
a large difference in priority values, the data term again will domi-
nate and no smoothness term is optimized. Moreover, this scale also
gives similar segmentations between two priority values, indepen-
dent of magnitude of their difference. This gives practical freedom
in setting priority values. We clamp this scale to be at least 1 in the
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cases where the two priority values are equal. Finally, we integrate
this new smoothness term into the full graph cuts energy:

E(L) =
∑
p∈V

Ed (p, lp) + λ
∑

(p,q)∈E
Ẽs(p, lp, q, lq) (4)

Note that in the case where priority values are equal, this energy will
reduce to the standard seam energy [ADA*04] and therefore graph
cuts would produce standard seams. The λ term is an additional con-
trol that we give to users to allow them to adjust the tradeoff between
retaining higher priority pixels and the smoothness of the transition
between images. Fig. 5 illustrates this effect on segmentations for
several values of λ.

To demonstrate the generality of this segmentation, we provide a
single uniform resolution example in Fig. 6. In this figure, we have
an image of an aquariumwith several fish. A user copies and manip-
ulates three fish to create a composition with several layers, similar
to the layers in image editing software (Adobe’s Photoshop, GIMP,
etc.). Layer order is denoted in Fig. 6b as priority value. Fig. 6b also
shows the result of flattening these layers into a single image using
only the priority, which is the common default in editing software.
Fig. 6c provides a seamless composite using our approach that not
only flattens layers based on priority but also minimizes the transi-
tion between them.

Adjusting this approach to work in the variable resolution set-
ting is relatively straightforward. While the entire variable resolu-
tion graph is used to implicitly calculate neighbours, only the leaves
of G are used for the labeling. Practically, we would like to treat
close, real-valued zoom levels as equivalent (e.g. 9.1x vs. 10.4x);
therefore we add an element of quantization to our priority order-
ing. Specifically, we set the priority value to be the inverse of the
level of the quadtree refinement, Q:

Ed (p, lp) = Plp = max
i
Qi − Qlp + 1 (5)

For performance, we use a hierarchical, banded graph cuts ap-
proach [LSGX05] with a two-level refinement (quarter resolution
to full). Finally, we allow for mask inputs to denote pixels of each
image that should be maintained (Ed = 0) or removed (Ed = ∞) in
the final composite. These masks are used for optional fine tuning
of the segmentation and were only used for our Lagoon and Beach
images (shown in Figures 14 and 15).

3.4. Variable resolution gradient-domain colour correction

The next step in compositing is to colour-correct our images to ac-
count for changes in lighting conditions and exposure between cap-
tures. We use gradient-domain colour correction to provide a seam-
less transition between images. In the traditional approach [PGB03,
LZPW04], gradient domain colour correction finds an unknown im-
age, P, that fits a guiding gradient field, �G, in a least-squares sense:

min
P

∫∫
�

‖∇P− �G‖2 (6)

Minimizing Equation 6 can be solved by forming a linear system,
Ax = b, where x is the pixel colours of our unknown P, b is a vector
that encodes �G and boundary conditions, and A is comprised of a

standard 5-point Laplacian stencil. Agarwala [Aga07] has shown
that this system can be extended to the non-uniform connectedness
of a quadtree for mosaic colour correction; therefore we adopt a
similar approach for this work. In our linear system, the stencil is:

�p = |N | ∗ Ip −
∑
q∈N

Iq (7)

where N are the neighbour nodes of p in our graph. The choice
in boundary conditions and gradient field dictates the correc-
tion technique computed by solving the system. For seamless
cloning [PGB03], where an image, Ii, is seamlessly inserted into a
background image I j, �G is set to be �Ii, Dirichlet boundary condi-
tions are used locking the boundary between Ii and I j to the colour
of I j, and the system solves for the pixels of Ii. For mosaic colour
correction, �G is set to be the gradient of the original pixel values
in the segmented image, except at the boundaries between images
denoted by a change in seam label. In this case the gradient is aver-
aged or considered 0. Solving this system with Neumann conditions
produces a seamless mosaic.

Our pipeline allows for both conditions to be applied to a variable
resolution image: either optimizing across all pixels (Neumann) or
using an image as an oracle of the colour (Dirichlet). Our results in
Section 5 show that this flexibility allows our approach to produce
high-quality, seamless variable resolution images. As our final step,
we perform a colour correction to each input image using Dirichlet
conditions to apply each’s new colour to masked portions. This step
allows users to have full colour-corrected versions of each.

3.5. Resolution jump alpha blending

At this point in the pipeline, we have a seamless variable resolution
composite. In practice, we have found that, while navigating, some
users found that large jumps in a zoom level lead to a perceptually
distracting front between the blurry (low resolution) and crisp (high
resolution) areas. To combat this effect, we have added an optional
step that adjusts the segmentation mask to provide an alpha blend
between these fronts. The magnitude of this blend is directly pro-
portional to the jump in zoom/resolution:

r(i, j) = max{(zoomi − zoomj ) ∗ radius, 0} (8)

αi(p) = 255 ∗ min

{
min
j

r(i, j) − edge_distance j(p)

r(i, j)
, 1

}
(9)

with edge_distance j(p) being the distance from pixel p to the near-
est seam with image j and radius is a parameter to adjust the blur
size . To ensure that the blend does not cause our image to no longer
be water tight, we unmask pixels on all images at lower zoom levels
that fall within the projected area of pixels that are blended. Note
that since our colour correction is applied throughout the original
images, this can be done without introducing colour artefacts. Fi-
nally, since the unmasking can expose hard boundaries at the image
extents, an additional blend is computed from this boundary. This
blend could introduce ghosts to the composition, but in practice this
blend often uses a relatively small radius to sufficiently soften the
transitions. For images needing large r(i, j), this means the result-
ing blend uncovers comparatively coarse imagery that is too blurry
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when zoomed in to render as a sharp-edged ghost. As a result, we
found no noticeable artefacts introduced by this approach.

4. Viewing and Navigating Variable Resolution Imagery

Variable resolution imagery has interesting challenges in regards to
users viewing and navigating the image. For traditional mosaics,
resolution exists uniformly throughout the image and a user can nav-
igate freely with guaranteed resolution (although not necessarily in-
teresting resolution) at all points in an image. This is not the case
for variable resolution images. Below we detail the practical design
choices for our viewer along with a novel resolution-hugging pan
for variable resolution imagery.

4.1. Viewer

For reproducibility, we describe the design of our viewer for vari-
able resolution images. Rather than use our variable mesh/graph,
we project the segmentation masks and colour corrected pixel val-
ues back into the space of the original acquired images. Registra-
tion matrices are saved as metadata per image. The viewer is then a
simple OpenGL application that takes these images, masks, and ma-
trices as input. Similar to Zipmaps [EM10], the viewer applies the
deformation as a runtime shader, and uses mipmap level-of-detail
rendering and linear interpolation in magnified texture lookups to
keep the variable resolution image seamless and smooth at all lev-
els of resolution. In the cases where a user navigates beyond the
available resolution, the pixels appear naturally blurry. This leads
to the final storage overhead for the variable resolution image be-
ing only an additional byte per pixel (for the mask) compared to the
size of the original input images. This simple, low-overhead design
does come at a cost to the precision in the visualized segmentation
boundaries. The backward and forward projection may lead to our
segmentation no longer being water tight, although this potential
problem is corrected by using the unmasking step of Section 3.5.

4.2. Denoting resolution and navigation

Our viewer allows the standard pan/zoom image navigation inter-
actions, but also allows for smooth animated zooms using an inter-
ruptible hyperbolic approach [RN18]. Just like traditional gigapixel
mosaics, there is a challenge in how to guide users to interesting
detail during exploration. As our images are seamless, determining
where resolution resides at a coarse view is very hard. Given the
high zooms targeted in this work, zooming in fully and searching
for resolution is a tedious pan through a large amount of uninter-
esting, blurry data. Similarly to gigapixel viewers, a variable res-
olution viewer could denote these areas as keypoints or snapshots
for users to explore. In this work, we studied alternative approaches
for variable resolution navigation. For example, we have explored
displaying our segmentation results as a method to designate inter-
esting areas. Assuming that each individual image in the composite
has similar number of pixels, smaller patches of labellings in a seg-
mentation will denote areas where a user might want to zoom into
and explore. The previous assumption is valid if the images in a
composition are captured using a single camera.

Figure 7: Given a variable resolution image, a pan (a) should cor-
rectly match the zoom level at a resolution’s boundary (b) while also
adjusting smoothly between images (c). An example from the Tem-
ple image of Figure 9(d). To quantize close zooms as equal, near-
est quadtree levels are used for boundary values (e). Intersecting
boundaries are eroded to remove singularities (f). From this input,
our Section 3.4 solver produces a smooth zoom field (g).

4.3. Resolution hugging pan

Presenting the segmentation or snapshots relies on UI elements,
which could be distracting and clutter a viewer in practice. There-
fore, in this work, we also explore if direct navigation of resolution
is possible, thereby removing the need for additional UI design. In
particular, we provide a novel navigation scheme for variable reso-
lution imagery: a pan that hugs resolution by continually adjusting
the zoom level based on the data currently in view. This navigation
provides an intuitive and easy way for users to explore all of the
available detail in our images. The first, obvious approach is to au-
tomatically adjust the view’s zoom to match the zoom level of the
variable resolution image at the center of a view. While this would
adjust the view correctly, there will be a harsh, severe transition in
zoom factors as a user pans between resolutions. What is needed is
a field such that the zoom smoothly transitions from one resolution
to another. Therefore, the key component of our new navigation is
a smooth scalar field computed on our variable resolution graph to
enable a smooth zoom transition.

Variable resolution navigation field. Figure 7 illustrates the con-
struction of our variable resolution navigation field. Given an im-
age with various zoom levels, we need to construct a field that en-
codes a smooth zoom transition between resolutions. For instance
in Figure 7a, our field would smoothly transition within the 1x-3x
areas and the 3x-10x areas. In other words, we need a smooth in-
terpolant such that the values of our field match the zoom level
at the boundaries of each area of resolution (see Figure 7b and
7c). Recall that our compositing pipeline already has a mechanism
that removes harsh and adds smooth transitions. By leveraging the
gradient-domain colour correction outlined in Section 3.4, a smooth
field can be formed. Figure 7(d-g) provides an example of our ap-
proach operating on a portion of the Temple image of Figure 9.

This figure also illustrates the practical design decisions we
used to achieve the best quality field. Given the segmentation of
Figure 7d, we first extract the transition boundaries between reso-
lutions of the variable resolution image. This boundary is given the
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Figure 8: Comparison to Photo Zoom (a). Using the parameters from their approach produces significant artefacts due to flowers moving
between captures, in addition to loss of detail in the bug (b). By studying their parameters, we found that artefacts can be removed, but this
also causes little to no seams to be produced (c). This adds new artefacts for image to image transitions (d).

Figure 9: Temple: This variable resolution image has 7 captures and was processed by our pipeline to give a 47x effective zoom. Although
the images are only 141MP and took 3 min to capture, our approach gives the sensation of zooming into a uniform 21.5GP image. Interesting
details are provided as insets with corresponding seams. The full seam segmentation, navigation field, and comparisons are also provided.

value of the largest zoom/resolution level. Similarly to segmenta-
tion, it is advantageous to add quantization to this solution in order
to treat close, real-valued zoom levels as equivalent. To this end, the
values for our solver are based on the nearest (rounded) quadtree
level (Figure 7e). This rounding gives several benefits. For instance,
a view’s zoom will be uniform as a user pans between similar reso-
lutions. In addition, it allows our approach to union all boundaries
of equivalent resolutions, simplifying the optimization. These ben-
efits come at the cost of rounding up or down the zoom level at most
by a factor of 2, which we have found does not have a significant
effect on the navigation in practice. For areas that abut, the points at
which they cross lead to non-smooth discontinuities. Therefore, we
erode the boundaries of lower values based on a user provided dis-
tance (see Figure 7f). Also note that the above quantization has an
additional benefit of erosion only occurring at large discontinuities.
Given these final boundaries and values, the gradient-domain colour
correction outlined in Section 3.4 can be used to form a smooth field.
We adopt an optimization similar to colour correction, but adjust the
guiding gradient field to be 0 everywhere and set Dirichlet condi-
tions, locking the values at the boundary nodes. The final computed
field for our example is shown in Figure 7g. Note that the optimiza-
tion will automatically fill closed boundaries uniformly.

5. Results

This section and the accompanying video provide real-world exam-
ples of variable resolution images makingmegapixels (MP) feel like

Figure 10: Flower: With 10x zoom the 60MP collection has an im-
plied resolution of 1.9GP. A mosaic with a foreground subject is
only possible with highly specialized hardware for gigapixel im-
agery. The blue circles highlight where our graph cuts segmentation
handles the presence of a dynamic object in the scene. The full seam
segmentation and navigation field are also provided.

gigapixels (GP). The following images were acquired with a con-
sumer SONY DSC-HX300 camera. Acquisition times are provided
for each along with segmentation results and the multiresolution
navigation field (quadtree level, log zoom of image) with a colour
map [KRC02] (erosion distance was 600 pixels for all). We have
provided an example of a view with and without the blend of
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Figure 11: Hikers: An 18x effective zoom gives the 101MP collection of images an implied resolution of 6.4GP. Inset are two groups of
hikers discovered on the mountain. All images took a little over a minute to acquire. The seams for the purple inset and navigation field are
provided. The red inset shows the bad colour correction results from Dirichlet conditions. The green inset shows the segmentation produced
by a traditional pipeline, with locked pixels shown as a striped overlay; note the resulting loss of images and detail.

Section 3.5 as supplemental material. Segmentations without
blend are provided in the figures. We also provide comparisons
to Photo Zoom beyond the ones shown in this paper as supple-
mental material. For clarity in figures, zoom levels are rounded
to the nearest integer. Actual zoom values are used in the implied
resolution calculations for each. As stated previously, the implied
resolution both defines the size of a gigapixel image that would
need to be captured for the same effective zoom, but also the
resolution necessary for the compositing pipeline if not using our
multiresolution approach. The traditional, single resolution pipeline
can not feasibly run on fully upsampled versions of our examples,
as noted in Section 3.2. Therefore, we compare our approach to
an intermediate resolution pipeline, specifically the resolution that
uses approximately the same number of pixels as our approach.
Figures 9 and 15 show the resolution loss that would result from
running such an intermediate resolution pipeline. The viewer along
with results data are provided in an OSF repository (https://osf.io/
zqevc/).

Figure 8 provides a comparison of our compositing approach to
Photo Zoom. We provide an example of Photo Zoom’s compositing
run using the parameters documented in their paper. As previously
discussed, the emphasis on the coarse image in their pipeline re-
moves interesting detail from the final image. For example, the bug
on the flower (orange) loses most of its detail. Note that a simple
flip of the emphasis would not fix this problem, since pixels that
only appear in the coarse image (the woman’s shoulder) need to
be maintained. In addition, the local seam computation of Photo
Zoom can only handle small differences between overlapping im-
ages and introduces artefacts to this image due to the plants swaying
in the wind during acquisition (red). By varying their parameters
a composite can be found such that these artefacts are removed,
but these parameters effectively remove their seam, which leads
to other artefacts at image transitions. Our approach handles these
cases.

The Temple composite in Fig. 9 is a 7 image collection that took
3 minto acquire. With our process (λ = 3, radius = 15, Dirichlet)
the 141MP of imagery has an effective zoom of 47x and an im-
plied resolution of 21.5GP. The context image was cropped to have
amore panoramic aspect ratio. There are 3 areas of detail acquired to
highlight interesting features on the building. Our gradient domain
colour correction provides a seamless composite that when com-
bined with the fast acquisition time, leads to a more natural colour
than the gigapixel example of Fig. 1. A comparable intermediate
resolution pipeline would result in a 9x detail loss in each dimen-
sion at the highest resolution; see pink insets.

The foreground of gigapixel imagery is often lifeless. Large im-
ages where a subject stands in the foreground are impossible for
all but a few highly-specialized hardware configurations [CMN11,
BH09, BGS*12]. In contrast, the Flower image in Fig. 10 showcases
a foreground subject. Note that the foreground subject needed to be
present only for one of the images. Processing the 3 images with our
approach (λ = 3, radius = 70, Dirichlet) provides an image with
the same effective zoom of a 1.9GP mosaic but is only 60MP. The
images took 2 min to acquire. The blue circles highlight our graph
cuts energy finding a minimal transition that avoids removal of her
shoulder, since she was only present for one image.

The Hikers variable resolution image in Fig. 11 has 5 images and
was acquired in a little over a minute. The 101MP collection pro-
cessed by our pipeline (λ = 10, radius = 30, Neumann) gives an
effective zoom of 18x and an implied resolution of a 6.4GP mo-
saic. This composite also highlights the needed flexibility in colour
correction. The coarse image contains a portion of the sky that is
relatively overexposed. As the inset image (red) shows, artefacts
are introduced if Dirichlet boundary conditions are used. As pre-
viously discussed, our approach is not limited to Dirichlet. In this
case, Neumann conditions produce a higher quality final image.
Figure 11 lastly has an inset illustrating how our Hikers example
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Figure 12: Honolulu: The 14x effective zoom gives the 108MP collection an implied resolution of 9.1GP. All images were captured in 2 min.
Inset are two interesting detailed portions (orange, purple) of the image along with their graph cuts segmentations. In addition, the full seam
segmentation along with the navigation field are provided.

would lookwith the standard segmentation energy, with input masks
for selected detail areas indicated as striped overlays. The traditional
energy is not designed for fully inset images. In this case, images
without input masks are lost, and the seams differ only slightly from
the masks. This results in much detail loss and large jumps in reso-
lution. Instead we use a detail preserving energy.

Figures 12-15 provide example scenes that are challenging for
traditional gigapixel imagery. All contain relatively small dynamic
elements in the detail images and, in particular, have portions that
capture the waves of the ocean. Waves with their constant, chaotic
motion are especially difficult for seamless, large mosaic construc-
tion. For these examples, a user can easily denote, either via their
acquisition and/or the input segmentation masks, that problem areas
should only be provided by a single image.

The Honolulu image in Fig. 12 features a view of a city where
the context image is a traditional panorama produced outside our
pipeline. All detail images, as well as the source images for the con-
text, were captured in 2 min. Once the context image was ready, our
approach then imported both the detail images and the panoramic
context, and processed them (λ = 3, radius = 70, Dirichlet) giving
the 108MP collection of images the same 14x effective zoom as a
9.1GP mosaic. Detail is reserved for the beach and not, for exam-
ple, wasted on the sky. Of particular note is the orange inset image,
where you can see something akin to a standard graph cuts segmen-
tation because the images have a similar zoom level. This illustrates
how our energy reduces to the standard seam calculation [ADA*04]
in these cases.

The Lighthouse composite with its 30x effective zoom gives its 6
images (121MP) the zoom of a 18GP mosaic (λ = 5, radius = 15,
Dirichlet). Resolution is added to the lighthouse and not the sky or
ocean. The images took 3 min to capture. Next, the Lagoon com-
posite has 4 images (81MP) with an effective zoom of 10x and an
implied resolution of 1.9GP. Here a photographer samples the in-
teresting detail of the swimmers in the calm water of the lagoon
and uses a mask for the context image to avoid having to stitch the
chaotic waves of the ocean (capture time < 1 min).

The six captures that make up the Beach variable resolution im-
age in Fig. 15 (121MP) were taken in 10 min and provide our largest
implied resolution of 37.6GP with an effective zoom of 43x. Using
our approach (λ = 3, radius = 15, Dirichlet), interesting detail is

Figure 13: Lighthouse: With a 30x effective zoom the 121MP
collection has an implied resolution 18GP. Inset (yellow) is the
graph cuts seam segmentation. Note the halo and blurring artefacts
present in Photo Zoom’s output. The navigation field is also pro-
vided.

Figure 14: Lagoon: An artist reserves resolution for only the swim-
mers in the calm lagoon. The 4 images (81MP) give this composite
an effective zoom of 10x with a 1.9GP implied resolution. Interest-
ing detail with swimmers are provided with segmentations. The full
seams and navigation field are also provided.

added to the hotel and not to the sand or sky. A comparable inter-
mediate resolution pipeline would result in an 11x detail loss in each
dimension at highest resolution; see red inset. In addition, using in-
put masks the segmentation can fix parallax errors like the one that
appears at the beach sign. Given the common complete overlap be-
tween images, it is often the case that one of the images captures
such a problematic area in its entirety. In this case, a user can trade
resolution for a contiguous sign.
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Figure 15: Beach: A 43x effective zoom gives this 121MP collection an implied resolution of 37.6GP. Inset images illustrate the variable
detail available in the image. In addition, given the small number of images, an artist can easily find and remove problems. Here resolution is
traded to fix parallax misalignment in the sign. The red inset compares the result resolution given the same number of graph cut nodes for our
approach and for an intermediate resolution pipeline. The seam segmentation for the purple inset and the navigation field are also provided.

6. Discussion

In this work, we presented a new compositing pipeline and nav-
igation approach for variable resolution imagery. We have shown
with our approach, variable resolution imagery can provide a high-
quality alternative to gigapixel mosaics. By using only a handful of
images acquired with consumer hardware, photographers can pro-
vide the same deep zooms as these larger images.

Our main focus of this work is on the use of variable resolution
imagery as an alternative to artistic photo mosaics. It is still an open
question for future work what other contexts can take advantage of
the sparsity of interesting detail. For example, our approach is likely
not suitable for surveillance applications, where interesting detail
often cannot be determined at the time of capture. The approach in-
troduced in this work can be thought of as an approach to create a
variable super-resolution image [YSL*16]. An interesting direction
for future work will be to see if an approach such as ours can be used
broadly to aid super resolution image creation. Our neighbourhood
strategy was driven by the fact that, for pipeline components like
gradient domain blending, a majority of our neighbourhood lookups
would be between pixels at the same resolution. In future work we
plan to explore if other indexing strategies [AT09] can lead to faster
queries. Using the quadtree level values in both the segmentation
and the navigation field raises interesting challenges for values that
straddle a power-of-two. This is a general limitation for any quanti-
zation approach. The benefits of treating close zoom values as equal
outweighs this concern. For segmentation, our system currently de-
tects this situation and rounds up zoom levels below but close to
a power-of-two (guaranteeing no loss of resolution in our solve).
Finally, for evaluation purposes the real-valued navigation field is
currently stored as a compressed [Lin14] variable resolution graph
with floating point values. Future work will study if such a field can
be saved with a small footprint.
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Figure 1: Comparison image: (left) Photo Zoom results and (right)
our results for the Hikers example.

Figure 2: Comparison image: (a) Input image (b) Layers from
copied fish.

Figure 3: The Beach image processed using Photo Zoom (5 × 5,
σ = 2).

Figure 4: The Lagoon image processed using Photo Zoom (5 × 5,
σ = 2).

Figure 5: The Lighthouse image processed using Photo Zoom
(5 × 5, σ = 2).

Figure 6: The Honolulu image processed using Photo Zoom (5× 5,
σ = 2).

Figure 7: The Hikers image processed using a more tradi-
tional pipeline.

Figure 8: Registration input for Temple image.

Figure 9: Registration input for Hikers image.

Figure 10: Registration input for Honolulu image.

Figure 11: Registration input for Lighthouse image.

Figure 12: Registration input for Lagoon image.

Figure 13: Registration input for Hotel image.

Figure 14: Registration input for Flower image.

Figure 15: Examples of the resolution jump alpha blend easing large
resolution transitions.

Data video S1
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