
Neon: A Single-Chip 3D Workstation Graphics Accelerator

Joel McCormack, Robert McNamara, Christopher Gianos, Larry Seiler, Norman P. Jouppi & Ken Correll
Digital Equipment Corporation

Abstract
High-performance 3D graphics accelerators traditionally re-

quire multiple chips on multiple boards, including geometry,
rasterizing, pixel processing, and texture mapping chips. These
designs are often scalable: they can increase performance by using
more chips. Scalability has obvious costs: a minimal configura-
tion needs several chips, and some configurations must replicate
texture maps. A less obvious cost is the almost irresistible temp-
tation to replicate chips to increase performance, rather than to
design individual chips for higher performance in the first place.

In contrast, Neon is a single chip that performs like a multi-
chip design. Neon accelerates OpenGL [191 3D rendering, as
well as Xl 1 1201 and Windows/NT 2D rendering. Since our pin
budget limited peak memory bandwidth, we designed Neon from
the memory system upward in order to reduce bandwidth re-
quirements. Neon has no special-purpose memories; its eight
independent 32-bit memory controllers can access color buffers, 1.
depth buffers, stencil buffers, and texture data. To fit our gate
budget, we shared logic among different operations with similar
implementation requirements, and left floating point calculations
to Digital’s Alpha CPUs. Neon’s performance is between HP’s
Visualize fx4 and fx6, and is well above SGI’s MXE for most
operations. Neon-based boards cost much less than these com-
petitors, due to a small part count and use of commodity
SDRAMs.

CR Categories and Subject Descriptors: 1.3.1 [Computer
Graphics]: Hardware Architecture - Graphics processors; 1.3.3
[Computer Graphics]: Picture/Image Generation - Line and curve
generation; 1.3.7 [Computer Graphics]: Three-dimensional
Graphics and Realism - Color, shading, shadowing, and texture;
B.3.2 [Memory Structures]: Design Style-Cache memories

Additional Keywords: graphics pipeline, rasterization,
chunk rendering, tile rendering, texture cache, level of detail,
direct rendering

1. INTRODUCTION
Neon borrows much from Digital’s Smart Frame Buffer [141

family of chips, in that it extracts a large proportion of the peak
memory bandwidth from a unified frame buffer, accelerates only
rendering operations, and efficiently uses a general I/O bus.

Neon makes efficient use of memory bandwidth by reducing

Joel McCormack and Norman Jouppi are at Digital’s Western
Research Lab, Robert McNamara is at Digital’s Systems Research
Center, and Christopher Gianos is in Digital’s Semiconductor
group, e-mail at [First.Last@digital.com]. Larry Seiler and Ken
Correll, formerly of Digital, now at Mitsubishi Electric Research
Laboratory, e-mail at { seilercorrell} @merl.com.

page crossings, prefetching pages, and batching operations to
reduce memory bus turnaround. It uses about 70% of its 3.2
gigabyteslsecond of bandwidth for rendering and screen refresh,
wasting 30% in overhead cycles that don’t transfer data. Neon
supports 32 to 128 megabytes of SDRAM; the 128 megabyte
configuration has over 100 megabytes available for textures, and
can store a 512 x 512 x 256 3D g-bit intensity texture.

Unlike most fast workstation accelerators, Neon does not ac-
celerate floating-point operations. Digital’s 500 MHz 21164A
Alpha CPU [S] processes 1.5 to 4 million lit vertices per second.
We expect the 600 MHz 21264 Alpha [7] [lo] to process 2.5 to 6
million vertices per second, and faster Alpha CPUs are coming.

Since Neon accepts vertex data after lighting computations, it
requires as little as 12 bytes/vertex for (x, y, z, r, g, b, a) informa-
tion. A 32.bit, 33 MHz PC1 supports over 8 million such verti-
ces/second; a 64-bit PC1 should support 15 million verti-
ces/second. The 64-bit PC1 allows texture downloads at 200
megabytes/second, and the large-memory configurations should
allow many textures to stay in the frame buffer across several
frames. We thus saw no need for a special-purpose graphics bus.

Neon targets many of the capabilities of the SGI RealityEn-
gine [l], with the exception of polygon antialiasing. Neon accel-
erates rendering of Z-buffered Couraud shaded, trilinear perspec-
tive-correct texture-mapped triangles and lines. Neon supports
antialiased lines, Microsoft Windows lines, and Xl 1 wide lines.

Performance goals were 4 million 25-pixel, shaded, Z-
buffered triangles/second, 2.5 million 50-pixel triangles/second,
and 600,000 to 800,000 50-pixel textured triangles/second. Very
early in the design, we traded increased gate count for reduced
design time, increasing the Gouraud shaded, Z-buffered triangle
setup rate from a planned 3.1 million per second to over 7 million
per second. This decision proved fortunate-applications are
using ever smaller triangles, and the software team doubled their
original estimates of vertex processing rates.

2. WHY A SINGLE CHIP?
A single chip’s pin count constrains peak memory band-

width, while its die size constrains gate count. But there are com-
pensating implementation, cost, and performance advantages over
a multichip accelerator.

A single-chip accelerator is easier to design. Partitioning the
frame buffer across multiple chips forces copy operations to move
data from chip to chip, increasing complexity, logic duplication,
and pin count. In contrast, internal wires switch faster than pins
and allow wider interfaces (our Fragment Generator ships nearly
600 bits downstream). And changing physical pin interfaces is
harder than changing internal interfaces.

A single-chip accelerator uses fewer gates, as operations with
similar functionality can share generalized logic. For example,
copying pixel data requires computing source addresses, reading
data, converting it to the correct format, shifting, and writing to a
group of destination addresses. Texture mapping requires com-
puting source addresses, reading data, converting it, filtering, and
writing to a destination address. In Neon, pixel copying and tex-
ture mapping share source address computation, a small cache for
texel and pixel reads, read request queues, format conversion, and
destination steering. In addition, pixel copies, texture mapping,
and pixel fill operations use the same destination queues and
source/destination blending logic. And unlike some PC accelera-

123

tors, both 2D and 3D operations share the same paths through the
chip.

This sharing amplifies design optimization efforts. For ex-
ample, the chunking fragment generation described below in Sec-
tion 5.25 decreases SDRAM page crossings. By making the
chunk size programmable, we also increased the hit rate of the
texture cache. The texture cache, in turn, was added to decrease
texture bandwidth requirements-but also improves the perform-
ance of 2D tiling and copying overlay pixels.

A single-chip accelerator can provide more memory for tex-
ture maps at lower cost. For example, a fully configured Reality-
Engine replicates the texture map 20 times for the 20 rasterizing
chips; you pay for 320 megabytes of texture memory, but appli-
cations see only 16 megabytes. A fully configured InfiniteReality
[17] replicates the texture four times-but each rasterizing board
uses a redistribution network to fully connect 32 texture RAMS to
80 memory controllers. In contrast, Neon doesn’t replicate tex-
ture maps, and uses a simple 8 x 8 crossbar to redistribute texture
data internally. The 64 megabyte configuration has over 40
megabytes available for textures after allocating 20 megabytes to
a 1280 x 1024 display.

Neon is a large chip. Its die size is 17.3 x 17.3 mm, using
IBM’s 0.35 pm CMOS 5s standard cell process with 5 metal lay-
ers [9]. (Their 0.25 pm 6s technology would reduce this to about
12.5 x 12.5 mm, and 0.18 pm 7s would further reduce this to
about 9 x 9 mm.) The design uses 6.8 million transistors and runs
at 100 MHz. The chip has 609 signal pins, packaged in an 824-
pin ceramic column grid array. The 8 memory controllers each
use 32 data pins and 23 address/control pins, for a total of 440
signal pins to memory. The direct interface to a 64-bit PC1 uses
90 pins, and the RAMDAC interface uses 68 pins.

3. WHY A UNIFIED MEMORY SYSTEM?
Neon differs from many workstation accelerators in that it

has a single, general graphics memory system to store colors, Z
depths, textures, and off-screen buffers.

The biggest advantage of a single memory system is the dy-
namic reallocation of memory bandwidth. Dedicated memories
imply a dedicated partitioning of memory bandwidth-and wast-
ing of bandwidth dedicated to functionality currently not in use.
If Z buffering or texture mapping is not enabled, Neon has more
bandwidth for the operations that are enabled. Further, partition-
ing of bandwidth changes instantaneously at a fine grain. If texel
fetches overlap substantially in a portion of a scene, so that the
texture cache’s hit rate is high, more bandwidth becomes avail-
able for color and Z accesses. If many Z buffer tests fail, and so
color and Z data writes occur infrequently, more bandwidth be-
comes available for Z reads. This automatic allocation of memory
bandwidth enables us to design closer to average memory band-
width requirements than to the worst case.

A unified memory system offers flexibility in memory allo-
cation. For example, users can specify 16.bit colors rather than
32.bit colors; this gains 7.5 megabytes for textures when using a
1280 x 1024 screen.

A unified memory system also offers greater potential for
sharing logic. For example, the sharing of copy and texture map
logic described above in Section 2 is possible only if textures and
pixels are stored in the same memory.

A unified memory system has one major drawback-texture
mapping may cause page thrashing as memory accesses alternate
between texture data and color/Z data. Neon reduces such
thrashing in several ways. Neon’s deep memory request and reply
queues fetch large batches of texels and pixels, so that switching
occurs infrequently. The texel cache and fragment generation
chunking ensure that the texel request queues contain few dupli-
cate requests. so that they fill up slowly and can be serviced infre-
quently. The memory controllers prefetch texel and pixel pages

when possible to minimize switching overhead. Finally, the four
SDRAM banks available on the 64 and 128 megabyte configura-
tions usually eliminate thrashing, as texture data is stored in dif-
ferent banks from color/Z data. These techniques are discussed in
greater detail in Section 4 below.

SGI’s 02 [13] carries unification one step further, by using
the CPU’s system memory for graphics data. But roughly speak-
ing, CPU performance is usually limited by memory latency,
while graphics performance is usually limited by memory band-
width, and different techniques must be used to address these
limits. We believe that the substantial degradation in both graph-
ics and CPU performance caused by a completely unified memory
isn’t worth the minor cost savings.

4. IS NEON JUST ANOTHER PC
ACCELERATOR?
A single chip connected to a single frame buffer memory

with no floating point acceleration may lead some readers to con-
clude “Neon is like a PC accelerator.” The dearth of hard data on
PC accelerators makes it hard to compare Neon to these architec-
tures, but we feel a few points are important to make.

Neon is in a different performance class from PC accelera-
tors. Without floating point acceleration, PC accelerators are
limited by the slow vertex transformation rates of Pentium CPUs.
Many PC accelerators also burden the CPU with computing and
sending slope and gradient information for each triangle; Neon
uses an efficient packet format that supports strips, and computes
triangle setup information directly from vertex data. Neon does
not require the CPU to sort objects into different chunks like Tal-
isman [3][21], nor does it suffer the overhead of constantly re-
loading texture map state for the different objects in each chunk.

Neon directly supports much of the OpenGL rendering pipe-
line, and this support is general and orthogonal. Enabling one
features does not disable other features, and does not affect per-
formance unless the feature requires more memory bandwidth.
For example, Neon can render OpenGL lines that are both wide
and dashed. Neon supports all OpenGL 1.2 source/destination
blending modes, and both exponential and exponential squared
fog modes. All pixel and texel data are accurately computed, and
do not use gross approximations such as a single fog or mip-map
level per object, or a mip-map level interpolated across the object.
And all three 3D texture coordinates are perspective correct.

5. ARCHITECTURE
Neon’s performance isn’t the result of any one great idea, but

rather many good ideas-some old, some new-working syner-
gistically. Some key components to Neon’s performance are:

a unified memory to reduce idle memory cycles,
a large peak memory bandwidth (3.2 gigabyteslsecond with
100 MHz SDRAM),
the partitioning of memory among 8 memory controllers,
with fine-grained load balancing,
the batching of fragments to amortize read latencies and bus
turnaround cycles, and to allow prefetching of pages to hide
precharge and row activate overhead,
chunked mappings of screen coordinates to physical ad-
dresses, and chunked fragment generation, which reduce
page crossings and increase page prefetching,
a screen refresh policy in which memory controllers overlap
refresh page crossings with other work,
a small texel cache and chunked fragment generation to in-
crease the cache’s hit rate,
deeply pipelined triangle setup logic and a high-level inter-
face with minimal software overhead.

124

. multiple formats for vertex data, which allow software to
trade CPU cycles for I/O bus cycles,

. the ability for applications to map OpenGL calls to Neon
commands, without the inefficiencies usually associated with
such direct rendering.
Section 5.1 below briefly describes Neon’s major functional

blocks in the order that it processes commands, from the bus in-
terface on down. Sections 5.2 to 5.6, however, provide more
detail in roughly me order we designed Neon, from the memory
system on up. We hope that this better conveys how we first
made the memory system efficient, then constantly strove to in-
crease that efficiency as we moved up the rendering pipeline.

5.1. Architectural Overview
Figure 1 shows a block diagram of the major functional units

of Neon.
The PC1 logic supports 64-bit transfers at 33 MHz. Neon

can act as a bus master, and so can initiate DMA requests to read
or write main memory.

‘Ihe PC1 logic forwards command packets and DMA data to
the Command Parser. The CPU can write commands directly to
Neon via Programmed I/O (PIO), or Neon can DMA commands
from main memory. The parser accepts nearly all OpenGL [191
object types, including line, triangle, and quad strips, so that CPU
cycles and I/O bus bandwidth aren’t wasted by duplication of
vertex data. Finally, the parser oversees DMA operations from
the frame buffer to main memory, hence the connection from
Texel Central.

The Fragment Generator performs object setup and traversal.
The Fragment Generator uses half-plane edge functions [18] to
determine object boundaries, and moves a fragment stamp inside
each object in an order that enhances the efficiency of the memory
system. Each cycle, the stamp generates a single textured frag-
ment, a 2 x 2 square of 64-bit Z-buffered fragments, or up to 8 32-
bit or 32 8-bit fragments along a scanline. (A fragment contains
the information required to paint one pixel.) When generating a 2
x 2 block of fragments, the stamp interpolates six channels for
each fragment: red, green, blue, alpha transparency, Z depth, and
fog intensity. When generating a single texture-mapped fragment,
the stamp interpolates eight additional channels: three texture
coordinates, the perspective correction term, and the four deriva-
tives needed to compute the mip-mapping level of detail. Setup
time depends upon the number of channels, ranging from over 7
million RGBZ triangles/second to just over 2 million triar-
gles/second for all 14 channels. The Fragment Generator tests
fragments against four clipping rectangles (which may be inclu-
sive or exclusive), and sends visible fragments to Texel Central.

Texel Central was named after Grand Central Station, as it
provides a crossbar between memory controllers. Any data that is
read from the frame buffer in order to derive data that is written to
a different location goes through Texel Central. This includes
texture mapping, copies within the frame buffer, and DMA trans-
fers to main memory. Texel Central also expands an internal 32 x
32 stipple pattern or an externally supplied stipple into 256 bits of
color information for 2D fill operations, generating 800 million
32.bit RGBA fragments/second or 3.2 billion 8-bit Index frag-
ments/second.

Texture mapping is performed at a peak rate of one fragment
per clock cycle before a Pixel Processor tests the Z value. This
wastes bandwidth by fetching texels that are obscured, but pre-
textured fragments require about 350 bits and post-textured frag-
ments need about 100 bits. We didn’t have enough real estate for
more and wider fragment queues to texture map after the Z depth
test. Further, the Z value of a textured fragment cannot be written
until after the textured color has passed OpenGL’s Alpha test.
Such a wide separation between reading and writing Z values

64-bit PC1

Command Parser

Fragment Generator

4 I I -Video]
1 oller

Figure 1: Neon block diagram

would significantly complicate maintaining frame buffer consis-
tency, as described in Section 5.2.2 below.

Texel Central feeds fragments to the eight Pixel Processors,
each of which has a corresponding Memory Controller. The Pixel
Processors handle the back end of the OpenGL rendering pipeline:
alpha, stencil, and Z depth tests; fog; source and destination
blending (including raster ops); and dithering.

The Video Controller refreshes the screen, which can be up
to 1600 x 1200 pixels at 76 Hz. It requests pixel data for specific
screen locations from each Memory Controller, and yanks a “do it
now” flag if a Memory Controller is too nonchalant about satis-
fying the request. Each Memory Controller autonomously reads
and interprets overlay and display format bytes, and if the overlay
is transparent it reads data from the front, back, left, or right color
buffer. The Video Controller sends low color depth pixels (5/5/5
and 4/4/4) through “inverse dithering” logic, which uses an adap-
tive digital filter to restore much of me original color information.
Finally, the controller sends the filtered pixels to an external
RAMDAC for conversion to an analog video signal.

Frame buffer memory is partitioned equally among the eight
Memory Controllers. Each controller has five request queues:
Source Read Request from Texel Central, Pixel Read and Pixel
Write Request from its Pixel Processor, and two Refresh Read
Requests (one for each SDRAM bank) from the Video Controller.
Each cycle, a Memory Controller services a request queue using
heuristics intended to minimize wasted memory cycles.

A single Memory Controller owns all data associated with a
pixel, so that it can process rendering and screen refresh requests
independently of the other controllers. Neon stores the
front/back/left/right buffers, Z, and stencil buffers for a pixel in a
group of 64 bits or 128 bits, depending upon the number of buff-
ers and the color depth. To improve 8-bit 2D rendering speeds
and to decrease screen refresh overhead, a controller stores a
pixel’s overlay and display format bytes in a packed format on a
different page.

125

5.2. Pixel Processors and Memory Con-
trollers

Neon’s design began with the Pixel Processors and Memory
Controllers. We wanted to make effective use of a large peak
bandwidth by maximizing the number of controllers, and by re-
ducing read/write turnaround overhead, page crossing overhead,
and pipeline stalls due to unbalanced loading of the controllers.

5.2.1. Memory Technology

We evaluated several memory technologies. We quickly re-
jected extended data out (EDO) DRAM and RAMBUS RDRAM
due to inadequate performance (the pre-Intel RAMBUS protocol
is inefficient for the short transfers we expected), EDG VRAM
due to high cost, and synchronous graphic RAh4 (SGRAM) due to
high cost and limited availability. This left synchronous DRAM
(SDRAM) and 3DRAM.

3D-RAM [4], developed by Sun and Mitsubishi, turns
read/modify/write operations into write-only operations by per-
forming Z tests and color blending inside the memory chips.
Deering [4] claims that this feature gives it a “3-4x performance
advantage” over conventional DRAM technology at the same
clock rate, and that its internal caches further increase perform-
ance to “several times faster” than conventional DRAM.

We disagree. A good SDRAM design is quite competitive
with 3D-RAM’s performance. Batching eight fragments reduces
read latency and bus turnaround overhead to % cycle per frag-
ment. While 3D-RAM requires color data when the Z test fails,
obscured fragment writes never occur to SDRAM. In a scene
with a depth complexity of three (each pixel is covered on average
by three objects), about 708 of fragments fail the Z test. Factor-
ing in batching and Z failures, we estimated 3D-RAM’s rendering
advantage to be a modest 30 to 35%. 3D-RAM’s support for
screen refresh via a serial read port gives it a total performance
advantage of about 1.8-2x SDRAM. 3D-RAM’s caches didn’t
seem superior to intelligently organizing SDRAM pages and pre-
fetching pages into SDRAM’s multiple banks; subsequent meas-
urement of a 3D-RAM-based design confirmed this conclusion.

3D-RAM has several weaknesses when compared to
SDRAM: incomplete support for OpenGL stencils and color
blending, a slow 20 nsec read cycle time, inflexible addressing
targeted at 1280 x 1024 screens, dedicated Z data pins that sit idle
when not Z buffering, and high cost (currently 6 to 10 times more
expensive per megabyte than SDRAM). Further, we’d need a
different memory system for texture data. The performance ad-
vantage during Z buffering didn’t outweigh these problems.

5.2.2. Fragment Batching and Overlaps

Processing fragments one at a time is inefficient, as each
fragment incurs the full read latency and high impedance bus
turnaround cycle overhead. Batch processing several fragments
reduces this overhead to a reasonable level. Neon reads all Z
values for a batch of fragments from the frame buffer, compares
each to the corresponding fragment’s Z value, then writes each
visible fragment’s Z and color values to the frame buffer.

Batching introduces a read/write consistency problem. If
two fragments have the same pixel address, the second fragment
must not use stale Z data. Either the first Z write must complete
before the second Z read occurs, or the second Z “read” must use
an internal bypass. Since it is rare for overlaps to occur closely in
time, we considered it acceptable to stop reading pixel data until
the first fragment’s write completes.

We evaluated several schemes to create batches with no
overlapping fragments, such as limiting a batch to a single object;
all resulted in average batch lengths that were too short. We fi-
nally designed an eight-entry fully associative overlap detector

per memory controller, which normally creates batches of eight
fragments. The overlap detector terminates a batch and starts a
new batch if an incoming fragment overlaps an existing fragment
in the batch, or if the overlap detector is full. In both cases, it
marks the fist fragment in the new batch, and “forgets” about the
old batch by clearing the associative memory. When a memory
controller sees a marked fragment, it writes all data associated
with the previous batch before reading new data for the marked
fragment. Thus, the overlap detector need not keep track of all
unretired fragments further down the pixel processing pipeline.

To reduce chip real estate for tags, we match against only the
two bank bits and the column address bits of a physical address.
If two fragments are in the same position on different pages in the
same SDRAM bank, the detector falsely flags an overlap. This
“mistake” can actually increase performance. In this case, it is
usually faster to terminate the batch, and so turn the bus around
twice to complete all work on the fist page and then complete all
work on the second page, than it is to bounce twice between two
pages in the same bank (see Section 5.2.4 below).

5.2.3. Memory Controller Interleaving

Most graphics accelerators load balance memory controllers
by finely interleaving them in one or two dimensions, favoring
either rendering or screen refresh operations. An accelerator may
cycle through all controllers across a scanline, so that screen re-
fresh reads are load balanced. This one-dimensional interleaving
pattern creates vertical strips of ownership, as shown in Figure 2.
Each square represents a pixel on the screen; the number inside
indicates which memory controller owns the pixel.

The SGI RealityEngine [l] has as many as 320 memory
controllers. To improve load balancing during rendering, the
RealityEngine horizontally and vertically tiles a 2D interleave

Figure 2: Typical 1D pixel interleaving

Figure 3: Typical 2D pixel interleaving

Figure 4: Neon’s rotated pixel interleaving

126

pattern, as shown in Figure 3. Even a two-dimensional pattern
may have problems load balancing the controllers. For example,
if a scene has been tessellated into vertical triangle strips, and the
3D viewpoint maintains this orientation (as in an architectural
walk-through), a subset of the controllers get overworked.

Neon load balances controllers for both rendering and screen
refresh operations by rotating a one-dimensional interleaving
pattern from one scanline to the next. Since half the controllers
can handle the bandwidth requirements of a one-pixel wide verti-
cal line, we interleave only half the controllers vertically, by ro-
tating two pixels each scanline, as shown in Figure 4. This is also
a nice pattern for texture maps, as any 2 x 2 block of texel resides
in different memory controllers. (Tbe SGI InfiniteReality [17]
uses a rotated pattern like Neon within a single rasterizing board,
but does not rotate the 2-pixel wide vertical strips owned by each
of the four rasterizing boards, and so has the same load balancing
problems as an g-pixel wide non-rotated interleave.)

5.2.4. SDRAM Page Organization

Like other types of dynamic RAM, a page of SDRAM data
must be loaded into a bank using a row activate command before
reading from the page. Since this load is destructive, a bank must
be written back using a precharge command before loading an-
other page into the bank. The precharge and row activate take
several cycles, so it is desirable to access as much data as possible
within a page before moving to a new page.

Neon reduces the frequency of page crossings by allocating a
rectangle of pixels to an SDRAM page. Object rendering favors
square pages, while screen refresh favors wide pages. In order to
keep screen refresh overhead low, Neon allocates screen pages
with at worst an 8 x 1 aspect ratio, and at best a 2 x 1 aspect ratio,
depending upon pixel size, number of color buffers, and SDRAM
page size. Texture maps and off-screen buffers have no screen
refresh requirements, and use pages that are at worst twice as
wide as they are high. (Three-dimensional textures use pages that
are as close to a cube of texels as possible.)

A 16 megabit SDRAM has two banks, called A and B. A 64
megabit SDRAM has four banks, called A, B, C, and D. These
banks act as a two or four entry direct mapped page cache. It is
possible to prefetch a page to a bank-that is, precharge one page
and row activate a new page-in the midst of reading or writing
data to another bank. Prefetching a page early enough hides the
prefetch latency; in such cases it costs at most one overhead cycle
to switch from accessing one page to accessing another page in a
different bank. Note that a page belonging to the same bank as
the current page cannot be prefetched; all accesses to the current
page must complete before precharge and row activate can occur.

In the 32 megabyte configuration, each memory controller
has two banks. To maximize the chance that a page crossing
switches from one bank to another, Neon checkerboards pages
between two banks, as shown in Figure 5. Any horizontal or ver-
tical page crossings move from one bank to a different bank.

In the 64 and 128 megabyte configurations, each controller
has four banks. Checkerboarding all four banks slightly improves
performance at page corners, but not enough to warrant the com-
plication of prefetching more than one bank ahead. Instead, these
configurations assign the A and B banks to the bottom half of

Figure 5: Page interleaving with two banks

memory, and the C and D banks to the top half. Software prefer-
entially allocates pixel buffers to the A and B banks, and texture
maps to the C and D banks, to eliminate page thrashing between
drawing buffer and texture map accesses.

5.2.5. Fragment Generation Chunking

To further increase locality of reference, the Fragment Stamp
generates an object in rectangular “chunks.” Normally, the chunk
size matches the page size, so that the stamp generates all frag-
ments of an object on one page before generating fragments for
another page. Figure 6 shows the order in which a scanline-based
algorithm generates fragments for a triangle that touches four
pages. The shaded pixels belong to bank A. Note how only the
four fragments numbered 0 through 3 access the first A page be-
fore fragment 4 accesses the B page, which means that the pre-
charge and row activate overhead to open the first B page may not
be completely hidden. Note also that fragment 24 is on the first B
page, while fragment 25 is on the second B page. In this case the
page transition cannot be hidden at all.

Figure 7 shows the order in which our chunking algorithm
generates fragments. Note that generating all fragments on a page
gives us the maximum possible time to prefetch the next page.
Note further how the “serpentine” chunk ordering generates frag-
ments fllst for the upper left page, then the upper right page, then
the lower right page, and finally lower left page. This generally
increases the number of page crossings that can use prefetching.

Figure 6: Scanline fragment generation order

Figure 7: Neon’s chunklng fragment generation order

127

5.3. Texel Central
Texel Central is the kitchen sink of Neon. Since it is the

only crossbar between memory controllers, it handles texturing
and frame buffer copies. Since it has full connectivity to the Pixel
Processors, it expands the internal 32 x 32 stipple pattern or an
externally supplied stipple to foreground and background colors.

The subsections below describe a texture cache that reduces
memory bandwidth requirements with fewer gates than a tradi-
tional cache, and a method of computing OpenGL’s mip-mapping
level of detail with greater accuracy than is typically achieved.

53.1. Texel Cache Overview

Texel Central has eight fully associative texel caches, one
per memory controller. These are vital to texture mapping per-
formance, since texel reads steal bandwidth from other memory
transactions. Without caching, the 8 texel fetches per cycle for
trilinear filtering require the entire peak bandwidth of memory.
Fortunately, many texel fetches are redundant. When hilinear
filtering, a fragment requires a 2 x 2 block of texels from two
different texture maps. Adjacent fragments usually require over-
lapping 2 x 2 texel blocks; Hakura & Gupta [8] found that each
texel is used by an average of four fragments. Each cache stores
32 bytes of data, so can hold 8 32-bit texels, 16 16-bit texels, or
32 &bit texels. The total cache size is a mere 256 bytes, com-
pared to the 16 to 128 kilobyte texel caches described in [8]. Our
small cache size works well because chunking fragment genera-
tion improves the hit rate, the caches allow many more outstand-
ing misses than cache lines, the small cache line size of 32 bits
avoids fetching of unused data, and we never speculatively fetch
cache lines that will not be used.

The texel cache also improves rendering of small Xl 1 tiles.
An X x 8 tile completely fits in the caches, so once the caches are
loaded, Texel Central generates tiled fragments at the maximum
fill rate of 3.2 gigabytes per second. The cache helps larger tiles,
too, as long as one scanline of the tile fits into the cache.

5.3.2. Improving the Texel Cache Hit Rate

Scanline-oriented fragment generation creates locality of ref-
erence problems not just for SDRAM pages, but also for a multi-
line texel cache. If the texel requirements of one scanline of a
wide object exceed the capacity of the cache, texel overlaps across
adjacent scanlines are not captured by the cache, and performance
degrades to that of a single-line cache. Scanline generators can
alleviate this problem, but not eliminate it. For example, fragment
generation may proceed in a serpentine order, going left to right
on one scanline, then right to left on the next. This always cap-
tures some overlap between texel fetches on different scanlincs at

Read Request Address

I L I -
1 LRW ---) Address -hit’miss - Probe Result A

Counter Cache - cache index + Queue
Data Cache t

+

Address Memory
Queue Controller

@ Data Queue

the edges of a triangle, but also halves the width of triangles at
which cache capacity miss problems appear.

Neon attacks the locality problem directly, by exploiting the
chunking fragment generation described in Section 5.25 above.
When texturing is enabled, Neon matches the chunk size to the
capacity of the texel caches, rather than to the page size. This
ensures that most fragments that are physically close in space are
also generated closely in time. Redundant fetches still occur, but
usually only for fragments along two edges of a chunk. Neon
further reduces redundant fetches by making chunks very tall but
only one pixel wide, so that usually only the top fragment of each
chunk refetches texels that were already fetched for the chunk
above it. If each texel is fetched on behalf of four fragments,
chunking reduces redundant fetches in large triangles by about a
factor of 8, and texel read bandwidth by about 35%, when com-
pared to a scanline fragment generator.

5.3.3. Texel Cache Operation

A texel cache must not stall requests after a miss, and must
track a large number of outstanding misses-since several other
request queues are vying for the memory controller’s attention, a
miss might not be serviced for tens of cycles.

A typical CPU cache requires too much associative logic per
outstanding miss. By noting that a texel cache should always
return texels in the same order that they were requested, we elimi-
nated most of the associative bookkeeping. Neon instead uses a
queue between the address tags and the data portion of the texel
cache to maintain hit/miss and cache line information. This ap-
proach appears to be similar to the texel cache described in [24].

Figure 8 shows a block diagram of the texel cache. If an in-
coming request address matches an Address Cache entry, the
hardware appends an entry to the Probe Result Queue recording a
hit at the cache line index of the matched address. If the request
doesn’t match a cached address, the hardware appends an entry to
the Probe Result queue recording a miss, and that the new data
will replace the data at the Least Recently Written Counter’s
(LRWC) value. It appends the requested address to the Address
Queue, writes the address into the Address Cache line at the loca-
tion specified by the LRWC, and increments the LRWC. The
memory controller eventually services the entry in the Address
Queue, reads the texel data from memory, and deposits the corre-
sponding texel data at the tail of the Data Queue.

At the reply end of things, the hardware examines the head
entry of the Probe Result Queue each cycle. A “hit” entry means
that the requested data is available in the Data Cache at the loca-
tion specified by the cache index. When the requested data is
consumed, the head entry of the Probe Result Queue is removed.

If the head entry indicates a “miss” and the Data Queue is
non-empty, the requested data is in the head entry of the Data

f
Read Reply Data

Figure 8: Texel cache block diagram

128

Queue. When the data is consumed, it is written into the Data
Cache at the location specified by the cache index. The head
entries of the Probe Result and Data Queues are then removed.

5.3.4. Accurate Level of Detail Computation

Neon implements a more accurate computation of the mip-
mapping [23] level of detail (LOD) than most hardware. The
LOD is used to bound, for a given fragment, the instantaneous
ratio of movement in the texture map coordinate space (u, v) to
movement in screen coordinate space (x, y).

OpenGL’s desired LOD computation first determines the
distances moved in the texture map as a function of moving in the
x or y direction on the screen, takes the maximum, and then takes
the base 2 logarithm:

LOD = logz(max(sqrt((du/dx)* + (dv/d~)~),
sqrt((du/dy)’ + (dv/dy)‘)))

Software implementations usually do four multiplies, and
convert the square root to a divide by 2 after the loga.

OpenGL allows implementations to compute the LOD using
gross approximations to the desired computation. Hardware
commonly takes the maximum of the partial derivative magni-
tudes:

LOD = log2(max(abs(du/dx), abs(dv/dx),
abs(du/dy), abs(dv/dy)))

This implementation can result in an LOD that is too low by
half a mipmap level, which reintroduces the aliasing artifacts that
mip-mapping was designed to avoid.

Neon uses a two-part linear function to directly approximate
the desired distances. Without loss of generality, assume that
a > 6. The function:

if (b < a/2) return a + b/8 else return 7a/8 + b/4
is within f 3% of sqrt(a’ + b*). This reduces the maximum error
to about +0.05 mipmap levels-a ten-fold increase in accuracy
over typical implementations, for little extra hardware. The graph
in Figure 9 shows three methods of computing the level of detail
as a texture mapped square on the screen rotates from 0” through
4.5”. In this example, the texture map is being reduced by 50% in
each direction, and so the desired LOD is 1.0. Note how closely
Neon’s implementation tracks the desired LOD, and how poorly
the typical implementation does.

5.4. Fragment Generator
The Fragment Generator determines which fragments are

within an object, generates them in an order that reduces memory
bandwidth requirements, and interpolates the channel data pro-
vided at vertices.

The fragment generator uses half-plane edge functions

I ‘J

Figure 9: Various level of detail approximations

Figure 10: Triangle described by three edge functions

[6][181 to determine if a fragment is within an object. The three
directed edges of a triangle, or the four edges of a line, are repre-
sented by planar (affine) functions that are negative to the left of
the edge, positive to the right, and zero on the edge. A fragment
is inside an object if it is to the right of all edges in a clockwise
series, or to the left of all the edges in a counterclockwise series.
(Fragments exactly on an edge of the object use special inclusion
rules.) Figure 10 shows a triangle described by three clockwise
edges, which are shown with bold arrows. The half-plane where
each edge function is positive is shown by several thin “shadow”
lines with the same slope as the edge. The shaded portion shows
the area where all edge functions are positive.

For most 3D operations, a 2 x 2 fragment stamp evaluates the
four edge equations for each of the four positions in the stamp.
Texture mapped objects use a 1 x 1 stamp, and 2D objects use an
8 x 1 or 32 x 1 stamp. The stamp bristles with several probes that
evaluate the four edge equations outside the stamp boundaries; the
results are combined to determine in which direction the stamp
should move next. Probes are cheap, as they only compute a sign
bit. We use enough probes so that the stamp moves to locations
where it does not generate any fragments only when it is follow-
ing a very thin sliver triangle, or when it must move diagonally by
moving first horizontally, then vertically. (Moving the stamp
diagonally would have decreased performance due to an increased
cycle time.) When the stamp is one pixel high or wide, several
different probes may evaluate the edge functions at the same
point. The stamp movement algorithm handles coincident probes
without special code for the myriad stamp sizes. Stamp move-
ment logic cannot be pipelined, so simplifications like this avoid
making a critical path even slower.

The stamp may also be constrained to generate all fragments
in a 2” by 2”’ rectangular “chunk” before moving to the next
chunk, at the cost of three additional save states and associated
multiplexors. Chunking is not cheap.’ Each save state requires
over 600 bits to record the four edge values and all 14 interpolated
channels. But chunking improves the texture cache hit rate and
decreases page crossings, especially non-prefetchable crossings.
We found the cost well worth the benefits.

The fragment generator contains several capabilities specific
to lines. The setup logic can adjust endpoints to render Microsoft
Windows “cosmetic” lines. Lines can be dashed with a pattern
that is internally generated for OpenGL lines and some Xl 1 lines,
or externally supplied by software for the general Xl 1 dashed line
case. We paint OpenGL wide dashed lines by sweeping the stamp
horizontally across scanlines for y-major lines, and vertically
across columns for x-major lines. Again, to avoid slowing the
movement logic, we don’t change the movement algorithm. In-
stead, the stamp always moves across what it thinks are scanlines,
and we lie to it by exchanging the x and y coordinate information
on the way in and out of the stamp movement logic.

Software can provide a scaling factor to the edge equations
to paint the rectangular portion of Xl 1 wide lines. (This led us to
discover a bug in the Xl 1 server’s wide line code.) Software can
provide a similar scaling factor for antialiased lines. Neon nicely

’ It could be cheaper. We recently discovered that we could
have implemented chunking with only two additional save states.

129

rounds the tips of antialiased lines and provides a programmable
filter radius [161. The OpenGL implementation exploits these
features to paint antialiased square points up to six pixels in di-
ameter that look like the desired circular points.

5.5. Command Parser
The Command Parser decodes packets, detects packet errors,

converts incoming data to internal fixed-point formats, and de-
composes complex objects into triangle fans for the fragment
generator. Neon’s command format is sufficiently compact that
we found it unnecessary to use a high-speed proprietary bus be-
tween the CPU and the graphics device.

Neon’s command set is designed for high bandwidth se-
quential streaming data modes. We don’t initiate activity with
out-of-order writes to registers or frame buffer locations, but use
low-overhead, variable-length sequential commands. The proces-
sor can write commands directly to Neon, or can write to a ring
buffer in main memory, which Neon accesses using DMA.

Neon supports multiple ring buffers at different levels of the
memory hierarchy. Under normal conditions, the CPU uses a
small ring buffer that fits in the on-chip cache, which allows the
CPU to generate vertex information at the maximum possible
speed. If Neon falls behind the CPU, which then fills the small
ring buffer, the CPU can switch to a larger ring buffer. This
larger buffer mostly resides further down in the memory system,
so that the CPU then generates commands with somewhat less
efficiency. Once Neon catches up, the CPU switches back to the
smaller, more efficient ring buffer again.

55.1. Vertex Data Formats

Neon supports multiple representations for some data. For
example, RGBA color and transparency can be supplied as four
32-bit floating point values, four packed 16-bit integers, or four
packed 8 bit integers. The n and y coordinates can be supplied as
two 32-bit floating point values, or as signed 12.4 fixed-point
numbers. Using floating point, the six values (x, y, z, r, g, b) re-
quire 24 bytes per vertex. Using Neon’s most compact represen-
tation, they require only 12 bytes per vertex. These translate into
about 4 million and 8 million vertices/second on a 32.bit PCI.

If the CPU is the bottleneck, as with lit triangles, the CPU
uses floating-point values and avoids clamping, conversion, and
packing overhead. If the CPU can avoid lighting computations,
and the PC1 is the bottleneck, as with wireframe drawings, the
CPU uses the packed formats. Future Alpha chips may saturate
even a 64-bit PC1 or an AGP-2 bus with floating point triangle
vertex data, but may also be able to hide clamping and packing
overhead using new instructions and more integer functional
units. Packed formats on a 64-bit PC1 allows transferring about
12 to 16 million (x, y, z, r, g, h) vertices per second.

5.5.2. Better Than Direct Rendering

Many vendors have implemented some form of direct ren-
dering, in which applications get direct control of a graphics de-
vice in order to avoid the overhead of encoding, copying, and
decoding an OpenGL command stream [111. (Xl 1 command
streams are generally not directly rendered, as Xl 1 semantics are
harder to satisfy than OpenGL’s.) We were unhappy with some
of the consequences of direct rendering. To avoid locking and
unlocking overhead, CPU context switches must save and restore
both the architectural and internal implementation state of the
graphics device on demand, including in the middle of a com-
mand. Direct rendering applications make new kernel calls to
obtain information about the window hierarchy, or to accomplish
tasks that should not or cannot be directly rendered. These syn-
chronous kernel calls may in turn run the Xl1 server before re-

turning. Applications that don’t use direct rendering use more
efficient asynchronous requests to the Xl 1 server.

Neon uses a technique we called “Better Than Direct Ren-
dering” (BTDR) to provide the benefits of direct rendering with-
out these disadvantages. Like direct rendering, BTDR allows
client applications to create hardware-specific rendering com-
mands. Unlike direct rendering, BTDR leaves dispatching of
these commands to the Xl 1 server. In effect, the application cre-
ates a sequence of hardware rendering commands, then asks the
Xl 1 server to call them as a subroutine. To avoid copying client-
generated commands, Neon supports a single-level call to a com-
mand stream stored anywhere in main memory. Since only the
Xl 1 server communicates directly with the accelerator, the accel-
erator state is never context switched preemptively, and we don’t
need state save/restore logic. Since hardware commands are dis-
patched in the correct sequence by the server, there is no need for
new kernel calls. Since BTDR maintains atomicity and ordering
of commands, we believe (without an existence proof) that BTDR
could provide direct rendering benefits to Xl 1, with much less
work and overhead than Mark Kilgard’s Dl 1 proposal [121.

5.6. Video Controller
The Video Controller refreshes the display, but delegates

much of the work to the memory controllers in order to increase
opportunities for page prefetching. It periodically requests pixels
from the memory controllers, “inverse dithers” this data to restore
color fidelity lost in the frame buffer, then sends the results to an
IBM RGB640 RAMDAC for color table lookup, gamma correc-
tion, and conversion to an analog video signal.

5.6.1. Opportunistic Refresh Request Servicing

Each screen refresh request to a memory controller asks for
data from a pair of A and B bank pages. The memory controller
can usually finish rendering in the current bank, ping-pong be-
tween banks to satisfy the refresh request and return to rendering
in a different bank, and use prefetching on all page crossings.

Screen refresh reads cannot be postponed indefinitely in an
attempt to increase prefetching. If a memory controller is too
slow in satisfying the request, the Video Controller forces it to
fetch the requested refresh data immediately. When the controller
returns to the page it was rendering, it cannot prefetch it, as this
page is in the same bank as the second screen refresh page.

The Video Controller delegates to each Memory Controller
the interpretation of overlay and display format bytes, and the
reading of pixels from the front, back, left, or right buffers. This
allows the memory controller to immediately follow overlay and
display format reads with color data reads, further increasing pre-
fetching efficiency.

5.6.2. Inverse Dithering

Dithering is commonly used with 16 and &bit color pixels.
Dithering decreases spatial resolution in order to increase color
resolution. In theory, the human eye integrates pixels to approxi-
mate the original color. In practice, dithered images are at worst
annoyingly patterned with small or recursive tessellation dither
matrices, and at best slightly grainy with the large void and cluster
dither matrices we have used in the past [22].

Hewlett-Packard introduced “Color Recoveryr”” [2] to per-
form this integration digitally and thus improve the quality of
dithered images. Color Recovery applies a 16 pixel wide by 2
pixel high filter at each &bit pixel on the path out to the
RAMDAC. In order to avoid blurring, the filter is not applied to
pixels that are on the opposite side of an “edge,” which is defined
as a large change in color.

130

HP’s implementation has two problems. Their dithering is
non-mean preserving, and so creates an image that is too dark and
too blue. And the 2 pixel high filter requires storage for the pre-
vious scanline’s pixels, which takes a lot of real estate for Neon’s
worst case scanlines of 1920 16-bit pixels. The alternative-
fetching pixels twice-requires too much bandwidth.

Neon implements an “inverse dithering” process somewhat
similar to Color Recovery, but dynamically chooses between sev-
eral higher quality filters, all of which are only one pixel high.
We used both mathematical analysis of dithering functions and
filters, as well as empirical measurements of images, to choose a
dither matrix, the coefficients for each filter, and the selection
criteria to determine which filter to apply to each pixel in an im-
age. We use small asymmetrical filters near edges, and up to a 9-
pixel wide filter for the interior of objects. Even when used on
Neon’s lowest color resolution pixels, which have 4 bits for each
color channel, inverse dithering results are nearly indistinguish-
able from the original 8 bits per channel data.

5.7. Performance Counters
Modern CPUs include performance counters in order to in-

crease the efficiency of the code that compilers generate, to pro-
vide measurements that allow programmers to tune their code,
and to help the design of the next CPU.

Neon includes the same sort of capability with greater flexi-
bility. Neon includes two 64-bit counters, each fully programma-
ble as to how conditions should be combined before being
counted. We can count multiple occurrences of some events per
cycle (e.g., events related to the eight memory controllers or pixel
processors). This allows us to directly measure, in a single run,
statistics that <are ratios or differences of different conditions.

6. PERFORMANCE
In this section, we present some incomplete performance re-

sults, based on cycle-accurate simulations of a 100 MHz part.
(The publication deadline was the day after power-on.)

We achieved our goal of using memory efficiently. When
painting 50-pixel triangles to a 1280 x 1024 screen refreshed at 76
Hz, screen refresh consumes about 25% of memory bandwidth,
rendering consumes another 45%, and overhead cycles that do not
transfer data (read latencies, high-impedance cycles, and page
precharging and row addressing) consume the remaining 30%.
When filling large areas, rendering consumes 60% of bandwidth.

As a worst-case acid test, we painted randomly placed triar-
gles with screen refresh as described above. Each object requires
at least one page fetch. Half of these page fetches cannot be pre-
fetched at all, and there is often insufficient work to completely
hide the prefetching in the other half. The results are shown in the
“Random triangles” column of Table 1. (Texels are 32 bits.)

We also painted random strips of 10 objects; each list begins
in a random location. This test more closely resembles the local-
ity of rendering found in actual applications, though probably
suffers more non-prefetchable page transitions than a well-written
application. Triangle results are shown in the “Random strips”
column of Table 1, line results are shown in Table 2.

The only fill rates we’ve measured are not Z-tested, in which
case Neon achieves 240 million 64-bit fragments/second. How-
ever, the “Aligned strip” column in Table 1 shows triangle strips
that were aligned to paint mostly on one page or a pair of pages,
which should provide a lower bound on Z-tested fill rates. Note
that 50-pixel triangles paint 140 million Z-buffered, shaded pix-
els/second, and 70 million trilinear textured, Z-buffered, shaded
pixels/second. In the special case of bilinearly magnifying an
image, such as scaling video frames, we believe Neon will run
extremely close to the peak texture fill rate of 100 million textured
pixels/second.

Triangle Random Random Aligned Peak gen-
size I triangles strips strips eration

1 O-pixel ~ N/A N/A 7.8 7.8

25-pixel 2.6 4.2 5.4 7.5

50-pixel 1.6 2.3 2.8 4.5

25pixel, N/A 2.0 2.3 4.0
trilinear
textured

50-pixel, 0.75 1.3 1.4 2.0
trilinear
textured

Table 1: Shaded, Z-buffered triangles, millions of triangles/second

Type of line I Random strips

lo-pixel, constant color, no Z 11.0

lo-pixel, shaded, no Z 10.6

1 O-pixel, shaded, Z-buffered 7.8

lo-pixel, shaded, Z-buffered, antialiased 4.7

Table 2: Random line strips, millions of lines/second

The “Peak generation” column in Table 1 shows the maxi-
mum rate at which fragments can be delivered to the memory
controllers. For lo-pixel triangles, the limiting factor is setup.
The 2 x 2 stamp generates on average 1.9 fragments/cycle for 25-
pixel triangles, and 2.3 fragments/cycle for 50-pixel triangles. For
textured triangles, the stamp generates one fragment/cycle.

Neon’s efficiency is impressive, especially when compared
to other systems for which we have enough data to compute
bandwidth numbers. For example, we estimate that the SGI Oc-
tane MXE, using RAMBUS RDRAM, has over twice the peak
bandwidth of Neon-yet paints ?&pixel Z-buffered triangles
about as fast as Neon. Even accounting for the MXE’s 48-bit
colors, Neon extracts about twice the performance per unit of
bandwidth. ‘Ihe MXE uses special texture-mapping RAMS, and
quotes a “texture fill rate” 38% higher than Neon’s peak texture
fill rate, while Neon uses SDRAM and steals texture mapping
bandwidth from other rendering operations-yet their actual tex-
ture mapped performance is equivalent. Tuning of the memory
controller heuristics might improve efficiency even further.

Good data on PC accelerators is hard to come by (many PC
vendors tend to quote peak numbers without supporting details,
others quote performance for small screens using 16-bit pixels and
texels, etc.). Nonetheless, when compared to PC accelerators in
the same price range, Neon has a clear performance advantage. It
appears to be about twice as fast, in general, as Evans & Suther-
land’s REALimage technology (as embodied in the Mitsubishi
3DPro chip set), and the 3Dlabs GLINT chips.

7. CONCLUSIONS
Historically, fast workstation graphics accelerators have used

multiple chips and multiple memory systems to deliver high levels
of graphics performance. Low-end workstation and PC accelera-
tors use single chips connected to a single memory system to re-
duce costs, but their performance consequently suffers.

The advent of 0.35 pm technology coupled with ball or col-
umn grid arrays means that a single ASIC can contain enough
logic and connect to enough memory bandwidth to compete with
multichip 31) graphics accelerators. Neon extracts competitive

131

performance from a limited memory bandwidth by using a greater
percentage of peak memory bandwidth than competing chip sets,
and by reducing bandwidth requirements wherever possible.
Neon fits on one die, because we extensively share real estate
among similar functions-which had the nice side effect of mak-
ing performance tuning efforts more effective. Newer 0.25 pm
technology would reduce the die size to about 160 mm2 and in-
crease performance by 20-30%. Emerging 0.18 pm technology
would reduce the die to about 80 mm2 and increase performance
another 20.30%. This small die size, coupled with the availability
of SDRAM at under $2/megabyte, would make a very low-cost,
high-performance accelerator.

8. ACKNOWLEDGEMENTS

Hardware Design & Implementation: Bart Berkowitz,
Shiufun Cheung, Jim Claffey, Ken Correll, Todd Dutton, Dan
Eggleston, Chris Gianos, Tracey Gustafson, Tom Harl, Frank
Hering, Andy Hoar, Giri Iyengar, Jim Knittel, Norm Jouppi, Joel
McCormack, Bob McNamara, Laura Mendyke, Jay Nair, Larry
Seiler, Manoo Vohra, Robert Ulichney, Larry Wasko, Jay Wilkin-
son.

Hardware Verification: Chris Brennan, John Eppling, Ty-
rone Hallums, Thorn Harp, Peter Morrison, Julianne Romero, Ben
Sum, George Valaitis, Rajesh Viswanathan, Michael Wright, John
Zurawski.

CAD Tools: Paul Janson, Canh Le, Ben Marshall, Rajen
Ramchandani.

Software: Monty Brandenberg, Martin Buckley, Dick
Coulter, Ben Cracker, Peter Doyle, Al Gallotta, Ed Gregg, Teresa
Hughey, Faith Lin, Mary Narbutavicius, Pete Nishimoto, Ron
Perry, Mark Quinlan, Jim Rees, Shobana Sampath, Shuhua Shen,
Martine Silbermann, Andy Vesper, Bing Xu, Mark Yeager.

Keith Farkas commented extensively on far too many drafts
of this paper. A more detailed description of Neon is available in
Reference [15].

References
[I] Kurt Akeley. RealityEngine Graphics. Proceedings of

SIGGRAPH 1993, pp. 109-l 16.

[2] Anthony C. Barkans. Color Recovery: True-Color 8-Bit
Interactive Graphics. IEEE Computeer Graphics and Appli-
cations, volume 17, number 1, pp. 193-198, Janu-
ary/February 1997.

[3] Anthony C. Barkans. High Quality Rendering Using the
Talisman Architecture. Proceedings of the 1997
SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware, pp. 79-88.

[4] Michael F. Deering, Stephen A. Schlapp, Michael G. Lav-
elle. FBRAM: A New Form of Memory Optimized for 3D
Graphics. Proceedings of SIGGRAPH 1994, pp. 167-174.

[S] John H Edmondson, et. al. Internal Organization of the Al-
pha 21164, a 300.MHz 64-bit Quad-issue CMOS RISC Mi-
croprocessor. Digital Technical Journal, volume 7, number
1,1995

[6] Henry Fuchs, et. al. Fast Spheres, Shadows, Textures,
Transparencies, and Image Enhancements in Pixel-Planes.
Proceedings of SIGGRAPH 1985, pp. 11 l-120.

[7] Lynn Gwennap. Digital 21264 Sets New Standard. Micro-
processor Report, volume 10, issue 14, October 28, 1996.

[8] Siyad S. Hakura & Anoop Gupta. The Design and Analysis
of a Cache Architecture for Texture Mapping. Proceedings
of the 241h INCA, pp. 108-120, June 1997.

[9] IBM CMOS 5s ASIC Products Databook, IBM Microelec-
tronics Division, 1995.

[lo] Jim Keller. The 21264: A Superscalar Alpha Processor with
Out-of-Order Execution. Presentation at Microprocessor
Forum, October 22-23 1996, slides available at
www.digital.comlinfolsemiconductor/a264upl/index.html.

[1 I] Mark J. Kilgard, David Blythe & Deanna Hohn. System
Support for OpenGL Direct Rendering. Proceedings of
Graphics Inter@ce 1995.

[121 Mark J. Kilgard. Dll: A High-Performance, Protocol-
Optional, Transport-Optional Window System with Xl 1
Compatibility and Semantics. The X Resource, issue 13,
Proceedings of the 9” Annual X Technical Conference,
1995.

[131 Mark J. Kilgard. Realizing OpenGL: Two Implementations
of One Architecture. Proceedings of the 1997
SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware, pp. 45-55.

[14] Joel McCormack & Robert McNamara. A Smart Frame
Buffer, Digital Equipment Corporation’s Western Research
Laboratory Research Report 93/l, January 1993, available at
www.research.digital.com/wrl/techreports/pubslist.html.

[15] McCormack, Joel, Robert McNamara, Chris Gianos, Larry
Seiler, Norman Jouppi & Ken Correll. Neon: A (Big) (Fast)
Single-chip Workstation Graphics Accelerator, Digital
Equipment Corporation’s Western Research Laboratory Re-
search Report 98/l, August 1998, available at
www.research.digital.com/wrl/techreports.pubslist.html.

[161 Robert McNamara, Joel McCormack & Norman Jouppi.
Prefiltered Antialiased Lines Using Distance Functions,
Digital Equipment Corporation’s Western Research Labora-
tory Research Report 98/2, August 1998, available at
www.research.digital.com/wrl/techreports/pubslist.html.

[17] John S. Montrym, Daniel R. Baum, David L. Dignam &
Christopher J. Migdal. InfiniteReality: A Real-Time
Graphics System. Proceedings of SIGGRAPH 1997, pp.
293-302.

[181 Juan Pineda. A Parallel Algorithm for Polygon Rasteriza-
tion. Proceedings of SIGGRAPH 1988, pp. 17-20.

[191 Mark Segal & Kurt Akeley. The OpenGL Graphics System:
A SpeciJication (Version l.l), 1995, available at
http://www.sgi.comiTechnology/OpenGIJspec.html.

[20] Robert W. Scheifler & James Gettys. X Window System,
Second Edition, Digital Press, 1990.

[21] Jay Torborg & James Kajiya. Talisman: Commodity Real-
time 3D Graphics for the PC. Proceedings of SIGGRAPH
1996, pp. 353-363.

[22] Robert Ulichney. The Void-and-Cluster Method for Dither
Array Generation. IS&T/SPIE Symposium on Electronic Im-
aging Science & Technology, volume 1913, pp. 332-343,
1993.

[23] Lance Williams. Pyramidal Parametrics. Proceedings of
SIGGRAPH 1983, pp 1-l 1.

[24] Stephanie Winner, Mike Kelley, Brent Pease, Bill Rivard &
Alex Yen. Hardware Accelerated Rendering of Antialiasing
Using a Modified A-buffer Algorithm. Proceedings of
SIGGRAPH 1997, pp. 307-3 16.

132

