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Abstract

In this tutorial we present an overview of the concepts and current techniques that have been developed to model
and animate human faces. We introduce the research area of facial modeling and animation by its history and
applications. As a necessary prerequisite for facial modeling, data acquisition is discussed in detail. We describe
basic concepts of facial animation and present different approaches including parametric models, performance-,
physics-, and image-based methods. State-of-the-art techniques such as MPEG-4 facial animation parameters,
mass-spring networks for skin models, and face space representations are part of these approaches. We further-
more discuss texturing of head models and rendering of skin and hair, addressing problems related to texture
synthesis, bump mapping with graphics hardware, and dynamics of hair. Typical applications for facial model-
ing and animation such as speech synchronization, head morphing, and forensic applications are presented and
explained.

1. Outline

start  topic presenter(s)

8:30 Outline of the tutorial

8:35 History & application areas of FAM D. Terzopoulos
9:00 Anatomy of the human head J. Haber

9:15 Data acquisition V. Blanz

9:45  Overview: FAM techniques J. Haber

10:00 coffee break

10:30 Parametric models N. Magnenat-Thalmann
11:00 Performance-driven animation D. Terzopoulos
11:20 Physics-based approaches D. Terzopoulos

12:00 lunch break

14:00 Image-based systems V. Blanz
14:40 Forensic applications J. Haber
15:05 Speech synchronization N. Magnenat-Thalmann

15:30 coffee break

16:00 Texturing faces J. Haber

16:20 Rendering: skin, wrinkles, hair N. Magnenat-Thalmann + J. Haber
16:50 Morphing & caricatures V. Blanz

17:15 Questions & discussion all

(© The Eurographics Association 2003.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org

2.

J. Haber, D. Terzopoulos, N. Magnenat-Thalmann, V. Blanz / Facial Modeling and Animation

Contents

The tutorial notes contain both the slides from the tutorial presentation and some selected publications, which serve as additional
background information.

OO WNE

14.

15.
16.

17.
18.
19.
20.

21.

. Slides:History & application areas of FAM

. Slides:Anatomy of the human head

. Slides:Data acquisition

. Slides:Overview on FAM techniques

. Slides:Parametric models

. Paper: S. Kshirsagar, S. Garchery, N. Magnenat-Thalmeature Point based Mesh Deformation Applied to MPEG-4

Facial Animation Proc. Deform '2000, Nov. 29-20, 2000

. Slides:Performance-driven animation

. Slides:Physics-based approaches

. Paper: Y. Lee, D. Terzopoulos, K. WateRealistic Modeling for Facial Animation®roc. SIGGRAPH '95, 55-62, Aug. 1995.
10.
11.
12.
13.

Slides:Image-based systems

Paper: V. Blanz, T. VetteA Morphable Model for the Synthesis of 3D Fadesc. SIGGRAPH '99, 187-194, Aug. 1999.
Slides:Forensic applications

Paper: K. Kéhler, J. Haber, H. Yamauchi, H.-P. Seithdad shop: Generating animated head models with anatomical
structure Proc. ACM Symposium on Computer Animation 2002, 55-64, July 2002.

Paper: K. Kahler, J. Haber, H. Yamauchi, H.-P. SeidR#animating the Dead: Reconstruction of Expressive Faces from
Skull Datg ACM Trans. Graphics (Proc. SIGGRAPH 2003), 22(3), ??—?7?, July 2003.

Slides:Speech synchronization

Paper: S. Kshirsagar, N. Magnenat-Thalmadrip, Synchronization Using Linear Predictive Analydsoc. IEEE Interna-
tional Conference on Multimedia and Expo, August 2000.

Slides:Texturing faces

Paper: M. Tarini, H. Yamauchi, J. Haber, H.-P. Seidelkturing FacesProc. Graphics Interface 2002, 89-98, May 2002.
Slides:Rendering: skin, wrinkles, hair

Paper: N. Magnenat-Thalmann, S. Hadap, P. K&tate of the Art in Hair Simulatigrinternational Workshop on Human
Modeling and Animation, June 28—29, 2000.

Slides:Morphing & caricatures

(© The Eurographics Association 2003.



History and Applications of Parke, 1974, 1975
Facial Modeling and Animation Platt / Badler, 1981
Demetri Terzopoulos Bergeron, 1985

New York University.
Thalmann, 1985-

Waters, 1987

A Physics-Based Face Model A Physics-Based Face Model

A =m = ; :
W T ole < Hierarchical structure

= . Expression: Facial action coding system (FACS)
iz Control: Coordinated facial actuator commands
e b N Muscles: Contractile muscle fibers exert forces

-

Physics: Muscle forces deform synthetic tissue

& d J Geometry: Expressive facial deformations

Images: Rendering by graphics pipeline

Hierarchical Facial Model Structure Faces in The Movies

From expression control to images

Geometry -> Images \




- Realistic Facial
Modeling Virtual Celebrity

|| Square USA, Inc. || Virtual Celebrity Productions, LLC

Craniofacial Surgery:
ILM’s Hugo Face Lift

Hugo, a synthetic character designed by ILM
to test performance remapping techniques

Craniofacial Surgery: Facial Modeling for Surgery
Cleft Lip and Palate Simulation [Girod et al.] [Gross etal] ...

Simulation Postop




Incision on Facial Mesh
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Terminology

Crash course:
Anatomy of the Human Head

Jorg Haber

« positions of body parts are
described relative to:

— median (sagittal) plane:
vertical plane that divides
the body into equal left and
right halves; medial / lateral
< closer to / further away

from median plane,
— coronal plane: vertical

plane that divides the body
into front and back halves;
(anterior / posterior)

— transverse (horizontal)
plane: any plane
perpendicular to both
median and coronal planes

The Human Head

Components of the human head:

« skull (lat. cranium)

« facial muscles (lat. m. faciales et masticatores)
« skin (lat. infegumentum commune)

+ eyes (lat. oculi)

« teeth (lat. dentes)

 tongue (lat. lingua)

Images: www.humanmuscles.8k.com

Skull

Facial Muscles (frontal)

« cranium (lat. neurocranium):

— 7 bones; rigidly connected; lodges and protects
brain and eyeballs

— consists of calvaria and cranial base
« facial skeleton (lat. viscerocranium):

— 15 small bones that surround nasal and oral cavity
mosaic-like; only the mandible (lat. mandibula) is
movable

 bones of the skull are relocatable during birth,
ossification completed at the age of 18 =
proportions and shape of the skull change during
growth

muscles connect a) two bones, b) bone and skin / muscle,
or c¢) two different skin / muscle regions

Images: Parke/Waters: “Computer Facial Animation” (1996)




Types of Facial Muscles =€'03

Images: Parke/Waters: “Computer Facial Animation” (1996)

Gales sponeitotics
Froneslbely (frontshs) of epioan

» sphincters: contract
radially towards a center
point, e.g. orbicularis
oris, orbicularis oculi

* linear (parallel) muscles:
contract longitudinally
towards their origin, e.g.
levator labii sup.,
zygomaticus minor/major

* sheet muscles:
composed of several
linear muscles side-by-
side, e.g. frontalis

cla
uscles.8k.com

Oep
Image: www.humanm

Facial Muscles

Three groups:

» m. of facial expression:
two layers (superficial
and deep)

* m. of mastication:
movement of the
mandible

* epicranius:
tension / relaxation of
facial skin

Image: Gray: “Anatomy of the Human Body” (1918)

» epidermis: 0.03-4 mm
thick, no vessels, 5

" W shaft
& Hair root X
fé e layers of keratin

{[sereens © dermis: 0.3-2.4 mm
thick, 2 layers of soft
| s connective tissue

] v containing elastin fibers,
Sweat blood and lymphatic
vessels, and nerves

» subcutaneous tissue:
Cuzneess et adipose tissue built from
collagen / fat cells, blood
vessels, and nerves

Image: www.humanmuscles.8k.com

Dermis  Epidermis

Subcutaneous
tissue

« complex organ consisting of eyeball (lat. bulbus oculi)
and optic nerve, embedded into the sceletal orbit (lat.
orbita)

« eyeball composed from lens and viterous body (lat.
corpus vitreum), enclosed by three concentric layers:
sclera / cornea, choroidea / iris, and retina

Images: www.humanmuscles.8k.com

» eye muscles: alignment of optical axis (external),
focussing and adaptation to brightness (internal)

« eyelids, connective tissue: protect from contaminants

« lachrymal: secretion of tears to smooth the cornea,
facilitate the motion of the eyeball, and wash away
dust particles

Images: www.humanmuscles.8k.com




Tongue

+ embedded into upper jaw (lat. maxilla) and lower jaw
(lat. mandibula)

+ 20 milk teeth are replaced gradually with
32 permanent teeth starting at the age of about six

« are used to chop up and squelch food, and for
articulation

Images: www.humanmuscles.8k.com

consists of muscle tissue,
nerves, blood vessels, and
sensory cells (embedded
in mucous membrane)

can alter its shape and
position in many ways

most important sense
organ for taste: sweet (tip),
salty (front sides), bitter
(back)

support during chewing
and swallowing

use for articulation is learnt

Image: www.humanmuscles.8k.com

All that stuff...

Is it necessary to know all those details?

* it depends on the desired quality / realism of the head
model:

— the more realism you want,
the more precisely you have to simulate anatomy

« atleast: we need to know about the shape / structure /
position of facial components and their interactions

* ... so don’t be afraid to spend some money on medical
textbooks or atlases




Datal Acquisition @venview

\Vetivation

Sources ofibata
SDIScanning IIEChRNIGUES

VolkerBlanz Criterialfor selecting methods

Main technigues:
Processing|ofisbidatia

Correspondence

Benefits ofi ReallFace Data = == Dimensionality,

= NeutralliHead: = 21mages o Video

Animate a particularperson’s head for;image-based methods; (seeiafternoon session)

VLo EXPTESSIONS OrSPEECH); s Surface Data(MEeshEs) embedded in 3D
Replicate the identicalimotion (Motion Capturing) standard computsr graphics paradigm
(Generate new animation using information'learned

from data (key-frames, modes;ofvariation) = SDWVOIImEtic
medical datai Giror MRI

Neutral Head Mode! == ¥ 3D Motion _-C 03

Surface modelsin 8o = \leasureisparse; sehiofifeatures only,
s 8DIScans

< \VultiplerCameral Views

Interpolate; position efimesh VErtices in EIWEEN

= Singlelimage (Blanzand Vetter s [DEnseISurface Scans

El
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3D Motion: Eeature Points -C 93

s Electromagneticilracking(sensorsiattached oitheskin)
slnfrared:LEDs andloptical trackingi(multipleicameras)
= \VidenCameras:
Marker:-points,onithe observed face
One cameraview, 2Dmarker.displacements (Wi
Multiple cameras: (Guentereta
Track:naturalfaciallandmarks (e.g: corners ofithe mo
One camera (Terzopoulos, V

Multiple cameras: (Pighin et al 98)

3D Scans

[DEnse samplinglofisurfacein 3o

Beforereviewing the mainitechnigues;
Wellistisemelssues to)considerrwhendeciding

WhHIGCH Method/teuse:

3D Scans

Jemporallreselution

« How/long doesione scan take?:

Are snapshots ofimotionisequence; possible?.

+ How/many scansipersecond;

Areitime sequences;possible?.

Page 2

3D Motion: Eeature: Points

Advantages
S Highitemporal resolution

+Relativelyismallldataisets
[Disadvantages

- NEeedtoiinterpolate surface betWeen Eeatlres
= Detailsisuchiasiwrinkiesmoticapiured

Driveiphysicalimode!fmanually desighed mode! ) GrVectorspace
modelloridetared SISUTface

3D Scans

= Spatiallresolution

= Resolution|ofisampling grid

= Precision of:depth:measurement

= NoIsE; causing spikesIoRmaking thesurnface

3D Scans

Surface Completeness

s \Vethodsithatirely/on cameraimages

cannoticapture scans fiom eartoear.

—  Stitching ofimultiple scans (fromdifferentitimes!)

= Eorrmultiplelcameras ornlight:soUrces; there are
holesidue to)selfzocclusion orshadows:

— Hole-fillingjalgorithms; interpolation




3D Scans

Hiexture

= Availableratiall?

= Eray=level o color?

= Resolution highrenough?

= Shading Effectsi(danksshadoews; specularshighlights)

makeltdifficultorenderface intenew/scenes!

Steneo -’—g—gg'

Identify/corresponding surface Pointsin tWwolmages:

FEasti (A paiifeiimages)

= [Lowireliability AWhEere sUrfacelis: Uniform of;
COrrespPONUEncels ambiguous
lihisiIeadsiterhelesiand spikes:

- FI6lEsidUe io)self=oceiusion

- Nojear-to-eanscans

[Laser Scans

FHHightResolution o Shape

H1loWINGISE

HEUllfheadiiniene scan
withicylindersprojection

+ Coloredliextiurey littlershading

= slow/(Severallseconds)
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Structured Light Scanners

3D Scanning Tlechniques

= Passives
Stereo
Shape-from-Shading
s ACGLVE?
[laser:Scans;

Structured LightiScans

[Laser Scans

s |laserilluminatesiprofileline
Cameraat:angularoffset
Detectaser:line inieach row,

+ Triangulation ofigeometry,

s Sweep)lineoverentire face
Depth) z(x,y) o Radiusyv/10);

o Eoniexture; measure colornextiolaserline

,:C = 03

RProjectiinepatiern = many/profile linesinionelimage

(Camera Hslide projectorratiangularoefiset




Structured Light Scanners

FHow do)InEsIContinue aciossiedGESY:

Use gridsiatimultipleresolutions

=hinany/code forline numbeRin each pixel
Y
\ .\‘( )

g

‘ I

b
4 i 7

Striuctured Light Scanner

+ Easti(record forrmore phoios)

HEqUipmentwidelyiavailable

= Shadoewsi(nesE)
- [Doesniticoverear=to:ear;
= Jexture oftenwithistrong|shading

andfspecularhighlights
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Structured Light Scanner

Jiexturefrom removing linesidigitally;

... orsffemanadditionalipicturne

withiempty/slide’

Precessing of 31D Scans

Correspondence mustbeestablished/to
= Mapmotionsitoraiscannedisuriace

= Derivermotionsiirom staticiorrdynamicidata

(scans; IMmages; Video))

3D Laser Scans

red(hi0)
green(h,¢)
blue(hd)

radius(h;0)




Preprocessing| of Faces -'C—-9—3

Manugallremoyallofioutliers iniradius

Automated interpolation acress missing radiusivalues

Automated; but supervised:
Upright alignment of faces
Remove bathing cap: Hairwouldinotibe scanned properiy:

Vertical cut-behind/the ears

Moedified Optic Elow, -:.g__(_,_?'

\We used|the Gradient:based/Coarse-to-fine algorithmof;
Bergen & Hingorani:

Modifications Simultaneously matchishape and texture

N
radius
red

green

=W -radius® + W; -red” + W; - green® + W -blue®

blue it

Definition of Eace: \ectors -'C—-9—3

Iherowieldicaninow be used o foernm
Shape andiextire VECIors in a consistentway:
s Select aireference mode!

s (Concatenate allbxyZpositions;andizay e values:

Morphing 3D Eaces

I-._ o
Insufficient: 3D Blend

With c:)rrespon-dénce:
3D Morph

Coarse to Fine OpticiElow =€ 03

Tihe algorithm starts at:low:resolution versionsofithe scan, and proceeds

to full resolution; using.a Gaussian or: Laplacian Pyramid.

Reference Head
b )
i
||

39 = | xy
y

70,000 Points
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Eace Vectors

Eaces are Pointsiin Eace Space

Example’i

NS NN =

Principall Component Analysisi (PCA) == 2=| Principall Component Analysis -..g__q_?'

E=stimate’ Probabilitys Normall Distribution Shape Vectors s, X. =§ _;

. . |
Coyariance Matrix (C= —Z X - \,T
75

Orthiogonalleigenyectors; u,
1. PrincipallComponent

Y

9)
Eigenvalues/=\Variances: oy alongjeach eigenvector

Principal Component Analysis -_g._%” Principal Componentsiin Shape Spaoe_-‘C 03

2
IS5
2 o

o, statisticallyindependent, p(x)ld e
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Facial Animation

Overview:
Facial Animation Techniques

Jorg Haber

Animation # Animation
+ animations with a complete script (“well-known future”)
« interactive animations (e.g. computer games)

Different approaches:

+ key frame interpolation

+ performance-driven animation (— Demetri)
« direct parameterization (— Nadia)

+ physics-based models (— Demetri)

+ image-based techniques (— Volker)

Key Frame Interpolation

Key Frame Interpolation

Completely geometrical approach:

+ specify complete face models for given points in time:
key frames (key poses, key expressions)

+ face models for in-between frames are generated by
interpolation

Problematic:

* needs complete face model for each key frame
= large amount of data, labor-intensive modeling /
acquisition of key frame models

+ topology of all key frame models must be identical

Types of interpolation:
+ convex combination (linear int., blending, morphing):
v=a-v;+(1-a)-v, O=<ax<)
v : scalar or vector (position, color,...)

* non-linear interpolation: e.g. trigonometric functions,
splines, ...; useful for displaying dynamics
(acceleration, slow-down)

+ segmental interpolation: different interpolation values /
types for independent regions (e.g. eyes, mouth);
special treatment for boundaries between regions
= decoupling of emotion and speech animation

Performance-driven
Animation

Performance-driven
Animation

Acquisition of animation parameters:
+ video camera + software (— computer vision)

+ capture head movements, identify eyes and mouth,
detect viewing direction and mouth configuration,
control synthetic head model with these parameters

Movies: baback.www.media.mit.edu/~irfan/DF ACE.demol/tracking.html

Acquisition of animation parameters:

+ specialized hardware (mechanical / electrical) transfers
“deformation” of the human face to a synthetic face
model

Movie: www.his.atr.co.jp/~kuratate/movie/

Virtual Actor system by SimGraphics (1994)




Direct Parameterization

Direct Parameterization

Idea:

+ perform facial animation using a set of control
parameters that manipulate (local) regions / features

What parameterization should be used?
* ideal universal parameterization:
— small set of intuitive control parameters
— any possible face with any possible expression can

be specified
Parametric Models | Parametric Models Il

« F.|. Parke: “Parameterized Models for Facial
Animation”, |EEE CGA, 2(9):61-68, Nov. 1982

— 10 control parameters for facial expressions
— ~20 parameters for definition of facial conformation

« K. Waters: “A Muscle Model for Animating Three-
Dimensional Facial Expression”, SIGGRAPH 87,
pp. 17-24, July 1987

— deforms skin using “muscle vectors”

* N. Magnenat-Thalmann et al.: “Abstract Muscle Action
Procedures for Human Face Animation”, The Visual
Computer, 3(5):290-297, March 1988

— pseudo muscles based on empirical models

— muscle actions are (complex) combinations of
FACS action units

+ J. E. Chadwick et al.: “Layered Construction for
Deformable Animated Characters”, SIGGRAPH ‘89,
pp. 243-252, July 1989

— freeform deformations (FFD), pseudo muscles

Parke‘s Parametric Parke:
Face Model Expression Parameters
« polygonal face mesh * eyes:

(~300 triangles + quads),
symmetrical, edges aligned
to facial feature lines
* two types of parameters:
— 10 expression
parameters

— about 20 conformation
parameters

« five different ways how
parameters modify facial
geometry

— dilation of pupils, opening / closing of eyelids,
position and shape of eyebrows, viewing direction

* mouth:

— rotation of mandible, width and shape of the mouth,
position of upper lip, position of mouth corners

 additional parameters (suggested):
— head rotation, size of nostrils




Parke:
Conformation Parameters

Parke: Results

aspect ratio of the face
length and shape of the neck

+ shape (= relative position of assigned vertices) of chin,
forehead, cheeks, and cheekbones

size of eyelids, eyeballs, iris; position of the eyes
+ jaw width
* length of the nose; width of nose bridge and nostril

« relative size of chin, forehead, and mouth-nose-eyes-
part w.r.t. remaining face parts

« color of skin, eyebrows, iris, and lips

— s st
>
© L r LC> =
t.-_-" —
- N

The Face Model by Waters

Waters: Muscle Vectors

» polygonal face mesh:
201 quads + 35 triangles
= 10 different muscles:

— 9 linear muscles
(symmetrical left/right)

— 1 sphincter (orbicularis oris)
+ additional parameters:

— jaw rotation

— viewing direction

— opening of eyelids

* muscles are represented by muscle vectors, which
describe the effect of muscle contraction on the
geometry of the skin surface

* muscle vectors are composed of:

— a point of attachment and
a direction (for linear muscles)

— aline of attachment and U a
a direction (for sheet muscles) NS
— a center point and two

semi-axes defining an ellipse
(for sphincters)

Images: Waters: “A Muscle Model for Animating Three-Dimensional Facial Expression” (1987)

Physics-based Models

Mass-Spring Networks

Idea:

» represent and manipulate expressions based on
physical characteristics of skin tissue and muscles

Real anatomy is too complex!

+ to date, no facial animation system represents and
simulates the complete, detailed anatomy of the
human head

+ reduce complexity to obtain animatable model

* need to build appropriate models for muscles and skin
tissue

« common technique for simulating dynamic behavior of
skin tissue

* vertices = mass points, edges = springs

» Lagrangian equations of motion are integrated through
time using numerical algorithms

« several variants with multiple layers of mass-spring
networks (2D or 3D)

2D:

3D: tetrahedron cube




Finite Element Method Image-based Techniques

+ numerical technique for simulating deformation and Idea:

flow processes (crash tests, weather forecast, ...); . . - . . .
frequently used for surgery planning S{gea(t)ef(f)%tt:;agleammatlons directly from input images or

« partitioning into 3D elements (tetrahedra, cubes, - two different approaches:

prisms,...) . . .
— 2D — 2D: only 2D operations (morphing, blending)

« continuity conditions between elements are collected — 2D - 3D: create 3D head model from 2D input data

in global stiffness matrix M
= time-consuming solution for high dimensional M Typical problems:

« restricted viewing direction and animation
* registration usually manually




MIRALab

Where Research means Creativity

Parameterized Facial Models

Nadia Magnenat-Thalmann
MIRALab, University of Geneva

MIRALab Parameterized Facial Models

Where Research means Creativity Nadia Magnenat-Thalmann

Facial Animation : Hierarchy

Step Technology Methods

Manual, semi-
automatic or
automatic

Face Object Face Modelling,
Definition Cloning

Static Expressions | Parameterization, | Manual (GUI), or

Design Mesh deformation |~ capture data

thalmann@miralab.unige.ch - Manual for non-
Co-articulation for P
Keyframe 080 o Feal-time, rule
Animation  *PeeCh =P based automatic for
blending 5
real-time
|/ Keytrame Animation
www.miralab.unige.ch University of Geneva
thalmann@miralabunige.ch
MIRALab Parameterized Facial Models MIRALab Parameterized Facial Models
Where Research means Creativity Nadia Magnenat-Thalmann Where Research means Creativity Nadia Magnenat-Thalmann

Parameterisation and Deformation

Parameter q
E— Deformation
Set
Parameterisation Deformation
Definition Defining an “optimum” set Generating mesh deformation
of parameters that can be used to from a given set of values for the
control facial movements parameter set
For desi: i For developers of FA systems
Basic Completeness: should incorporate all Should fully support selected parameter
i basic facial set, resulting into “realistic” facial
movements
Additional Easy to use, orthogonal (no Speed, ease of implementation
Requirements | redundancy)

Facial Muscles

Natural basis to design
Parameterisation scheme

Guide to implement deformation
methods

Helpful for evaluation of facial
animation systems

“Www.miralab.unige.ch - - “Www.miralab.unige.ch - - 3
thalmann@miralab.unige.ch University of Geneva thalmann@miralab.unige.ch University of Geneva
MIRALab Parameterized Facial Models MIRALab Parameterized Facial Models
Where Research means Creativity Nadia Magnenat-Thalmann Where Research means Creativity Nadia Magnenat-Thalmann

What is the progress? Parameterisation and Deformation

Parameterisation : Facial Action Coding
System

1972 1974 1981 1990 1992 1997 « Initially intended only for facial action description and not for
Parke Parke Platt Terzopoulos| Kalra et. al. MPEG-N1901 animation
& Badler| & Waters
« The system describes the most basic facial muscle actions and their
effect on facial expression
«  All the muscle actions that can be controlled independently are
) o Spring-mass FFD based ; included
Tzt Interpolation Spn:dg i‘r:ass modal to model o Fea:’urs gomt ) ] ) )
on Mesh on modd 1o simulate simulate ased. + A set of all possible basic action units (AUs) performable by human
Level Parameter simulate Kin-f “Pseud geometric . Lo .
e Level muscles skin-fat- seudo deformation face and visually distinguishable
muscles Muscle’ K . :
« Examples: Inner brow raiser, Lip corner puller, Jaw Drop, Nostril
T T T T T Dilator
FACS FACS FACS MPA MPEG-4
FAP P Ekman and W  Frisen, Facial Action
Coding System,” Investigator's Guide Part Il,
Consulting Psychologists Press Inc., 1978.
Www.miralab.unige.ch University of Geneva Www.miralab. unige.ch University of Geneva

thalmann@nmiralab.unige.ch

thalmann@miralab.unige.ch




Parameterized Facial Models

MIRALab

Where Research means Creativity

Parameterisation : Minimal Perceptible
Action

Nadia Magnenat-Thalmann

* Inspired from FACS

« Supports non-symmetric movements e.g. “lower_left _cornerlip”

« Support for non facial actions e.g. “nod head”, “roll head”

+ Support for more detailed actions in mouth region e.g. “pull_midlips”

« Opverall, more suitable to develop facial deformation, has possibility to
control finer movements than in FACS

P. Kalra, A. Mangili, N. M. Thalmann, D.
‘Thalmann, Simulation of Facial Muscle Actions
Based on Rational Free From Deformations,
Eurographics 1992, vol. 11(3), pp. 5969

Parameterized Facial Models
Nadia Magnenat-Thalmann

MIRALab

Where Research means Creativity

Parameterisation : MPEG-4 FAP L

Feature Points defined on the
Specific locations of the face

Animation defined by the
displacements of these
Feature Points from neutral
position

MPEG-4 does not specify how
deformation should be
implemented

M. Escher, |. Pandzic, and N. Magnenat-
‘Thalmann. Facial Animation and Deformation for
MPEG-4 , Proc. Computer Animation'98, 1998

‘www.miralab.unige.ch

thalmann@nmiralab.unige.ch

University of Geneva

‘www.miralab.unige.ch University of Geneva

thalmann@miralabunige.ch

Parameterized Facial Models

MIRALab

Where Research means Creativity Nadia Magnenat-Thalmann

Deformation : Shape Interpolation

« Earliest approach for facial animation

« Define facial poses by vertex geometry manipulation

« Apply interpolation (linear or non-linear)at vertex level
« Data intensive, model dependant, tedious

F. 1. Parke, Keith Waters, Computer Facial
Animation, 1996
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Deformation : Muscle Based Models

Ability to manipulate facial geometry based on simulating the
characteristics of the facial muscles
Mostly using FACS (or variant) as parameters, as FACS are muscle based

Muscle Based

Models

Pseudo Muscle
Based

Abstract Muscle Action

Spring Mesh
Free Form Deformation

Vector Muscle

Layered Spring Mesh Spline Pseudo Muscle

Finite Element Method
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A Comparative Look

Physical | SPANE Medium  Low Low-Med Medium FACS
Based Vector Medium Medium Med-High Medium FASC
Muscle 1, vered High Med-High Med-High Hard  FACS
AMA Low Low Medium  Easy -
Pseudo , ; ,
Spline Low-Med  Medum  Medium  Easy  FACS
Muscle
FFD Low-Med ~ Medium  Medium  Easy  MPAFACS
FEM High 2 High Hard  FACS
Other i
g::‘e‘:l'e Point o Medium  Medium  Easy ~ MPEG-4 FAP
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MPEG-4 Facial Animation : A Detailed Look

« Feature point based definition for animatable objects
* MPEG-4 FAPs and Feature Points
¢ Fast and simple algorithm

¢« MPEG-4 facial animation for the web
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Feature Point Based Deformation

» Defining a facial mesh by feature points
« Simplifies representation of complex objects
Eg. Synthetic Face
 Offers flexibility to detail structure and
representation
» The animation precisely and easily defined
by the movements of the feature points

Parameterized Facial Models
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FAP - Facial Animation Parameters

2 High level FAP :
- FAP 1 : for viseme
- FAP 2 : for expression

Each FAP HL can merge two visemes or expression.
These parameters are used to reduce MPEG-4 FAP Bitstreams

66 Low level FAP :
each corresponding to a particular facial action deforming a
face model in its neutral state

| “engE | e e y |
2188 2188 %10 213
p
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Two Approaches

Geometric deformation
deformations are done by geometric deformation algorithm. We need to
define only Facial Definition Parameters to use it.

FAT (Facial Animation Table)
similar to interpolation approach
construct mesh for each FAP value
use the deformed mesh as keyframes for FAP animation

Both methods use MPEG-4 FAP stream animation in input

MIRALab

Where Research means Creativity
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Comparison

Geometric Deformation Facial Animation Table

Easily Adopted to any face with well- A FAT needs to be designed for each
defined feature points face for each FAP

Less flexibility for “artistic” and
“individualized” animation

“Individualized” animation possible
by careful design of FAT

The only required data for animation ~ Well-defined FAT is necessary in
is the FAP stream addition to FAP stream

Computationally very light, involves
only interpolation between FAT key-
frames

Computationally moderate (depending
upon deformation method chosen)
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Geometric Deformation
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Feature Point Based Geometric Deformation

Given well-defined feature

points (FP): ANt
« Distance between feature points ie [ §2§‘
if the FPs are sparsely or densely A‘E“

defined on the mesh

« Overlapping region of influence of
each feature point

« Relative spread of several feature
points around a given vertex
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Initialization

« Computing Feature Point Distribution
Computing d,,, d,; (Surface distance)

« Computing Weights
For each vertex of the mesh:
Computing d,;, 6,, 05

 dizcos(0s) + dyzcos(0s)

4= = eos(8) + cos(@y)

dip
d

Wip = .wm(g(l _GiEyy
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Deformation

Displacement of any vertex of the mesh is the weighted sum of all the
displacements caused at this vertex by the neighboring feature points

£E, bt
Dp = -
N= Number of feature points influencing the vertex P
W, ,.=Weight of the vertex P for FP;
D=Displacement specified for FP;

d; p=Distance between vertex P and FP;
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Facial Animation Table Animation
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MPEG-4 FAT

Define model spatial deformation as a function of the amplitude of the FAPs

For flexible deformation, piece-wise linear motion trajectories

Vertex n® tinterval [1, 1] 204 interval [L, 1]
Index | displacement D;, displacement D,
Index 2 displacement Dy, displacement D,,

An arbitrary motion trajectory is approximated as a piece-wise linear one
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FAT Construction : Artistic Design

An animator designs :
cach necessary low level FAPs (with flexible deformation)
high level FAP expressions (joy, sadness, anger, fear, disgust, surprise) and/or visemes

FAT Construction : Automatic Design

Using Geometric Deformation Technique

MPEG-4 compatible
faces. /)

for cach FAPs
[ deformed model by MIRALab

T ML

omatic FAT constucton |

Automaic process

FAT informations.

Very quick FAT construction (few seconds)
Results into animation very close to MIRALab MPEG-4 facial animation engine
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FAT for High Level Expressions
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FEATURE POINT BASED MESH DEFORMATION
APPLIED TO MPEG-4 FACIAL ANIMATION
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ABSTRACT

Robustness and speed are primary considerations when developing deformation methodologies for
animatable mesh objects. The goal of this paper is to present such a robust and fast geometric
mesh deformation algorithm. The algorithm is feature points based i.e. it can be applied to
enable the animation of various mesh objects defined by the placement of their feature points. As
a specific application, we describe the use of the algorithm for MPEG-4 facial mesh deformation
and animation. The MPEG-4 face object is characterized by the Face Definition Parameters
(FDP), which are defined by the locations of the key feature points on the face. The MPEG-4
compatible facial animation system developed using this algorithm can be effectively used for real
time applications. We extract MPEG-4 Facial Animation Parameters (FAP) using an optical
tracking system and apply the results to several synthetic facial mesh objects to assess the results
of the deformation algorithm.

Keywords: mesh deformation, real-time facial animation, performance driven animation, optical

tracking

1 INTRODUCTION

In this paper, we present a robust, fast, and sim-
ple geometric mesh deformation algorithm. A ge-
ometric mesh can be characterized by the loca-
tions of key feature points. Further, the anima-
tion of the mesh can be defined by the displace-
ments of these feature points. The algorithm de-
scribed here can be applied for animation of such
meshes. As a specific application, we describe
the use of the algorithm for MPEG-4 facial mesh,
which is characterized by the Face Definition Pa-
rameters (FDP) [13]. We examine the results of
the mesh deformation applied to facial animation
by using the Facial Animation Parameters (FAP)
obtained from an optical tracking system used for
facial feature capture. Later part of this section
gives a brief background to define our problem.
Section 2 details the mesh deformation algorithm
that we have developed and implemented. Use of
MPEG-4 standard for facial animation and the

adaptation of our mesh deformation algorithm to
MPEG-4 compliant synthetic face has been dis-
cussed in Section 3. In Section 4, we describe the
optical tracking method used to extract MPEG-4
Facial Animation Parameters (FAP) and anima-
tion using those parameters with a synthetic head
model. We give the conclusions and the future
work in Section 5.

There are variety of ways possible to represent
animatable objects geometrically. The choice de-
pends on the considerations such as precise shape,
effective animation and efficient rendering. For
the modeling and animation of deformable ob-
jects, detailed knowledge about the geometry and
the animation structure of the object is neces-
sary. For animatable human like or cartoon char-
acters, modeling of muscles and soft tissue is a
complicated task, highly dependant on the spe-
cific character under consideration. The underly-
ing models are often simplified with use of vari-



ous geometric deformation algorithms depending
on the applications. Barr introduced geometric
modeling deformations using abstract data ma-
nipulation operators creating a useful sculpting
metaphor [1]. Bearle applied surface patch de-
scriptions to model smooth character form [2].
Free Form Deformation (FFD) and its variants
have been used extensively for a variety of mod-
eling and animation applications [4, 10, 3, 14].
They involve the definition and deformation of
a lattice of control points. An object embedded
within the lattice is then deformed by defining a
mapping from the lattice to the object. FFDs
allow volume deformation using control points
while keeping the surface continuity. They pro-
vide the sculptural flexibility of deformations.
FFDs have been successfully used for synthetic
objects like face [7] and hand deformation [12].
FFDs have some limitations though. The loca-
tions of the control points are not very well con-
trollable with respect to the actual mesh object.
Also, the discontinuities or holes in the mesh are
difficult to handle as a general case. Recently,
Singh et. al. [15], proposed a new approach of
using wire curves to define an object and for shap-
ing its deformation. They illustrated the applica-
tions of animating figures with flexible articula-
tions, modeling wrinkled surfaces and stitching
geometry together.

In order to define shape and animation of a geo-
metric mesh object, we concentrate on the use
of feature points. We assume that the shape
of the object is defined by the locations of the
predefined feature points on the surface of the
mesh. Further, the deformation of the mesh can
be completely defined by the movements of these
feature points (alternatively referred as control
points) from their neutral positions either in ab-
solute or in normalized units. This method of
definition and animation provides a concise and
efficient way of representing an object. Since the
control points lie on the geometric surface, their
locations are predictable, unlike in FFD. It is dif-
ficult to develop and use a physically based defor-
mation technique for a generalized mesh, as the
animation of deformable characters requires spe-
cific models which are complicated and difficult
to generalize. Moreover, this approach offers the
flexibility to the implementation of such an object
and its animation.

2 GEOEMTRIC MESH DEFINITION

AND DEFORMATION

In this section, we describe in detail the feature
point based mesh deformation algorithm. The

algorithm is usable on any generic surface mesh.
To begin with, the feature points or the control
points with movement constraint are defined for
a given mesh. A constraint in a direction indi-
cates the behavior of the control point in that
direction. For example, if a control point is con-
strained along the x axis, but not along the y
and z axes, means that it still acts as an ordinary
vertex of the mesh along the y and z axes. Its
movement along these axes will be controlled by
the other control points in the vicinity.

Any geometric mesh object is a group of vertices
with the topological information. Given a geo-
metric mesh with control point locations, we need
to compute the regions influenced by each of the
control points. In order to get realistic looking
deformation and animation, it is necessary that
the mesh has a good definition of the feature
points. By good definition, we mean that the
control point locations should be defined consid-
ering the animation properties and real-life topol-
ogy of the object under consideration. Once the
feature points are well defined, a Voronoi surface
diagram can be used to divide the mesh into re-
gions, each controlled by a feature point. How-
ever, this may result into a patchy and nonreal-
istic animation. Thus, each vertex of the mesh
should be controlled by not only the nearest fea-
ture point, but other feature points in the vicinity.
The number of feature points influencing a vertex
and the factor by which each feature point influ-
ences the movement of this vertex is decided by
the following;:

1. The distances between the feature points
i.e. if the feature points are spread densely
or sparsely on the mesh

2. The distances between the ordinary (non-
feature point) vertices of the mesh and the
nearest feature point

3. The relative spread of the feature points
around a given vertex

The algorithm is divided into two steps. In the
Initialization step, the above mentioned informa-
tion is extracted and the coefficients or weights for
each of the vertices corresponding to the nearest
feature points are calculated. The distance be-
tween two points is computed as the sum of the
edge lengths encountered while traversing from
one point to the other. We call this surface dis-
tance. This surface distance measure is useful
to handle holes and discontinuities in the mesh.
Mouth and eye openings are typical examples of



such holes in the facial mesh models. The Defor-
mation step actually takes place during the real-
time animation for each frame. Actual displace-
ment of all the vertices of the mesh is computed
from the displacement of the feature points.

2.1 Initialization

The initialization can further be divided into two
substeps.

2.1.1 Computing Feature Point Distribu-
tion

In this step, the information about all the neigh-
boring feature points for each of the feature point
is extracted. The mesh is traversed starting from
each feature point, advancing only one step in all
the possible directions at a time, thus growing
a mesh region for each feature point, called fea-
ture point region. Neighboring feature points are
those feature points that have a common feature
point region boundary. As a result, for each fea-
ture point defined on the mesh surface, we get
a list of the neighboring feature points with sur-
face distances between them. This information is
further used in the next step which actually cal-
culates the weights associated with each feature
point for all the vertices.

2.1.2 Computing Weights

The goal of this step is to extract possible over-
lapping influence regions for each feature point
and to compute the corresponding weight for de-
formation for all the vertices in this influence re-
gion. Consider a general surface mesh as shown
in Figure 1. During the process of mesh traversal
starting from the feature points, assume that the
vertex P is approached from a feature point F'P;.
FP; is added to the list of the influencing fea-
ture points of P. From the information extracted
in the previous step of mesh traversal, F'P,, and
F P are the neighboring feature points of F'P;.
F P, and FPj are chosen such that the angles 605
and A3 are the smallest of all the angles 6; for
neighboring feature points F'P; of F'P;. Also,

™

™
0 —,0
2<273<2

(1)
The surface distances of the vertex from these
feature points are respectively dip, di2 and dq3 as
shown in the figure. While computing the weight
of FP; at P, we consider the effect of the presence
of the other neighboring feature points namely

Figure 1: Computing Weights for Animation

FP, and FP; at P. For this, we compute the
following weighted sum d:

_dy2c08(02) + dizcos(63)

d cos(02) + cos(63)

(2)
Thus, d is the weighted sum of the distances dis
and dy3. The feature point in a smaller angular
distance from the F' P, is assigned a higher value
of weight. If there is only one neighboring feature

point of F'P; such that 6 < 7, then d is simply

di2
cosbs *

computed as

We compute the weight assigned to the point P
for the deformation due to movement of F'P; as:

Wi p = sin(3 (1 20)) 3)

or more generally

Wip = sin(Z(1 - d;”)) (4)

Thus, point P has a weight for displacement that
is inversely proportional to its distance from the
nearest feature point F'P;. This determines the
local influence of the feature point on the ver-
tices of the mesh. At the same time, nearer the
other feature points (F P, and F' Ps in this case) to
F Py, less is this weight according to the equation
2 and 3. This determines the global influence of
a feature point on the surrounding region, in the
presence of other feature points in the vicinity.

It is possible that a vertex is approached by more
than one feature point, during the process of mesh
traversal. We compute the weight for this feature
point following the same procedure (considering
again the nearest angular neighbors of the feature
point), as long as the angular distance criterion
(1) is satisfied, and the surface distance d;p < d,



d as defined in equation 2. This second criterion
ensures that the feature points F'P; whose near-
est neighbors are nearer to the vertex P than I'P;
are not considered while computing the deforma-
tion for vertex P. Thus, for the example taken
here, weights will be computed for vertex P for
the feature points F'P; as well as F'P, and F'Ps,
provided dop and dzp are less than d. As a re-
sult, we have for each vertex of the mesh, a list
of control points influencing it and an associated
weight.

We tested the algorithm on simple meshes with
different values of limits in equation 1, and differ-
ent weighting functions in equation 2 and 3. The
ones giving the most satisfactory results were cho-
sen. In equation 3, instead of sine function, it is
possible to use any other suitable mathematical
operator. We chose sine as it is continuous at the
minimum and maximum limits. As will be de-
scribed later, the algorithm applied for MPEG-4
facial mesh produces satisfactory results for de-
formation and animation.

2.2 Deformation

Once the weights for the vertices have been com-
puted, the mesh is ready for real-time animation.
Note that Initialization step is computationally
intensive, but carried out only once. The weights
computed, take into consideration the distance
of a vertex from the feature point and relative
spread of the feature points around the vertex.
Now, from the displacements of the feature points
for animation, we calculate the actual displace-
ment of all the vertices of the mesh. Here, we have
to consider the effects caused when two or more
feature points move at the same time, influenc-
ing the same vertex. We calculate the weighted
sum of all the displacements caused at the point
P due to all the neighboring feature points. Let
FP;,, i=1,2,---,N be the control points influ-
encing vertex P of the mesh. Then

1. D; = the displacement specified for the con-
trol point F'P;

2. W; p = the weight as calculated in the Ini-
tialization for vertex P associated with the
control points

3. d; p = the corresponding distance between
P and FP;.

The following equation gives the resultant dis-
placement Dp caused at the vertex P

N W; pD;
Ez‘:o d,i;21 5
SN Wp (5)

i=0 d; p?

Dp =

This operation is performed for every frame dur-
ing the computation of the animation of the mesh.

3 ADAPTATION FOR MPEG-4 FA-
CIAL MESH

The problem of facial animation has been ap-
proached from various angles. Muscle based mod-
els have been effectively developed for facial an-
imation [14, 17, 16]. The Facial Action Coding
System [5] defines high level parameters for fa-
cial animation, on which several other systems
are based. We use MPEG-4 facial animation
standard which defines the face object by loca-
tions of specific feature points on the facial mesh.
The generalized mesh deformation algorithm dis-
cussed in the previous section serves well for
such an animation framework. Lavagetto et.al.
have described an MPEG-4 compatible facial an-
imation engine using a similar mesh deformation
technique [8]. However, the important difference
is that the wireframe semantics have to be spec-
ified a priori in their method. The wire frame
semantics includes specifying the locations of the
feature points and the region influenced by each
feature point.

3.1 MPEG-4 Facial Animation

The ISO/IEC JTC1/SC29/WG11 (Moving Pic-
tures Expert Group - MPEG) has formulated the
new MPEG-4 standard [13]. SNHC (Synthetic
Natural Hybrid Coding) is a subgroup of MPEG-
4 that has devised an efficient coding method
for graphics models and the compressed trans-
mission of their animation parameters specific to
the model type. For faces, the Facial Defini-
tion Parameter (FDP) set and the Facial Ani-
mation Parameter (FAP) set are designed to en-
code facial shape and texture, as well as anima-
tion of faces reproducing expressions, emotions
and speech pronunciation.

The FDPs are defined by the locations of the fea-
ture points and are used to customize a given face
model to a particular face. They contain 3D fea-
ture points such as mouth corners and contours,
eye corners, eyebrow ends, etc. FAP is based
on the study of minimal facial actions and are
closely related to muscle actions. They represent
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Figure 2: MPEG-4 Facial Feature Points

a complete set of basic facial actions and allow
the representation of most natural facial expres-
sions. All parameters involving motion are ex-
pressed in terms of the Facial Animation Param-
eter Units (FAPU). These correspond to fractions
of distances between key facial features (e.g. the
distance between the eyes). The fractional units
are chosen to ensure a sufficient degree of preci-
sion. Figure 2 shows the locations of the feature
points as defined by the MPEG-4 standard.

3.2 Mesh Deformation using MPEG-4
Feature Points

Given a facial mesh, we can define the locations of
the MPEG-4 feature points as per the specifica-
tion, as shown in Figure 2. Also, for each feature
point, we have to define the constraints as defined
by the mesh deformation algorithm. For example,
the feature point number 2.2 influences the move-
ment of the lips in the y direction. However, in
the other two directions, it behaves like an ordi-
nary vertex of the mesh. Thus, its movement is
constrained in the y direction by the value of the
FAP. Once we define this information, the facial
mesh is ready to accept any FAPs and animate
the face.

Figure 3: Morphing using the deformation

We also use the same deformation algorithm to
deform the facial mesh in order to obtain a new
face from a generic mesh. Figure 3 shows the re-
sults in two different views. The face on the left
side is a generic facial mesh. The face in the mid-
dle is acquired using two orthogonal photographs
of a person using the technique described in [9].
In this method, the locations of the feature points
are extracted from the images and Rational Free
Form Deformation (RFFD) is used to deform the
the generic face. Appropriate texture mapping is
done to add realism. Note that the feature points
used for this purpose are as high as 160 in num-
ber. We use a subset of these feature points con-
taining 84 points specified by the MPEG-4 stan-
dard. We apply the deformation algorithm ex-
plained in the previous section to the same generic
face using these MPEG-4 feature points to obtain
the face on the right. Thus the deformation al-
gorithm applied for 3D morphing of generic head
using MPEG-4 feature points generates satisfac-
tory result.

4 OPTICAL TRACKING FOR ANIMA-
TION

Facial feature tracking efforts have ranged from
an ordinary video camera with coloured markers
to retro-reflective markers and infrared camera to
extract directly the 3D position of the markers.
We use one such commercially available system
(VICON 8) to track the facial expressions and
retarget the tracked features to our facial anima-
tion engine to examine the results of the defor-
mation algorithm. We use the MPEG-4 feature
points corresponding to the FAP values to track
the face and extract the FAPs frame by the frame.
The next subsection in brief explains the algo-
rithm for extracting the global head rotation and
the calculation of the FAP values with the under-



Figure 4: Placement of Markers for Selected
MPEG-4 Feature Points

lying assumptions. Subsequently we explain the
results obtained with the animation followed by
the limitations and scope for improvement. For
the capture, we used 6 cameras and 27 markers
corresponding to the MPEG-4 feature point loca-
tions. 3 additional markers are used for tracking
the global orientation of the head. Figure 4 shows
the placement of the feature points on the actor’s
face. It is difficult to obtain the tracking when the
markers get too near to each other during facial
movements. Hence, the markers corresponding to
the feature points along the inner contour of the
lips are not used. Instead, the marker positions
from the outer lip contour are used as an approx-
imation. Also, the markers on the eyelids are off-
set so that they do not touch each other during
blinks and eye closure. As the FAPs correspond-
ing to these markers specify movement only in
vertical direction, this adjustment in the position
is justified and does not give rise to error. We get
the 3D trajectories for each of the marker points
as the output of the tracking system.

4.1 Extracting Global Head Movements

We use 3 markers attached to the head to cap-
ture the rigid head movements (the global rota-
tion and translation of the head). We use the
improved translation invariant method [11]. Let
(pi, p;) be the positions of the points on the sur-
face of the rigid body, observed at two different
time instants. For a rigid body motion, the pair
of points (p;,p}) obey the following general dis-
placement relationship:

R is a 3 x 3 matrix specifying the rotation angle of
the rigid body about an axis arbitrarily oriented
in the three dimensional space, whereas ¢ rep-
resents a translation vector specifying arbitrary
shift after rotation. Three non-collinear point

correspondences are necessary and sufficient to
determine R and ¢ uniquely. With three point
correspondences, we get nine non-linear equations
while there are six unknown motion parameters.
Because the 3D points obtained from the motion
capture system are accurate, linear algorithm is
sufficient for this application, instead of iterative
algorithms based on least square procedure. If
two points on the rigid body, p; and p;11, which
undergo the same transformation, move to p; and
Pi 1 respectively, then

p; = Rpi +1 (7)
and
Pig1 = Rpiv1+t (8)
Subtraction eliminates the translation t, and us-
ing the rigidity constraints yields:

p§+1 - p; _ Pi+1 — Di 9)
|p§+1*P§ | | Piv1 — pi |
The above equation is defined as:
m, = R, (10)

If the rigid body undergoes a pure translation,
these parameters do not change, which means the
translation is invariant. After rearranging these
three equations, we can solve a 3 x 3 linear system
to get R and afterwards obtain ¢ by substitution
in equation 6. In order to find a unique solution,
the 3 x 3 matrix of unit m vectors must be of full
rank, meaning that the three m vectors must be
non-coplanar. As a result, four point correspon-
dences are needed. To overcome this problem of
supplying the linear method with an extra point
correspondence, a “pseudo-correspondence” can
be constructed due to the property of rigidity.
We find a third m vector orthogonal to the two
obtained from three points attached to the head.
Thus, the system has lower dimension, requiring
only three non-collinear rigid points.

Once we extract the global head movements, the
motion trajectories of all the feature point mark-
ers are compensated for the global movements,
and the absolute local displacements for each are
calculated. To calculate the MPEG-4 FAP, we
also need the FAPU (Facial Animation Parame-
ter Units), which are the distances between the
key locations like distance between the lip cor-
ners, height of nose. These can be easily calcu-
lated from the still frame during initialization.

5 CONCLUSION AND
WORK

FUTURE

Figure 5 shows the frames of animation depicting
different facial expressions on the real face and



three different synthetic faces. With the mesh
deformation algorithm described here, the com-
putation can be done at as high a frame rate as
70 frames per second for an MPEG-4 compati-
ble facial mesh with 1257 vertices on a 600 MHz
Pentium IIT PC. Depending upon the graphics
capabilities, the actual real-time animation per-
formance varies. We can obtain 29 frames per
second on the same model and the same PC with
Matrix G400 graphics card using Open GL Opti-
mizer for rendering. Thus, the algorithm is well
suited for real time MPEG-4 compatible facial
animation. We have further used optical tracking
to extract the facial features in 3D and obtain
the synthetic facial animation to examine the re-
sult of the deformation algorithm described here.
In order to assess the generality of the mesh de-
formation algorithm, it needs to be applied to a
variety of other synthetic mesh objects.
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Figure 5: Facial Expressions Extracted by Optical Tracking Reapplied to Different MPEG-4 Faces
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Abstract

A major unsolved problem in computer graphics is the construc-
tion and animation of realistic human facial models. Traditionaly,
facial models have been built painstakingly by manual digitization
and animated by ad hoc parametrically controlled facial mesh defor-
mationsor kinematic approximation of muscleactions. Fortunately,
animators are now ableto digitize facial geometriesthrough the use
of scanning range sensors and animate them through the dynamic
simulation of facial tissues and muscles. However, thesetechniques
require considerableuser input to construct facial model sof individ-
ual ssuitablefor animation. In this paper, we present amethodol ogy
for automating this challenging task. Starting with a structured fa-
cial mesh, we devel op algorithmsthat automatically construct func-
tional models of the heads of human subjects from laser-scanned
range and reflectance data. These algorithms automatically insert
contractile muscles at anatomically correct positions within a dy-
namic skin model and root them in an estimated skull structure with
a hinged jaw. They also synthesize functional eyes, eyelids, teeth,
and a neck and fit them to the final model. The constructed face
may be animated via muscle actuations. In this way, we create the
most authentic and functional facial modelsof individualsavailable
to date and demonstrate their usein facial animation.

CR Categories:  1.3.5[Computer Graphics]: Physicaly based
modeling; 1.3.7 [Computer Graphics]: Animation.

Additional Keywords: Physics-based Facia Modeling, Facial
Animation, RGB/Range Scanners, Feature-Based Facial Adapta-
tion, Texture Mapping, Discrete Deformable Models.

1 Introduction

Two decades have passed since Parke’s pioneering work in ani-
mating faces [13]. In the span of time, significant effort has been
devoted to the devel opment of computational models of the human
face for applications in such diverse areas as entertainment, low
bandwidth teleconferencing, surgical facial planning, and virtual
reality. However, the task of accurately modeling the expressive
human face by computer remains a major challenge.

Traditionally, computer facial animation followsthreebasicpro-
cedures: (1) design a3D facial mesh, (2) digitize the 3D mesh, and
(3) animate the 3D mesh in a controlled fashion to simulate facial
actions.

In procedure (1), it is desirable to have a refined topological
mesh that capturesthe facial geometry. Often thisentails digitizing

!Department of Computer Science, 10 King's College Road, Toronto,
ON, Canada, M5S1A4. {vlee| dt} @cs.toronto.edu

2Cambridge Research Lab., OneKendall Square, Cambridge, MA 02139.
waters@crl.dec.com

Published in the Proceedings of SIGGRAPH 95 (Los Angeles, CA,
August, 1995). In Computer Graphics Proceedings, Annual Con-
ference Series, 1995, ACM SIGGRAPH, pp. 55-62.

asmany nodesaspossible. Caremust betaken not to oversamplethe
surface because there is a trade-off between the number of nodes
and the computational cost of the model. Consequently, meshes
devel oped to date capturethe salient features of the facewith asfew
nodes as possible (see[17, 14, 21, 9, 23] for several different mesh
designs).

In procedure (2), ageneral 3D digitization technique uses pho-
togrammetry of several images of the face taken from different
angles. A common technique is to place markers on the face that
can be seen from two or more cameras. An alternative techniqueis
to manually digitize aplaster cast of the face using manual 3D dig-
itization devices such as orthogonal magnetic fields sound captors
[9], or oneto two photographs[9, 7, 1]. More recently, automated
laser range finders can digitize on the order of 105 3D points from
a solid object such as a person’s head and shouldersin just a few
seconds[23].

In procedure (3), an animator must decide which mesh nodes
to articulate and how much they should be displaced in order to
produce a specific facial expression. Various approacheshave been
proposed for deforming a facial mesh to produce facial expres-
sions; for example, parameterized models [14, 15], control-point
models [12, 7], kinematic muscle models [21, 9], a texture-map-
assembly model [25], a spline model [11], feature-tracking mod-
els[24, 16], afinite element model [6], and dynamic muscle mod-
els[17, 20, 8, 3].

1.1 Our Approach

The goal of our work is to automate the challenging task of cre-
ating realistic facial models of individuals suitable for animation.
We develop an algorithm that beginswith cylindrical range and re-
flectance data acquired by a Cyberware scanner and automatically
constructs an efficient and fully functional model of the subject’s
head, as shown in Plate 1. The agorithm is applicable to various
individuals (Plate 2 shows the raw scans of several individuals). It
proceedsin two steps:

In step 1, the algorithm adapts awell-structured face mesh from
[21] to the range and reflectance data acquired by scanning the sub-
ject, thereby capturing the shapeof the subject’sface. Thisapproach
has significant advantagesbecauseit avoidsrepeated manual modifi-
cation of control parametersto compensatefor geometric variations
in the facial features from person to person. More specifically, it
allows the automatic placement of facial muscles and enables the
use of asingle control processacross different facial models.

The generic face mesh is adapted automatically through an im-
age analysis technique that searches for salient local minima and
maxima in the range image of the subject. The search is directed
according to the known relative positions of the nose, eyes, chin,
ears, and other facial features with respect to the generic mesh.
Facial muscle emergenceand attachment points are al'so known rel-
ative to the generic mesh and are adapted automatically asthe mesh
is conformed to the scanned data.

In step 2, the algorithm elaborates the geometric model con-
structed in step 1 into a functional, physics-based model of the
subject’sfacewhich is capable of facial expression, asshowninthe
lower portion of Plate 1.

Wefollow the physics-basedfacial modeling approach proposed



by Terzopoulos and Waters [20]. Its basic features are that it ani-
mates facial expressions by contracting synthetic muscles embed-
ded in an anatomically motivated model of skin composed of three
spring-mass layers. The physical simulation propagatesthe muscle
forces through the physics-based synthetic skin thereby deforming
the skinto producefacial expressions. Among the advantagesof the
physics-based approach are that it greatly enhances the degree of
realism over purely geometric facial modeling approaches, whilere-
ducing the amount of work that must bedoneby theanimator. It can
be computationally efficient. It is aso amenable to improvement,
with an increasein computational expense, through the use of more
sophisticated biomechanical models and more accurate numerical
simulation methods.

We propose a more accurate biomechanical model for facia
animation compared to previous models. We develop anew biome-
chanical facia skin model which is simpler and better than the one
proposedin [20]. Furthermore, we argue that the skull is animpor-
tant biomechanical structure with regard to facial expression [22].
To date, the skin-skull interface hasbeen underemphasizedin facial
animation despiteitsimportancein thevicinity of thearticul atejaw;
therefore we improve upon previous facial models by developing
an algorithm to estimate the skull structure from the acquired range
data, and prevent the synthesized facial skin from penetrating the
skull.

Finally, our algorithm includes an articulated neck and synthe-
sizes subsidiary organs, including eyes, eyelids, and teeth, which
cannot be adequately imaged or resolved in the scanned data, but
which are nonethelesscrucial for realistic facial animation.

2 Generic Face Mesh and Mesh Adaptation

Thefirst step of our approach to constructing functional facial mod-
els of individuas is to scan a subject using a Cyberware Color
Digitizer™. The scanner rotates 360 degrees around the subject,
who sits motionless on a stool as a laser stripe is projected onto
the head and shoulders. Once the scan is complete, the device
has acquired two registered images of the subject: a range image
(Figure 1) — atopographic map that records the distance from the
sensor to pointsonthefacial surface, and areflectance(RGB) image
(Figure 2) — which registers the color of the surfaceat those points.
The images are in cylindrical coordinates, with longitude (0-360)
degrees along the x axis and vertical height dlong the y axis. The
resolution of theimagesis typically 512 x 256 pixels (cf. Plate 1)

The remainder of this section describes an algorithm which re-
duces the acquired geometric and photometric data to an efficient
geometric model of the subject’s head. The algorithm is atwo-part
process which repairs defects in the acquired images and conforms
ageneric facial mesh to the processed images using afeature-based
matching scheme. The resulting mesh capturesthe facial geometry
asapolygonal surfacethat can be texture mapped with the full res-
olution reflectance image, thereby maintaining arealistic facsimile
of the subject’s face.

2.1 ImageProcessing

One of the problems of range data digitization isillustrated in Fig-
ure 1(a). Inthe hair areg, in the chin area, nostril area, and even
in the pupils, laser beams tend to disperse and the sensor observes
no range value for these corresponding 3D surface points. We must
correct for missing range and texture information.

We use a relaxation method to interpolate the range data. In
particular, we apply a membrane interpol ation method describedin
[18]. Therelaxation interpolates valuesfor the missing points so as
to bring them into successively closer agreement with surrounding
points by repeatedly indexing nearest neighbor values. Intuitively,
it stretches an elastic membrane over the gapsin the surface. The
imagesinterpolated through relaxation are shownin Figure 1(b) and

(€Y (b)
Figurel: (a) Rangedataof “Grace’ from a Cyberwarescanner. (b)
Recovered plain data.

illustrate improvements in the hair area and chin area. Relaxation
workseffectively when the range surfaceis smooth, and particularly
in the case of human head range data, the smoothness requirement
of the solutionsis satisfied quite effectively.

Figure 2(a) shows two 512 x 256 reflectance (RGB) texture
maps as monochrome images. Each reflectance value represents
the surface color of the object in cylindrical coordinates with cor-
responding longitude (0-360 degrees) and latitude. Likerangeim-
ages, the acquired reflectance images are lacking color information
at certain points. Thissituationis especially obviousin the hair area
and the shoulder area (see Figure 2(a)). We employ the membrane
relaxation approach to interpol ate the texture image by repeated av-
eraging of neighboring known colors. Theoriginal texture imagein
Figure 2(a) can be compared with the interpolated texture imagein
Figure 2(b).

(b)

Figure 2: (@) Texture data of “George” with void points displayed
inwhite and (b) textureimage interpolated using relaxation method.

The method is somewhat problematic in the hair area where
range variations may be large and thereis arelatively high percent-
age of missing surface points. A thin-plate relaxation agorithm
[18] may be more effective in these regions becauseit would fill in
the larger gapswith less“flattening” than a membrane[10].

Although the head structurein the cylindrical laser rangedatais
distorted along the longitudinal direction, important features such
asthe dlopechangesof the nose, forehead, chin, and the contours of
the mouth, eyes, and noseare still discernible. In order to locatethe
contours of those facial features for use in adaptation (see below),
we use amodified Laplacian operator (applied to the discrete image
throughlocal pixel differencing) to detect edgesfrom the range map
shown in Figure 3(a) and produce the field function in Fig. 3(b).
For detail s about the operator, see[8]. Thefield function highlights
important features of interest. For example, the local maxima of
the modified L aplacian reveal s the boundaries of thelips, eyes, and
chin.

2.2 Generic Face Mesh and Mesh Adaptation

The next step is to reduce the large arrays of data acquired by the
scanner into a parsimonious geometric model of the face that can
eventually be animated efficiently. Motivated by the adaptive mesh-
ing techniques [19] that were employed in [23], we significantly
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Figure 3: (a) Original range map. (b) Modified Laplacian field
function of ().

improved the technique by adapting ageneric face mesh to the data.
Figure 4 shows the planar generic mesh which we obtain through
acylindrical projection of the 3D face mesh from [21]. One of the
advantages of the generic mesh is that it has well-defined features
which form the basis for accurate feature based adaptation to the
scanned data and automatic scaling and positioning of facia mus-
clesasthemesh isdeformed to fit theimages. Another advantageis
that it automatically produces an efficient triangulation, with finer
triangles over the highly curved and/or highly articulate regions of
theface, suchastheeyesand mouth, and larger triangles el sewhere.

Figure 4: Facial portion of generic meshin 2D cylindrical coordi-
nates. Dark lines are features for adaptation.

We label al facial feature nodes in the generic face prior to
the adaptation step. The feature nodesinclude eye contours, nose
contours, mouth contours, and chin contours.

For any specific range image and its positive Laplacian field
function (Figure 3), the generic mesh adaptati on procedureperforms
the following stepsto locate feature pointsin the range data (see [8]
for details):

Mesh Adaptation Procedures
1. Locate nosetip 6. Locateeyes
2. Locatechintip 7. Activate spring forces
3. Locate mouth contour 8. Adapt hair mesh
4. Locate chin contour 9. Adapt body mesh
5. Locate ears 10. Store texture coordinates

Oncethe mesh hasbeenfitted by the abovefeature based match-
ing technique (see Plate 3), the algorithm samplesthe range image
at the location of the nodes of the face mesh to capture the facial
geometry, asisillustrated in Figure 5.

The node positions also provide texture map coordinates that
are used to map the full resolution color image onto the triangles
(seePlate 3).

2.3 Estimation of Relaxed Face M odel

Ideally, the subject’sface should bein a neutral, relaxed expression
when he or sheis being scanned. However, the scanned woman in

(b)

Figure 5. (a) Generic geometric model conformed to Cyberware
scanof “Heidi”. (b) Sameas (a). Note that “Heidi’s’ mouth is now
closed, subsequent to estimation of the relaxed face geometry.

the “Heidi” dataset is smiling and her mouth is open (see Plate 2).
We have made our algorithm tolerant of these situations. To con-
struct afunctional model, it isimportant to first estimate the relaxed
geometry. That is, we must infer what the “Heidi” subject would
look like had her face been in a relaxed pose while she was be-
ing scanned. We therefore estimate the range values of the closed
mouth contour from the range val ues of the open mouth contour by
the following steps:

1. Perform adaptation proceduresin Sec. 2.2 without step 3.
2. Store noda longitude/latitude into adapted face model.

3. Perform lip adaptationin step 3in sec. 2.2

4. Store nodal range valuesinto adapted face model.

Asaresult, thefinal reconstructed facemodel in Figure 5(b) will
have a relaxed mouth because the longitude and latitude recorded
is the default shape of our closed mouth model (see Figure 4).
Moreover, the shape of the final reconstructed face is till faithful
to the head data because the range value at each facial nodal point
is obtained correctly after the lip adaptation procedure has been
performed. Relaxing the face shown in Figure 5(a) results in the
imagein Figure 5(b) (with eyelidsinserted — see below).

3 The Dynamic Skin and Muscle M odel

This section describeshow our system proceedswith the construc-

tion of afully functional model of the subject’sface from the facial
mesh produced by the adaptation algorithm described in the previ-

ous section. To this end, we automatically create a dynamic model

of facial tissue, estimateaskull surface, and insert the major muscles
of facial expressioninto themodel. Thefollowing sectionsdescribe
each of these components. We also describe our high-performance
parallel, numerical simulation of the dynamic facial tissue model.

3.1 Layered Synthetic Tissue Model

The skull is covered by deformable tissue which has five distinct
layers[4]. Four layers—epidermis, dermis, sub-cutaneous connec-
tive tissue, and fascia—comprise the skin, and the fifth consists of
themusclesof facia expression. Following [20], and in accordance
with the structure of real skin [5], we have designed anew, synthetic
tissue model (Figure 6(a)).

Thetissue model is composed of triangular prism elements (see
Figure 6(a)) which match the triangles in the adapted facial mesh.
The epidermal surface is defined by nodes 1, 2, and 3, which are
connected by epidermal springs. The epidermis nodes are also
connected by dermal-fatty layer springsto nodes4, 5, and 6, which
definethe fasciasurface. Fascianodesare interconnected by fascia
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Figure 6: (@) Triangular skin tissue prism element. (b) Close-up
view of right side of an individual with conformed elements.

springs. They are also connected by muscle layer springs to skull
surface nodes7, 8, 9.

Figure 9(b) shows 684 such skin elements assembled into an
extended skin patch. Severa synthetic muscles are embedded into
the muscle layer of the skin patch and the figure shows the skin
deformation due to muscle contraction. Muscles are fixed in an
estimated bony subsurface at their point of emergence and are at-
tached to fascia nodes as they run through several tissue elements.
Figure 6(b) shows a close-up view of the right half of the facial
tissue model adapted to an individual’s face which consists of 432
elements.

3.2 Discrete Deformable Models (DDMs)

A discrete deformable model has a node-spring-node structure,
which is a uniaxial finite element. The data structure for the node
consistsof thenodal massm: ;, positionx;(t) = [z:(t), yi(¢), zi(¢)],
velocity v; = dx;/dt, acceleration a;, = d°x; /dt®, and net nodal
forcesf,”(t). The datastructure for the spring in thisDDM consists
of pointers to the head node ¢ and the tail node 5 which the spring
interconnects, the natura or rest length /i, of the spring, and the
spring stiffness cx..

3.3 TissueModel Spring Forces

By assembling the discrete deformable model according to histolog-
ical knowledgeof skin (see Figure 6(a)), we are able to construct an
anatomically consistent, albeit smplified, tissuemodel. Figure6(b)
shows a close-up view of the tissue model around its eye and nose
parts of aface which is automatically assembled by following the
above approach.

¢ Theforce spring 5 exertson node: is

g =c;(ly — l;)sj

— each layer hasits own stress-strain relationship ¢; and
thedermal -fatty layer usesbiphasic springs (non-constant

c;) [20]

— I andl; = ||x; — x;|| are therest and current lengths
for spring j

—s; = (x; — x;)/l; is the spring direction vector for
spring j

3.4 Linear Muscle Forces

Themuscles of facial expression, or the muscular plate, spreadsout
below the facial tissue. The facial musculature is attached to the
skin tissue by short elastic tendonsat many placesin the fascia, but
is fixed to the facia skeleton only at afew points. Contractions of
the facial muscles cause movement of the facial tissue. We model

28 of theprimary facial muscles, including the zygomatic major and
minor, frontalis, nasii, corrugator, mentalis, buccinator, and angulii
depressor groups. Plate 4 illustrates the effects of automatic scaling
and positioning of facial muscle vectors as the generic mesh adapts
to different faces.

To better emulate the facial muscle attachments to the fascia
layer in our model, agroup of fascianodessituated along themuscle
path—i.e., within a predetermined distance from a central muscle
vector, in accordance with the muscle width—experience forces
from the contraction of themuscle. Theface construction algorithm
determines the nodes affected by each musclein a precomputation
step.

To apply muscle forcesto the fascianodes, we calculate aforce
for each node by multiplying the muscle vector with aforce length
scaling factor and a force width scaling factor (see Figure 7(a)).
Function ©, (Figure 8(a)) scalesthe muscle force according to the
length ratio < ;, while ©, (Figure 8(b)) scales it according to the
width w; ; at node: of muscle 5:

F A F
gji = ((mj —xi)-my)/(][mj —mj||)
lpi — (pi - ny)n|
e Theforce muscle 5 exertsonnode: is

f] = O1(e,:)O2(w; i )m;

Wii =

— Oy scalesthe force according to the distanceratio ¢ ; ;,
wheree;; = p;.:/d;, with d; the muscle 5 length.

— O, scalestheforceaccordingto thewidthratiow; ; /w;,
with w; the muscle 5 width.

— my; isthe normalized muscle vector for muscle 5

Note that the muscle force is scaled to zero at the root of the
muscle fiber in the bone and reaches its full strength near the end
of the muscle fiber. Figure 9(b) shows an example of the effect of
muscle forces applied to a synthetic skin patch.

m’ i 0
i - \
! L za+b
\_ P ! Pii
linear muscle fiber segment | of piecewise linear muscle fiber j
@ (b)

Figure7: (&) Linear musclefiber. (b) Piecewiselinear musclefiber.
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Figure8: (a) Muscleforce scaling function ©1 wrt ¢, ;, (b) Muscle
force scaling function ©, wrt w; ; /w;

3.5 PiecewiseLinear Muscle Forces

In addition to using linear muscle fibersin section 3.4 to simulate
sheet facial muscles like the frontalis and the zygomatics, we aso
model sphincter muscles, such as the orbicularis oris circling the
mouth, by generdizing the linear muscle fibers to be piecewise



linear and alowing them to attach to fascia at each end of the
segments. Figure 7(b) illustrates two segments of an N-segment
piecewise linear muscle j showing three nodes m, m‘**, and
m'*2. The unit vectorsm; ;, m; ;11 and n, i, n; ;11 are parallel
and normal to the segments, respectively. Thefigureindicatesfascia
node: at x;, as well asthe distance p;; = a + b, the width w; ;,
and the perpendicular vector p; from fascia node : to the nearest
segment of the muscle. The length ratio ¢, ; for fascianode: in
musclefiber j is

N
(mé+1 - Xi) sy + Zk:l+1 || mf+1 - m? ||

N
2ogmy IImy T —mi

The width w;; calculation is the same as for linear muscles.
The remaining muscle force computations are the same as in sec-
tion 3.4. Plate 4 shows all the linear muscles and the piecewise
linear sphincter musclesaround the mouth.
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3.6 Volume Preservation Forces

In order to faithfully exhibit theincompressibility [2] of real human
skinin our model, avolume constraint force based on the change of
volume (see Figure 9(a)) and displacements of nodesis calculated
and applied to nodes. In Figure 9(b) the expected effect of volume
preservation is demonstrated. For example, near the origin of the
muscle fiber, the epidermal skin is bulging out, and near the end of
the musclefiber, the epidermal skin is depressed.

¢ Thevolume preservation force element e exerts on nodes: in
elemente is

qf = ka(Ve — Vo)n¢ + ka(pf — D)

— V* and V* arethe rest and current volumesfor e
— n{ isthe epidermal normal for epidermal node

— pfandp?¢ aretherest and current nodal coordinatesfor
node: with respect to the center of massof e

— ki1, k2 areforce scaling constants
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Figure 9: (@) Volume preservation and skull nonpenetration ele-
ment. (b) Assembled|ayered tissueelementsunder multiple muscle
forces.

3.7 Skull Penetration Constraint Forces

Because of the underlying impenetrable skull of a human head, the
facial tissueduring afacial expressionwill slide over the underlying
bony structure. With thisin mind, for each individua’s face model
reconstructed from thelaser range data, we estimatethe skull surface
normals to be the surface normals in the range data image. The
skull isthen computed as an offset surface. To prevent nodes from
penetrating the estimated skull (see Figure 9(a)), we apply a skull
non-penetration constraint to cancel out the force component on the
fascianodewhich pointsinto the skull; therefore, theresulting force
will make the nodes slide over the skull.

¢ Theforceto penalizefascianode: during motion is:

o —(fin . ni)n,' Whenf,” -n; <0
%=1 9 otherwise

— 7" isthe net force on fascianode ¢
— n; isthenoda normal of node:

3.8 Equationsof Motion for Tissue Model

Newton’slaw of motion governsthe responseof the tissue model to
forces. Thisleadsto asystem of coupled second order ODES that
relate the node positions, velocities, and accelerations to the nodal
forces. The equation for node: is

d?x; dx; . - . ~ -

mz‘?—l—wﬁ—l—grl-qz‘-l-sz'—l—hi =1

— m; isthe noda mass,

— v isthe damping coefficient,

— g, isthetota spring force at nodes,

— q; isthetotal volume preservation force at nodes,

— §; isthetotal skull penetration force at nodes,

— h; isthetotal nodal restoration force at node,

- f, isthetotal applied muscleforce at node+,

3.9 Numerical Simulation

The solution to the above system of ODEsis approximated by using
thewell-known, explicit Euler method. At eachiteration, the nodal
acceleration at time ¢ iscomputed by dividing the net force by nodal
mass. Thenodal velocity isthen calculated by integrating once, and
another integration is done to compute the nodal positions at the
nexttime step ¢ + At, asfollows:

1 = ~

t t t ~t ~t ~t t

a; = ;(fi —vvi—8 —q — 8§ —hy)
k2

vf+At = vi4 Al

xf"’m = xf + Atvf"’m

3.10 Default Parameters

The default parameters for the physical/numerical simulation and
the spring stiffnessvalues of different layersare asfollows:

Mass () | Timestep (At) | Damping (v)
05 0.01 30
Epid | Derm-fat 1 | Derm-fat 2 | Fascia | Muscle

c| 60 30 70 80 10

3.11 Parallel Processingfor Facial Animation

Theexplicit Euler method allowsusto easily carry out the numerical
simulation of the dynamic skin/muscle model in parallel. Thisis
becauseat eachtime step all the calculationsare based on theresults
from the previous time step. Therefore, parallelization is achieved
by evenly distributing calculations at each time step to all available
processors. This parallel approach increases the animation speed
to allow usto simulate facial expressionsat interactive rates on our
Silicon Graphics multiprocessor workstation.

4 Geometry Modelsfor Other Head Components

To complete our physics-based face model, additional geometric
models are combined along with the skin/muscle/skull models de-
veloped in the previous section. These include the eyes, eyelids,
teeth, neck, hair, and bust (Figure 10). See Plate 5 for an example
of acomplete model.
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Figure 10: (a) Geometric models of eyes, eydlids, and teeth (b)
Incisor, canine, and molar teeth. (c) hair and neck.

41 Eyes

Eyes are constructed from spheres with adjustable irises and ad-
justable pupils (Figure 10(a)). The eyes are automatically scaled
to fit the facial model and are positioned into it. The eyes rotate
kinematically in a coordinated fashion so that they will always con-
verge on a specified fixation point in three-dimensional space that
defines the field of view. Through a simple illumination computa-
tion, the eyes can automatically dilate and contract the pupil sizein
accordancewith the amount of light entering the eye.

42 Eydids

The eyelids are polygonal models which can blink kinematically
during animation (see Figure 10(a)). Note that the eyelids are open
in Figure 10(a).

If the subject is scanned with open eyes, the sensor will not
observe the eyelid texture. An eyelid texture is synthesized by a
rel axation based interpol ation algorithm similar to the one described
insection 2.1. Therelaxation agorithminterpolatesasuitableeyelid
texture from the immediately surrounding texture map. Figure 11
showsthe results of the eyelid texture interpolation.

1 1y
(€Y (b)
Figure 11: (a) Facetextureimage with adapted mesh before eyelid
texture synthesis(b) after eyelid texture synthesis.

4.3 Teeth

We have constructed a full set of generic teeth based on dental
images. Each tooth is a NURBS surfaces of degree 2. Three
different teeth shapes, the incisor, canine, and molar, are modeled
(Figure 10(b)). We use different orientations and scalings of these
basic shapesto model thefull set of upper and lower teeth shownin
Figure 10(a). The dentures are automatically scaled to fit in length,
curvature, etc., and are positioned behind the mouth of the facial
model.

4.4 Hair, Neck, and Bust Geometry

Thehair and bust are both rigid polygonal models(see Figure 10(c)).
They are modeled from the range data directly, by extending the

facial mesh in a predetermined fashion to the boundaries of the
range and reflectance data, and sampling the images as before.

The neck can be twisted, bent and rotated with three degrees
of freedom. See Figure 12 for illustrations of the possible neck
articulations.

N
““\W‘%ﬂ'
e

Figure 12: articulation of neck.

5 Animation Examples

Plate 1 illustrates several examples of animating the physics-based
face model after conformation to the “Heidi” scanned data (see
Plate 2).

¢ The surprise expression results from contraction of the outer
frontalis, major frontalis, inner frontalis, zygomatics major,
zygomatics minor, depressor 1abii, and mentalis, and rotation
of the jaw.

¢ Theanger expression results from contraction of the corruga-
tor, lateral corrugator, levator labii, levator labii nasi, anguli
depressor, depressor labii, and mentalis.

¢ Thequizzcal ook results from an asymmetric contraction of
the major frontalis, outer frontalis, corrugator, lateral corru-
gator, levator labii, and buccinator.

¢ Thesadnessexpressionresultsfrom acontraction of theinner
frontalis, corrugator, lateral corrugator, anguli depressor, and
depressor labii.

Plate 6 demonstrates the performance of our face model con-
struction algorithm ontwo maleindividuals(“ Giovanni” and “Mick”).
Note that the algorithm is tolerant of some amount of facial hair.

Plate 7 showsathird individual “ George.” Notetheimageat the
lower left, which shows two additional expression effects—cheek
puffing, and lip puckering—that combine to simulate the vigorous
blowing of air through the lips. The cheek puffing was created by
applyingoutwardly directed radial forcesto“inflate” the deformable
cheeks. The puckered lips were created by applying radial pursing
forces and forward protruding forces to simulate the action of the
orbicularis oris sphincter muscle which circles the mouth.

Finaly, Plate 8 shows several frames from a two-minute ani-
mation “Bureaucrat Too” (a second-generation version of the 1990
“Bureaucrat” which was animated using the generic facial model in
[20]). Here“George” tries to read landmark papers on facial mod-
eling and deformable models in the SIGGRAPH ' 87 proceedings,
only to realize that he doesn’t yet have abrain!

6 Conclusion and Future Work

The human face consists of a biological tissue layer with nonlin-
ear deformation properties, a muscle layer knit together under the
skin, and an impenetrable skull structure beneath the muscle layer.
We have presented a physics-based model of the face which takes
all of these structures into account. Furthermore, we have demon-
strated a new technique for automatically constructing face models
of this sort and conforming them to individuals by exploiting high-
resolution laser scanner data. The conformation processis carried
out by a feature matching algorithm based on a reusable generic



mesh. The conformation process, efficiently captures facial geom-
etry and photometry, positions and scales facial muscles, and aso
estimates the skull structure over which the new synthetic facial
tissue model can dide. Our facial modeling approach achieves an
unprecedented level of realism and fidelity to any specific individ-
ua. It also achieves a good compromise between the complete
emulation of the complex biomechanical structures and function-
ality of the human face and real-time simulation performance on
state-of-the-art computer graphics and animation hardware.

Although weformulate the synthetic facial skin asalayeredtis-
sue model, our work doesnot yet exploit knowledgeof the variable
thickness of the layers in different areas of the face. This issue
will in @l likelihood be addressed in the future by incorporating
additional input data about the subject acquired using noninvasive
medical scannerssuchasCT or MR.
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Plate1: Objective. Input: Rangemap in 3D and texture map (top).
Output: Functional face model for animation.

3

Plate 2: Raw 512 x 256 digitized datafor Heidi (top left), George
(top right), Giovanni (bottom left), Mick (bottom right).



Plate 3: Adapted face mesh overlaying texture map and Laplacian Plate 6: Animation examples of Giovanni and Mick.

filtered range map of Heidi.

Plate 4: Muscle fiber vector embedded in generic face model and Plate 7: Animation example of George.
two adapted faces of Heidi and George.

Plate 5: Complete, functional head model of Heidi with physics- Plate 8: Georgein four scenesfrom “Bureaucrat Too”.
based face and geometric eyes, teeth, hair, neck, and shoulders (in
Monument Valley).
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A Morphable Model For The Synthesis Of 3D Faces

\Volker Blanz Thomas Vetter

Max-Planck-Institut it biologische Kybernetik,
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Abstract 3D Database

Face
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Keywords: facial modeling, registration, photogrammetry, mor-
phing, facial animation, computer vision

o _,| Morphable
In this paper, a new technique for modeling textured 3D faces is @ @ ﬁ @ Face Model
introduced. 3D faces can either be generated automatically from
one or more photographs, or modeled directly through an intuitive
user interface. Users are assisted in two key problems of computer
aided face modeling. First, new face images or new 3D face mod- f ) Modeler

els can be registered automatically by computing dense one-to-one = —— s
correspondence to an internal face model. Second, the approach ——

regulates the naturalness of modeled faces avoiding faces with a ——

“unlikely” appearance. 2D Input 3D Output

Starting from an example set of 3D face models, we derive a
morphable face model by transforming the shape and texture of theFigure 1: Derived from a dataset of prototypical 3D scans of faces,
examples into a vector space representation. New faces and expresthe morphable face model contributes to two main steps in face
sions can be modeled by forming linear combinations of the proto- manipulation: (1) deriving a 3D face model from a novel image,
types. Shape and texture constraints derived from the statistics ofand (2) modifying shape and texture in a natural way.
our example faces are used to guide manual modeling or automated
matching algorithms. application to application, but usually ranges from 50 to 300.

We show 3D face reconstructions from single images and their ~ Only a correct alignment of all these points allows acceptable in-
applications for photo-realistic image manipulations. We also termediate morphs, a convincing mapping of motion data from the
demonstrate face manipulations according to complex parametersreference to a new model, or the adaptation of a 3D face model to
such as gender, fullness of a face or its distinctiveness. 2D images for ‘video cloning’. Human knowledge and experience

is necessary to compensate for the variations between individual

faces and to guarantee a valid location assignment in the different

faces. At present, automated matching techniques can be utilized

only for very prominent feature points such as the corners of eyes
1 Introduction and mouth. _ o _

A second type of problem in face modeling is the separation of

Computer aided modeling of human faces still requires a great dealnatural faces from non faces. For this, human knowledge is even
of expertise and manual control to avoid unrealistic, non-face-like more critical. Many applications involve the design of completely
results. Most limitations of automated techniques for face synthe- New natural looking faces that can occur in the real world but which
sis, face animation or for general changes in the appearance of aave no “real” counterpart. Others require the manipulation of an
individual face can be described either as the problem of finding eXisting face according to changes in age, body weight or simply to
corresponding feature locations in different faces or as the problem emphasize the characteristics of the face. Such tasks usually require
of separating realistic faces from faces that could never appear intime-consuming manual work combined with the skills of an artist.
the real world. The correspondence problem is crucial for all mor-  In this paper, we present a parametric face modeling technique
phing techniques, both for the application of motion-capture data that assists in both problems. First, arbitrary human faces can be
to pictures or 3D face models, and for most 3D face reconstruction created simultaneously controlling the likelihood of the generated
techniques from images. A limited number of labeled feature points faces. Second, the system is able to compute correspondence be-
marked in one face, e.g., the tip of the nose, the eye corner and lesgween new faces. Exploiting the statistics of a large dataset of 3D
prominent points on the cheek, must be located precisely in anotherface scans (geometric and textural datgberware”™) we built
face. The number of manually labeled feature points varies from & morphable face model and recover domain knowledge about face

variations by applying pattern classification methods. The mor-

*MPI fur biol. Kybernetik, Spemannstr. 38, 72076birigen, Germany. phable face model is a multidimensional 3D morphing function that
E-mail: {volker.blanz, thomas.vetp@tuebingen.mpg.de is based on the linear combination of a large number of 3D face

scans. Computing the average face and the main modes of vari-
ation in our dataset, a probability distribution is imposed on the
morphing function to avoid unlikely faces. We also derive paramet-
ric descriptions of face attributes such as gender, distinctiveness,
“hooked” noses or the weight of a person, by evaluating the distri-
bution of exemplar faces for each attribute within our face space.
Having constructed a parametric face model that is able to gener-
ate almost any face, the correspondence problem turns into a mathe-
matical optimization problem. New faces, images or 3D face scans,
can be registered by minimizing the difference between the new
face and its reconstruction by the face model function. We devel-



oped an algorithm that adjusts the model parameters automaticallying intermediate 2D morphable image models. As a consequence,
for an optimal reconstruction of the target, requiring only a mini- head orientation, illumination conditions and other parameters can
mum of manual initialization. The output of the matching proce- be free variables subject to optimization. Itis sufficient to use rough
dure is a high quality 3D face model that is in full correspondence estimates of their values as a starting point of the automated match-
with our morphable face model. Consequently all face manipula- ing procedure.

tions parameterized in our model function can be mapped to the  Most techniques for ‘face cloning’, the reconstruction of a 3D
target face. The prior knowledge about the shape and texture offace model from one or more images, still rely on manual assistance
faces in general that is captured in our model function is sufficient for matching a deformable 3D face model to the images [26, 1, 30].
to make reasonable estimates of the full 3D shape and texture of aThe approach of Pighin et al. [28] demonstrates the high realism
face even when only a single picture is available. When applying that can be achieved for the synthesis of faces and facial expressions
the method to several images of a person, the reconstructions reacirom photographs where several images of a face are matched to a

almost the quality of laser scans. single 3D face model. Our automated matching procedure could be
) used to replace the manual initialization step, where several corre-
1.1 Previous and related work sponding features have to be labeled in the presented images.

Modeling human faces has challenged researchers in computer FO(; thf: animation loftfaces, gvar|ety of ".‘e‘hofds tha\t/ﬁ b%enkprof-
graphics since its beginning. Since the pioneering work of Parke posed. For & compiele overview we again reter to the book o

[25, 26], various techniques have been reported for modeling the P arke and Waters [24]. The techniques can be roughly separated

geometry of faces [10, 11, 22, 34, 21] and for animating them in those that rely on physical modeling of facial muscles [38, 17],

[28, 14, 19, 32, 22, 38, 29]. A detailed overview can be found in and in those applying previously captured' facigl expres.sions to a
the,boo’k of' Par’ke énd Waters [24] face [25, 3]. These performance based animation techniques com-

pute the correspondence between the different facial expressions of
a person by tracking markers glued to the face from image to im-
age. To obtain photo-realistic face animations, up to 182 markers
are used [14]. Working directly on faces without markers, our au-

The key part of our approach is a generalized model of human
faces. Similar to the approach of DeCarlos et al. [10], we restrict
the range of allowable faces according to constraints derived from

prototypical human faces. However, instead of using a limited set tomated approach extends this number to its limit. It matches the

of measurements and proportions between a set of facial landmarks ' . . -
we directly use the densely sampled geometry of the exemplar facesfu” number of vertices available in the face model to images. The

obtained by laser scanning'¢berware’™). The dense model- resull(tllng degse cotrk:esp(;ndence f]LeIdstcan e\t/r?n capture changes in
ing of facial geometry (several thousand vertices per face) leads V''N<I€s and map these from one face o another.

directly to a triangulation of the surface. Consequently, there is no o
need for variational surface interpolation techniques [10, 23, 33]. 1.2 Organization of the paper

We also added a model of texture variations between faces. Theyye giart with a description of the database of 3D face scans from
morphable 3D face model is a consequent extension of the interpo-\\ hich our morphable model is built.

l[gg(]mé%ﬂnﬁ#]e 2?)?:’::%;%%%3:%2322? iﬁZi\I/ri]gSgIUBCSdf akge I;g:l;e In Section 3, we introduce the concept of the morphable face
: puting P model, assuming a set of 3D face scans that are in full correspon-

ﬁ]uttﬁéngézarlg’ r‘g’g e?nrtZt?obr:ef rtc())n:n; ;g\?vsﬁutr?; rgggget;r?; \cl)??k:giss ;r?g;jdence. Exploiting the statistics of a dataset, we derive a parametric
P description of faces, as well as the range of plausible faces. Ad-

moilt]etg;/ec:’lavtv; baéﬁ,vzgf rﬁﬁnudsr?ec?shc;?r’]beazs?sljnf? C(gso:ai?é?sthggqut:tuasditionaIIy, we define facial attributes, such as gender or fullness of
P J faces, in the parameter space of the model.

few. The goal of such an extended morphable face model is to rep- In Section 4 d ib lqorithm f tchi flexibl
resent any face as a linear combination of a limited basis set of face 3 I(tac lon I' we descri gt‘;’m aigor f'f“ or m2|c Ing 'Ct)fl:r gé’ e
prototypes. Representing the face of an arbitrary person as a linea/NOUE! 10 NOVE IMages or scans of faces. Along with a re-
combination (morph) of “prototype” faces was first formulated for construction, the algorithm can compute correspondence, based on
image compression in telecommunications [8]. Image-based Iinearthe morphable model.

2D face models that exploit large data sets of prototype faces were In Section 5, we intro_duce an iterative method for building a mor-
developed for face recognition and image coding [4, 18, 37]. phable model automatically from a raw data set of 3D face scans
Different approaches have been taken to automate the match-When no correspondences between the exemplar faces are available.

ing step necessary for building up morphable models. One class

of techniques is based on optic flow algorithms [5, 4] and another

on an active model matching strategy [12, 16]. Combinations of 2 Database

both techniques have been applied to the problem of image match-

ing [36]. In this paper we extend this approach to the problem of Laser scans@yberware’™) of 200 heads of young adults (100

matching 3D faces. male and 100 female) were used. The laser scans provide head
The correspondence problem between different three- structure data in a cylindrical representation, with radh, ¢) of

dimensional face data has been addressed previously by Leesurface points sampled at 512 equally-spaced arglesd at 512

et al.[20]. Their shape-matching algorithm differs significantly equally spaced vertical steps Additionally, the RGB-color values

from our approach in several respects. First, we compute the R(h, ¢), G(h, ¢),andB(h, ¢), were recorded in the same spatial

correspondence in high resolution, considering shape and textureresolution and were stored in a texture map with 8 bit per channel.

data simultaneously. Second, instead of using a physical tissue All faces were without makeup, accessories, and facial hair. The

model to constrain the range of allowed mesh deformations, we usesubjects were scanned wearing bathing caps, that were removed

the statistics of our example faces to keep deformations plausible.digitally. Additional automatic pre-processing of the scans, which

Third, we do not rely on routines that are specifically designed to for most heads required no human interaction, consisted of a ver-

detect the features exclusively found in faces, e.g., eyes, nose. tical cut behind the ears, a horizontal cut to remove the shoulders,
Our general matching strategy can be used not only to adapt theand a normalization routine that brought each face to a standard

morphable model to a 3D face scan, but also to 2D images of faces.orientation and position in space. The resultant faces were repre-

Unlike a previous approach [35], the morphable 3D face model is sented by approximately 70,000 vertices and the same number of

now directly matched to images, avoiding the detour of generat- color values.



3 Morphable 3D Face Model Prototype Average segments

The morphable model is based on a data set of 3D faces. Morphing *
between faces requires full correspondence between all of the faces.
In this section, we will assume that all exemplar faces are in full
correspondence. The algorithm for computing correspondence will
be described in Section 5. - -
S(+++ + S@O00O0

We represent the geometry of a face with a shape-vetter Terin 10000) S(1/21/21/21/2)
(X1,Y1,Z1, X, ..., Yo, Z,)" € R*", that contains theX, Y, Z- —— e
coordinates of its: vertices. For simplicity, we assume that the
number of valid texture values in the texture map is equal to the . ;
number of vertices. We therefore represent the texture of a face by y
atexture-vectol’ = (R1, G1, B1, R, ....., Gn, B,)T € R3", that '
contains theR, G, B color values of thex corresponding vertices.

A morphable face model was then constructed using a data set of SO0+ SE0-0) s

exemplar faces, each represented by its shape-v8ctord texture- T -9 i)
vectorT;. Since we assume all faces in full correspondence (see \
Section 5), new shape$,,.qe; and new textured,,0qc; Can be
expressed in barycentric coordinates as a linear combination of the
shapes and textures of theexemplar faces:

S(---+)
T

S (= 70)
T(0000)

S
-

Smoa = Y @iSi, Tmoa= Y biTi, Y ai=3 b =1 o000
i=1 i=1 i=1 i=1

Figure 2: A single prototype adds a large variety of new faces to the

We define the morphable model as the set of fa®s,q(a), morphable model. The deviation of a prototype from the average is

Tmoa(b)), parameterized by the coefficients= (a1, as...am)” added (+) or subtracted (-) from the average. A standard morph ()

andb = (by,b2...b,)T. * Arbitrary new faces can be generated by is located halfway between average and the prototype. Subtracting

. ~ the differences from the average yields an 'anti’-face (#). Adding
varying the parameteisand? that control shape and texture. and subtracting deviations independently for shape (S) and texture

For a useful face synthesis system, it is important to be able {0 (1) o each of four segments produces a number of distinct faces.
quantify the results in terms of their plausibility of being faces. We

therefore estimated the probability distribution for the coefficients ) o o )
a; andb; from our example set of faces. This distribution enables be increased by dividing faces into independent subregions that are

us to control the likelihood of the coefficients andb; and conse- morphed independently, for example into eyes, nose, mouth and a
quently regulates the likelihood of the appearance of the generatedsurrounding region (see Figure 2). Since all faces are assumed to
faces. be in correspondence, it is sufficient to define these regions on a

We fit a multivariate normal distribution to our data set of 200 reference face. This segmentation is equivalent to subdividing the
faces, based on the averages of shé@nd texturel’ and the co- vector space of faces into independent subspaces. A complete 3D
variance matrice€'s andC;- computed over the shape and texture face is generated by computing linear combinations for each seg-
differencesAS; = S; — SandAT; =T, — T. ment separately and blending them at the borders according to an

A common technique for data compression known as Principal algorithm proposed for images by [7] .
Component Analysis (PCA) [15, 31] performs a basis transforma- . .
tion to an orthogonal coordinate system formed by the eigenvectors 3-1  Facial attributes
s; andt; of the covariance matrices (in descending order according

to their eigenvalued) Shape and texture coefficients and 3; in our morphable face

model do not correspond to the facial attributes used in human lan-
el S guage. While some facial attributes can easily be related to biophys-
_ o5 o _ 7 " ical measurements [13, 10], such as the width of the mouth, others

Smodet = 5+ Z @i8i5 Tmodet =T + Z Biti, (1) such as facial femininity or being more or less bony can hardly be
i=1 i=1 described by numbers. In this section, we describe a method for

mapping facial attributes, defined by a hand-labeled set of example

- = m—1 . —_ . .
&, € ™. The probability for coefficients’ is given by faces, to the parameter space of our morphable model. At each po-

S sition in face space (that is for any possible face), we define shape
p(@) ~ exp[_l Z (@i /o:)?] @) and texture vectors that, when added to or subtracted from a face,
2 4 vhEe D will manipulate a specific attribute while keeping all other attributes
i=1 as constant as possible.
with o7 being the eigenvalues of the shape covariance matsix Ina performance based technique [25], facial expressions can be
The probabilityp(ﬁ) is computed similarly. transferred by recording two scans of the same individual with dif-

Segmented morphable model: The morphable model de-  ferentexpressions, and adding the differendés= Se.pression —
scribed in equation (1), has — 1 degrees of freedom for tex-  Oneutral, AT = Teapression — Tneutrat, 10 @ different individual

ture andm — 1 for shape. The expressiveness of the model can IN & neutral expression. _ . )
Unlike facial expressions, attributes that are invariant for each in-

1standard morphing between two faces & 2) is obtained if the pa- dividual are more difficult to isolate. The following method allows
rametersa;,b; are varied betweed and 1, settingaz = 1 — a1 and us to model facial attributes such as gender, fullness of faces, dark-
by =1—bs. ness of eyebrows, double chins, and hooked versus concave noses

2Due to the subtracted average vectdtsand 7', the dimensions of (Figure 3). Based on a set of fadgsy, 7;) with manually assigned
Span{AS;} andSpan{AT;} are at mostn — 1. labelsy; describing the markedness of the attribute, we compute



weighted sums

AS = wui(S; —=8), AT = wi(T; —T). (3) 4 Initializing
. Morphable Model
Multiples of (AS, AT') can now be added to or subtracted from £
any individual face. For binary attributes, such as gender, we assign | =\, P R

constant valueg 4 for all m4 faces in classd, andup # pa for 3D average head
all mp faces inB. Affecting only the scaling ofAS and AT, the <3
choice ofp 4, pp is arbitrary.

ORIGINAL CARICATURE MORE MALE FEMALE

ﬁ ﬂ ﬁ ir dir, bg,dir, ,4ir Of directed light. In order to handle photographs

SMILE FROWN WEIGHT HOOKED NOSE taken under a wide variety of condition$also includes color con-
trast as well as offset and gain in the red, green, and blue channel.
Other parameters, such as camera distance, light direction, and sur-
face shininess, remain fixed to the values estimated by the user.

To justify this method, lej:(S, T") be the overall function de- | Automated 3D Shape and Texture Reconstruction |
scribing the markedness of the attribute in a f@8eT’). Since v
to be solved. Our technique assumes jif, T') is a linear func-

tion. Consequently, in order to achieve a chadge of the at-

tribute, there is only a single optimal directigta S, AT") for the

whole space of faces. It can be shown that Equation (3) defines

the direction with minimal variance-normalized lengith S||3, =

(AS,C5TAS), ||AT||3, = (AT, CL AT).

tion of caricatures has been possible for many years [6]. This tech- v v v

nique can easily be extended from 2D images to our morphable face -

model. Individual faces are caricatured by increasing their distance

from the average face. In our representation, shape and texture co-

efficientsa;, 3; are simply multiplied by a constant factor.

Figure 4: Processing steps for reconstructing 3D shape and texture
of a new face from a single image. After a rough manual alignment
of the average 3D head (top row), the automated matching proce-
dure fits the 3D morphable model to the image (center row). In the
right column, the model is rendered on top of the input image. De-

(S, T) is not available per se for &{lS, T"), the regression prob- .
A different kind of facial attribute is its “distinctiveness”, which :
tails in texture can be improved by illumination-corrected texture

lem of estimatingu(S, T") from a sample set of labeled faces has
is commonly manipulated in caricatures. The automated produc- | lllumination Corrected Texture Extraction |
extraction from the input (bottom row).

1

Figure 3: Variation of facial attributes of a single face. The appear-
ance of an original face can be changed by adding or subtracting

shape and texture vectors specific to the attribute. From parameteré, 3, ), colored images
) ) Liodet (@, y) = (IT,mod(way)ylg,mod(z:y):Ib,mod(w:y))T (4)
4 MatChmg a morphable model to Images are rendered using perspective projection and the Phong illumina-

A crucial element of our framework is an algorithm for automati- tion model. The reconstructed image is supposed to be closest to
cally matching the morphable face model to one or more images. the inputimage in terms of Euclidean distance

Providing an estimate of the face’s 3D structure (Figure 4), it closes Er=%, ’ I Linput (@, 9) — Lnoder (z, )|

the gap between the specific manipulations described in Section 3.1 '

and the type of data available in typical applications. ‘Matching a 3D surface to a given image is an ill-posed problem.

d orl . Along with the desired solution, many non-face-like surfaces lead
Coefficients of the 3D model are optimized along with a set of ;e same image. It is therefore essential to impose constraints
rendering parameters such that they produce an image as close agy, yq et of solutions. In our morphable model, shape and texture
poss[ble to the input image. In an analysis-by-synthesis loop, the vectors are restricted to the vector space spanned by the database.
algorithm creates a texture mapped 3D face from the current model Within the vector space of faces, solutions can be further re-

parameters, renders an image, and updates the parameters accor frict tradeoff between matchin ality and prior proba-
ing to the residual difference. It starts with the average head andg ed by a tradeo bﬁe ee ching quality prior proba

; ; ; bilities, usingP (&), P(B) from Section 3 and an ad-hoc estimate
with rendering parameters roughly estimated by the user. o - .

Model Parga%eters: Facialg sr{aepe and te>)</ture ;re defined Of P’(7). Interms of Bayes decision theory, the problem is to find
by coefficientsa; and 8, j = 1,..,m — 1 (Equation 1).  the setof parametelsy, 5, 5) with maximum posterior probabil-
Rendering parameterg contain camera position (azimuth and ity, given an imagd;,,.:. While &, 3, and rendering parame-
elevation), object scale, image plane rotation and translation, ters g’ completely determine the predicted imabg,q4.;, the ob-
iNtensity i, amo, tg,amb, i,ams Of @ambient light, and intensity served imagd;,,.: May vary due to noise. For Gaussian noise



with a standard deviatioay, the likelihood to observé;, . is

P(Linput|&, B, §) ~ exp[;—% - Er]. Maximum posterior probabil-
O'N .

ity is then achieved by minimizing the cost function Pair of

Input Images

Automated

L . . . Simultaneous
The optimization algorithm described below uses an estimate of Matching

E based on a random selection of surface points. Predicted color
valuesl,,.q.; are easiest to evaluate in the centers of triangles. In
the center of triangle, texture(Ry, Gk,Bk)T and 3D location
(X, Yx, Z1,)T are averages of the values at the corners. Perspec-
tive projection maps these points to image locatitmsy., py.x)”~ -
Surface normala;, of each trianglé: are determined by the 3D lo-

2
J

g tlp +mz_l @ +mz_l 57 +Z(Pj—ﬁj)2 (5)
=5 b — - e
oN 75 o 0T ; Tp.i

Reconstruction
of 3D Shape
and Texture

cations of the corners. According to Phong illumination, the color lllumination

componentd, model, Ig,modet @NAI, moder take the form Corrected
B Texture

Ir,model,k = (ir,amb + i’r‘,di’!‘ . (nkl))Rk + iT,diTS . (I‘]cV]c)V (6) Extraction

wherel is the direction of illuminationy; the normalized differ-
ence of camera position and the position of the triangle’s center, and 3D Result
rr, = 2(nl)n — 1 the direction of the reflected ray. denotes sur-
face shininess, and controls the angular distribution of the spec-
ular reflection. Equation (6) reduces k0,modei,k = ir,amo Rk if
a shadow is cast on the center of the triangle, which is tested in a
method described below.

For high resolution 3D meshes, variationdjp,q.; across each
trianglek € {1, ...,n.} are small, s&&; may be approximated by

New Views

Figure 5: Simultaneous reconstruction of 3D shape and texture of a
new face from two images taken under different conditions. In the
center row, the 3D face is rendered on top of the input images.

- , _ _ 2 pj. In subsequent iterations, more and more principal components
Er = Zak [ Linput (Be k> Py.k) — Imoder k]|, e added.
k=1 c) Starting with a relatively large n, which puts a strong weight
whereay, is the image area covered by trianglelf the triangle is on prior probability in equation (5) and ties the optimum towards
occludedgay, = 0. the prior expectation value, we later reduce to obtain maximum

In gradient descent, contributions from different triangles of the matching quality. ) )
mesh would be redundant. In each iteration, we therefore select ad) In the last iterations, the face model is broken down into seg-

random subset C {1, ..., n;} of 40 triangles and replace; by ments (Section 3). With parameteps fixed, coefficientse; and
B; are optimized independently for each segment. This increased
_ ] _ _ 2 number of degrees of freedom significantly improves facial details.
Brx = Z Linput P,k Py,) = Imodet, )| @) Multiple Images: It is straightforward to extend this technique to
kex the case where several images of a person are available (Figure 5).

While shape and texture are still described by a common sef of

andg;, there is now a separate setgffor each input imageE;

is replaced by a sum of image distances for each pair of input and

model images, and all parameters are optimized simultaneously.

lllumination-Corrected Texture Extraction: Specific features of

rithm computes the full 3D shape of the current model, and 2D po- Ndividual faces that are not captured by the morphable model, such
as blemishes, are extracted from the image in a subsequent texture

sitions(ps, py )T of all vertices. It then determines;, and detects . . . . :

hidden surfaces and cast shadows in a two-pass z-buffer technique2d@Ptation process. Exiracting texture from images is a technique

We assume that occlusions and cast shadows are constant durin idely usgd in constructing 3D models from Images (e..g. .[28]).'
owever, in order to be able to change pose and illumination, it

each subset of iterations. is important to separate pure albedo at any given point from the
Parameters are updated depending on analytical derivatives of. P P P Y g P

the cost functionZ, usinga; — a; — A, - 2Z and similarly for influence pf shading ar!d cast shadows in the image. In our ap-
9a; proach, this can be achieved because our matching procedure pro-

The probability of selecting is p(k € K) ~ aj. This method of
stochastic gradient descent [16] is not only more efficient computa-
tionally, but also helps to avoid local minima by adding noise to the
gradient estimate.

Before the first iteration, and once every 1000 steps, the algo-

B; andp;, with suitable factors\; . ) _ __ vides an estimate of 3D shape, pose, and illumination conditions.
Derivatives of texture and shape (Equation 1) yield derivatives gypsequent to matching, we compare the predidiion ; for each
. _ _ T s )
of 2D locations(p. k, by «)" , Surface normalsy, vectorsvy, and vertexi With Linpu:(pe.i, py.i), and compute the change in texture
ri, ANALodet k (E%uatlgg 6) usmg;ham rule. From Equation (7), (R;, G;, B;) that accounts for the difference. In areas occluded in
partial denvauve%fs, 33, » and % can be obtained. the image, we rely on the prediction made by the model. Data from

Coarse-to-Fine:In order to avoid local minima, the algorithm fol- ~ multiple images can be blended using methods similar to [28].
lows a coarse-to-fine strategy in several respects:

a) The first set of iterations is performed on a down-sampled version
of the input image with a low resolution morphable model.

b) We start by optimizing only the first coefficients and/; con- The method described above can also be applied to register new
trolling the first principal components, along with all parameters 3D faces. Analogous to images, where perspective projection

4.1 Matching a morphable model to 3D scans



P : R® — R? and an illumination model define a colored im-
agel(z,y) = (R(x,y),G(z,y), B(z,y))", laser scans provide

a two-dimensional cylindrical parameterization of the surface by
means of a mapping : R* = R?, (z,y,2) — (h,$). Hence,

a scan can be represented as

I(h, ¢) = (R(h,$),G(h, ¢), B(h, ), r(h,¢))".  (8)
In a face §,T'), defined by shape and texture coefficieatsand
B; (Equation 1), vertexi with texture values(R;, G;, B;) and
cylindrical coordinategr;, h;, ¢;) is mapped td,,cqe; (hi, ¢i) =
(R;, Gy, B;,r;)*. The matching algorithm from the previous sec-
tion now determines; and3; minimizing

E =Y |[Linpue(h, 6) = Lnoder (h, )|

h,¢

5 Building a morphable model

In this section, we describe how to build the morphable model from
a set of unregistered 3D prototypes, and to add a new face to the
existing morphable model, increasing its dimensionality.

The key problem is to compute a dense point-to-point correspon-
dence between the vertices of the faces. Since the method describe
in Section 4.1 finds the best match of a given face only within the
range of the morphable model, it cannot add new dimensions to the -

vector space of faces. To determine residual deviations between q:igure 6: Matching a morphable model to a single image (1) of a

novel face and the best match within the model, as well as to Setface results in a 3D shape (2) and a texture map estimate. The tex-
unregistered prototypes in correspondence, we use an optic flow al'ture estimate can be improved by additional texriure extraétion 4)
gorithm that computes correspondence between two faces without ! P 0y . X N

The 3D model is rendered back into the image after changing facial

the need of a morphable model [35]. The following section sum- . e f X b
marizes this techni%ue. [35] 9 attributes, such as gaining (3) and loosing weight (5), frowning (6),
or being forced to smile (7).

5.1 3D Correspondence using Optic Flow

Initially designed to find corresponding points in grey-level images faces in the database. Therefore, we modified a bootstrapping al-
I(z,y), a gradient-based optic flow algorithm [2] is modified to es- gorithm to iteratively improve correspondence, a method that has
tablish correspondence between a pair of 3D s@éhs¢) (Equa- been used previously to build linear image models [36].

tion 8), taking into account color and radius values simultaneously  The basic recursive stepSuppose that an existing morphable
[35]. The algorithm computes a flow fie{dh(h, ¢), d¢(h, ¢)) that model is not powerful enough to match a new face and thereby find
minimizes differences dfI; (h, ¢) —I2(h+0dh, p+0¢)| inanorm correspondence with it. The idea is first to find rough correspon-
that weights variations in texture and shape equally. Surface prop-dences to the novel face using the (inadequate) morphable model
erties from differential geometry, such as mean curvature, may be and then to improve these correspondences by using an optic flow
used as additional componentslifh, ¢). algorithm.

On facial regions with little structure in texture and shape, such  Starting from an arbitrary face as the temporary reference, pre-
as forehead and cheeks, the results of the optic flow algorithm areliminary correspondence between all other faces and this reference
sometimes spurious. We therefore perform a smooth interpolation is computed using the optic flow algorithm. On the basis of these
based on simulated relaxation of a system of flow vectors that are correspondences, shape and texture veciomsdT' can be com-
coupled with their neighbors. The quadratic coupling potential is puted. Their average serves as a new reference face. The first mor-
equal for all flow vectors. On high-contrast areas, components of phable model is then formed by the most significant components
flow vectors orthogonal to edges are bound to the result of the pre- as provided by a standard PCA decomposition. The current mor-
vious optic flow computation. The system is otherwise free to take phable model is now matched to each of the 3D faces according
on a smooth minimum-energy arrangement. Unlike simple filter- to the method described in Section 4.1. Then, the optic flow algo-
ing routines, our technique fully retains matching quality wherever rithm computes correspondence between the 3D face and the ap-
the flow field is reliable. Optic flow and smooth interpolation are proximation provided by the morphable model. Combined with the
computed on several consecutive levels of resolution. correspondence implied by the matched model, this defines a new

Constructing a morphable face model from a set of unregistered correspondence between the reference face and the example.
3D scans requires the computation of the flow fields between each lIterating this procedure with increasing expressive power of the
face and an arbitrary reference face. Given a definition of shape andmodel (by increasing the number of principal components) leads to
texture vectorsS,..y andT,. for the reference face§ andT" for reliable correspondences between the reference face and the exam-
each face in the database can be obtained by means of the point-toples, and finally to a complete morphable face model.
point correspondence provided Byi(h, ¢), do(h, ¢)).

5.2 Bootstrapping the model 6 Results

Because the optic flow algorithm does not incorporate any con- We built a morphable face model by automatically establishing cor-
straints on the set of solutions, it fails on some of the more unusual respondence between all of our 200 exemplar faces. Our interactive



3D Reconstruction

' - | | |
T - '
Reconstruction Texture Extraction ,
of Shape & Texture & Facial Expression Cast Shadow New lllumination Rotation

Figure 7: After manual initialization, the algorithm automatically matches a colored morphable model (color contrast set to zero) to t
image. Rendering the inner part of the 3D face on top of the image, new shadows, facial expressions and poses can be generated.

face modeling system enables human users to create new charactensainting to novel views. For new illumination, we render two im-
and to modify facial attributes by varying the model coefficients. ages of the reconstructed 3D face with different illumination, and
Within the constraints imposed by prior probability, there is a large multiply relative changes in pixel values (Figure 8, bottom left) by
variability of possible faces, and all linear combinations of the ex- the original values in the painting (bottom center). For a new pose
emplar faces look natural. (bottom right), differences in shading are transferred in a similar
We tested the expressive power of our morphable model by au- way, and the painting is then warped according to the 2D projec-
tomatically reconstructing 3D faces from photographs of arbitrary tions of 3D vertex displacements of the reconstructed shape.
Caucasian faces of middle age that were not in the database. The
images were either taken by us using a digital camera (Figures 4,5),7  Future work
or taken under arbitrary unknown conditions (Figures 6, 7).
In all examples, we matched a morphable model built from the
first 100 shape and the firdt00 texture principal components that
were derived from the whole dataset28() faces. Each component

Issues of implementation:We plan to speed up our matching algo-
rithm by implementing a simplified Newton-method for minimizing
the cost function (Equation 5). Instead of the time consuming com-

was additionally segmented in 4 parts (see Figure 2). The whole putation of derivatives for each iteration step, a global mapping of

matching procedure was performedio® iterations. On an SGI  the matching error into parameter space can be used [9].
R10000 processor, computation time vé@sminutes. Data reduction applied to shape and texture data will reduce

Reconstructing the true 3D shape and texture of a face from ar_edundancy of our representation, saving additional computation

single image is an ill-posed problem. However, to human observers 'Me- , . -

who also know only the input image, the results obtained with our Extending the database:While the current database is sufficient

method look correct. When compared with a real image of the ro- to model Caucasian faces of middle age, we would like to extend it

tated face, differences usually become only visible for large rota- {0 children, to elderly people as well as to other races.

tions of more tharg0°. We also plan to incorporate additional 3D face examples repre-
There is a wide variety of applications for 3D face reconstruction S€Nting the time course of facial expressions and visemes, the face

from 2D images. As demonstrated in Figures 6 and 7, the results Variations during speech.
can be used for automatic post-processing of a face within the orig- _ The laser scanning technology we used, unfortunately, does not
inal picture or movie sequence. allow us to collect dynamical 3D face data, as each scanning cycle
Knowing the 3D shape of a face in an image provides a segmen_takes_at least 1(_) sec_onds. _Consequently, our current examp!e set
tation of the image into face area and background. The face can peof facial expressions is restricted to those that can be kept static by
combined with other 3D graphic objects, such as glasses or hats'the.s.canned supjects. However, the development of fast optical 3D
and then be rendered in front of the background, computing cast digitizers [27] will allow us to apply our method to streams of 3D
shadows or new illumination conditions (Fig. 7). Furthermore, we data during speech and facial expressions. .
can change the appearance of the face by adding or subtracting speExtending the face model: Our current morphable model is re-
cific attributes. If previously unseen backgrounds become visible, Stricted to the face area, because a sufficient 3D model of hair can-
we fill the holes with neighboring background pixels (Fig. 6). not be obtained with our laser scanner. For animation, the missing
We also applied the method to paintings such as Leonardo’s part of the head can bg automatlcally repla.ced.by a st.andard hair
Mona Lisa (Figure 8). Due to unusual (maybe unrealistic) light- style or a hat, or by hair th_at is modeled using interactive manual
ing, illumination-corrected texture extraction is difficult here. We Segmentation and adaptation to a 3D model [30, 28]. Automated

therefore apply a different method for transferring all details of the Irsr‘]:ggztr“dio” of hair styles from images is one of the future chal-
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Figure 8: Reconstructed 3D face of Mona Lisa (top center and
right). For modifying the illumination, relative changes in color
(bottom left) are computed on the 3D face, and then multiplied by
the color values in the painting (bottom center). Additional warping
generates new orientations (bottom right, see text), while details of (21]
the painting, such as brush strokes or cracks, are retained.

[20]

[22]
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Typical Applications

Forensic Applications

* police work:
— growth simulation / aging of missing children
— facial reconstruction from skeletal remains

+ important for tracing and identification

» based on anthropometric data

Jorg Haber
Anthropometric Data Anthropometric Data

Data collected over decades
« facial measurements: landmarks
 populations vary by:
— ethnicity (caucasian, asian, ...)
— age (1-25 yrs. for growth measurements)
— sex
* measurements consist of:
— distances: axis-aligned, euclidean, arc-length

Examples for measurements:

—angles
— proportions
Images: Farkas: *Anthropometry of the Head and Face”, 1994
- <03 EE
Anthropometric Data O : Deformable Head Model = O -

Examples for measurements:

Images: Farkas: "Amhroeometry of the Head and Face”, 1994

Idea: use landmarks for head deformation
« structured, animatable reference head model

+ tagged with landmarks

« thin-plate spline interpolation for deformation




Growth Simulation

Growth Simulation

+ analyze landmark positions of given age
+ compute new landmarks for target age
+ deform reference head model to fit new landmarks

31 years ' 5years d"

Derive new measurements for age change
 given input head model, age, sex, ethnicity
« examine landmarks on input model:

— find deviation from statistical data
« look up statistics for target age using same deviation
» compute new landmarks:

— best fit for target age measurements

Growth Simulation

Growth Simulation Movie

TABLE A-II-4. Morphological hightof the face (n-gn) (mm)
Malo Fomalo

Table: Farkas: “Anthropometry

Age 3 4
e m Voo . m 5  Of the Head and Face”, 199
0-5 months 700 4 5 w0 45
6-12months 2 705 4 8 727 as
1 1 6 4 20 72 49
2 7.5 3. 3 39
e 4 4 30 36]
5 7 35 30 X 46
6 5 5. 50 $ a4
7 5 5. 50 x 37
8 1018 4 51 1 54
9 1 1027 5 50 1013 53
10 1052 4 9 1038 50
11 107.1 6 51 1047 50
12 2 109.1 54 53 108.2 46
13 0 mse 57 49 109.1 50
14 9 1141 85 51 1107 53
15 50 191 57 51 o &1
16 50 1209 6 51 1135 60
i a9 1209 71 51 1120 47
2 213 &8 5 1118
=3 709 1247 57 200 14 48]
computed target measurement
given src measurement
—

mean & std. dev. of src data mean & std. dev. of target data

Limitations

age 1 year age 5 years (original)

age 20 years

It’s only statistics!
» landmarks are sparsely distributed

— lots of source characteristics are maintained
« positioning in normal distribution valid?

— does a child with a big nose have a big nose
as an adult?

» accuracy depends on physical measurements taken
decades ago

— could be improved using 3D scanning
— build up a big database of measurements?




Reconstruction of Faces

CG Approach

« traditional clay sculpting approach:

— place tissue depth markers on the skull; length of
pegs corresponds to anthropometric data

— face is modeled using clay (— artistic licence)

Images: Taylor: “Forensic Art and
lllustration”, 2001

1.

. interactive placement of landmarks

. automatic fitting of the

Acquisition of skull data (3D range
scan, computer tomography)

on the virtual skull; tissue depth
values assigned automatically
from anthropometric data tables

reference head model to
the prescribed skin surface
positions = instantly
animatable head model

Additional
Reconstruction Hints

« forensic art: many “rules of the thumb” to locate certain

Discussion

Again: it’s only statistics!

+ our method mirrors the manual tissue depth method
= same prediction power

« results show plausible reproduction of facial shape and
proportions + some surprisingly well-matched details!

+ advantages: very fast (a few hours instead of weeks),
does not damage original skull

* need additional editing tools for hair, beards, wrinkles

* most promising: gather lots of data through simulation
and evaluation; update tissue thickness tables with
these data




Head shop: Generating animated head models with anatomical structure

Kolja Kahler drg Haber Hitoshi Yamauchi Hans-Peter Seidel

Max-Planck-Institut fir Informatik, Saarhicken

<) d)

Head models generated from a range scan of a five year old boy: a) scan data; b) adapted, animatable head structure;
c) textured; d) age changed to one year, smiling expression; ) age changed to 20 years, surprised expression.

Abstract heads from different samples of the world population have been sys-
tematically collected over the past decades [Farkas 1994], resulting
We present a versatile construction and deformation method for in a database of the predominant facial characteristics for individu-
head models with anatomical structure, suitable for real-time als of different sex, age, and ethnicity. Anthropometric methods are
physics-based facial animation. The model is equipped with land- usually based otandmarks i.e. well-defined features on the face
mark data on skin and skull, which allows us to deform the head and — in the forensic sciences — also on the skull. In recent years,
in anthropometrically meaningful ways. On any deformed model, the topic of deformation of biological shapes described by such sets
the underlying muscle and bone structure is adapted as well, suchof landmark data has been treated by the emerging science of mor-
that the model remains completely animatable using the same mus-phometrics [Bookstein 1997a].
cle contraction parameters. We employ this general technique to fit  We propose the use of anthropometric landmarks and an associ-
a generic head model to imperfect scan data, and to simulate heachted deformation technigue based on thin-plate splines, arriving at a
growth from early childhood to adult age. unified, elegant framework for a variety of tasks in facial modeling
and animation. The added layer of abstraction over the implementa-
tion details of the structured head model allows for modification of
the head geometry in terms of distance relations between facial fea-
tures. Given a reference head model tagged with landmarks on the
skin and bone layers, we automatically deform not only the outer
skin geometry, but also the internal structure composed of muscles
and skull. All head models derived from the reference head share
Keywords: Biological Modeling, Deformations, Facial Anima-  the same set of animation parameters, i.e. muscles, enabling re-use
tion, Geometric Modeling, Morphing, Physically Based Animation of existing animation scripts.

CR Categories: G.1.2 [Numerical Analysis]: Approximation—
approximation of surfaces, least squares approximatids3.5
[Computer Graphics]: Computational Geometry and Object
Modeling—hierarchy and geometric transformations, physically
based modelingl.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realismanimation

The main contributions presented in this paper are:

1 Introduction e a general method to deform an animated head model with
underlying anatomical structure, tagged with anthropometri-

Recent advances in facial animation systems show the potential of cally meaningful landmarks. The head model is suitable for

physics-based approaches, where the anatomical structure of a hu-  real-time animation based on simulation of facial muscles and

man head is simulated, including skin, muscles, and skull [Waters elastic skin properties.

and Frisbie 1995; Lee et al. 1995]. On current hardware, this kind

of techniques can be used to create detailed, realistic animations ® an algorithm to fit such a reference head model to even very

in real-time. As the model becomes more complex, the assembly poor scan data, using this deformation technique.

of the components becomes more complicated, thus giving rise to

a strong interest in automated methods for head model construc-

tion. Once a model exists, it is often desirable to change some of

its characteristics, or generally adapt it to another head geometry,

while retaining full animation capabilities.

The more realistically the heads of existing human individuals ~ While we make extensive use of the body of knowledge and data
can be reproduced in the computer, the more appealing is the usecollected for human faces, the general approach is applicable just
of anthropometric methods and data for analysis and modification as well to other classes of animated virtual creatures, provided a
of head geometry [DeCarlo et al. 1998]. Measurements of human reference model with skull, muscles, and skin can be built.

e atechnique that utilizes the anthropometric measurements on
the head model to simulate growth of a human head, employ-
ing the same deformation method, and resulting in animatable
head models of an individual at different ages.

appeared originally in Proc. ACM Symposium on Computer Animation 2002, pp. 55-64
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Figure 1: The reference head: a) head geometry with landmarks, front view; b) side view; c) skull and facial components; d) skull landmarks
related to subset of skin landmarks; e) facial detail showing spring mesh connecting skin and muscles.

2 Previous and related work mation of a generic head model represented by a B-spline surface.
Recently, the transfer of animations between different head mod-

Several facial animation systems use some approximation of lay- €S on the geometric level has been proposed [Noh and Neumann
ered anatomical structure. The idea of representing skin and mus-2001]. Surface correspondences are obtained by specification of
cles as separate entities was used by E®s[1987], where muscle corresponding point pairs on the models. Heuristics for automatic
vectors and radial functions derived from linear and sphincter mus- feature detection are presented which help to automate the process.
cles specify deformations on a skin mesh. Also building on the  The work on aging in human faces has so far concentrated on
idea of virtual muscles, physics-based approaches attempt to modefhe appearance of the skin, neglecting the considerable geometric
the influence of muscle contraction onto the skin surface by ap- changes that occur during growth. UAet al. [1999; 1994] fo-
proximating the biomechanical properties of skin. Typically, mass- Cus on generation of expressive wrinkles and skin aging effects.
spring or finite element networks are used for numerical simulation Their muscle-driven face model incorporates viscoelastic proper-
[Platt and Badler 1981; Lee et al. 1993; Koch et al. 1998¢(RT ties of skin. LEE et al. [1999] reconstruct textured low polygon
zopouLosand WATERS [1990] automatically construct a layered ~ face models from photographs of the members of a family, simulat-
model of the human face from an initial triangle mesh. The struc- iNg age changes by blending geometry and textures between young
ture consists of three layers representing the muscle layer, dermis@nd old family members. Wrinkle patterns are generated semi-
and epidermis. The skull is approximated as an offset surface from automatically by considering muscle fiber orientation and feature
the skin. This model was later simplified byeE et al. [1995] points on the face. ANITIS et al. [1999] present a statistical face
for efficiency. Free-form deformations have been employed by model to isolate age variations in face images for age estimation
CHADWICK et al. [1989] to shape the skin in a multi-layer model, @nd aging simulation. IBDEMAN et al. [2001] use wavelet-based
which contains bones, muscles, fat tissue, and SKiDHEZPERS methods to identify salient features such as age wrinkles in proto-
et al. [1997] and WLHELMS and VAN GELDER [1997] introduced ~ type facial images, and apply them to other images to change the
anatomy-based muscle models for animating humans and animals@pPparent age.

focusing on the skeletal musculature. Skin tissue is represented
only by an implicit surface with zero thickness [Wilhelms and Van
Gelder 1997].

A variety of techniques exist to create a face model from im- system builds on a prototype head model that has been de-

ages or scan data. In the method presented&ydt al. [1995]’ signed for use in our physics-based animation system. The model
animatable head models are constructed semi-automatically fromencapsylates five major structural components, shown in Figure 1:
range scans. A generic face mesh with embedded muscle vectors

is adapted to range scans of human heads. This process relies on a e a triangle mesh for thekin surface The edges are aligned to
planar parameterization of the range scans as delivered e.g. by the facial features to reduce animation artifacts. The tessellation
Cyberware digitizers. BHIN et al. [1998] interactively mark cor- is adjusted to the deformability of the facial regions.
responding facial features in several photographs of an individual

to deform a generic head model using radial basis functions. An- e alayer ofvirtual musclego control the animation. The mus-

3 The reference head model

imation is possible by capturing facial expressions in the process cles consist of arrays of fibers which can contract in a linear
and blending between them. Employing a large database of several ~ or circular fashion. We have modeled 24 of the major muscles
hundred scanned faces,. BNz et al. [1999] are able to create a ge- responsible for facial expressions and speech articulation.

ometric head model from only a single photograph. The model has
the same resolution as the range scans in the database and cannot ®
be readily animated. ARR et al. [2001] also use radial basis func-
tions to generate consistent meshes from incomplete scan data. In
medical imaging, SELISKI et al. [1996] minimize the distance be-
tween two surfaces obtained from volume scans of human heads by
applying local free-form deformations [Sederberg and Parry 1986]

and global polynomial deformations. The method does not require converted to springs and point masses, respectively. More

specification of corresponding features on the geometries. springs are added to connect to underlying components and

A variational approach is presented bf©ARLO et al. [1998] to preserve skin tissue volume during animation.
to create a range of static face models with realistic proportions.

They use anthropometric measurements, which constrain the defor- e separately modeled components éges, teeth, and tongue

an embeddedkull, including a rotatable mandible, to which
skin and muscles attach. The skull is also represented as a tri-
angle mesh and is only used during initialization of the struc-
ture, not during animation itself.

e amass-spring systeoonnecting skin, muscles, and skull. Ba-
sically, the edges and vertices of the skin surface mesh are

appeared originally in Proc. ACM Symposium on Computer Animation 2002, pp. 55-64



The model structure has been designed manually, employing the
muscle editing methods presented irélder et al. 2001]. We have
enhanced the described muscle model in several respects. The ellip
soid segments have been replaced by a piecewise linear represent:
tion, to give the muscles a smoother, closed surface. As amlgt
et al. 2001], skin vertices attach to muscles, and muscles in turn can
be attached to the mandible. Since we derive all head models by de-
formation of the same reference head, we keep those assignment
fixed. This makes expressions more reproducible between different
head models, because instabilities in vertex re-attachment on the
deformed models are avoided. To incorporate elastic properties of
muscle fibers, the interaction of merged muscles is modeled more
faithfully by using another simple spring mesh. The springs run
along the middle axis of each muscle, connecting merged muscles
by a common node. Finally, the@bicularis orisis divided into two
muscles for upper and lower lip, and the center of contraction for
each of these can be translated along a line. These added degrees u.
freedom allow more accurate protrusion and retraction of the lips, ) o o ]
which is for example useful in speech animation. Figure 2: Comparison of an individual with S|mulayed age ernkl_es
The model is tagged with landmarks, defined on the skin and USing plain OpenGL rendering (left) and our real-time skin shading
skull surfaces. We use these landmarks to control deformation of &lgorithm (right).
the head structure in our algorithms. The landmarks follow the con-
ventions laid out in [Farkas 1994], where we have chosen a mini-
mum subset of landmarks according to their prominence in the face non-penetration constraints are integrated into the global solution
and existence of a correspondence between skin and skull. Thereof the equations of motion, obviating the need for local geometric
are in general far less landmarks on the skull than on the skin, sincecriteria. Since the number of springs in the system is proportional
not every feature on the skin surface corresponds to one on the skull to the number of edges and vertices of the head model, we chose to
cf. Figure 1 d). In our current model, we use 60 skin landmarks and have a rather low resolution mesh to enable fast simulation updates.
22 skull landmarks.

4.3 Multi-threaded simulation and rendering

4 Animation and rendermg overview An important application in our system is speech animation, which

. . . ._requires very fast simulation updates in the range of 40 fps for real-
The focus of this paper is on the structured head model described ing; e animation. While we can achieve these rates with our current

the previous section, and geometric methods of deformation of this model, the graphics performance of modern hardware allows for
thdeI'ngdQStab]['sr? the (cjoln_text, r‘:"e nonelthele?]s r!eeotljto dde]f’cr!bﬁnuch higher rendering frame rates. Our facial animation system
the embedding of the mode into the complete physics-based facialy, decouples simulation and rendering, exploiting dual processor
animation system. This section gives a necessarily brief overview gy ioms by using individual threads for the physics-based simula-
of the issues involved, omitting most of the technical detail. tion and the rendering of an animation [Haber et al. 2001]

4.1 Animation control 4.4 Skin shading

Facial motion is controlled mainly by specifying muscle contrac-
tions over time. We explicitly specify these parameters for a num-
ber of keyframes, assembling facial expressions. For animation,
we perform interpolation between these contraction values. The
complex dynamic of the human face in motion is hard to repro-
duce in this manner, requiring higher level animation facilities that

To improve the visual appearance of the skin surface in real-time
rendering, we employ the vertex program and register combiner
features of the NVidia GeForce3 graphics board. In particular, we
apply multitexturing using four texture units. The texture units
are assigned to the skin color decal texture, a bump map for the
skin surface structure, a bump map for expressive wrinkles, and
. ; % mask texturehat contains different monochrome masks such as
muscle-based approach for the automatic generation of speech aniz gloss map or a bump intensity map in its color channels. The
mation [Albrecht et al. 2002]. bump map for the skin structure is computed directly from a syn-

thetic human skin model similar to the one presented in [Ishii
4.2 Physics-based simulation et al. 1993]. The wrinkles bump map is automatically created

from the layout of the expressive wrinkles, taken from the skin
The animation is controlled on the lowest level by muscle parame- texture. Hardware bump mapping for skin structure and wrin-
ters from an animation script or from user interaction. During the kles is implemented using the Open®l\.vertex _program
simulation, the equations of motion for the mass-spring system areandN\V.register ~_combiners extensions. In addition, a gloss
numerically integrated through time using a Verlet leapfrog integra- map is applied to specify the locally varying specular coefficient of
tion scheme [Vesely 1994; Turner and Gobbetti 1998]. This explicit a Blinn-Phong shading model, while the intensity of skin dimples
forward integration scheme provides better stability than the pop- over the face is controlled by a bump intensity map. Similar to a
ular Euler method [Waters and Frisbie 1995; Lee et al. 1995] with gloss map, the latter contains a scalar value per texel to specify the
similar ease of implementation. degree to which the bump mapped normal should affect the lighting

The spring mesh structure is similar to dKler et al. 2001], computation. The whole process is carried out in a single render-

which is advantageous for real-time animation: the complexity is ing pass on the GeForce3, resulting in frame rates of about 100 fps.
relatively low compared to other layered approaches [Terzopoulos Figure 2 shows a comparison of a head model rendered with plain
and Waters 1990; Lee et al. 1995]. Volume preservation and skull OpenGL capabilities and with our skin shading algorithm.
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5 Landmark-based head deformation This linear system is solved using a standard LU decomposition
with pivoting. We can now transform a poiptc R? according to

Given the head model as described in the Section 3, we are using theeq. (1).

landmark information to specify a deformation of the object space

so that we can warp the complete head structure to a prescribed5 > Deformina the head structure

target landmark configuration. The details of this deformation are - 9

described in this section. In Sections 6 and 7 we demonstrate hOWGiven a warp function defined by landmarks p|aced on the skin of

this general method can be used for both creation and modificationthe source and target heads, we apply this function in different ways

of an animatable head model. to the individual components of the model.

5.1 Setting up the warp function 1. 'I_'heskln mesh_s deformed by direct application of the func-
tion to the vertices of the mesh.
For deformation of biological tissues,d®KSTEIN advocates an

approach based on thin-plate splines, which minimizes the bending 2- The landmarks on thekull meshare related to their coun-

energy of a deformed surface [Bookstein 1997a]. The mechanism terparts on the skin by a vector, giving an offset from each
can be easily translated to the three-dimensional setting [Bookstein skull landmark to the corresponding skin landmark, cf. Fig-
1997b]. The theory is covered extensively in the literature, so we ure 1d). When the skin geometry has been fixed, adjusting
restrict to the practical construction of the deformation function. the local skin thickness thus amounts to changing the scale
The problem can be stated as one of interpolationplet R? for such a vector, and .def(.)rmlng.the skull mesh accordingly.
andq; € R% i = 1,...,n, be two sets of landmarks. The Th_e deformation function is obtained by offsetting th_e target
source landmarks; lie on the geometry we want to deform, and skln landmarks along the negatgq new vectors, resulting in the
the target landmarksq; correspond to the features on the target desired new skull landmark positions. The warp from the cur-
head. We need to find a functidrthat maps the; to theq;: rent skull landmark positions to these new positions is then

applied to the vertices of the skull mesh.
ql:f(p1)7 i:17~"7n7

and which is defined on the volume spanned by the landmarks, so
that the function can be used to deform all elements of the head

structure. Such a mapping can be expressed by a radial basis func-
tion, i.e. a weighted linear combination ofbasic functionss; de-

fined by the source landmark points and an additional explicit affine

3. Musclesin our system are specified by a grid which is ini-
tially “painted” onto the skin. The actual shape of the mus-
cles is computed automatically from the available space un-
derneath the skin and follows the geometry of the skin sur-
face. To transfer the muscles to the new geometry, we apply
the deformation function to the grid vertices and re-compute

transformation: the shape. The rebuild process also allows us to accommodate
n for changes in skin thickness.
f(p) = Z ci¢i(p) + Rp + ¢, 1)
i=1 4. For the other facial components eyes, teeth, and tongue, we

only update position and scale automatically, due to their rep-
resentation as rigid pieces of geometry in our system. Some
fine-tuning is thus necessary to fit them exactly into the de-
formed model. In principle, if the components are also rep-
resented as meshes, the deformation can be applied to their
vertices, making this manual step unnecessary.

wherep € R? is a point in the volumeg; € R? are (unknown)
weights,R. € R3*3 adds rotation, skew, and scaling, and R3

is a translation component. FollowingdBKSTEIN, we simply use

the biharmonic basic functiot; (p) := ||p — p:||,, which mini-
mizes bending energy for the deformation [Duchon 1977]. We have
the additional constraints

> ei=0 and > c/pi=0 6 Creating head models from range
i=1 i=1

scans
to remove affine contributions from the weighted sum of the basic
functions [Pighin et al. 1998; Carr et al. 2001]. A primary task in facial modeling is the reproduction of the heads
Setting up a system of linear equations relating source and targetof real individuals. One way to acquire the geometry of a head is
landmarks, the unknowrR, t, andc; can be solved for simultane-  to use a range scanning device. In practice, though, it turns out that
ously. We first construct three matrices: there are a number of obstacles to using this geometry directly for
an animatable model:

B = (@@ ... g« 0 0 0 0)7 R
e the range data is often noisy and incomplete, especially for
d1(p1) .- da(pP1) structured light scanners, due to projector/camera shadowing
P = . . . € R™™, effects or bad reflective properties of the surface.
o1(Pn) ... On(pPn) e the geometry is heavily oversampled: direct conversion to a
triangle mesh regularly yields hundreds of thousands of poly-
pT 1 gons. For real-time animation, we need to reduce the com-
Q = c R™4. plexity to about 3k polygons. Available mesh simplifica-
P tion techniques [Cignoni et al. 1998] unfortunately don't give
P, 1 enough control over the mesh connectivity to guarantee satis-

fyingly animatable models. Edges should be properly aligned

Now we set up a linear equation system of the f = Bwith to facial features and the mesh structure should reflect the ba-

A - ( PT Q) c RO X () sic symmetry of the face.
0 ’ -
Q . ] e some parts relevant for animation cannot be scanned, such as
X = (c1 ... e R t)7 ¢RI the inner part of the lips.
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Figure 3: Adaptation of the reference mesh to scan data using feature mesh refinement: a) initial defective target mesh from range scans with
landmarks added; b) source mesh and muscle outlines after first deformation; c) target geometry after three refinements; d) deformed source
mesh after three refinements and warps; e) final mesh geometry with adapted skull and muscles.

For these reasons, a common solution is the use of a generic face.1  Specifying landmarks
mesh, which is fitted to the target geometry, cf. Section 2. We em- ) o
ploy our landmark-based deformation approach to create an ani-Our method only requires the specification of a sparse set of land-
matable model from the reference geometry. No parameterizationMarks on the target geometyyt”. Due to the automatic refine-
of the scan data or the reference head mesh is needed, thus we ar@ent, face features do not need to be laboriously traced using dense
not restricted to scans from cylindrical range scanners [Lee et al. correspondences or feature lines [Pighin et al. 1998]. The land-
1995], but can directly process data from arbitrary sources, and, marks are taken from a standard set of the anthropometric litera-
concerning this, have no restrictions on the topology of the meshes. ture and are thus well-defined and easy to identify, see Section 3.
As a side effect of the procedure, the resulting target model is also T0 ease the “repeated point-and-click” task, we again make use of
tagged with a complete set of anthropometric landmarks, which can the deformation function: given three or more landmarks specified
be directly used for further deformations, as will be demonstrated Mmanually, we can already set up a mapping from the source set
in Section 7. of landmarks. to the target seL*. We then copy and warp all
The scan data is given in the form of a dense triangle mesh with landmarks fromC using this function, resulting in a rough approx-
no further fixing, such as hole filling, applied. We call this mesh imation of the desired landmark distribution. Through manual in-
thetarget geometryM* in the following, while the reference head ~ spection and correction more landmarks are repositioned and fixed

(inc|uding the structural Components) is referred to assiharce in their target pOSitiOnS. The process can be iterated until all land-
geometryM — the source geometry needs to be deformed to con- marks in£* have assumed t_helr intended pOSItIOﬂS. This simple
form to the target. We proceed as follows: method has shown to be particularly helpful in cases where the scan

data is lacking a lot of shape information, since the copied land-
1. M™istagged with a set of landmarks corresponding to the marks will already be positioned in a meaningful way. Specifying
setL defined onM. This is a “computer-aided” interactive  our reference set of 60 landmarks thus takes only 10-20 minutes
procedure. in practice. Figure 3a) shows the scan tagged with the complete
set of landmarks, cf. also Figure 1. If no further deformation using
2. adeformation is computed based on the landmark correspon-this specific set of landmarks is desired, the adaptation of the refer-
dences, ancM is warped accordingly. ence head to the scan data can be performed on an arbitrary set of
landmarks.
To further automate the task, we are also actively experiment-
ing with automatic mesh fitting methods, but we feel that there is
g currently no reliable way to automatically detect the features on
the geometry with the required degree of accuracy, especially given
the type of incomplete and noisy scan data we have: landmarks
often must be placed manually in “mid-air” because the local ge-
5. Repeat from Step 2 until convergence. ometry was not captured by the scanner. Simple heuristics [Noh
and Neumann 2001] rely on well-behaved mesh geometry, and are
6. muscle shapes are rebuilt and the skull is warped once more tonot suitable for most of the anthropometric standard landmarks.
finally adjust the skull/skin relationship, as described in Sec-
tion 5.2.

3. £ and L* are automatically refined to generate more corre-
spondences.

4. The components of the reference head model, i.e. skull an
muscles, are deformed to matét* using the same defor-
mation.

_ _ ) 6.2 Adapting the generic mesh
In Step 4 of the refinement loop, the skull is deformed using the

skin mesh deformation to keep the relation between skin and skull After the initial deformation based on the user-specified landmarks,

within the accuracy determined by the current density of the land- M and M™ are already in good correspondence, see Figure 3a)

mark setsC and£*. Only in Step 6, the new skull/skin distance is and b). But, since the landmark distribution is very sparse, the de-

asserted at the sparse locations where landmarks on skin and skultails in the facial geometry oM™ are usually not well captured.

are paired. We do not want to burden the user with specification of hundreds of
We discuss the specification of the landmafKsand the land- feature points, so we have developed an automatic procedure that

mark set refinement procedures in detail in the next two sections. refines the landmark sefsand£* and achieves as good a match as
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M « reference head mesh

M* — target head mesh

L < landmark set on reference head
L* « landmark set on target head

M — warp (£, L*, M) /I deformation fromZ to £* applied toM
F « feature _mesh(L) /I construct feature meshes

F* «— feature _mesh(L™) /' using landmark positions

repeat

(F*,B) <« subdivide (F*) //subdivideF™, storeinB baryc. coords

/I of new vertices w.r.t. parent triangles
(F*,D) « project (F*, M™) Il project feature vertices onto surface of

/f M and store displacements I Figure 4: Left: afeature meshs constructed by connecting the
landmarks on the head geometry, forming a triangle mesh. Right:
flipping edges after subdividing the mesh improves surface smooth-
ness: new vertices on two neighboring subdivided triangles are con-
F « subdiv _copy (F, B, D) /I subdivideF using B and D nected by the yellow edge that previously divided the peaks.

L* «— add_landmarks (F*, L") Il more target landmarks for
I/ appropriate new vertices i *

(F,L) « project (F, M) /I project feature vertices, landmarks ouitd ——

flip _edges (F) /I improve feature mesh smoothness
flip _edges (F™)

P
x

M — warp (L, L", M) /I warp using new landmarks + 3
until convergence '/.\‘\' ./.\‘\.
-°
Table 1: The refinement algorithm for landmark sets on source and // \‘\. /./‘\\

target geometries; see Section 6.2 for detailed explanation.

Figure 5: Refining corresponding triangles in the source (left, light

blue) and target (right, dark blue) feature meshes. Top: the mesh is
possible in typically two or three iterationsThe algorithm outline typically well-behaved in the source geometry, and fragmented in
is shown in Table 1. To be able to refine our standard set of land- the target (orange curves). Where vertices of the target feature mesh
marks automatically, we interpret the landmarks as the vertices of project onto the geometry, landmarks have been added to both fea-
a triangle mesh, which we will callf@ature mesin the following. ture meshes (green dots). Target and source feature mesh triangles
Figure 4 shows the layout of this mesh for the geometry of the refer- are refined equally (green edges). Middle: the normal displacement
ence head. One feature meBHs constructed fo, and another of the target mesh intersection is used to obtain a starting point for
oneF* for M*, using the current landmark positions (so they are finding an intersection with the source mesh. Bottom: source ge-
in fact identical after the first deformation)™ is now refined by ometry and feature meshes have been deformed to match the land-
uniform subdivision: one vertex is inserted into each triangle, split- marks to the target.
ting it into three new triangles. This vertex is moved to the surface
of M*, where we take care to find a correct sampling position on
the surface, especially in areas of poor scan quality. Often, there
is no part of the target surface in the vicinity of the new vertex. If
there is, a new landmark is created at the vertex position, and adde
to £". For each subdivided triangle, the refinement is encoded as a1 gyring refinement, this will improve the locality of the sam-
the barycentric coordinate of the projection of the new vertex onto yjiny of the surface. We also filter the triangle normals once by
the parent triangle along the triangle normal. These coordinates areaveraging with their neighbors.
stored in a seB, and the corresponding scalar displacements along

the normal vector in another sét. The right half of Figure 5 out- de}%?mgtit:r? fm?:tggﬂnid v;ariilor;ts tgjtt?gicfurlc‘év?nzzterpaﬁ dnt%V\;he
lines the subdivision and projection step for one triangld¢f. - APPlINg !

We now need to find counterparts det for the newly created corresponding feature mesh, results in a better approximation of the

landmarks. Since” andF* have the same structure, and the ge- target geometry. The procedure is repeated, and the deformed mesh

ometries are already in good alignment, we repeat the same refine-qumkIy stabilizes to a good fit of the target geometry. In practice,

ment on’, using the information fronB and D. Each new vertex after only three iterations of the refinement procedure the geometry

in F is now close to the source geometry, but usually not placed will have adapted opnmally. .

exactly on the surface, due to differences in facial detail. If there _SiNCe we use atriangle mesh generated directly from range scan

is a landmark for this vertex if*, we find the nearest intersection ~data as the target geometry, we usually have to deal with large ar-

along a ray starting at the vertex, correct its position and create a©aS of the head geometry where there is no data, often interspersed

landmark at that point, adding it t8. The left half of Figure 5 With small specks of samples (e.g. the back of the head), see Fig-

shows how this step is applied. ure 3a). Thg refinement algorlthm is Fhus geared towards fllndlng
After all triangles have been refined in this manner, all edges in these small “islands of data”, while being very conservative in ac-

F andF* from the previous generation are flipped, to improve the CEPting a sampling site on the geometry as a new landmark posi-
tion. A wrongly placed landmark can cause large distortions in the

“As good as possible” here refers to the limits imposed by the dis- deformed geometry, rendering it unusable, so we employ heuristics
cretization of the source mesh, which is usually much coarser than the scanbased on surface normals and landmark/surface distance to find and
data. rank the acceptable sites, or reject creation of a landmark. The ray

quality of the feature mesh surfaces, see Figure 4. The algorithm
oes not rely on the smoothness of the feature meshes, but if the
hange in surface normals between adjacent triangles can be kept

appeared originally in Proc. ACM Symposium on Computer Animation 2002, pp. 55-64



Figure 6: Geometric deformation of a boy’s head by our constraint
resolution technique. Clockwise from left top: 20 years, 12 years,
5 years (original age), 1 year.

intersection before repositioning a new vertex in the source feature
mesh is much less critical, since we are operating on the deformed
reference mesh, which has perfectly well-behaved geometry. Here,
we just have to make sure not to intersect with backfacing parts of
the geometry. Figure 3 shows the approximation of scanned head
geometry by deformation of the reference head.

7 Growth and aging

A challenging problem in facial modeling and animation is the sim-
ulation of growth and aging. Besides the Arts, important applica-

can population of the Caucasian type, males and females between
the ages of one year up to twenty-five years (after this age, there is
almost no change in facial geometry due to growth) [Farkas 1994].
The data describes distance relations for pairs of landmarks, depen-
dent on age and sex. Three types of distance measurements for a
given landmark pair are used in the data:

o distances along one of the horizontal, vertical, and depth di-
rections;

e Euclidean distance;
e arc length, traditionally measured using soft tape on the face.

The head model is placed in the standard posture used for anthro-
pometric measurements, so the axis-aligned distances correspond to
thez, y, andz axes in the local coordinate system. Each statistical
measurement is given by its mean vaju@and standard deviation

o. In our current system, we use 39 axis-aligned distance measure-
ments, 25 Euclidean distances and 6 arc lengths, specified on a part
of the standard landmark set on the reference head.

Given age and sex for the current head model, we first compute
the current valuel. for a distance measurement directly from the
landmarks on the model. The value is compared to the statistical
mean valug.. in the data tables to find its “position” in the assumed
standard probability distribution. After looking up the mean value
ue for the targeted age, we compute the final valueat the same
relative position in the distribution:

g,
dt = ¢ + O__t(dc - MC)7

whereo. ando; are standard deviations for the current and target
age, respectively. Thus, we retain the characteristics of the source
head model even over large changes in age.

For deforming the head geometry, we are now posed with the
following problem: given the current landmark positiopns and
a number of distance measurements, what are the new landmark
positionsq; (¢ 1,...,n)? This problem is largely under-
constrained, as there are many solutions that fulfill ttesd con-

tions exist in the forensic sciences and medicine: how does the child gtr5ints In our approach, we thus add more constraints between the
that got missing ten years ago look now? What are the long-term |angmarks that are closest to each other. After deformation, the dis-
effects of a rhlnpplastlc operation? Often, a skilled artist is needed {5nces petween them should scale roughly with the global scaling
to draw conclusions towards age-related changes from photographsf the head, which we derive from the change in head height. These
with the help of anthropometric data. Drastic changes in head size 516 5oft constraintsin that they are used to find the best solution,

and facial proportions occur between childhood and maturity, as
well as in skin texture and elasticity of the skin, not to mention hair
growth. All of this affects the look of the face in its diverse static
poses as well as in motion.

We demonstrate the application of growth and age transforma-
tions to the geometry of our animated head model using the de-
formation technique described in the previous sections. The set
of landmarks on the model is used to obtain a variety of standard
anthropometric measurements on the head, which are updated ac;
cording to a user-specified change in age by a constraint-resolution
mechanism. Our approach is inspired bg@nRLO et al. [DeCarlo
et al. 1998], but has no restrictions on the smoothness or parame
terization of the surface. In fact, the computation of the age defor-
mation uses only the landmark set, thus being independent from the
deformed surface. In our system, we apply this deformation to the
vertices of the head model’s triangle mesh. Also, we do not operate
on proportions, but only on distance measurements.

7.1 Landmark measurements

The landmarks on the head model correspond to those in the an-
thropometric literature used for head measurements. Specifically,
we use tabulated measurements for a sample of the North Ameri-

but they are not strictly enforced.

7.2 Linear constraint resolution

Most of the distance measurements are given along oneaaxis
(a € {z,y, z}), which allows us to represent the problem as a set of
linear constraints: we want to find thenew landmark coordinates
ai, t = 1,... ,n, for each axis:. In the following, we derive a
olution for one such axis.

The relation to then hard distance constraints and soft dis-
tance constraints can be expressed by a sparse linear system:

S

Aq. :d+i)\iaiy

i=1

where the combinatorial matrig € R(™*™*" specifies pairings
of landmarks. Each row oA contains exactly two non-zero entries
+1 and—1 in columnsj andk, respectively, to denote the pairing
of qa,; — qa,x. There can be at most(n—1)/2 pairings of land-
marks, but in practice, we have ~ 35 plusm = 100 landmark
pairs per axis. The vectat € R™*™ represents the hard con-
straints and has non-zero entries in those positions, where the
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target distance is prescribed. Each veaore R”*™ containsa 8 Results and conclusion
single non-zero entry with the current distamgg; — p. . between
a pair of landmarks not constrained dyin the corresponding po-  We have presented a head model with anatomical structure and de-
sition, i.e. in the row wheré\ specifies the pairing af,,; — qq,k- formation methods that allow adaptation of such a model to indi-
Since we want to enforce the hard constraihtgiven by the data, vidual scan data, and simulation of human head growth. Obviously,
but keep the soft distances between the other landmarks close towithout medical volumetric data, the finer individual details of the
what they were, we solve for weighks close to the global scaling  head anatomy cannot be guessed by our method. Still, without such
factors. expensive medical hardware as a CT scanner, we are able to pro-
The system can be easily reformulated by shifting terms to in- duce a more plausible reconstruction of these internal structures
clude thed, and.; in the matrix: than previous approaches_ that estimate the skull as an offset sur-
face from the skin or use simpler models of muscle geometry.
_ The landmark-based fitting has shown to work robustly on raw
<A D) (qa) _ (d> @) meshes obtained from range scans of a variety of individuals. The
0 I A s/’ interactive specification of the initial sparse landmark set has shown
to be advantageous for creating models from incomplete data,
~ ) X where large parts of the geometry cannot be estimated automati-
where the colum_ns @ € R + S are composed of the vec- cally in a reliable way. The robust adaptation to this kind of input
tors —d;, and A is a vector built from the\; in the same order.  gata makes mesh fixing and hole filling abdicable, a process that
The submatrid € R™”*™ is an identity matrix. On the right hand  ¢can, otherwise easily take several hours of interactive work.
side,s hasm entries with the constant scaling factorThe system The computational cost of the landmark refinement algorithm
is now overconstrained and we solve for #je; and \; using a largely depends on ray/mesh intersection tests and point/triangle

singular value decomposition (SVD) [Press et al. 1992]. Clamping gistance computations. We expect a great speed-up from optimiza-
the singular values to achieve a prescribed condition number for the 5, of these tests. In our current implementation, we arrive at about

least squares problem before back-substitution allows us to get rid e minutes total run time for the fitting process on a 1 GHz PC

of linearly dependent constraints, as they occur in practice. with a 100k triangle target mesh. Given the scan data, the whole
~ According to this method, we set up and solve three independentprocess of creating an animatable head model including the tun-
linear systems for the distance constraints alongathg, and z ing of eye, teeth, and tongue positions takes 20-30 minutes in our

axes. Since the data is only as exact as the procedures used foexperience.

taking measurements of the sample population, and the collected Further deformation of the face for changing the age produces
data is only statistical, a precise solution for a given individual head plausible results, which is encouraging given that only a small
can not in general be achieved. However, SVD will give a best fitin amount of statistical data is used. Our method assumes that a mea-
the least squares sense: for a system = b, the solution vector surement keeps its variance from the statistical mean over the years:
x that minimizes the residual errfAx — b||,, will be found. In a nose that is relatively big for an adult, is assumed to be big in
Eq. (2), the values irl are typically in the range of 10-200 mm,  childhood. Together with the scarcity of the facial measurements,
while the values irs are close to 1.0. Thus, a small error (i.e. a this tends to retain the characteristics of the original face to a some-
displacement from the ‘ideal’ target position) in one of the new times too strong degree. Also, examination of the tabulated arc
landmark coordinateg,,; results in a much larger residual error measurements delivered surprising results: the ratio between arc

than a small deviation in one of the weights. As a result, we length and corresponding Euclidean distance remains almost con-
found the hard constraints to be fulfilled with a maximum absolute stant through the ages in the table data, i.e. the roundness of the
error of two millimeters in our experiments. face does not vary significantly, different from what one would ex-

pect especially for younger faces. To incorporate the “puffiness”
of small childrens’ cheeks that can be observed in the real world,
we allowed for an adjustable slight increase in the arc length up to
10 % over the original values for a young child.

Transfer of expressions and animations between generated mod-
els using the same initial muscle set has shown to work well even
- o R over widely varying age ranges. The common muscle set and pa-
problem by splitting such a constraint into three axis-aligned con- rameteriza};ion ())/f a?l o%r heag models simplify the creation and uge

straints. _leen a current vector from one landmark to another and.of a generic expression library a great deal. After adaptation of the
a prescribed target distance between them, we assume that the di-

. fth " h drastically in th lution. W model, this parameterization can be used for further editing, which
rectllonhg that VeCtOLW' not<|: angg]e rjlstlc_a yint esﬁ utlhon. € is an advantage over purely geometric transfer of motion between
scale this vector to the target length and project it onto the three axes, ,qa|g [Noh and Neumann 2001]: individual characteristics of fa-
of the global coordinate system. We add the three projected dis-

dditional i .o C h ! d i ial motion, such as a particular way of smiling, can be included
tances as additional linear constraints into the equations described,y manipylation of the same parameters, instead of working on the
in the previous section and let SVD run as before, arriving at a so-

. : ) h . >~ vertex data of the new model. Also, we see some automation poten-
lution that approximately fulfills the Euclidean distance constraint.

Toi h luti h N d sol tial for dealing with age-related characteristics based on the muscle
0 improve the solution, we repeat the projection process and solve 54 meterization: e.g. for a young child, we globally scale down
again, until convergence. In practice, three iterations suffice.

i ) _ facial muscle movements, to accommodate for the not yet fully de-
Arc lengths are another measurement in the data. Since the pairsyeloped abilities of expression.

connected by arcs are constrained additionally by distance measure-

ments in the table data, we do not include the arc lengths in the

constraint resolution mechanism. Instead, we use the arc measure®  Future work

ments only to improve the shape of the surfaéter solving. The

arc is approximated by a circle segment: we use a virtual “middle Skin stiffness constants, skin thickness and muscle layer thickness
landmark” that is placed between the two landmarks connected by are evaluated and used for each deformation of the reference head to
the arc. This landmark is shifted along the surface normal, to give re-shape the skull and the muscle layer, and to initialize the spring
the circle segment the arc length specified in the data. mesh. We currently have to adjust these parameters manually to

7.3 Non-linear constraints

For some landmark pairs, a Euclidean distance is given, which can
not be included directly into the linear system. We linearize the
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accommodate for individual and age-related changes. Given morelsHil, T., YASUDA, T., Yokol, S., AND TORIWAKI, J. 1993. A Gen-

statistical data, it should be possible to have these values computed eration Model for Human Skin Texture. Iroc. Computer Graphics

automatically. Also, the visual impact of such adjustments onto the  International '93 139-150.

actual animation needs to be examined. KAHLER, K., HABER, J., AND SEIDEL, H.-P. 2001. Geometry-based
For further automation and enhancement of the precision of the  Muscle Modeling for Facial Animation. I#Proc. Graphics Interface

landmark specification process, we would like to make use of the 2001, 37-46.

information contained in the photographs used for texturing. 1t also och R, M., GRoss M. H., AND BOSSHARD, A. A. 1998. Emotion

is appealing to use the landmarks on the fitted face model for this  ggjting using Finite Elements. IBomputer Graphics Forum (Proc. Eu-

texturing step, which is currently a separate procedure. This would  rographics '98) vol. 17, C295-C302.

also apply to the synthesis of wrinkles and skin structure. We are in- LANITIS, A., TAYLOR, C., AND COOTES, T. 1999. Modeling the process

vestigating lf. image-based techniques such as propqse_d:h;ET of ageing in face images. Proc. 7th IEEE International Conference on
MAN et al. [Tiddeman et al. 2001] can be used to minimize manual Computer VisionlEEE, vol. |, 131-136.

texture processing for wrinkle definition. LEE, Y., TERZOPOULOS D., AND WATERS, K. 1993. Constructing
rrently, wi nnot predict the skin color of an individual at Vo ) o Lo "
Currently, we cannot predict the color ot-a dividual a Physics-based Facial Models of Individuals Froc. Graphics Interface

an age different from the age of data acquisition. Some heuristics 93 1-8
could be applied: babies of Caucasian type typically have a pale, T o _
pinkish skin color, while adults often have suntanned skin. Some LEE Y., TERZOPOULOS D., AND WATERS, K. 1995. Realistic Modeling
more reliable results could probably be obtained by applying age- for Facial Animation. InComputer Graphics (SIGGRAPH '95 Conf.
dependent skin parameters such as moisture or elasticity to a micro Proc.) 55-62.

geometry skin model and using a BRDF-based rendering approach LEE, W.-S., WU, Y., AND MAGNENAT-THALMANN, N. 1999. Cloning

Our results indicate that “anthropometric modeling” is a fruitful and Aging in a VR Family. IrProc. IEEE Virtual Reality '9913-17.

approach, and could become a useful tool for artists and scientiStSNoH, J., AND NEUMANN, U. 2001. Expression cloning. IBomputer

alike. More detailed and precise data, and a better understanding Graphics (SIGGRAPH '01 Conf. ProcACM SIGGRAPH, 277-288.
of age-related changes contained in this data are needed, thoughp gy, F. Hecker, J., LISCHINSKI, D., SZELISKI, R., AND SALESIN,

Based on our constraint resolution technique, new face modeling
tools can be devised that allow specification of facial feature rela-

tions either directly, or indirectly by age, gender, or other statisti-
cally captured variables.
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Abstract

Facial reconstruction for postmortem identification of humans from
their skeletal remains is a challenging and fascinating part of foren-
sic art. The former look of a face can be approximated by pre-
dicting and modeling the layers of tissue on the skull. This work
is as of today carried out solely by physical sculpting with clay,
where experienced artists invest up to hundreds of hours to craft
a reconstructed face model. Remarkably, one of the most popular
tissue reconstruction methods bears many resemblances with sur-
face fitting techniques used in computer graphics, thus suggesting
the possibility of a transfer of the manual approach to the computer.
In this paper, we present a facial reconstruction approach that fits
an anatomy-based virtual head model, incorporating skin and mus-
cles, to a scanned skull using statistical data on skull / tissue rela-
tionships. The approach has many advantages over the traditional
process: a reconstruction can be completed in about an hour from
acquired skull data; also, variations such as a slender or a more
obese build of the modeled individual are easily created. Last not
least, by matching not only skin geometry but also virtual muscle
layers, an animatable head model is generated that can be used to
form facial expressions beyond the neutral face typically used in
physical reconstructions.

CR Categories. 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation G.3 [Probability and Statistics]—Multivariate statistics
G.1.2 [Numerical Analysis]: Approximation—Approximation of
surfaces and contours

Keywords: facial modeling, forensic art, face reconstruction

1 Introduction

1.1 Background

For well over a hundred years, forensic art and science has been
assisting law enforcement. One of the major areas of concern in
this area is facial reconstruction for postmortem identification of
humans from their physical remains. Manual reconstruction and
identification techniques build on the tight shape relationships be-
tween the human skull and skin: for instance, the presumed identity

*e-mail: kkaehler@acm.org
Te-mail: haberj@acm.org
*e-mail: hpseidel@mpi-sb.mpg.de

a) b) 9 d)

Figure 1: Reconstruction of a face from the skull: a) scanning the
skull; b) skull mesh tagged with landmarks; c) skin mesh with mus-
cles fitted to the skull; d) textured skin mesh, smiling expression.

of a murder victim can be confirmed by superimposing a facial pho-
tograph with a properly aligned and sized image of the skull. If no
photograph is available, the look of the face can be reconstructed to
a certain degree by modeling the missing tissue layers directly onto
the skull or a plaster cast made from it.

The first documented case using three-dimensional facial recon-
struction from the skull dates back to 1935 [Taylor 2001]. A key
experiment was later performed by KROGMAN [1946]: given the
body of a deceased person, he took a picture of the cadaver head
before extracting the skull. The skull was provided to a sculptor
along with information about sex, origin, and age of the late owner,
plus data on the average tissue thicknesses at several positions in
the face. From this material, a reconstruction sculpture was created
that could be compared to the original head. Since that time, three-
dimensional facial reconstruction from the skull has been much
refined, but the method has essentially remained the same. Re-
searchers have examined the skull / skin relationships for different
ethnic groups [Lebedinskaya et al. 1993] and analyzed the corre-
spondences of skull morphology and facial features [Fedosyutkin
and Nainys 1993]. Others found correlations between muscle ac-
tivity and skull shape [Moore and Lavelle 1974; Weijs and Hillen
1986]. In her comprehensive textbook, TAYLOR [2001] describes
the craft in great detail.

Much of the fascination of the topic is due to the combined ef-
forts of science and art, resulting in often astonishingly lifelike re-
constructions, given the little available input (see Fig. 2). Many
parameters of the outward appearance of an individual cannot be
readily derived from the skull, though. The process is thus highly
dependent on rules of thumb, the experience of the artist, and some
guesswork. It is, for instance, next to impossible to reconstruct the
shape of the ears based on scientific reasoning, although empiri-
cally there seems to be a relation of ear height to the length of the
nose.

1.2 The Manual Reconstruction Process

The traditional work process for facial reconstruction begins with
preparation of the skull. Since the skull is often evidence in a crim-
inal case, great care needs to be taken in handling it: some parts
are extremely thin and fragile, especially in the nose and the orbits.
For identification, the teeth often provide a lot of useful informa-
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Figure 2: Comparison of sculpted reconstructions with pho-
tographs. Left: male subject; right: female subject. (Images: Copy-
right ©[Helmer et al. 1993], reprinted by permission of Wiley-Liss,
Inc., a subsidiary of John Wiley & Sons, Inc.)

tion, so a dental analysis is usually performed at this stage. For the
reconstruction of the lower face, the mandible needs to be properly
aligned and secured to the skull. In cooperation with an anthropol-
ogist, and possibly given more information from the remains of the
victim, an estimation of age, ancestry, sex, and stature can now be
obtained.

The actual face reconstruction proceeds with one of two avail-
able approaches: the anatomical method and the tissue depth
method. The anatomical method attempts reconstruction by sculpt-
ing muscles, glands, and cartilage, fleshing out the skull layer by
layer. This technique is more often used in the reconstruction of
fossil faces, where no statistical population data exists [Zollikofer
etal. 1998]. As TAYLOR states, this technique is very time consum-
ing, occupying “many hundreds of hours”. It also requires a great
deal of detailed anatomical knowledge. Therefore, the alternative
tissue depth method has become the more popular reconstruction
technique in law enforcement. Here, standard sets of statistical tis-
sue thickness measurements at specific points on the face are used.
Each measurement describes the total distance from skin surface to
the skull, including fat and muscle layers. The method is thus more
rapid than the anatomical method and does not require as much
anatomical knowledge. Such measurements have been collected for
males and females of several racial groups, using needles, X-rays,
or ultrasound techniques. The tissue depth data most often used by
police artists today was collected primarily by RHINE et a. [Rhine
and Campbell 1980; Rhine and Moore 1984]. The data is sorted
into “slender”, “normal”, and “obese” groups, as well as by sex and
race.

Given the set of measurements, tissue depth markers are now
placed on the skull or a cast made from it, reflecting the tissue
thickness at the sample points. These markers are oriented orthog-
onally to the skull surface, corresponding to the direction of the tis-
sue thickness measurements. Using the markers and other features
on the skull for guidance, the face is modeled on top of the skull
using clay. A snapshot of the beginning stages of a reconstruction
using the tissue depth method is shown in Fig. 3.

1.3 Our approach

Looking at the facial reconstruction process as described above
from a computer graphics perspective, it essentially boils down to
a surface interpolation problem. We thus implement the manual
“dowel placement” method as an interactive procedure, obtaining
position and distance constraints that define the relation between
skin and skull at selected sample positions. The sculpting of the
skin surface is mapped to a volume deformation applied to a head
model template, satisfying these constraints. The deformation ap-
proach has the additional advantage of being applicable to addi-
tional structures attached to the template: in our system, we map
a muscle structure to the fitted head model (see Fig. 1), enabling

animation on the reconstructed head in a physics-based facial ani-
mation framework.

The remainder of this paper is organized as follows: after re-
viewing related work in Section 2, we discuss acquisition of skull
data and interactive landmark placement for setting up surface con-
straints in Section 3. Section 4 describes the structure of our generic
head model and how it is fitted to the skull. Animation and texture
generation for the resulting head model are touched upon in Sec-
tion 5. We present examples in Section 6 and draw conclusions
from our results in Section 7.

2 Previous and Related Work

2.1 Computer-Aided Face Reconstruction

Perhaps due to the lack of rigid taxonomies and hard rules, the use
of computers and computer graphics in this forensic application is
still very limited. The procedures described above cannot be cast
easily into a computer program that produces good results in an au-
tomated manner—the experience and judgment of the practitioner
remain a vital part of the system.

In law enforcement practice, computer-aided techniques re-
strict to relatively simple image and video manipulation: face
photographs are used for skull superimposition [Griner 1993;
Miyasaka et al. 1995], while image warping and retouching enable
a basic simulation of aging [Taylor 2001, p. 253]. This situation
is unfortunate, since the traditional three-dimensional face recon-
struction process is extremely time-consuming and expensive. It
is hardly feasible to produce a variety of different plausible recon-
structions from one skull, simply due to the effort that has to be put
into the creation of each model. Also, repeated physical handling
of the original skull increases the risk of damage.

One prototypical computer-based face reconstruction system, al-
lowing fitting of a generic hierarchical B-spline head model to a
skull mesh, is described by ARCHER in her Master’s thesis [1997].
The user places dowels on a skull model with prescribed tissue
thickness values, resulting in targets for a B-spline surface fitting
process. The interpolation process is tricky and requires careful
preparation of the template head model.

In the approach presented by MICHAEL and CHEN [1996], a
source head model Hs that includes a skull Ss is deformed using a
volume distortion function V such that the deformed source skull
approximately matches the target skull §: V(S) =~ §. It is as-
sumed that the deformed source head model V (Hs) bears a good
resemblance to the (unknown) target head model. The volume dis-
tortion function V is set up as a field warp using fourty pairs of disc
fields, which are manually placed around the skull. No details are
given about the placement of these control fields.

Figure 3: Modeling the face with clay on top of the skull using the
tissue depth method. (Images [Taylor 2001], reprinted by permis-
sion.)
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A deformation technique similar to the one used in our approach
is employed by VANEZIS et &. [2000]. A facial template chosen
from a database of scanned faces is deformed to match the posi-
tion of target face landmarks, which have been derived from adding
statistical tissue thickness values to the corresponding skull land-
marks. The resulting reconstructed heads are not always complete
(for instance, the top of the head is usually missing). The authors
suggest to export an image of the reconstructed head and to apply a
final image-processing step to add eyes, facial and head hair.

The above methods require a lot of manual assistance in set-
ting up the interpolation function [Archer 1997; Michael and Chen
1996], or rely on a database of head templates [Vanezis et al. 2000].
In contrast, we develop reconstructions from one head template
with relatively few markers, and use additional mechanisms to im-
prove reconstruction results (see Section 4.3). Our approach always
generates complete head models. Instead of using higher-order sur-
faces or point samples, the surface of our deformable head tem-
plate is an arbitrary triangle mesh, simplifying later artistic modifi-
cations of the result using standard modeling tools. To the best of
our knowledge, integration of expressive facial animation is not dis-
cussed by any other computer-aided facial reconstruction approach.

Other than explicit treatment of facial reconstruction, the cre-
ation of virtual head models based on human anatomy is well re-
searched and documented in the computer graphics literature. Ma-
jor developments in this area are discussed in the following section.

2.2 Human Head Modeling

A variety of techniques exists to create a face model from images or
scan data. In the method presented by LEE et al. [1995], animatable
head models are constructed semi-automatically from range scans.
A generic face mesh with embedded muscle vectors is adapted to
range scans of human heads. This process relies on the planar pa-
rameterization of the range scans as delivered, for instance, by the
Cyberware digitizers. PIGHIN et a. [1998] interactively mark cor-
responding facial features in several photographs of an individual
to deform a generic head model using radial basis functions. An-
imation is possible by capturing facial expressions in the process
and blending between them. CARR et al. [2001] use radial ba-
sis functions to generate consistent meshes from incomplete scan
data. Employing a large database of several hundred scanned faces,
BLANZ et al. [1999] are able to create a geometric head model from
only a single photograph. This model has the same resolution as
the range scans in the database and cannot be readily animated. In
the context of medical imaging, SzeLIsK!I et a. [1996] minimize
the distance between two surfaces obtained from volume scans of
human heads by applying local free-form deformations [Sederberg
and Parry 1986] and global polynomial deformations. The method
does not require specification of corresponding features on the ge-
ometries.

Several facial animation systems use an approximation of the
layered anatomical structure. WATERS [1987] represents skin and
muscles as separate entities, where muscle vectors and radial func-
tions derived from linear and sphincter muscles specify deforma-
tions on a skin mesh. In contrast to this purely geometric technique,
physics-based approaches attempt to model the influence of muscle
contraction onto the skin surface by approximating the biomechan-
ical properties of skin. Typically, mass-spring or finite element net-
works are used for numerical simulation [Platt and Badler 1981;
Lee et al. 1995; Koch et al. 1998]. From an initial triangle mesh,
TERzOPOULOS and WATERS [1990] automatically construct a lay-
ered model of the human face. The model structure consists of three
layers representing the muscle layer, dermis, and epidermis. The
skull is approximated as an offset surface from the skin. Free-form
deformations are employed by CHADWICK et al. [1989] to shape
the skin in a multi-layer model, which contains bones, muscles, fat

tissue, and skin. SCHEEPERS et al. [1997] as well as WILHELMS
and VAN GELDER [1997] introduce anatomy-based muscle models
for animating humans and animals, focusing on the skeletal muscu-
lature. Skin tissue is represented only by an implicit surface with
zero thickness [Wilhelms and Van Gelder 1997].

We build our system on the deformable, anatomy-based head
model described by KAHLER et al. [2002]. There, a generic face
mesh with underlying muscle and bone layers is deformed to match
scanned skin geometry. This process is adopted here to match the
muscle and skin layers to given skull data instead.

3 Preparation of the Skull

Our approach uses three-dimensional skull data acquired, for in-
stance, from volume scans and extraction of the bone layers, or by
range scanning a physical skull. The test data used for the exam-
ples in Section 6 was acquired using both types of scans. To speed
up processing, a triangle mesh of the skull model comprised of 50-
250k polygons is produced by mesh decimation techniques [Gar-
land and Heckbert 1997]. In general, the original data should be
simplified as little as possible since minute details on the skull can
give important clues for the reconstruction. The mesh resolution is
chosen for adequate responsiveness of our interactive skull editor
application. In practice, it is helpful to have the original data set (or
the physical skull) ready as a reference during editing.

In the editor, the skull model is equipped with landmarks, as
shown in Fig. 4. Points on the skull surface are simply picked to
create a landmark, which can then be moved around on the sur-
face for fine positioning. Each landmark is associated with a vector
in surface normal direction, corresponding to the typical direction
of thickness measurements. As can be seen on the right image in
Fig. 4, some skull / skin correspondences are in fact non-orthogonal
to the skull surface in the area of the lips. This is corrected for
at a later step of the fitting process, as described in Section 4.3.
The landmark vector is scaled to the local tissue thickness, which
is looked up automatically by the landmark’s assigned name in a
table based on RHINE’s data (see Section 1.2). The specific set of
landmarks used in our system is listed in Appendix A.

4 Fitting the Deformable Head Model

4.1 Head Model Structure

When the skull is tagged with landmarks, it serves as the target for
deformation of the generic head model shown in Fig. 5. Since the
head model is used in a physics-based animation system, it does

~ C

Figure 4: Skull landmark specification in the mouth area. Left:
snapshot from our landmark editor; right: correspondences between
skull and skin markers (Image after [y’Edynak and Iscan 1993])
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Figure 5: The deformable head model: a) head geometry with land-
marks (blue dots), front view; b) side view; ¢) underlying muscles
(red) created from layout grids (yellow).

not only consist of the visible outer geometry. The encapsulated
structure includes:

the skin surface represented as a triangle mesh. The mesh resolu-
tion should be high enough to ensure good fitting results. Our
template head mesh consists of 8164 triangles.

virtual muscles to control the animation. Each muscle is speci-
fied by a grid laid out on the skin, the actual muscle shape
being computed automatically to fit underneath the skin sur-
face. Each muscle consists of an array of fibers, which can
contract in a linear or circular fashion. Our model includes
24 facial muscles responsible for facial expressions. Fig. 5(c)
shows the muscle layout on the head template.

amass-spring system connecting skin, muscles, and skull, built
after the head model is fitted to the skull. For animation, mus-
cles pull at spring nodes attached to their surface, in turn caus-
ing deformation of the spring mesh in the skin surface layer.

landmarks defined on the skin surface, as shown in Fig. 5(a) and
(b). The majority of these landmarks corresponds to the land-
marks interactively specified on the skull. These landmark
pairs control the basic fitting of the head structure as described
in Section 4.2. A few additional landmarks are only defined
on the skin and are used for the final adjustments of the recon-
structed shapes discussed in Section 4.3.

The head model is similar to the one in [K&hler et al. 2002], where
detailed descriptions of the muscle model and animation approach
can also be found.

4.2 Landmark-Based RBF Deformation

Given the deformable head model with n predefined skin landmark
positions p; € RS and the corresponding landmarks S € R3 (i =
1,...,n) specified on the skull, we set up a space deformation that
fits the skin and the muscle layout to the skull.

The target skull landmarks have associated tissue depth vectors
d;, so corresponding skin landmark positions g; are defined as

qi :§+dl

The problem can now be treated as one of interpolation: we need to
find a function f that maps the p; to the g;:

g =f(p), i=1,....n

The unknown function f can be expressed by a radial basis function,
i.e., a weighted linear combination of n basic functions ¢ and an
additional explicit affine transformation:

f(p) = 5 ca(p) + Rp +t, D

where p € R3 is a point in the volume, ¢, € R® are (unknown)

weights, R € R3*3 adds rotation, skew, and scaling, and t € R3
is a translation component. The ¢ are defined by the source skin
landmark points. According to BOOKSTEIN [1997], for deforma-
tion of biological solids an approach based on thin-plate splines
is favorable. We thus use the simple biharmonic basic function
@(p) == ||p—p;|,, which minimizes bending energy for the de-
formation [Duchon 1977].

To remove affine contributions from the weighted sum of the
basic functions [Pighin et al. 1998; Carr et al. 2001], we include the
additional constraints

n n

iZlcizo and i;ciTpi:O.

The resulting system of linear equations is solved for the unknowns
R,t, and ¢; using a standard LU decomposition with pivoting, to
obtain the final warp function f. This function can now be used
according to Eqg. (1) to transform a point p in the volume spanned
by the landmarks. We apply f to the skin and muscle components
of the generic model in the following ways:

e The skin mesh is deformed by direct application of the func-
tion to the vertices of the mesh.

e The muscles are transferred to the new geometry by warping
their layout grid vertices, followed by recomputation of the
shape to fit the deformed skin mesh.

Since our landmark set is comprised of only 40 landmarks (see
Appendix A), the computed deformation doesn’t properly align the
skin to the skull in all places, as can be seen in Fig. 6(a). Interac-
tive specification of more landmarks puts an undesirable additional
burden onto the user, so additional landmark pairs are computed au-
tomatically by interpolation between existing ones on the upper and
back part of the cranium, as well as on the mandible, as shown in
Fig. 6(b). The thickness value of an interpolated skull landmark is
also interpolated, where only such skull areas are chosen for land-
mark interpolation where the tissue thickness is near-constant. Tis-
sue depth interpolation would be problematic, for instance, in the
mid-face area, where thickness values change drastically from the
cheekbone to the mid-face region below.

4.3 Additional Reconstruction Hints

The tissue depth values at the marker positions define the basic
shape of the reconstructed head, assuming depth measurements be-
ing always strictly orthogonal to the skull surface. As mentioned in
Section 3, this assumption is not always valid. A number of rules
are thus used in traditional facial reconstruction to help locate cer-
tain features of the face based on the skull shape, employing empiri-
cal knowledge about shape relations between skin and skull [Taylor

Figure 6: Fitting stages, shown on the lower face. a) Warp us-
ing only user-specified landmarks (some skull areas still intersect-
ing the skin); b) with automatically interpolated landmarks on the
mandible; c) using additional heuristics for lip and nose shaping.
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Figure 7: Comparison of heuristics used in traditional reconstruc-
tion (left) with our graphical interface (right). (Note: different
skulls are used in the adjoining images.) Top: estimation of nose
width; center: positioning of the nose tip; bottom: setting lip width,
height, and mouth corner position.

2001]. We have translated some of these heuristics for use with the
skull landmark editor: the final fitting result, as shown in Fig. 6(c),
is obtained by including this additional user input.

To keep the user interface uniform, most rules are expressed by
the placement of vertical and horizontal guides in a frontal view of
the skull. From this user input, the placement of a few landmarks
on the skin is adjusted, resulting in a new target landmark configu-
ration. The updated landmark set is used to compute another warp
function, which deforms the pre-fitted head model in the adjusted
regions. Five rules influence the shape of the nose and the shape of
the mouth, as shown in Fig. 7:

e The width of the nose wings corresponds to the width of the
nasal aperture at its widest point, plus 5mm on either side in
Caucasoids. In the editor, the user places two vertical guides
to the left and right of the nasal aperture. From their position,
the displacement of the two al® skin landmarks placed at the
nose wings is computed (cf. Fig. 7, top row).

e The position of the nose tip depends on the shape of the ante-
rior nasal spine. According to KROGMAN’s formula [Taylor
2001, p. 443], the tip of the nose is in the extension of the nasal
spine. Starting from the z value of the tissue depth marker di-
rectly below the nose (mid-philtrum, see Appendix A), the
line is extended by three times the length of the nasal spine
(cf. the white and yellow lines in the rightmost image of
Fig. 7, middle row). In the editor, begin and end points of
the nasal spine are marked. The prn landmark at the nose tip
is then displaced according to the formula.

Isee, e.g., [Farkas 1994] for a definition of standard facial landmarks

e The width of the mouth is determined by measuring the front
six teeth, placing the mouth angles horizontally at the junction
between the canine and the first premolar in a frontal view.
Two vertical guides are used for positioning the ch landmarks
located at the mouth angles (vertical lines in Fig. 7, bottom
row).

e The thickness of the lips is determined by examining the up-
per and lower frontal teeth. Seen from the front, the transi-
tion between the lip and facial skin is placed at the transition
between the enamel and the root part of the teeth. Two hor-
izontal guides are placed by the user at the upper and lower
transition, respectively. This determines the vertical position
of the id and sd landmarks marking the lip boundary (top and
bottom horizontal lines in Fig. 7, bottom row).

e The parting line between the lips is slightly above the blades
of the incisors. This determines the vertical placement of the
ch landmarks (middle horizontal line in Fig. 7, bottom row).

Using these heuristics, a better estimate of the mouth and nose
shapes can be computed. The effect is strongest on the lip margins,
since the assumption of an orthogonal connection between corre-
sponding skin and skull landmarks is in fact not correct at these
sites, as the right part of Fig. 4 shows. The initial deformation thus
gives a good estimate of the tissue thickness of the lips while the
second deformation using the information provided by interactive
guide adjustment refines the vertical placement of the lip margins.

5 Facial Expressions and Rendering

In manual facial reconstruction, a neutral pose of the face is pre-
ferred as the most “generic” facial expression. Other expressions
could be helpful for identification purposes, but the cost of model-
ing separate versions of the head model is prohibitive. In our vir-
tual reconstruction approach, this does not pose a problem. Since
the fitted head model has the animatable structure of skin and mus-
cles, different facial expressions can be assumed by setting mus-
cle contractions, as in other physics-based facial animation sys-
tems [Ké&hler et al. 2001; Lee et al. 1995]. Fig. 8 shows how muscles
are used to form different facial expressions.

For a completely animatable head model, it is necessary to in-
clude a separately controllable mandible, a tongue, rotatable eye-
balls, and eye lids into the head model. We have decidedly left
them out of the reconstruction approach since these features are
not particularly useful in this application: while a modest change
of expression such as a smile or a frown might aid identification,
rolling of eyes, blinking, and talking would probably not. It is also
nearly impossible to correctly guess details such as a specific way
of speaking—errors in this respect would produce rather mislead-
ing results in a real identification case. The effort of placing tongue,
eye, and potentially teeth models thus does not offset the benefits.

ceee

Figure 8: Expressions on the generic head model and the corre-
sponding muscle configurations.
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Figure 9: Examples of facial reconstructions created with our system. Top: model created from a scanned real skull, showing fit of skin
to skull, transferred muscles, and two facial expressions. Middle: Reconstruction from a volume scan of a male, showing the actual face
as contained in the data, superimpositions of the actual and the reconstructed face with the skull, and the reconstruction with neutral and
“worried” expression. Bottom: Reconstruction from volume scan of a female with strong skull deformations. The CT data sets don’t contain
the top and bottom of the heads, thus the source skull and face models are cut off. The actual head height had to be guessed in these cases.

If additional information about the modeled person is available,
for instance, from remnants of hair found with the skull, the re-
sulting mesh can be colored correspondingly. Our system includes
basic capabilities for coloring the parts associated with skin, lip,
and eyebrows in the model’s texture map. Colors can be adjusted
interactively in HSV space on the reconstructed head model. Fi-
nally, the color adjustments are merged into a neutral base texture
and saved as a new texture map. The fitted, texture-mapped trian-
gle mesh can be easily imported into various rendering packages
for display. The examples shown in Fig. 9 show three different skin
colorations created in this way.

6 Results

We have tested our technique on a real skull that was made available
to us by a forensic institute and on two medical volume scans. All
data pertains to individuals of Caucasian type. Each reconstruction
required approximately an hour of interactive work, excluding time
for data acquisition.

The real skull, depicted on the first page of this paper, was un-
earthed on a construction site and belongs to an unidentified male,
approximately 35 years of age. As can be seen from the hole in the
frontal bone, he was killed by a head shot—the owner of this skull

probably was a war victim or a soldier. After scanning the skull, the
resulting mesh was simplified to 100k triangles. Interactive place-
ment of skull landmarks and facial feature guides was relatively
easy in this case since the skull is complete and in good condition.
Due to its war-time origin, we assumed the face to be rather skinny,
so we selected the “slender” tissue thickness table. Fitting results
can be seen in Fig. 9, top row. Since the actual appearance of the in-
dividual is unknown, the accuracy of the reconstruction can only be
guessed. Nonetheless, our reconstruction seems plausible. Notably,
the shape of the chin, which can be predicted from the correspond-
ing region on the skull, has been reproduced well.

To show examples utilizing other data sources, and also for val-
idation, we extracted skull and skin surfaces from medical volume
scans. The first data set, shown in the middle row of Fig. 9, per-
tains to a male subject of roughly 30 years. The subject’s face is
rather bulky, so we chose the “obese” tissue thickness data set (in a
real case, this choice would have to be made based on other avail-
able information such as the size of clothes, if present). Our first
reconstruction attempts showed a consistent emphasis on promi-
nent cheek bones and hollow cheeks: no matter which data set we
picked, the face would become more bulky, but not show the ex-
pected general roundness of the face. This effect is demonstrated
in Fig. 10 on variations of our first model. A closer examination
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Figure 10: Left to right: RHINE’s traditional “slender”, “average”,
and “obese” tissue depth tables (cf. [Taylor 2001, p. 350 ff.]) often
result in hollow cheeks and prominent cheekbones (see also Fig. 9).
Rightmost image: the shape can be improved by “bulging out” the
affected mesh areas.

revealed that the reason lies in the relatively low thickness values
RHINE assigned to the landmarks defining the cheek region (shm2
and spm2 in Table 1). After excluding these two landmarks, we ob-
tained the results shown in Fig. 9. The rightmost image in Fig. 10
shows how simple mesh modeling techniques could be used at this
point to improve and individualize the reconstruction.

The second volume data set shows a female patient with strong
skull deformations. We produced a reconstruction of this face to
test the method with a decidedly non-average skull shape. The re-
sult can be seen in the bottom row of Fig. 9. Since our automatic
landmark interpolation scheme (see Section 4.2) is designed to han-
dle the normal range of skull variations, the unusual shape of the
mandible resulted in very sparse sampling of the chin area. An-
other prominent feature of the skull data is the protrusion of one
incisor, pushing the upper lip to the front. We modeled this effect
by moving the sd landmark a few millimeters down onto the blade
of the incisor, thus pushing the associated skin landmark forward as
well. This did not impair the positioning of the upper lip boundary
since this is adjusted separately by the mouth guides (cf. Fig. 7).

7 Conclusion and Future Work

The face reconstruction approach presented in this paper mirrors
the manual tissue depth method and thus has essentially the same
prediction power. Our results show overall good reproduction of
facial shape and proportions, and some surprisingly well-matched
details. It should be noted that our examples were produced by
computer scientists with no training in forensic reconstruction.

The advantages of the computerized solution are evident: in-
stead of weeks, it takes less than a day to create a reconstructed
face model, including scanning of the skull. Once the scan data is
marked with landmarks, different varieties such as slimmer or more
obese versions can be produced within seconds at the push of a but-
ton, which is practically impossible with the manual method due to
the vast amount of time needed for production of a single model.
Slight variations in facial expression can also be obtained quite eas-
ily by animating the muscle structure underlying the model.

Since the virtual reconstruction is based on 3D scans, which can
be acquired contact-free, the risk of damage to the original skull
is reduced. On the other hand, the scanning process has inherent
limitations: depending on the maximum resolution of the digital
scanner, much of the finer detail on the skull is lost. The delicate
structure of, for instance, the nasal spine cannot be fully captured
with current scanning technology. For this reason, it is necessary to
consult the original skull from time to time for reference.

In our experiments, we often found that surface normals on the
scanned skull geometry do not always behave the way they should,
reflecting the orientation of the surface only very locally. It might
be useful to consider an average of normals in a larger area around

the landmark position to solve this. Sometimes, it would be desir-
able to adjust the orientation manually.

The interactive system allows for an iterative reconstruction ap-
proach: a model is produced quickly from a given landmark config-
uration, so landmarks can be edited repeatedly until the desired re-
sult is obtained. The emphasis on the interaction component makes
the speed of the fitting process an important issue. While the actual
calculation of the warp function and the deformation of the mesh
are performed instantaneously, about five seconds are needed in our
test setting on a 1.7 GHz Pentium Xeon to examine skull and skin
for potential insertion of additional landmarks. This time is for the
largest part used for ray intersections of the skull and skin meshes,
which are done in a brute force manner. We expect a big speed-up
through the use of space partitioning techniques.

For practical use, the facial reconstruction system should provide
more editing facilities for skin details and hair. Useful additions in-
clude, for instance, a choice of templates for haircuts and facial fea-
tures such as eyebrow shapes, beards, and wrinkles. At this point,
large-scale validation of the system would be necessary to evaluate
the usability of the system.

As TAYLOR writes in her book, the tissue depth values should not
be taken at face value in three-dimensional facial reconstruction,
but rather act as guides for the final facial reconstruction, which
still relies heavily on artistic skills and intuition. Our tests confirm
that strict adherance to RHINE’s data for the solution of the inter-
polation problem is too limiting. This indicates not a weakness in
our method, but reflects the low number of samples (between 3 and
37 in each group) and the technical limitations at the time RHINE
assembled his data tables. Given the current state of technology,
more samples of higher precision could be acquired, resulting in
much more comprehensive and usable data. Ultimately, computer-
based facial reconstruction could then even become superior to the
traditional approach.

8 Acknowledgements

The authors would like to thank Dr. D. Buhmann from the Institute
of Forensic Medicine, Saarland University, for his valuable com-
ments and for providing the CT data sets.

References

ARCHER, K. M. 1997. Craniofacial Reconstruction using hierarchical B-Spline Inter-
polation. Master’s thesis, University of British Columbia, Department of Electrical
and Computer Engineering.

BLANZ, V., AND VETTER, T. 1999. A Morphable Model for the Synthesis of 3D
Faces. In Proc. ACM SIGGRAPH 1999, ACM Press / ACM SIGGRAPH, Computer
Graphics Proceedings, Annual Conference Series, 187-194.

BOOKSTEIN, F. L. 1997. Morphometric Tools for Landmark Data. Cambridge Uni-
versity Press.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL, T. J., FRIGHT, W. R.,
McCALLUM, B. C., AND EVANS, T. R. 2001. Reconstruction and Representation
of 3D Objects With Radial Basis Functions. ACM Press / ACM SIGGRAPH,
Computer Graphics Proceedings, Annual Conference Series, 67-76.

CHADWICK, J. E., HAUMANN, D. R., AND PARENT, R. E. 1989. Layered Construc-
tion for Deformable Animated Characters. In Computer Graphics (Proc. ACM
S GGRAPH 89), 243-252.

DucHON, J. 1977. Spline minimizing rotation-invariant semi-norms in Sobolev
spaces. In Constructive Theory of Functions of Several Variables, W. Schempp
and K. Zeller, Eds., vol. 571 of Lecture Notes in Mathematics, 85-100.

FARKAS, L. G., Ed. 1994. Anthropometry of the Head and Face, 2nd ed. Raven Press.

FEDOSYUTKIN, B. A., AND NAINYS, J. V. 1993. Forensic Analysis of the Skull.
Wiley-Liss, ch. 15: The Relationship of Skull Morphology to Facial Features, 199—
213.

appeared originally in ACM Transactions on Graphics (Proc. SIGGRAPH 2003), 22(3), 2003



GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification using quadric
error metrics. In SGGRAPH 97 Conference Proceedings, 209-216.

GRUNER, O. 1993. Forensic Analysis of the Skull. Wiley-Liss, ch. 3: Identification of
Skulls: A Historical Review and Practical Applications.

HELMER, R. P., ROHRICHT, S., PETERSEN, D., AND MOHR, F. 1993. Forensic
Analysis of the Skull. Wiley-Liss, ch. 17: Assessment of the Reliability of Facial
Reconstruction, 229-246.

KAHLER, K., HABER, J., AND SEIDEL, H.-P. 2001. Geometry-based Muscle Mod-
eling for Facial Animation. In Proc. Graphics Interface 2001, 37-46.

KAHLER, K., HABER, J., YAMAUCHI, H., AND SEIDEL, H.-P. 2002. Head shop:
Generating animated head models with anatomical structure. In ACM SIGGRAPH
Symposium on Computer Animation, ACM SIGGRAPH, 55-64.

KoCH, R. M., GROSS, M. H., AND BOSSHARD, A. A. 1998. Emotion Editing using
Finite Elements. In Computer Graphics Forum (Proc. Eurographics’98), vol. 17,
C295-C302.

KROGMAN, W. M. 1946. The reconstruction of the living head from the skull. FBI
Law Enforcement Bulletin (July).

LEBEDINSKAYA, G. V., BALUEVA, T. S., AND VESELOVSKAYA, E. V. 1993. Foren-
sic Analysis of the Skull. Wiley-Liss, ch. 14: Principles of Facial Reconstruction,
183-198.

LEE, Y., TERZOPOULOS, D., AND WATERS, K. 1995. Realistic Modeling for Facial
Animations. In Proc. ACM SSGGRAPH 1995, ACM Press / ACM SIGGRAPH,
Computer Graphics Proceedings, Annual Conference Series, 55-62.

MICHAEL, S., AND CHEN, M. 1996. The 3D reconstruction of facial features using
volume distortion. In Proc. 14th Eurographics UK Conference, 297-305.

MIYASAKA, S., YOSHINO, M., IMAIZUMI, K., AND SETA, S. 1995. The computer-
aided facial reconstruction system. Forensic Science Int. 74, 1-2, 155-165.

MOORE, W. J., AND LAVELLE, C. L. B. 1974. Growth of the Facial Skeleton in the
Hominoidea. Academic Press, London.

PIGHIN, F., HECKER, J., LISCHINSKI, D., SZELISKI, R., AND SALESIN, D. H.
1998. Synthesizing Realistic Facial Expressions from Photographs. In Proc. ACM
SIGGRAPH 1998, ACM Press / ACM SIGGRAPH, Computer Graphics Proceed-
ings, Annual Conference Series, 75-84.

PLATT, S. M., AND BADLER, N. I. 1981. Animating Facial Expressions. In Computer
Graphics (Proc. ACM SGGRAPH 81), 245-252.

RHINE, J. S., AND CAMPBELL, H. R. 1980. Thickness of facial tissues in American
blacks. Journal of Forensic Sciences 25, 4, 847-858.

RHINE, J. S., AND MOORE, C. E. 1984. Tables of facial tissue thickness of American
Caucasoids in forensic anthropology. Maxwell Museum Technical Series 1.

SCHEEPERS, F., PARENT, R. E., CARLSON, W. E., AND MAY, S. F. 1997. Anatomy-
Based Modeling of the Human Musculature. In Proc. ACM SIGGRAPH 1997,
ACM Press / ACM SIGGRAPH, Computer Graphics Proceedings, Annual Confer-
ence Series, 163-172.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-Form Deformation of Solid
Geometric Models. Computer Graphics (Proc. ACM SIGGRAPH 86) 20, 4 (Aug.),
151-160.

SZELISKI, R., AND LAVALLEE, S. 1996. Matching 3-D Anatomical Surfaces with
Non-Rigid Deformations using Octree-Splines. International Journal of Computer
Vision 18, 2, 171-186.

TAYLOR, K. T. 2001. Forensic Art and Illustration. CRC Press LLC.

TERzOPOULOS, D., AND WATERS, K. 1990. Physically-based Facial Modelling,
Analysis, and Animation. Journal of Visualization and Computer Animation 1, 2
(Dec.), 73-80.

VANEZIS, P., VANEZIS, M., MCCOMBE, G., AND NIBLETT, T. 2000. Facial recon-
struction using 3-D computer graphics. Forensic Science Int. 108, 2, 81-95.

WATERS, K. 1987. A Muscle Model for Animating Three-Dimensional Facial Ex-
pression. In Computer Graphics (Proc. ACM SSGGRAPH 87), 17-24.

WEIIS, W. A., AND HILLEN, B. 1986. Correlations between the cross-sectional area
of the jaw muscles and craniofacial size and shape. Am. J. Phys. Anthropol. 70,
423-431.

WILHELMS, J., AND VAN GELDER, A. 1997. Anatomically Based Modeling. In
Proc. ACM SIGGRAPH 1997, ACM Press / ACM SIGGRAPH, Computer Graphics
Proceedings, Annual Conference Series, 173-180.

Y’EDYNAK, G. J., AND i§CAN, M. Y. 1993. Forensic Analysis of the Skull. Wiley-
Liss, ch. 16: Anatomical and Artistic Guidelines for Forensic Facial Reconstruc-
tion, 215-227.

ZOLLIKOFER, C. P. E., PONCE DE LEON, M. S., AND MARTIN, R. D. 1998.
Computer-Assisted Paleoanthropology. Evolutionary Anthropology 6, 2, 41-54.

A Landmark Set used for Reconstruction

Table 1 lists the paired landmarks on skin and skull that are used
for the facial reconstruction approach described in this paper. Most
skull landmark names and descriptions are taken from [Taylor 2001,
page 350 ff.]. Short skull landmark names are listed in the id col-
umn. We have tried to adhere to naming conventions used in the
forensic and anthropometric literature as much as possible [Taylor
2001; y’Edynak and lIscan 1993; Farkas 1994]. For simplicity, cor-
responding landmarks on skull and skin have the same short name
in our system, which is not generally the case in the literature. In a
few cases, marked by x in the table, we invented short names. Not
all skull landmarks have an “official” counterpart on the skin, so
we placed the corresponding skin markers using our own judgment.
The mp landmark pair is not part of the standard set. We added it
to improve the alignment of skin to skull in the region behind the
ears, where the mastoid process adds a bulge to the skull.

name id description
Midline

Supraglabella tr Above glabella, identified with the hairline

Glabella g The most prominent point between the supraorbital
ridges in the midsagittal plane

Nasion n The midpoint of the suture between the frontal and the
two nasal bones

End of nasals na  The anterior tip or the farthest point out on the nasal
bones

Mid-philtrum a The mid line of the maxilla (east and west), placed as

high as possible before the curvature of the anterior nasal
spine begins

Centered between the maxillary (upper) central incisors
at the level of the Cementum Enamel Junction (CEJ)
Centered between the mandibula (lower) central incisors
at the level of the Cementum Enamel Junction (CEJ)
Chin-lip fold b The deepest mid line point of indentation on the
(Supramentale) mandible between the teeth and the chin protrusion
Mental eminence  pog  The most anterior or projecting point in the mid line on

Upper lip margin ~ sd
(Supradentale)
Lower lipmargin  id
(Infradentale)

(Pogonion) the chin

Beneath chin  me  The lowest point on the mandible

(Menton)

Bilateral

Frontal emi- fe*  Place on the projections at both sides of the forehead

nence

Supraorbital sci  Above the orbit, centered on the upper most margin or
border

Suborbital or Below the orbit, centered on the lower most margin or
border

Endocanthion en  point at the inner commissure of the eye fissure; the
landmark on the skin is slightly lateral to the one on the
bone

Exocanthion ex  point at the outer commissure of the eye fissure; the
landmark on the skin is slightly medial to the one on
the bone

Inferior malar im  The lower portion of the maxilla, still on the cheekbone

Lateral orbit lo Drop a line from the outer margin of the orbit and place

the marker about 10 mm below the orbit

Zygomatic arch, zy  Halfway along the zygomatic arch (generally the most

midway projecting point on the arch when viewed from above)

Supraglenoid sg above and slightly forward of the external auditory mea-
tus

Gonion go  The most lateral point on the mandibular angle

Supra M2 spm2* Above the second maxillary molar

Occlusal line ol On the mandible in alignment with the line where the

teeth occlude or bite

Sub M, sbm2* Below the second mandibular molar

Mastoid process mp*  Most lateral part on the mastoid process behind and be-
low the ear canal

Table 1: Landmark set used for face reconstruction.
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five vowels /a/, /e/, /il, /o/, lu/.
« For the consonants?
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Use of Neural Network

Typical plots for reflection coefficients
for five chosen vowels

Three layer back
propogation

12 input nodes, 10
hidden nodes, 5 output
nodes

Five vowels used
fal, e, il, lol, lu/

12 male and 5 female
speakers

MIRALab SNpeech Animation

Where Research means Creativity ladia Magnenat-Thalmann

Results of NN training

Recognized

/a/ /el /il o/ u/
/al | 241 2 15 11 0
le/ 0 177 89 0 5
Expected | /i/ 0 3 301 0 2
o/ 10 0 0 224 | 36
u/ 4 12 0 88 143

‘www.miralab.unige.ch

University of Geneva
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MIRALab Speech Animation MIRALab Speech Animation
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Energy Analysis
Vowel-Vowel Transition

Semi-vowels
Consonants

7 Energy e
calculation &

®

| et b—» sal 1ul fif ]

> fal lul fif

Modulated
vowels

The parameters corresponding to the vowels are modulated

Where Research means Creativity

What more?

Zero crossing for affricates and unvoiced fricatives (/sh/,
/dzh/) and /h/

Zero crossing rate is 49 per 10 msec for unvoiced, and 14 per
10 msec for voiced speech
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Speech Animation from
Text/Synthetic Speech

(for autonomous virtual humans)

Speech Animation
adia Magnenat-Thalmann
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Where Research means Creativity

Synthetic Speech Driven Talking Head

Temporized Facial animation

——
phonemes parameters

Text Text to

Speech Co-articulation

'

Audio o
— Synchronization

signal

Animatable face
model
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Speech Co-articulation
Co-articulation is a phenomenon observed during fluent speech, in which facial movements
corresponding to one phonetic or visemic segments are influenced by those corresponding to the

neighboring segments.

Example: a V1-C-V2 sequence where V1 is un-protruded (eg. “a’) and V2 is protruded (eg. ‘u’)

Look-Anead Mode) Tia=Loasa Mok

Transition towards v2
takes place in two phases

Transition towards v2
starts a fixed time
interval before v2 begins

Transition towards v2
starts as soon as v1 ends

M. M. Cohen, D.W. Massaro, *Modeling coarticulation in synthetic visual speech”, in
N. M. Thalmann and D. Thalmann, Models and techniques in Computer Animation,
Spinger-Verlag, 1993, pp. 139-156.

MIRALab SNpeech Animation
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Articulatory Gesture Model

*Each speech segment (typically a
viseme) has dominance that increases

and decreases over time

“Tim
) *Adjacent visemes have overlapping

dominance functions that will blend
over time
«Each viseme may have a different

dominance function for each

articulator

Time

A. Lofquist, “Speech as audible gestures”, in
‘Speech Production and Speech Modeling, Kluwer
Academic Publishers, 289-322
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Co-articulation Models for Talking Head

Pelachaud (1991) :
“Look ahead” model based on deformability of phonemes
Also considered muscle contraction times

Cohen & Massaro (1992) :
Non-linear dominance and blending functions designed for each
phoneme

Speech Animation
fadia Magnenat-Thalmann

MIRALab

Where Research means Creativity

In Summary

Intensity

Define weight (dominance), and overlap according to
phoneme group.
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Performance Driven Facial Animation

Optical tracking Parameterized

with several (FAP)
cameras

synthetic face

Enhances realism to a great degree
Enables design of the
Limitations : complex equipment, availability of skilled performer

thalmann@miralab.unige.ch
MIRALab Speech Animation MIRALab Speech Animation
adia Magnenat-Thalmann

Where Research means Creativity

Realism in Talking Heads

Can we combine flexibility of facial animation design and realism of
performance driven facial animation? How?

Optical tracking Statistical
data analysis

Realistic building

blocks : s ity Expression:
L <+—— expression mixing +—— AP
expressions and B Viseme space
. and blending
visemes
Realistic

Facial Animation
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What is PCA

Speech Animation
Nadia Magnenat-Thalmann

PCA is a well-known multivariate statistical analysis technique aimed at :

« reducing the dimensionality of a dataset, which consists of a large
number of interrelated variables

+ retaining as much as possible of the variation present in the dataset
« transforming the existing dataset into a new set of variables called the
principal components (PC)

The PCs are uncorrelated and are ordered so that the first few PCs retain
the most of the variation present in all of the original dataset.

MIRALab SNpeech Animation

Where Research means Creativity ladia Magnenat-Thalmann

Why PCA

For facial capture

High correlation between facial
feature points

Large amount of capture data for
speech

Capturing individual as well as
collective movement dynamics

important during expressive

speech
T 0 ersi “mwiralab.unige.ch versi
:;’l‘;’l‘;’";:‘:;‘:m;:;f;:m ech University of Geneva m‘;mmn‘:’;m:’;;f‘fm cch University of Geneva
MIRALab Speech Animation MIRALab Speech Animation
Where Research means Creativity Nadia Magnenat-Thalmann Where Research means Creativity ladia Magnenat-Thalmann
Data Capture Data Analysis
3D position
data for every
frame
Optical Tracking system : Vicon i
27 optical markers, 6 Cameras Principal Principal Components
. . Component —> (basis vectors of the
Extraction of 3D positions of Analysis PC space)
markers
100 phoneme rich sentences from
TIMIT database 3D position Transformation ‘expression/viseme’
space matrix ‘T’ space

3D position data of 14 markers
around lips and cheeks used for
PCA

Analysis results into a transformation between 3D position space and
the newly constructed expression/viseme space

‘Ww\w_miralab.unige.ch University of Geneva
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Where Research means Creativity Nadia Magnenat-Thalmann

What are the Principal Components

The facial movements are controlled by
single parameters, as opposed to
several MPEG4 parameters needed
to control the same facial
movement

Eg. ‘Open Mouth * affects not only lips,
but jaw and cheek region also

Thus the Principal Components take care
of global facial movements using
minimum number of parameters
and provide higher level
parameterization for facial
animation design

(a) Open mouth

(b) Lip protrusion
(c) Lip sucking

(d) Raise cornerlips

thalmann@miralab.unige ch thalmann@miralab.unige.ch
MIRALab Speech Animation MIRALab Speech Animation

Where Research means Creativity ‘adia Magnenat-Thalmann

Expression and Viseme Space

*The ‘Principal Components’ form the basis or the ‘principal axes’ of the
abstract Expression and Viseme space

*Each point in the Expression and Viseme space is a facial expression, a
viseme, or a combination

«Transition in this space from one point (expression) to another, results in
smooth and realistic transition in the 3D position space giving a new way
of achieving keyframe animations.

A combination of points in this space results in realistic blending and
combination of visemes and expressions in 3D position space, and hence a
realistic expressive speech animation.
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Application to Speech Animation

3D position Space

3D positions for

static phonemes
Temporized
‘o-articulation\ phonemes

Space vector
trajectories

Computation of
MPEG-4 FAP

MIRALab SNpeech Animation

Where Research means Creativity ladia Magnenat-Thalmann

Expressive Speech

PC2 forneutralspeech Each expression and viseme is a vector in the

PC2 for happy” sposch

Expression and Viseme space

Mixing between Viseme and Expression is a
simple vector addition in that space

Transforming back to 3D position space results
into ‘Expressive Speech’
For happy expression, PC2 and PC3 are most

effective, as it controls lip protrusion

For sad expression, PC4 and PC6 is found to be
most effective, that controls corner lip
movements

v miralab umge ch University of Geneva

Ve miralab.unige ch University of Geneva
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MIRALab Speech Animation

MIRALab S‘\Peech Animation
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Blending Speech with Expressions

Expression
vector
Expressive
Transformation viseme

Viseme
vector

Where Research means Creativity ‘adia Magnenat-Thalmann
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ABSTRACT

Linear Predictive analysis is a widely used technique for
speech analysis and encoding. In this paper, we discuss the
issues involved in its application to phoneme extraction and
lip synchronization. The LP analysis results in a set of
reflection coefficients that are closely related to the vocal
tract shape. Since the vocal tract shape can be correlated
with the phoneme being spoken, LP analysis can be directly
applied to phoneme extraction. We use neural networks to
train and classify the reflection coefficients into a set of
vowels. In addition, average energy is used to take care of
vowel-vowel and vowel-consonant transitions, whereas the
zero crossing information is used to detect the presence of
fricatives. We directly apply the extracted phoneme
information to our synthetic 3D face model. The proposed
method is fast, easy to implement, and adequate for real
time speech animation. As the method does not rely on
language structure or speech recognition, it is language
independent. Moreover, the method is speaker independent.
It can be applied to lip synchronization for entertainment
applications and avatar animation in virtual environments.

Keywords

LP analysis, lip synchronization, real-time speech animation

1. INTRODUCTION

In today's multi-modal user interactive systems, talking
heads form an important and essential part. For virtual
presenters, storytellers, and avatarsin virtual environments,
synthetic faces talking in natural voice are gaining more
potential. The advances in speech synthesis technologies
are resulting in better quality computer generated voices.
Nevertheless, using natural voice for the animation of
synthetic faces remains a challenging area of research in
computer animation. The problem can be easily divided
into two parts; viz. extracting the mouth shape information
from speech signal and then applying it to a synthetic 3D
face model with synchronization for realistic animation. We
concentrate on the former part in this paper, and briefly
discuss the issues involved in the later.

The goal is to extract the parameters from speech signal
which are directly or indirectly related to the mouth/lip
movements. McAllister et al [1] used mouth shape
descriptors called moments computed from the FFT

coefficients of the speech signal as these parameters. LPC
derived cepstral coefficients were used by Curinga,
Lavagetto, and Vignoli [2]. They trained Time Delay
Neural Network to take care of the co-articulation.
Yamamoto, Nakamura, Shikano [3] and Tamura et al [4]
used HMM techniques for the synthesis of lip movements
from the speech signal. Morishima [5] described areal time
voice driven talking head and its application to
entertainment. He used L PC derived cepstral coefficients to
extract mouth shape parameters using neural networks.

Most of the above mentioned researchers used the mouth
shape parameters like width, height, lip-to-lip distance or
the control point locations around the lips. These
parameters were extracted from the video sequences
associated with the speech recordings, and were then used
for training. We propose to take a different approach that
will alow us to apply the results to any generalized 3D
head. The straightforward alternative is to extract the
phonemes or visemes (visual counterparts of phonemes)
directly from the speech signal. We choose LP analysis to
extract the parameters from the speech signal. This
technique, as explained in the subsequent sections, is
inadequate for the consonants. Thus, it has limited use for
the accurate phoneme extraction. We partly overcome the
limitation by augmenting the results of vowel recognition
with the energy envelope modulation. We also use zero
crossing rate to recognize unvoiced fricatives. Our face
model can directly animate such modulated vowels, making
the animation process easy.

The next section explains the proposed system in brief.
Section 3 explains the use of the LP analysis and use of
neural networks, energy criterion and zero crossing rate for
phoneme extraction. The issues related to 3D synthetic
faces for speech animation are discussed in section 4.
Finally, we give conclusions and discuss future work.

2. SYSTEM OVERVIEW

Figure 1 shows the overall block diagram of the system.
Input speech is sampled at 10 kHz with a frame size of 20
ms. Preprocessing includes pre-emphasis and hamming
windowing of the signal. Currently, no filtering is done for
noise reduction. 12 reflection coefficients are calculated as
aresult of LP analysis. The coefficients are obtained from
sustained vowel data and are used to train the neural



network. As aresult, one of the 5 chosen vowels (/a/, /¢e/, lil,
lol, Iul) is obtained for the frame. We have chosen these
vowels since we notice that the vowels in many languages
can be roughly classified into these basic sounds or their
combinationsg/variations. We use median filtering to smooth
the resulting recognized vowels. The average energy of the
signal is calculated as the zeroth auto-correlation coefficient
over the frame and is used to decide the intensity of the
detected vowel. Zero crossings are calculated to decide the
presence of the unvoiced fricatives and affricates (/sh/, /ch/,
[zh/ etc.). Finally, the Facial Animation Module generates
the Facial Animation Parameters (FAP) as supported by
MPEG-4 standard depending upon the phoneme input. Note
that any 3D parameterized facial model can be used here.
The speech animation is then easy using the pre-defined
parameters for these extracted phonemes.

Pre-emphasis,
”’“'"‘”""MMW’MW"% Hamming-
Input window

speech

LP
analysis

Zero
crossing

oy
Fricative
estimation

I I

Modulated vowels Fricatives

Smoothing &
modulation

v v
% Facial Animation Module ‘
ﬁ

Reference FAPs for phonemes

Figure 1. System overview

3. SPEECH ANLYSIS

As previously mentioned, several parameters can be used to
correlate the speech signal to the mouth shape. Lewis and
Parke [6] suggested the use of linear prediction for lip
synchronization. However, they used Fourier transform of
the negated zero extended LP coefficients for analysis. An
analyzed speech frame was then classified using the
Euclidean distance norm after comparing it with the spectra
of reference phonemes. We use the LP derived reflection
coefficients, the average energy in the speech signal and the
zero crossing rate. This section explains the choice of these
parameters in details.

3.1 Speech Production and LP Analysis

The human speech production system can be easily divided
into the glottis or vocal cords and the vocal tract (mouth,
tongue and lips). The glottal excitation acts as the source
signal. The vocal tract, acting as a filter, then shapes it to
generate the output speech. The phonemes can be
characterized together by the excitation and the vocal tract

shape. We concentrate on the vocal tract shape here. This
subsection focuses on extraction of vowels, whereas issues
involved in the extraction of some of the consonants are
discussed in the subsequent subsections. For the production
of vowels, the vocal tract shape is constant with time and
uniform (without condtrictions), with the sustained
vibrations of the vocal cords.

Thus for the vowels, the vocal tract can be approximately
modeled as a concatenation of a number of cylindrical tubes
of uniform cross-sectional area[7]. Figure 2 shows asimple
approximation of the model consisting of m acoustic tubes.
The tubes have cross-sectional areas A; to A,. Though
these values have great variation from person to person, the
relative distribution is similar for a given vowel. We are
interested in extracting this vocal tract shape information,
which will be directly useful for speech animation.

Snl(cl)ttls A A, A A, A, L1p()15
_\—\_n—,-““ -

Figure 2: Schematic representation of vocal system and
concatenated tube approximation

Wakita [8] compared the above acoustic filter model
represented by the concatenated tubes, with the speech
production model suggested by LP analysis. The details are
beyond the scope of discussion here, but we state the resullt.
The comparison between the acoustic tube model, and the
LP derived model led to the following conclusion. The
reflection coefficients r;, computed as a by-product of the
recursive LP algorithm, are directly related to the vocal
tract area as per the concatenated tube model by the
following equation.

Ai- A
AtA

As clearly depicted by the equation, the reflection
coefficients are directly related to the variation of the vocal
tract area for sustained vowels. A definite pattern observed
in these coefficients for a particular vowel suggests the use
of neural networks for classification.

3.2 Useof Neural Network

With the background given in the last subsection, the
problem of recognizing the vowels reduces to a
classification problem. A three-layer back-propagation
neural network is widely used for a variety of pattern
recognition and classification problems [9]. We use the
same configuration to classify the reflection coefficients.
There are 12 input nodes for the coefficients, 10 hidden
nodes and 5 output nodes for the vowels. These parameters
were tuned by running the training sessions several times on

f



the data and studying the classification result. We train the
network in five repeated cycles, every time using the datain
a different random order. We use reflection coefficients
from sustained vowel data and also short vowel segments
extracted from continuous speech. The speech data was
recorded from 12 mae and 5 female speakers. The
following table shows the classification results on the test
data set consisting of 4 male and 3 female speakers. The
utterances were chosen from sustained vowels and the
frames were chosen randomly. Note the mis-recognition
between /e/ and /i/, and /o/ and /ul. The mouth shapes for
these pairs of vowels are also similar.

Recognized
lal | el | fil | ol | Iu
fal | 241 | 2 15 | 11
lel 0 | 177 | 89 0
h/ 0 3 |301| 0
lo/ | 10 0 0 | 224 36
u | 4 12 0 88 | 143

Expected

Table 1: Results of neural network classification

3.3 Energy Analysis

In the previous subsections, we have explained how the
vowels can be extracted directly from the speech signal
using LP analysis and neural networks. However, we are
aware that the application of the vowels alone for speech
animation is not sufficient. The vowel-to-vowel transition
and the consonant information are missing, which are very
important for realistic speech animation. The consonants
are typically produced by creating a constriction at some
place along the length of the vocal tract. During such
congtrictions/closures, the energy in the speech signa
diminishes. Hence, we use the average energy in a speech
frame to modulate the recognized vowel. It is calculated as
the zeroth autocorrelation coefficient of the frame, and has
already been computed during the LP analysis phase. Thus,
the calculation of energy does not cause any additional
computational overhead.

El
& fal Jul fil
Mok ——\ 8l o i —I e

Figure 3: Modulating vowel s with energy envelope

As an initialization process, we record background noise in
the room to set the energy threshold for silence. Also, we

record sustained vowel /a/ from the user asking her to say
the utterance with maximum volume expected in normal
speech. This enables us to compute the maximum energy.
This value is used to get a normalized weighting factor for
the vowels during normal speech.

As explained in Section 4, the parameterized face model
(MPEG4 model in our case) enables us to animate these
modulated vowels. The normalized weighting factor
directly proportional to the energy in the speech signa is
used to scale the parameters for the corresponding vowel.
Figure 3 pictorially depicts the idea behind modulating
vowels with energy envelope.

3.4 ZeroCrossing

Using the energy content of the signal may result in false
closure of mouth, especially in the case of affricates and
unvoiced fricatives. For such cases, we can use the average
zero crossing rate in the speech signal for each frame. The
mean short time average zero crossing rate is 49 per 10
msec for unvoiced, and 14 per 10 msec for voiced speech
[7]. This criterion is useful in making a distinction and is
sufficient for our purpose. A short segment of the utterance
/sh/ (as in sharp) shown in figure 4 highlights this criterion.
In case of the presence of low energy in the speech frame,
the zero crossing criterion decides the phoneme.

Figure 4: High zero crossing rate for fricative /sh/

4. FACIAL ANIMATION

So far, we have focused our attention on the extraction of
phonemes directly from speech signal. In this section, we
briefly consider the issues involved in the speech animation
using this extracted information.

The phonemes extracted using the method described so far
can be applied to any parameterized face model for speech
animation. It is necessary to define the mouth shapes for the
static phonemes in terms of these parameters. Depending
upon the phoneme intensities, the corresponding parameter
intensities can be set to achieve the speech animation.
MPEG-4 standard provides such a way. The Facial
Animation Parameters defined in the standard enable the
user to define any facial expression in terms of these
parameters with corresponding intensities. Moreover, since
these parameters are normalized with respect to the distance



between certain key feature points on the face, the
animation results are consistent when applied to any face
model. For more detail discussion on the MPEG-4 standard
and MPEG-4 compatible 3D faces, refer to [10][11].

Figure5: Frames of speech animation "hello”

In a networked virtual environment, an avatar of an
individual can be truly represented by the individualized 3D
face model and the voice of that individual using the lip
synchronization method proposed here. An MPEG-4
compatible individualized 3D face of a person can be
generated from two orthogonal photographs. We have used
the 3D face models developed by [12]. We define the FAPs
corresponding to the phonemes under consideration, and
according to the modulation, the intensities of these FAPs
are set to generate the facial animation in real time. Figure 5
shows successive frames for speech animation for the word
"hello" which involves modulated vowels/al, /e/, and /o/.

5. CONCLUSIONSAND FUTURE WORK
We have proposed a simple and fast method for realistic
speech animation. As we are extracting higher level
information (phonemes) directly from the speech signal, the
results can be easily applied to any parameterized face
model. We have used MPEG-4 compatible face model. The
results of the speech animation using the recorded speech of
different speakers can be seen at the following website:
http://mww.miral ab.unige.ch/~sumedha/lipsynchronization.
Note that the method is language as well as speaker
independent. The score of the recognition given by the
neural network can be used to combine two vowels
generating a mouth shape that will represent the transition
between them. We are aware that this method does not give
accurate results as far as phoneme recognition is concerned.
However, in the context of talking heads used for real time
interactive system, the animation is satisfactory.
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Textures are...

Textures

Jorg Haber

« acheap means of conveying realism
« atool for LoD management

available both on graphics hardware and in
modeling / rendering software

« useful for many rendering “tricks”

How to create textures from input images?

Cylindrical Textures

Cylindrical Textures

Common approach:
« created from input photographs:

— L. Williams: “Performance-Driven Facial Animation”,
SIGGRAPH '90, 235-242, Aug. 1990

— F. Pighin et al.: “Synthesizing Realistic Facial
Expressions from Photographs”, SIGGRAPH '98,
75-84, July 1998

* acquired during range scanning process
(— Cyberware scanners)

A head is similar to a cylinder ...is it?

Cylindrical Textures

Textures from Photographs

Problems:
« limited texture resolution (Cyberware)
* need accurate geometry for registration (from photos)
* visual artifacts:
— on top of the head
— behind the ears
— under the chin
+ limited animation (eyes, teeth)

Given:

+ 3D mesh

+ uncalibrated images (digitized photographs)
Assumptions:

* mesh represents real object (head) sufficiently precise
+ images cover all areas of real object
Solution:

» C. Rocchini et al.: “Multiple Textures Stitching and
Blending on 3D Objects”, EG Rendering Workshop '99

— register images, create texture patches




Tsai Algorithm

Corresponding Points

R. Y. Tsai: “A Versatile Camera Calibration Technique for
High-Accuracy 3D Machine Vision Metrology using Off-
the-Shelf TV Cameras and Lenses”, IEEE J. of Robotics
and Automation, RA-3(4), Aug. 1987

« compute intrinsic camera parameters (effective focal
length, radial distortion, optical center) once from
images of calibration pattern for different points of view
using non-linear optimization

« compute extrinsic camera parameters (rotation &
translation) for each input image using corresponding
points (3D geometry < 2D image) and linear
optimization

Fle Registration

Texture Binding

File Begistration

Important aspects:
« optimal packing of individual segments
+ smooth transition between segments (blending)

Texture Atlases A Different Parameterization
Problems: A head is topologically similar to a disk:

* not suitable for mip-mapping

« waste of texture space:
— optimal packing of patches is difficult
— patches contain redundant information

harmonic map




Harmonic Maps
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Weighted Parameterization

Characteristics:
+ results in single texture patch suitable for mip-mapping
» 3D object must be topologically equivalent to a disk
* need to control distortion, e.g.:

— P. V. Sander et al.: “Texture Mapping Progressive
Meshes”, SIGGRAPH '01, 409-416, Aug. 2001

* may introduce additional weights

Facial region is most important:
+ assign amount of texture space through weights

« triangles on the face become
larger in the texture,
backfacing triangles become
smaller

* weights are computed
automatically using dot
product of triangle normal
and viewing direction V of
head model

Process Overview

Texture Resampling:
Resampling

common image for all vertices: resample triangle

Texture Resampling: —p—r Texture Resampling: —
Interpolation Filling holes =C03

all vertices bound, no common image: interpolate

unbound vertices: apply iterative interpolation scheme

=~




Result

Uncontrolled lllumination

« different skin color =
discontinuities in the
resampled texture

Removing Discontinuities

Removing Discontinuities

* P. J. Burt, E. H. Adelson: “A Multiresolution Spline with
Application to Image Mosaics”, ACM TOG, 2(4):217-

236, Oct. 1983

Multiresolution spline:
» removes discontinuities
» keeps fine detail
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Facial Components *C 03

Eyeball Textures: Problem

Observations:

+ individual facial components (eyes, teeth) are crucial
for realistic modeling

- difficult to acquire data for modeling these components

Solution:
* use generic models with individual textures
« create individual textures from plain photographs

reflections

Many pixels must be discarded!




Eyeball Textures:
Discarding Pixels

Eyeball Textures:
Texture Synthesis

» remove pixels with a color similar to skin

» remove pixels with a color dissimilar to the pixels at
the same radial distance from the center

Just a small clean part is needed as a seed...

Texture synthesis in polar coordinates:

= B§ =

k\“‘v{, clean

sample

small area:
uniform illumination

final texture
synthesized
texture

Ey/@bal Il Textures: Results

Generic Teeth Model

+ central part:
— impostor
— individual texture

+ side teeth:
— 3D geometry
— generic texture

Teeth: Results
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Texturing Faces
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Abstract ,
We present a number of techniques to facilitate the gen-
eration of textures for facial modeling. In particular, we
address the generation of facial skin textures from uncal- §
ibrated input photographs as well as the creation of in-
dividual textures for facial components such as eyes or
teeth. Apart from an initial feature point selection for the
skin texturing, all our methods work fully automatically
without any user interaction. The resulting textures show
a high quality and are suitable for both photo-realistic and
real-time facial animation.

Key words: texture mapping, texture synthesis, mesh pa-

rameterization, facial modeling, real-time rendering Figure 1: Overview of our skin texture generation pro-

cess: the 3D face mesh is parameterized over a 2D do-

1 main and the texture is resampled from several input pho-
Over the past decades, facial modeling and animatiq@graphs.

has achieved a degree of realism close to photo-realism.

Although the trained viewer is still able to detect mi- i
nor flaws in both animation and rendering of recent fullénts from several uncalibrated photographs. The gener-

feature movies such a8nal Fantasy the overall quality ation of these textures is automated to a large extent, and
and especially the modeling and texturing are quite imhe resulting textures do not exhibit any patch structures,

pressive. However, several man-years went into the mob€- they can be used for mip-mapping. Our approach

eling of each individual character from that movie. Try-Combines several standard techniques from texture map-
ing to model a real person becomes even more tricky: tfRing and texture synthesis. In addition, we introduce the

artistic licence to create geometry and textures that “loofe!lowing contributions:

good” is replaced by the demand to create models that , 5 view-dependent parameterization of the 2D texture

“look real”, _ domain to enhance the visual quality of textures with
A common approach towards creating models of real 3 fixed resolution:

persons for facial animation uses range scanners such as,

Introduction

for instance, Cyberware scanners to acquire both the head*
geometry and texture. Unfortunately, the texture resolu-
tion of such range scanning devices is often low com-
pared to the resolution of digital cameras. In addition,
the textures are typically created using a cylindrical pro-
jection. Such cylindrical textures have the drawback to
introduce visual artifacts, for instance on top of the head,
behind the ears, or under the chin. Finally, there is no
automatic mechanism provided to generate textures for «
individual facial components such as eyes and teeth.
In this paper, we present an approach to generate high-

resolution textures for both facial skin and facial compo-

a texture resampling method that includes color
interpolation for non-textured regions and visual
boundary removal using multiresolution splines
with a fully automatic mask generation;

a radial texture synthesis approach with automatic
center finding, which robustly produces individual
eyeball textures from a single input photograph;

a technique that uses a single natural teeth photo-
graph to generate a teeth texture, which is applied to

an appropriate 3D model to resemble the appearance
of the subject’'s mouth.

appeared originally in Proc. Graphics Interface 2002, pp. 89-98
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All of these techniques are fully automated to minimizevhich makes it impossible to generate mip-maps from
the construction time for creating textures for facial modthese textures. Creating textures that can be mip-mapped
eling. However, we do not address the topic of faciatequires to construct a parameterization of the mesh
modeling itself in this paper. We apply the textures genever a two-dimensional domain. To this end, generic
erated by the techniques presented in this paper in otechniques based on spring meshes have been presented
facial animation systeni[12], which has been designed ia [0, [T5,7]. Special parameterizations that minimize
produce physically based facial animations that performdistortion during texture mapping for different kinds of

in real-time on common PC hardware. Thus the focus afurfaces have been investigated by several authors, see
our texture generation methods is primarily on the applifor instance [27,-29, 22 21].

cability of the textures for OpenGL rendering and a sim-
ple but efficient acquisition step, which does not requir?e
sophisticated camera setups and calibration steps.

Texture synthesis<[9,-33] has become an active area of
search in the last few years. Recent publications focus
on texture synthesis on surfacésl[B4, 31, 36] or on texture
transfer [B/-14]. All of the methods presented so far use a
Euclidean coordinate system for the synthesis of textures.
Research on either texturing or facial animation has prdn contrast, we use a polar coordinate system to synthe-
vided a large number of techniques and insights over trgize textures that exhibit some kind of radial similarity.
years, see the surveys and textbookd'in [13, 6] and [25]

for an overview. Texturing in the context of facial ani-3  Texturing Facial Skin

mation is, however, an often neglected issue. Many so-

phisticated facial animation approaches, €-g. [32;18, 19]0 generate a skin texture for a head model, we first
simply use the textures generated by Cyberware scal@ke about three to five photographs of the person’s head
ners. In I«;S], Williams presents an approach to gerﬂom different, uncalibrated camera pOSitiOﬂS. All phO-
erate and register a cylindrical texture map from a pelographs are taken with a high-resolution digital camera
ripheral photograph. This approach is meanwhile supet3040x2008 pixels). The camera positions should be
seded by the ability of Cyberware scanners to acquire géhosen in such a way that the resulting images roughly
ometry and texture in one step. The method presenté@ver the whole head. During the acquisition, no spe-
in []] generates an individual head geometry and te)@lal illumination is necessary. However, the qua“ty of
ture by linear combination of head geometries and te)the final texture will benefit from a Uniform, diffuse il-
tures from a large database that has been acquired lgmination. In addition, we acquire the geometry of the
ing a Cyberware scanner in a costly preprocessing Stéﬂﬁad using a structured-light range scanner. As a result,
Marschnekt al. describe a technique that uses several i€ obtain a triangle mesh that consists of up to a few
put photographs taken under controlled illumination witdiundred thousand triangles. After the texture registration
known camera and light source locations to generate &tep, this triangle mesh is reduced to about 1.5k triangles
albedo texture map of the human face along with théor real-time rendering using a standard mesh simplifica-
parameters of a BRDF_[23]. Several other approachédi®n technique. Each photograph is registered with the
such asl[26,11,"16,117] are image-based and use a snfih-resolution triangle mesh using the camera calibra-
number of input photographs (or video streams) for théon technique developed by Tsai[30]. Since the intrinsic
reconstruction of both geometry and texture. A|thougfﬁ)arameter5 of our camera/lens have been determined with
these approaches could potentially yield a higher textugib-pixel accuracy in a preprocessing step, we need to
quality compared to the Cyberware textures, they typidentify about 12-15 corresponding feature points on the
cally suffer from a less accurate geometry reconstructiofj€sh and in the image to robustly compute the extrinsic

limited animation, and reduced texture quality by usingamera parameters for each image. This manual selec-
cylindrical texture mapping. tion of feature points is the only step during our texture

Creating textures from multiple, unregistered Iohogeneration process that requires user interaction.

tographs has been addressed in the literature by severaNext, we automatically construct a parameterization
authors [28/13[24]. First, they perform a camera calief the 3D input mesh over the unit squdfe1]?. This
bration for each input photograph based on correspondtep is described in detail in the following Sectipn] 3.1.
ing feature points. Next, a texture patch is created fdfinally, every triangle of the 2D texture mesh is re-
each triangle of the input mesh. The approaches diffelampled from the input photographs. A multiresolution
in the way these texture patches are created, blendeghline method is employed to remove visual boundaries
and combined into a common texture. However, théhat might arise from uncontrolled illumination condi-
resulting textures always exhibit some patch structuréions during the photo session. Details about this resam-

2 Previous and Related Work
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pling and blending step are given in Sectjon 3.2. Fidure o~
shows an overview of our texture generation process. ||

3.1 Mesh Parameterization

We want to parameterize the 3D input mesh over the 2
domain|0, 1]? in order to obtain a single texture map for |
the whole mesh. To obtain a mip-mappable texture, th
texture should not contain individual patchésxfure at-
las) but rather consist of a single patch. Clearly, this goz/
cannot be achieved for arbitrary meshes. In our case, t
face mesh is topologically equivalent to a part of a plane,. . L

sinceishas a b(r))ungary a};m?nd the neck aﬁd does rl?ot c?ﬁgure 2: Comp arison b?tween a erw_md,ep endent ex-
tain any handles. Thus we can “flatten” the face mesh fare I?leSh parameterization ace Off’“’g "to [25] (left) and
a part of a plane that is bounded by its boundary curnv@’’ view-dependent parameterization (right).

around the neck. We represent the original face mesh

by a spring mesh and use tlié stretch norm presented .
in [79] to minimize texture stretch. In our simulations, Fi9Ure[? shows a view-independent texture mesh param-
this L2 norm performs better than the™ norm that is eterization obtained with the originaP stretch norm as

recommended by the authors B1[29]. well as a view-dependent parameterization with our mod-

By applying the texture stretch norm, texture stretctfied stretch norm fok = 1.2.
is minimized over the whole mesh. In the following step, The difference between ouriew-dependent texture
we introduce some controlled texture stretch again. Singgesh parameterizatioand theview-dependent texture
the size of textures that can be handled by graphics harahappingproposed in([5[-26] is the following: the latter
ware is typically limited, we would like to use as muchperforms an adaptive blending of several photographs for
texture space as possible for the “important” regions of @ach novel view, whereas we create a static texture that
head model while minimizing the texture space allocatebias its texture space adaptively allocated to regions of dif-
to “unimportant” regions. Obviously, the face is moreferent visual importance.
important for the viewer than the ears or even the back %J 2 Texture Resampling
the head. To accomplish some biased texture stretch, wée
have introduced an additional weighting functiorinto ~ After having created the 2D texture mesh from the 3D
the L2 stretch norm presented in-{29]: face mesh, we resample the texture mesh from the in-
put photographs that have been registered with the face
mesh. First, we perform a vertex-to-image binding for all
S (L2 (Ti))2 w(T) A(T;) vertices of t.he_ 3D face mesh. This sFep is .carried out as
T,eEM suggested inJ28]: Each mesh vertexs assigned a set
S w(Ty)A(Ty) of valid photographswhich is defined as that subset of
T.eM the input photographs such thats visible in each pho-
tograph andv is a non-silhouette vertex. A vertexis
with visible in a photograph, if the projection ofon the im-
age plane is contained in the photograpid the normal
1 vector ofv is directed towards the viewpoiaind there
m ) are no other |ntersect|or_1$ of t_he face mesh with the line
e that connect® and the viewpoint. A vertex is called a
silhouette vertex, if at least one of the triangles in the fan
aroundv is oriented opposite to the viewpoint. For fur-
ther details se€28]. In contrast to the approach‘in [28],
we do not require that all vertices of the face mesh are

The weighting function thus favors the triangles on the ctually bound to at least one photograph, i.e. the set of
face by diminishing their error while penalizing the tri- Valid photographs for a vertex may be empty.

angles on the back of the head by amplifying their error. LetA = {vy,v2,v3} denote atriangle of the face mesh
As a consequence, triangles on the face become largarxd A = {0,029, 03} be the corresponding triangle in
in the texture mesh while backfacing triangles becomthe texture mesh. For each triangle exactly one of the
smaller. Useful values fok are from within[1.01,2].  following situations might occur (see also Fig{ire 3):

L*(M) =

w(Ty) =

where M = {T;} denotes the triangle mesH, (T;) is
the surface area of trianglg in 3D, N(T;) is the tri-
angle normal ofT;, V is the direction into which the
head model looks, ankl > 1 is a weighting parameter.
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Figure 4: Boundaries in the skin texture (left) are re-
moved using multiresolution spline techniques (right).

Figure 3: Color-coded triangles of the texture mesh: each  input photographs if, for instance, the vertiegsv, of

green triangle has at least one common photograph to A share a photograph and the vertiegsv; share an-

which all of its vertices are bOlII]d,' the vertices of blue other photograph_ However, we found that this second

triangles don’t have a common photograph, but they are  case does not occur very often (cf. Figfire 3) and that the

all bound; red triangles have at least one unbound vertex.  difference between plain color interpolation and a more
sophisticated approach is almost invisible.

1. There exists at least one common photograph in Sinqe we do not require that each vertex of th_e face
the sets of valid photographs of the three verticeE]ESh IS bour)d to at least one photograph, there might ex-
o1, 0, vg Of A (greentriangles). |§t some vertl_ces that cannot be colored by any of the pre-

viously described schemes. We address this problem in a

2. Allofthe vertices of/A are bound to at least one pho-two-stage process: First, we iteratively assign an interpo-

tograph, but no common photograph can be fountited color to each unbound vertex. Next, we perform the
for all three verticestuetriangles). color interpolation scheme from the second case for the

remaining triangles of\ that have not yet been colored.
3. At least one vertex of\ is not bound to any photo- The first step iteratively loops over all unbound and un-
graph (edtriangles). colored vertices of the face mesh. For each unbound ver-
tex v, we check if at leagh = 80 % of the vertices in the
In the first case, we rasteriz& in texture space. For one-ring around: are colored (either by being bound to
each teerT we determine its bal’ycentrlc Coordlnate% photograph or by hav|ng an |nterp0|ated C0|or) If this
p,a, 7 W.r.t. A and compute the corresponding normal s true, we assign to the average color of all the colored
by interpolating the vertex normals 8f: N = pN(v1)+  vertices around, otherwise we continue with the next
o N(va)+7N (v3). For each common photograpm the  unbound vertex. We repeat this procedure until there are
sets of valid photographs of all verticesf we compute  no further vertex updates. Next, we start the same proce-
the dot product betweeN and the viewing directio;  dure again, but this time we only requise= 60 % of the
for the pixel P; that corresponds t@. Finally, we color vertices in the one-ring aroundto be colored. As soon
T with the color obtained by the weighted sum of pixelas there are no more updates, we repeat this step twice
colorsy_, (N, V;) - Color(P;) / >, (N, V;). again withp = 40% andp = 20 %. Finally, we update
In the second case, we color each veriexnf Aindi- each unbound vertex that has at least one colored neigh-
vidually by summing up the weighted pixel colors of thebor. Upon termination of this last step, all vertices of the
corresponding pixels in all valid photographsf 7; sim-  face mesh are either bound or colored and the remaining
ilarly as in the first case: Col6s;) := > . (N(v;),V;) - triangles ofA can be colored.
Color(F;) / 32; (N(v;), Vi). The texels of the rasteriza-  |f the input photographs have been taken under uncon-
tion of A are then colored by barycentric interpolationtrolled illumination, the skin color might differ noticeably
of the colors of the vertices,, », 3. Alternatively, we between the images. In this case, boundaries might ap-
tried to use as much information as possible from thpear in the resampled texture. We then apply a multires-
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On the other hand, both eyes and teeth (especially the
more visible middle ones) are crucial features to visu-
ally differentiate one individual from another. Hence, it
would be very desirable to use individual models for each
person. Luckily, texturing can do the trick alone: indeed
it is sufficient to apply a personal texture to a generic

- model to get the desired effect. Moreover, it is possi-
ble to automatically and quickly generate these textures
' 1 each from a single input photograph of the subject’s eye
‘ and teeth, respectively. Details about this process will be
given in the next two subsections.
4.1 Texturing Eyes

In order to realistically animate our head model, we must
Figure 5: Multiresolution spline masks: three differ- be able to perform rotations of the eyeball and dilation
ent regions in the texture mesh resampled from different ~ Of the pupil. While the latter can be achieved by trans-
input photographs (top) and their corresponding masks ~ forming the texture coordinates, we need an eye texture
shown in red (bottom). that covers the whole frontal hemisphere of the eyeball
for the rotations.

Our goal to generate such an eyeball texture from a
olution spline method as proposed i [Z] 17] to removsingle input photograph is complicated by several factors
visual boundaries. Figuié 4 shows a comparison betwesnch as the presence of occluding eyelids, shadows of
a textured head model with and without multiresolutioreyelashes, highlights, etc. Still, all these factors are lo-
spline method applied. To smoothly combine texture resal and can be detected and removed. A new texture can
gions that have been resampled from different input phdhen be synthesized from an input image consisting of the
tographs, we automatically compute a mask for each reurviving pixels. In our current approach, we focus our
gion by removing the outmost ring of triangles arounceffort on the iris, since it is obviously the most character-
the region, see Figui@ 5. Such a shrinking is necessaryisgic part of the eye.
ensure that there is still some valid color information on Both the detection and the synthesis phase rely on the
the outside of the mask boundary, because these adjacseimplicity of the eye structure, i.e. an almost perfect point
pixels might contribute to the color of the boundary pixelsymmetry about the center, assuming our photograph rep-
during the construction of Gaussian and Laplacian pyraesents an eye looking at the camera. To take advantage
mids. In addition to the masks for each input photographgf this symmetry, we must first know precisely where the
we create one more mask that is defined as the compleenter of the eye is located. Since this would encumber
ment of the sum of all the other masks. This mask ithe user, the center finding is done automatically by re-
used together with the resampled texture to provide sonfi@ing a rough estimation to sub-pixel precision using the
color information in those regions that are not covered bfpllowing heuristic: we progressively enlarge an initially
any input photograph (e.g. the inner part of the lips). Apoint-sized circle while checking the pixels on the circle
described above, these regions have been filled by colat every iteration. If these pixels are too bright, they are
interpolation in the resampled texture. By blending all oissumed to be outside the iris and we thus move the cen-
the masked input photographs and the masked resamptedof the circle away from them. When most of the circle
texture with a multiresolution spline, we obtain a finalis composed by too bright pixels, we assume its center is

texture with no visual boundaries and crispy detail. the eye center and its radius is the iris radius. This ap-
proach runs robustly as long as the initial estimation is
4 Texturing Facial Components inside the pupil or the iris.

Both human eyes and teeth are important for realistic fa- At this point, removal of occluded, shadowed, and
cial animation while, at the same time, it is difficult to ac-Mghlighted pixels is done by:

quire data from a human being to precisely model these « removing pixels with a color too similar to the skin;
facial components. Thus we use generic models of these
components as shown in Figufe 8. The design of our
generic models has been chosen such that they look con-
vincingly realistic when inserted into a face mesh whild=or the second case, we compute the average color and
still being rendered efficiently using OpenGL hardware.standard deviation of the pixels at the same radial dis-

» removing pixels with a color too dissimilar to the
pixels at the same radial distance from the center.
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tage of being more uniform and thus bypassing problems
related to uneven lighting in the original photograph. In
our approach, we simply use the largest sector of valid
pixels of at most 60 degrees as the reference patch. In the
rare cases where the largest sector is too small, e.g. span-
ning less than 20 degrees, the entire set of valid pixels
with a valid neighborhood is used as the reference image.
Since the detail frequencies of human irises are
roughly the same, it is sufficient to use a texture synthesis
scheme with a fixed neighborhood size rather than a mul-
tiresolution approach. In our case, the size of the neigh-
borhood mask depends only on the resolution of the input
image. For instance, for an image of an iris with a diame-
ter of approximately 80 pixels, we use a8 pixel mask
(radiusx angle). For other iris diameters, the pixel mask
is set proportionally. Depending on the value of the ra-
dius coordinate, a neighborhood with a fixed size in polar
coordinates covers areas of different sizes in the input im-
age. Our simulations showed, however, that no correction
is needed, since the human iris usually exhibits higher
frequency detail towards the center. Thus an iris resam-
led in polar coordinates shows quite uniform frequency
istribution. Figure[]9 shows several input photographs

Figure 6: Two input photographs (left) and the resulting
reference patches outlined by red sectors (right). Oc-
cluded, shadowed, highlighted, and skin-colored pixels
(shown in blue) have been removed automatically.

tance and remove those pixels that are at leasines
the standard deviation away from the average. The pg

rametera should be chosen withife, 3). We typpally together with the resulting eye textures for various indi-
use a rather small value af = 2.3, as it empirically viduals

proved to remove the problematic (occluded, shadowed, .
To speed-up the reconstruction step, we use a one-

highlighted, etc.) pixels in most cases. In addition, Wimensional texture synthesis approach along the angle
remove pixels too close to the skin to better take into ac-_. re sy pp 9t 9

. axis alone, modeling the texture as a Markov chain rather
count small shadows cast by eyelids. Actually, the dec[—

) . . .~ _than a Markov random field. Each symbol of the chain
sion of which pixel to remove does not need excessivel

fine tuning: due to the regularity of the eye, we can be% an entire row of texels at a given angle coordinate. We

. . . Qutput each new row accordingly to the previous rows.
pretty conservative and remove many pixels, since the r

. . . ﬁ“his approach gives similar results (even if it requires
construction phase requires only a small zone of pixels i PP 9 ( q

order to synthesize more. Figuie 6 shows the remaini gllghtly larger reference textures) and is much faster, not

. . ; en requiring any vector quantization for finding the best
set of pixels for two different input photographs. neighborhood row. If, however, the size of the reference

For the reconstrucﬁon' p?ase It is lnatural to rﬁs?r atch is very small, we apply a two-dimensional texture
to some texture synthesis from samp €S approach k& nthesis approach as described earlier in this section.
e.g. [3B]. In our case, we need to work in polar coor-

dinates, because the eyeball texture behaves like a textdr@ Texturing Teeth
as defined in[[33] only along thengleaxis. This means Geometry and color of teeth are difficult to capture and,
that subregions of the eyeball texture are perceived to & the same time, crucial to reflect personal appearance.
similar if their radius coordinates are the same, cf. Fig-We address this problem by distinguishing between
ure[ID. To take this into account, when choosing a candi-
date pixelp in the input image for filling a pixeb’ in the
output texture, we constrain the radius coordinate tuf
be within a small threshold of the radius coordinate’of

A robust approach for texture synthesis is to use only The middle teeth are much more visible than the other
a small patch of the original input image as the referendeeth. This means that they account for most of the vi-
image and synthesize the texture from scratch. Althougbual appearance of an individual person, but also that
larger reference images theoretically result in more faitht is much easier to reconstruct them from a photo-
ful textures, we obtained very good results with smalgraph. In addition, the middle teeth have an almost two-
reference patches covering a sector of about 30 degredimensional structure: they are shaped to have the func-
around the pupil. Small reference patches have the advaion of a blade. Their small width allows us to model

« the six middle teeth (incisors and canines) and

» the rest of the teeth (4-5 on each side).
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a teeth texture are shown in Figyrg 11. We color-code
‘h ““ i dark parts that represent voids with a blue color, which

— W‘ is replaced by a transparent alpha value during rendering.
Similarly, we identify and remove gums, lips, and skin,
recoloring it with some standard gums color. To make
this color-coding more robust, we identify the different
regions using threshold values, which are obtained by
finding the biggest jumps in the histograms of the color
\ distances to the target color (red for gums and black for
| voids). In addition, we expand teeth into those parts of
the gums that have been covered by the lips in the input
photograph. We use some simple heuristics to include the
missing part of the tooth roots, cf. Figurg 11.

WA

Al ol

d
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F1:gure 7: Teeth arc?h model using the texture shown in During rendering, our teeth model is shaded using a
Figure [[1. The wireframe shows the geometry of the  phong shading model, which means that we have to de-
teeth model, which consists of 384 triangles. shade our teeth texture. In order to do so for uncontrolled

illumination, we equalize the color of the teeth, suppos-

) ) ) ) ing they have approximately the same albedo. First, we

ture, the billboard can be easily extracted directly frony| teeth pixels and setting its brightness (but not the hue)
a normal photograph of the subject exposing the teeth {g 5 predefined value. Next, we subdivide the texture in
a similar way as shown in Figuie]11 (left). Using localsix vertical stripes and compute the average color of each
transparency, itis straightforward to make the texture emyyipe. \We then add to the pixels in each column the dif-
bed the teeth shape and size including gaps between tegfience between the target color and the stripe average,
This approach allows us to use the same (billboarded) 3{gking care of enforcing continuity in this correction by
model for every face model and just change the texturgsing a piecewise linear function. Similarly, we use the
from person to person. target color to correct the color of the “generic” part of
The rest of the teeth, while being more voluminous anghe texture, which is applied to the side teeth. Finally, we
less accessible and visible, do not allow this useful shoréomposite the middle teeth texture into our generic tex-

cut. But, for the same reason, it is also less importanire using a curved boundary that follows the silhouettes
to model them faithfully and individually for each single of the canines.

person. Thus it seems reasonable to use a standard 3D
model and a standard texture (up to recoloring, see bg— Results
low) for this part of the teeth arch.

Following these considerations, we have built a generige have created facial textures for several individuals
3D model for the teeth, which is non-uniformly scaledyho have also been range-scanned to acquire their head
according to the individual skull and jaw geometry to fitgeometry. Rendering of our head model is performed in
into every head model. For each individual head modefeal-time using OpenGL hardware (about 100 fps on a
we only need to vary the texture (including the billboard)1.7 GHz PC with a GeForce3 graphics board). A physics-
which is created fully automatically. The generic teetthased simulation is used to control the facial animation.
model is constructed such that the transition between ti®averal images of our head models are distributed over
billboard (in the middle) and the 3D structure (left andhis paper, see for instance Figuigs[JL,[4, 8, and espe-
right) is smooth, see Figui@ 7. The billboard, which isially Figure[IR. For each skin texture, the only inter-
bent for better realism, could cause undesired artifactgtive step is the initial identification of corresponding
when seen from above. To avoid this, only the upper paféature points. This step takes about five minutes per in-
of the lower teeth and the lower part of the upper onegut photograph, which sums up to about 15-25 minutes
is actually modeled as a billboard. The remaining partspent interactively for three to five photographs. Com-
of the upper and lower middle teeth smoothly gain somguting an optimized parameterization of the face mesh
width as they go up and down, respectively. (approx. 1600 triangles) takes about 80 minutes on a fast

To automatically create a texture for the teeth, we staRC (1.7 GHz Pentium 4). Resampling a 2642848 tex-
from a normal photograph of the subject showing his/here from five input photographs takes about one minute,
teeth. Several stages of the whole process of generatiadditional multiresolution spline blending (if necessary)

appeared originally in Proc. Graphics Interface 2002, pp. 89-98



Figure 9: Input photographs and resulting eye textures: the in-
put images have been taken under various illumination condi-
tions with different resolutions. The size of the resulting textures
changes from 128x 128 (top left) to 1024x 1024 (bottom right).

Figure 10: A detail of the texture from Fig-
ure @ (bottom right) shown in polar coordinates.
The abscissa represents the radius axis and the
ordinate represents the angle axis.

Figure 11: Teeth texture generation. Left to right: starting from an input photograph, we extract the upper and lower
middle teeth, fill in missing parts and adjust the color, and composite the new image with a generic teeth texture. The

blue pixels in the final texture (right) will be rendered transparently.

Figure 12: Side-by-side comparison of photographs (left) and head models (right) for plain OpenGL rendering.

appeared originally in Proc. Graphics Interface 2002, pp. 89-98



takes about ten minutes. Currently, our algorithms arReferences

optimized with respect to robustness but not to speed.

Generating the teeth and eye textures takes only a few
seconds even for large textures using the 1D Markov
chain method for the texture synthesis. If a full Markov [2
field is used, construction time may go up to several min-
utes, depending on the size of the texture being created.

6 Conclusion and Future Work

We have introduced a number of techniques that help t
minimize the time and effort that goes into the creatio
of textures for facial modeling. With the exception of the
initial feature point selection for the skin texturing, our
methods are fully automated and do not require any usefs)

interaction.
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method including color interpolation for non-textured re-
gions and multiresolution splining for the removal of vi-
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textures can be created fully automatically from single in- /]
put photographs, adding greatly to a realistic appearance

of individual subjects during facial animation.
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Rendering Faces :g__?_:f’

Advanced Rendering Techniques

Jorg Haber

+ skin modeling and rendering:
— bump mapping for skin dimples and wrinkles
— shading: BRDFs, subsurface scattering

— “delighting” textures: removing directional
illumination components from textures

* hair modeling and rendering

Real-time or off-line rendering?

Skin Rendering cC { o 3

Lighting / Shading =C03

« different techniques for modeling/rendering skin:
v/ — simple geometry + texture
(¥") — simple geometry + bump mapping + texture
(%) — simple geometry + BRDF
(%) — simple geometry + bump mapping + BRDF
% — simple geometry + displacement mapping + texture
— complex geometry + texture/BRDF

v : suitable for graphics hardware
X : not suitable for graphics hardware

+ simulated using virtual light sources, e.g. point lights,
directional light, spotlights

« two types of illumination models:

— local models: color and intensity of a surface point
are determined by local attributes (e.g. surface
normal) and direct contribution of light sources
= suitable for graphics hardware

— global models: all scene objects participate in the
illumination of all surfaces (shadows, mirroring,
indirect illumination, color bleeding)
= very expensive computation

+ one of the most important parameters: surface normal

€03

ZC'03

Bump Mapping Rendering Wrinkles —
Idea: + encode surface normals into RGB texture

+ simulate complex geometry using coarse geometry
and “faked” per-pixel surface normals

+ use modern graphics hardware for real-time rendering

bump map




Rendering Skin

“Pattern Generation”

< T. Ishii et al.: “A Generation Model for Human Skin
Texture”, Proc. CGI 93, 39-150, 1993

+ presents a method for generating skin structure bump
maps and an appropriate illumination model for
rendering skin

+ surface normals are computed from recursively
generated, hierarchical micro-geometry during
preprocessing

* illumination model simulates multi-layered skin
structure taking into account subsurface scattering

« skin cells are represented by Voronoi cells

« every skin cell bulges upwards above its center;
ridge shape: cubic Bézier curves

Ny

3 O—L

Z Q, o

X

Py
Images: Ishii et al.: “A Generation Model for Human Skin Texture”

“Hierarchical Skin Structure”

“Multiple Light Reflections”

« recursive Voronoi subdivision of skin cells (3 levels)

Images: Ishii et al.: “A Generation Model for Human Skin Texture”

« multi-layered skin

structure results in Horny layer
complex light transport Granutar tyer | SETTLI YRR
mechanisms Jea0na

Thorny layer | 71 D
@mw i@g’

Basis layer | S

* model: parallel layers;
reflection & transmission &
scattering at each layer

boundary
S e >\ a1 : t
—T’W NS s preqompu e
N O 17 s lighting w.r.t.
e e e AV : ‘T:d angle of incidence
e O AV we  at skin surface

boundary

Images: Parke/Waters: “Computer Facial Animation” (1996)

Ishiii et al.: Results

BRDF - What’s that?

+ generic model for rendering skin
« orientation of skin cells can be aligned to wrinkles
+ anisotropic scaling of skin cells (— wrist)

« skin structure can be rendered in real-time using
graphics hardware bump mapping; illumination model
not (yet) suitable for real-time rendering

Images: Ishii et al.: “A Generation Model for Human Skin Texture”

« BRDF = bidirectional reflectance distribution function,
describes reflectance of a surface point as the ratio of
radiance L and irradiance I :

dz,(6,.¢.)
dzr,(6,.4,)

* BRDF has 5 degrees of freedom:
f.:R°> >R

£,(6,.4,.6,.4..2)=

» can be simplified assuming
isotropic materials and discrete
spectrum (RGB instead of 1)




Measuring BRDFs (1)

Measuring BRDFs (ll)

Gonioreflectometer:

* measures radiance for many
different positions of material
sample, light source, and sensor

 planar material sample

« 3 degrees of freedom:
— position of light source (1D)
— position of sensor (2D)

N

« S. Marschner et al.: “Image-
based BRDF Measurement
Including Human Skin”, Proc.
EG Rendering Workshop ‘99,
131-144, 1999.

« uses photographs taken
under controlled illumination

Test sample ~ conditions
=
7D * needs geometry & normals
* Light
[ som e from 3D range scanner
. ya * ‘“inverse ray tracing”
Camerde, o w'cmem computes BRDF for given
positions - Tre e positions of camera and light

source and pixel intensity

Images: Marschner et al., “lmage-based BRDF Measurement Including Human Skin”

Marschner et al.: Results

“De-lighting” Textures

Images: Marschner et al., EG Rendering Workshop 99 & 2000

« S. Marschner, B. Guenter, S. Raghupathy: “Modeling
and Rendering for Realistic Facial Animation”, Proc.
EG Rendering Workshop 2000, 231-242, June 2000

« P. Debevec et al.: “Acquiring the Reflectance Field of a
Human Head”, SIGGRAPH 2000, 145-156, July 2000

« extract diffuse reflectivity (albedo map) from
photographs

+ photographs must be taken under controlled
illumination conditions (relative position of object,
camera, light sources)

« diffuse reflectivity is computed per texel from viewing
direction, direction of incident light, surface normal and
radiance (= color from photograph)

Results

Marschner et al.

Debevec et al.

Images: Marschner et al., EG Rendering Workshop 2000 & Debevec et al., SIGGRAPH 2000
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State of the Art in Hair Rendering
Tutorial, Eurographi

Hair Simulation Overview

Hair Modeling Hair Animation Hair Rendering

effective

- tedious to model

- not suitable for
knots and braids

adequate fast
- expensive due 0 size | - inadequate for
- inappropriate for self-shadowing

hair-hair interaction

Explicit Models

effective
- lacks shadowing
and self-shadowing

adhoc
- lacks physical basis
- no hair-hair interaction

inappropriate

effective
- expensive

Timited
- via Animated Shape
Perturbation

effective
- not suitable for
long hair

Cluster Model not done effective
- via Animated Shape

Perturbation

effective
- not suitable for
simple smooth hai

Though seem to be independent tasks, they are highly interrelated.

www.miralab.unige.ch University of Geneva www.miralab.u

State of the Art in Hair Render
Tutorial, Eurographi

Hair Simulation Tasks - Dynamics

Highly anisotropic physical behavior
Solid-liquid duality

Light weight of hair as compared to its
acceleration, stiffness, friction and air drag

Constant collisions / frictional interactions
with the body

Unilever hair shots
100,000 to ,000 hair strands on scalp

Hair-hair interaction, one of the unsolved
problems of Computer Graphics

University of Geneva

www.miralab.unige.c

State of the Art in Hair Rendering

Tutorial, Eurograph

Outline

Hair Simulation Overview — Tasks and Models

Explicit Hair Models and Hair Rendering
Alpha Blending

llluminated Polylines

2D Shadow Maps

Volumetric Shadows

Other Hair Rendering Approaches

University of Geneva

State of the Art in Hair Renderin;
Tutorial, F 1ph

Hair Simulation Tasks - Styling

Hair shape is a result of complex physical
interaction between hair-hair and hair-body

Hairstyling — a constant human passion
curlers, clips, knots, braids and up-dos

Hair Dynamics at interactive speed is
impossible. Heuristic approach is needed
for Hair Shape Modeling.

Thus, Hair Shape Modeling is an exclusive
task in Computer Graphics

University of Geneva

Hair Simulation Tasks - Rendering
Intricate geometry of individual hair
Large number of hair strands

Complex interaction with light and shadows
multiple scattering, luster, self-shadowing

Anisotropy in shading

Small thickness of the hair — anti-aliasing
How artists paint hair?

University of Geneva




State of the Art in Hair Rendering

Tutorial, Eurographics 2003

Hair Rendering and Explicit Models '

Hair Modeling

effective

- tedious to model

- not suitable for
knots and braids

Explicit Models

Hair Animation Hair Rendering

Tt

- inadequate for
self-shadowing

adequate

- expensive due 10 size

- inappropriate for
hair-hair interaction

Particle Systems  inappropriate

effective
- lacks shadowing
and self-shadowing

adhoc
- lacks physical basis
- 10 hair-hair interaction

effective
- not suitable for
long hair

Volumetric
‘Textures

effective
- expensive

limited
- via Animated Shape
Perturbation

effective
- not suitable for

simple smooth hai

MIRADab

not done effective
- via Animated Shape

Perturbation

University of Geneva

State of the Art in Hair Rendering
Tutorial, Eur

Hair Rendering — Alpha Blending

LeBlanc et al, 1991

nce of hair from eye

t thickness of the hair

www.miralab.uni

Large number of hair strands
having small thickness, problem of
aliasing

Being thin in geometry, the pixel
occupancy of an individual hair is
partial

Associate an alpha value equal to
pixel occupancy while drawing hair
Draw hair front-to-back or back-to-
front with “under” and “over”
blending operator

University of Geneva www.miralab.uni

State of the Art in Hair Rendering

Tutorial, Eurographics 2003

Hair Rendering — llluminated Polylines

e appropriate normal

a et al, 1989

In general, the reflected light fi

a surface is dependent on the light
direction /, the reflected direction r,
the view vector e, and the surface
normal n

The thin hair can be considered to
have an infinite number of surface
normals. Subsequently, the
reflected light forms a cone.

Solution - find a normal which is in
the plane formed by the light vector
I and the view vector e.

University of Geneva

Daldegan et al, 1992

Explicit Hair Models

5

LeBlanc et al, 1991

State of the Art in Hair Rendering

Tutorial, Eurographics 2003

Each and every hair strand is
considered for shape, dynamics
and rendering

Intuitive and versatile
Close to physical reality

Each hair is drawn as illuminated
polyline

Use of graphics hardware for fast
line drawing

Problem of aliasing & self
shadowing

University of Geneva

Each hair is drawn as alpha
blended polyline

Use of graphics hardware for fast
line drawing

40,000 — 50,000 hair strands

University of Geneva

State of the Art in Hair Rendering
Tutorial, Eurographics 2003

Hair Rendering — llluminated Polylines

Shine contours formed due to two
illuminating light sources

Although the illumination model is
based on individual hair strand the
net effect is highly anisotropic form
of illumination

University of Geneva




State of the Art in Hair Rendering

Tutorial, Eurographics 2003

Hair Rendering — llluminated Polylines

= Being volumetric in nature, hair
casts shadow on itself

Without shadows, the hairstyle
details are only depicted by
variation in illumination

www.miralab University of Ge

State of the Art in Hair Render
Tutorial, Eurographics 200

Hair Self-shadowing — Volumetric Shadows

Self-shadowing can be
effectively addressed by
computing volumetric
shadows

Kim et al, 1989

Lokovic et al, 1989

Volume ray casting
expensive and memol
inefficient

“deep shadow maps” or
“opacity shadow maps”
compute, encode and use
volumetric shadows effectively

Deep shadow ma
ic et al,

www.miralab.u University of Geneva

State of the Art in Hair Rendering

Tutorial, Eu

Hair Rendering — Cluster Hair Models

Generalized cylinder controls
overall shape

Stochastic density variation
confined to the generalized
cylinder gives details of hair.

Better control over shape.

Efficient for rendering.
Ray-tracing of generalized
cylinders.

\ ‘ \ Not suitable for smooth, simple
A \ hair
[

www.mirala University of Geneva

Zhan Xu,et al, 1999

State of the Art in
Tutorial, Eu

Hair Self-shadowing — 2D Shadow Maps
Draw hair strands from

viewpoint of each light,
with z-buffer enabled

Severe problem of aliasing
in z-buffer techniques

One needs to use huge
shadow map 1024-2048

LeBlanc et al, 1991

www.miralab.uni University of G
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Tutorial, Ex phi

www.miralab.unige.ch University of Geneva

State of the Art in Hair Rendering
Tutorial, phics 2003

MIRADab

Hair Rendering — Cluster Hair Models

Or wisp models

Clump of hair is considered for
modeling instead of individual
hair strand

Clumps modeled as generalized
cylinders.

Zhan Xu,et al, 1999

www.miralab.unige.ch University of Geneva
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Abstract tion. Dynamics of hair addresses hair movement, their colli-
sion with other objects particularly relevant for long hair, and
In this paper we summarize the technological advances inself-collision of hair. The rendering of hair involves dealing
hair simulation for computer graphics. There are mainly with hair color, shadow, specular highlights, varying degree
three tasks in hair simulation - Hair Shape Modeling, Hair of transparency and anti-aliasing. Each of the aspects is a
Dynamics and Hair Rendering. Various models developed topic of research.
for these tasks, fall mainly in the categoriespaiiticle sys- Many research efforts have been done in hair simulation
tems explicit hair modelscluster hair modelsand models research, some dealing only with one of the aspects of sim-
based owolumetric texturesWe discuss advantages and dis- ylation -shape modeling, dynamics or rendering. Several re-
advantages of each of these approaches. We also introduce gearch efforts were inspired by the general problem of simu-
new hair shape modeling paradigm based on fluid flow. The |ation of natural phenomena such as grass, and trees. These
proposed method provides a sound basis for modeling hair-addressed a more limited problem of simulating of fur or
body and hair-hair interaction. short hair. We divide hair simulation models into four cate-
gories depending upon the underlying technique involved:
particle systems, volumetric textures, explicit hair models
and cluster hair modelWe discuss models presented by re-
searchers in each of these model categories and state their
1 Introduction contribution to the three aspects of hair simulation, i.e. hair
shape modeling, hair dynamics and hair rendering. We also
One of the many challenges in simulating believable virtual introduce a new hair shape modeling paradigm based on fluid
humans has been to produce realistic looking hair. The vir- flow.
tual humans, two decades ago, were given polygonal hair The paper is organized as follows. First we give the state
structure. Today, this is not acceptable. Realistic visual de- of the art in hair shape modeling. The hair shape modeling
piction of virtual humans has improved over the years. At- research in each category of the simulation models is pre-
tention has been given to all the details necessary for produc-sented. Models for hair dynamics are briefly described in
ing visually convincing virtual humans and many improve- Section 3. Section 4 presents the problem of hair render-
ments have been done to this effect. ing and the various solutions proposed by different people.
On a scalp, human hair are typically 100,000 to 150,000 Finally, we summarize the effectiveness and limitations of
in number. Geometrically they are long thin curved cylinders models in the four categories related to each aspect of hair
having varying thickness. The strands of hair can have anySimulation in the form of a table. Some future avenues for
degree of waviness from straight to curly. The hair color can research in hair simulation are also outlined.
change from white to grey, red to brown, due to the pigmen-
tation, and have shininess. Thus, difficulties of simulating
hair stem from the huge number and geometric intricacies 2 Hair Shape Modeling
of individual hair, complex interaction of light and shadow
among the hairs, the small scale of thickness of one hair com-Intricate hairstyle is indeed a consequence of physical prop-
pared to the rendered image and intriguing hair to hair inter- erties of an individual hair and complex hair-hair and hair-
action while in motion. One can conceive three main aspectspody interactions. As we will see in the next section, mod-
in hair simulation - hair shape modeling, hair dynamics or eling complex hair dynamics, that too at interactive speeds,
animation, and hair rendering. Often these aspects are in-is currently impractical. For the reasons, it would be worth-
terconnected while processing hairs. Hair shape modelingwhile to treathair shape modelings a separate problem and
deals with exact or fake creation of thousands of individ- use some heuristic approach.
ual hair - their geometry, density, distribution, and orienta- Ear|y attempts of Sty||ng |0ng hair were basedgxp”cit
*Visiting from Department of Computer Science and Engineering, In- hair models In the explicit hair model, each hair strand
dian Institute of Technology, Delhi, India. pkalra@cse.iitd.ernet.in is considered for the shape and the dynamics. Daldegan

Keywords: hair shape modeling, hair animation, hair ren-
dering, hypertexture




Figure 1: Hairstyling by defining a few curves in 3D

individual hair in the case of the wisp/cluster models. This
assumption is quite valid as in reality. Due to effects of ad-
hesive/cohesive forces, hairs tend to form clumps. Watanabe
introduced the wisp modeled in [24, 25]. Yahal[26] mod-
eled the wisps ageneralized cylinderssee figure 2. One of
the contributions of the work was also in rendering of hair
using the blend of ray-tracing generalised cylinders and the
volumetric textures The wisp model is also evident in [2].
Surprisingly, till now, the wisp models are only limited to
static hair shape modeling and we feel that it offers an inter-
esting research possibility of modeling hair dynamics, effi-
ciently. It would be interesting to model, how hair leave one
wisp and join the other under dynamics.

et al [5] proposed that the user could interactively define a
few characteristic hair strands in 3D and then populate the
hair style based on them. The user is provided with a flex-
ible graphical user interface to sketch a curve in 3D around
the scalp. A few parameters such as density, spread, jitter
and orientation control the process that duplicates the char-
acteristic hairs to form a hair style. Figure 1 illustrates the
method of defining few characteristic curves and resulting

Figure 3: Fur as a Volumetric Texture, by Perinal

hairstyles from the method. Similarly, even for the fur mod-
eling, Daldegaret al [4], Gelderet al [8] and Bruderlinet

al [1] took similar explicit hair modeling approach. Figure
12 illustrates a furry coat modeled by the explicit hair model.

Figure 2: Cluster Hair Model, by Yaet al

The explicit hair models are very intuitive and close to
reality. Unfortunately, they are tedious for hairstyling. Typ-

Nature exhibits some interesting fuzzy objects such as
clouds, fire, eroded rocks and fur for which it is hard to
have explicit geometric definition. Using the volumetric tex-
ture approach, fur can be modeled as a volumetric density
function. Perlinet al [18] introducedhypertextureswhich
can model fur, see figure 3. Here, fur is modeled as intri-
cate density variations in a 3D space, which gives an illusion
of the fur like medium without defining geometry of each
and every fiber. The model is essentially an extension to
procedural solid texture synthesis evaluated through out the
region, instead of only in the surface. They demonstrated
that, combinations of simple analytical functions could de-
fine furry ball or furry donut. They further used 3D vector
valued noise and turbulence to perturb the 3D texture space.
This gave the natural looks to the otherwise even fur defined
by the hypertexture. A good discussion on the procedural ap-
proach to modeling volumetric texture and fur in particular
is in [7]. Hypertexture method by Perligt al is only lim-
ited to geometries that can be analytically defined. Kagiya
al [12] extended this approach to have hypertextures tiled on
to complex geometry. They demonstrated this by modeling
a furry bear, see figure 10. They used a single solid texture

ically, it takes 5-10 hours to model a complex hair style, as tile namely texel and mapped it repeatedly on the bear’s ge-
in figure 1, using the method in [5]. They are also numeri- ometry. The texels automatically orient in the direction away
cally expensive for hair dynamics. These difficulties are par- from the surface and thus one has fuzzy volumetric density
tially overcome by considering a bunch of hair instead of variation around the bear, which is the fur.



Figure 4: Hair as streamlines of a fluid flow

As evident from previous discussions, one of the strengths

of the explicit hair models is their intuitiveness and ability
to control the global shape of the hair. On the contrary, vol-
umetric textures give a nice way of interpreting complex-
ity in nature and they are rich in details. We notice that the
fluid flow has both the characteristics, which we would like
to exploit for hair shape modeling. We model hair shape
as streamlines of a fluid flow. For complete details of the
method, we refer to [10]. We choose the flow to be an
ideal flow. User can setup few ideal flow elements around
the body geometry to design a hairstyle, as shown in figure
2. The hair-body interaction is modeled usisgurce panel
methodand hair-hair interaction is handled by the continuum
property of fluid. Thus user can design complex hairstyles
without worrying about hair-body and hair-hair interaction.
Hairstyles in figure 5 and 6 are the examples of modeling
hair as a fluid flow.

Figure 5: Hair as a fluid flow

Figure 6: Adding overall volumetric perturbations to the
fluid flow

3 Hair Dynamics

Cantilever

Damping

Bending Stiffness .
Point Mass

Single Hair Fiber

Figure 7: Simple mass-spring system for an individual hair
dynamics

Anjyo et al[11], Rosenblunet al[22] and Kuriharaet al[23]
developed dynamic models that are issentialy based on in-
dividual hair. An individual hair is modeled as connected
rigid segments having bending stiffness at each joint. Then
the individual hair is solved for the movement due to the
inertial forces and the collision with the body. Though the
cantilever dynamics and collision avoidance with the body
of each hair is within the scope of current computing power,
modeling complex hair-to-hair interaction is still a challenge.
Figure 8 illustrates the effectiveness of the dynamic model
even though no hair-hair interaction is considered.



Figure 8: Hair animation using the explicit model, by Kuri-
haraet al

L . Figure 9: Hair as Connected Particle System, “The End” by
In the case of fur, which is mostly modeled as volumetric A jiqs_\Wavefront

texture, one cannot take the explicit model approach for the
animation. In this case, a time varying volume density func-
tion can facilitate animation of fur. One can simulate effects represent these properties. A particle system is rendered by
of turbulent air on the fur using stochastic space perturbation painting each particle in succession onto the frame buffer,
such as turbulence, noise, Brownian motion etc. Apart from computing its contribution to the pixel and compositing it
Lewis [15] and Perlin [17, 18], work by Dischler [6] gave a to get the final color at the pixel. The technique has been
generalized method for these animated shape perturbations.successfully used for rendering these fuzzy objects and inte-
grated in many commercial animation systems. Figure 9 is
an example of how one can use connected particle systems
4 Hair Rendering for the modeling of hair. However, the technique has some
limitations for shadowing and self-shadowing. Much of it is
In the field of virtual humans, hair presents one of the most due to the inherent modeling using particle systems: simple
challenging rendering problems. The difficulties arise from stochastic models are not adequate to represent the type of
various reasons: large number of hair, detailed geometry of order and orientation of hair. Also, it requires appropriate
individual hair and complex interaction of light and shadow lighting model to capture and control the hair length and ori-
among the hairs and their small thickness. The rendering of entation. The specular highlights in particular owing to the
hair often suffers from the aliasing problem due to many in- geometry of the individual strands are highly anisotropic.
dividual hairs reflecting light and casting shadows on each  Impressive results have been obtained for the more lim-
other contribute to the shading of each pixel. Further, con- ited problem of rendering fur, which can be considered as
cerning display of hairs, we see not only individual hairs but very short hair. As we have already discussed in the case of
also a continuous image consisting of regions of hair color, hair shape modeling, Perliet al [18] introduced hypertex-
shadow, specular highlights, varying degree of transparencytures that can model fur like objects. Hypertexture approach
and haloing under backlight conditions. The image, in spite remains limited to geometries that can be defined analyti-
of the structural complexity, shows a definite pattern and tex- cally. Kajiya and Kay extended this approach to use it on
ture in its aggregate form. the complex geometries. They used a single solid texture
In the last decade, the hair-rendering problem has beentile namely texel. The idea of texels was inspired by the no-
addressed by a number of researchers, in some cases wittion of volume density used in [18]. A texel is a 3D texture
considerable success. However, most cases work well in par-map where both the surface frame and lighting model pa-
ticular conditions and offer limited (or none) capabilities in rameters are embedded over a volume. Texels are a type of
terms of dynamics or animation of hair. Much of the work model intermediate between a texture and a geometry. A
refers to a more limited problem of rendering fur, which also texel is however, not tied to the geometry of any particular
has a lot in common with rendering natural phenomena suchsurface and thus makes the rendering time independent of
as grass and trees. As follows we give the related work in the geometric complexity of the surface that it extracts. The
hair rendering focusing their salient features and limitations. results are demonstrated by rendering a teddy bear (figure
Particle systems introduced by Reee¢sl [19], primar- 10). Texels are rendered using ray casting, in a manner sim-
ily meant to model class of fuzzy objects such as fire. De- ilar to that for volume densities using a suitable illumination
spite particles small size -smaller than even a pixel- the par- model. Kajiyaet al discusses more about the particular fur
ticle manifests itself by the way it reflects light, casts shad- illumination model and a general rendering method for ren-
ows, and occludes objects. Thus, the subpixel structure ofdering volume densities. The rendering of volume densities
the particle needs to be represented only by a model that carare also covered in great detail in the book by Edteal [7].



Figure 11: Rendering pipeline of the method-"Pixel Blend-
ing and Shadow Buffer”

the shadow buffer [20]. The rendering pipeline has the fol-

Figure 10: Volumetric Texture rendering by Kajigaal lowing steps: first the shadow of the scene is calculated for
each light source. Then, hair shadow buffer is computed for

L each light source for the given hair style model; this is done

In another approach by Goldman [9], emphasis is given on by drawing each hair segment into a Z-buffer and extract-
rendering visual characteristics of fur in cases where the hairing the depth map. The depth maps for the shadow buffers
geometry is not visible at the final image resolution -object ¢ - iho scene and hair are composed giving a single com-
being far away from the camera. A probabilistic rendering sjte shadow buffer for each light source. The scene image
algorithm, also referred to as fakefur algorithm is proposed. with its Z-buffer is generated using scene model and com-

In this model, the reflected light from individual hairs and posite shadow buffers. The hair segments are then drawn
from the skin below is blended using the expectations of a 5 jjiyminated polylines [27] into the scene using Z-buffer
ray striking a hair in that area as the opacity factor. of scene for determining the visibility and the composite
Though the volumetric textures are quite suitable for ren- ¢pa 40w buffers for finding the shadows. Figure 11 shows
dering furry objects or hair patches, rendering of long hair o process and Figure 12 gives final rendered image of a

using this approach does not seem obvious. ~_ hairstyle of a synthetic actor with a fur coat.
A brute force method to render hair is to model each indi-

vidual hair as curved cylinder and render each cylinder prim-
itive. The shear number of primitives modeling hair poses
serious problem to this approach. However, the explicit mod-
eling of hair has been used for different reasons employing
different types of primitives.

An early effort by Csuriet al [3] generated fur-like vol-
umes using polygons. Each hair was modeled as a single
triangle laid out on a surface and rendered using a Z-buffer
algorithm for hidden surface removal. Miller [16] produced
better results by modeling hair as pyramids consisting of tri-
angles. Oversampling was employed for anti-aliasing. These
techniques however, impose serious problems considering
reasonable number and size of hairs.

In an another approach, a hardware Z-buffer renderer was
used with Gouraud shading for rendering hair modeled as
connected segments of triangular prisms on a full human Figure 12: Fur using Explicit Hair Model
head. However, the illumination model used was quite sim-
plistic and no effort was done to deal with the problem of  Special effects like rendering wet hair require change in
aliasing. LeBlanet al[14] proposed an approach of render- the shading model. Bruderlin [1] presented some simple
ing hair using pixel blending and shadow buffers. This tech- ways to account for the wetness of hair -changing the spec-
nique has been one of the most effective and practical hairularity. That is, hairs on the side of a clump facing the light
rendering approach. Though it could be applied for the vari- are brighter than hairs on a clump away from the light.
ety of hairy and furry objects, one of the primary intention of ~ Kong and Nakajimat al[13] presented an approach of us-
the approach was to be able to render realistic different stylesing visible volume buffer to reduce the rendering time. The
of human hairs. Hair rendering is done by mix of ray trac- volume buffer is a 3D cubical space defined by the user de-
ing and drawing polyline premitives, with added module for pending upon the available memory and the resolution re-




quired. They consider hair model as combination coarse mans. We consider three aspects in hair simulation: hair
background hair and detailed surface hair determined by theshape modeling, hair rendering and hair dynamics. Different
distance from the viewpoint or the opacity value. The tech- approaches have been proposed in the literature dealing with
nigue reduces considerably the rendering time, however, theone or more aspects of hair simulation. We divide them into
quality of results is not so impressive. four categories based on the underlying technique: particle
systems, volumetric textures, explicit hair models and clus-
ter hair model. Some of these techniques are appropriate and
effective only for one of the aspects in hair simulation. In fig-
ure 14, we summarize their role with their effectiveness and
limitations for each aspect of the hair simulation. Notice that
we have introduced a new hair modeling paradigm - “Hair
as a Fluid”. We believe, this approach has good potential
in terms of hair shape modeling and hair dynamics, as the
methodology gives a basis for modeling complex hair-hair
interactions.

No, doubt research in hair simulation despite the inherent
difficulty of its size has been encouraging and shown remark-
able improvements over the years. People in general are not
% ready to accept a bald digital actor or an animal without fur.

s Such realism to computer graphics characters is also becom-
Figure 13: Braid rendered using generalized cylinders and N9 more widely available to the animators. Many of the
volumetric texture, by Yaet al commercial software provide suitable solutions and plug ins

for creating hairy and furry characters. An article by Robert-

Yan et al [26] combine volumetric texture inside the ex- son [2.1] gives an overview of various techniques available
for animators.

plicit geometry of hair cluster defined as a generalized cylin- . . o
However, the quest of realism increases after noticing

der. Ray tracing is employed to get the boundaries of the i X X
generalized cylinder and then the standard volume rendering?’/Nat one can already achieve. This asks to continue our
research for better solutions. Hair dynamics for instance

is applied along the ray to capture the characteristics of the

density function defined. This may be considered as a hybrid "€M&ins an area, where existing computing resources im-
pose constraints. 1t is still very far to imagine real time

approach for hair rendering.

5 Conclusion

hair blowing with full rendering and collisions. Hair dress-
ing and styling also require flexible and convenient modeling
paradigms. Fast and effective rendering methods for all hair
styles -short or long, in all conditions -dry or wet, modeling
all the optical properties of hair are still to be explored. So

Hair Modeling Hair Animation Hair Rendering there is still |ong way to go.
Explicit Models ~ effective adequate fast
- tedious to model - expensive due to size - inadeguate for
- not suitable for - inappropriate for self-shadowing
knots and braids hair-hair interaction 6 Acknowledgements
Particle Systems  inappropriate adhoc effective
- lacks physical basis - lacks shadowing . . i i
-no hair-hair interaction| and seif-shadowing ~ This work is supported by the Swiss National Research
Volumetric effective limited effective Foundation (FNRS)'
Textures - not suitable for - via Animated Shape - expensive
long hair Perturbation
Cluster Model effective not done effective
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3. References

This section contains a list of publications, which are useful to learn more about facial modeling and animation. The selection
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4. Organizers and presenters
The tutorial is jointly organized and presented by:

Jorg Haber is a senior researcher at the Max-Planck-Institute for Computer Sciences in Saarbriicken, Germany. He received
his Master’s (1994) and PhD (1999) degrees in Mathematics from the Technische Universitat Miinchen, Germany. During the
last seven years he did research in various fields of computer graphics and image processing, including global illumination
and real-time rendering techniques, scattered data approximation, and lossy image compression. For the last three years, his
major research interests concentrate on modeling, animation, and rendering of human faces. He received the Heinz-Billing-
Award of the Max-Planck-Society and the SaarLB Science Award for the design and implementation of a facial modeling
and animation system.

Demetri Terzopoulos holds the Lucy and Henry Moses Professorship in the Sciences at New York University and is a pro-
fessor of computer science and mathematics at NYU's Courant Institute. He is currently on leave from the University of
Toronto where he is Professor of Computer Science and Professor of Electrical and Computer Engineering. He graduated
from McGill University and received the PhD in Electrical Engineering and Computer Science from the Massachusetts In-
stitute of Technology (MIT). His published work includes more than 200 technical articles and several volumes, primarily in
computer graphics and vision, and also in computer-aided design, medical imaging, artificial intelligence, and artificial life.
He has given hundreds of invited talks around the world on these topics, including numerous keynote and plenary addresses.
Terzopoulos is a Fellow of the IEEE. His many awards include computer graphics honors from the International Digital
Media Foundation, Ars Electronica, and NICOGRAPH. The latter cited his research on human facial animation, which stems
from his pioneering work on physics-based human facial modeling and deformable models.

Nadia Magnenat-Thalmann has pioneered research into virtual humans over the last 20 years, participating in and demon-
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intensive academic research programs that made them possible. She studied at the University of Geneva and obtained several
bachelor degrees including Psychology, Biology, and Computer Science. She received a MSc in Biochemistry in 1972 and a
PhD in Quantum Physics in 1977. From 1977 to 1989, she was a Professor at the University of Montreal in Canada. In 1989,
she founded MIRALab, an interdisciplinary creative research laboratory at the University of Geneva. She has been working
since 15 years on simulating facial expressions, and is responsible for the first MPEG-4 software that has been given to the
MPEG-4 committee. Actually, she is participating to several EU projects on the simulation of facial animation (SONG and
INTERFACE), hair (MESH) and clothes (E-TAILOR).

Volker Blanz studied Physics at University of Tubingen, Germany, and University of Sussex, Brighton, UK. At Max-Planck
Institute for biological Cybernetics, Tubingen, he wrote both his Diploma thesis (1995) on image-based object recognition,
and his PhD thesis (2000) on automated reconstruction of 3D face models from images. In 1995, he worked on Multi-
class Support Vector Machines at AT&T Bell Labs. In recent years, he has also worked for the Center for Biological and
Computational Learning at MIT several times. From 2000 to 2003, he has been a research assistant at University of Freiburg,
and since 2003, he is a researcher at Max-Planck Institute for Computer Sciences, Saarbriicken. His research interests are 3D
face models, animation, face recognition, and learning theory.
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