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Abstract. 3D volume data has been increasingly used in many appli-
cations. The digital nature of the data allows easy creation, copying
and distribution. However, it also allows ease of manipulation which can
enable wilful or inadvertent misrepresentation of the content. For an ap-
plication like medical imaging, this can have serious diagnostic and legal
implications. Thus there is a strong need to establish the integrity of a
particular volume data-set. We argue that the traditional data authenti-
cation mechanisms like digital signatures or cryptographic methods are
not very useful in this context due to their extreme fragility. What is
required is a method that can detect the integrity for allowable content-
preserving manipulations. We have developed a novel authentication pro-
cedure which is robust against benign content manipulation. The volume
data can be robustly authenticated under normal operations such as scal-
ing, resampling and additive Gaussian noise. On the other hand, it o�ers
protection against any male�c or unintentional data manipulation which
signi�cantly changes the content of the volume data-set. Such manipu-
lations include cropping, changing of voxel values etc. Our method uses
segmentation, wavelet-based foveation, and encryption to achieve this.
We have implemented the method and tested its robustness for several
manipulations.
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1 Introduction

3D volume data has been increasingly used in many applications [11]. Medi-
cal imaging is one area which generates an enormous amount of volume data.
Recently, there has been increasing awareness about the problem of copyright
protection of digital images, video and audio [10]. Researchers have started rais-
ing concerns about the copyright protection and piracy of 3D data as well. In
fact, there is a growing interest in developing digital watermarking techniques
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for 3D mesh as well as volume data [15, 9]. However, all these techniques address
the copyright problem, not the integrity problem. In this paper, we address the
problem of authenticating 3D volume data i.e. veri�cation of the genuineness

of the data-set. For example, given a medical volume data set which shows a
medical condition like a tumor, we do not want the patient to fraudulently alter
the data-set so that the tumor is removed and thus mis-represent the medical
condition to an insurance company. Similarly, we would not like a medical in-
stitution to alter the data-set in order to introduce artifacts which represents
some abnormality and make a patient go through unnecessary expensive medical
procedures. In such situations, preserving and checking the veracity of a data-
set assumes tremendous importance. Even for volume data sets which represent
art objects or manufactured objects, the accuracy and integrity of the data-set
needs to be preserved. Basically, a secure authentication system can prove that
no tampering has occurred during situations where the credibility of the volume
data may be questioned. In the two hypothetical scenarios present, there is a
need to detect that some illegal manipulation has taken place. On the other
hand if some allowable modi�cation (like re-sampling of the data-set) is done, it
should detect this manipulation but it should indicate that the data-set is still
usable.

We propose that this problem can be addressed by use of a content-based

digital signature which is robust yet e�ective. The idea is that at the time of
data creation (which is through either some physical scanning device like a CT
Scanner or through some software), a content-based digital signature associated
with the data-set is simultaneously created. For all further authenticity checks,
this data-set can be veri�ed against this digital signature. If there is a mis-match,
then the data is considered unreliable and it should not be used.

Two solution possibilities naturally arise when considering this problem. One
could argue that either traditional general message authentication techniques can
be used or perhaps semi-fragile watermarking techniques could be used. We will
now argue why neither of this possibility is applicable for 3D volume data.

Traditional message authentication techniques like hashing-based digital sig-
natures or cryptographic authentication [20] cannot be used because of their
extreme fragility. These techniques do not tolerate 
ipping of even one bit of
information of a message. For example, we could use the traditional message
digest based digital signature for a volume data-set. Even if one least signi�cant
bit of a voxel is changed, the authentication procedure will 
ag this data-set as
unreliable. However, for volume data, certain operations such as scaling, resam-
pling etc. are valid operations in which cases the manipulations are benign. They
are not intended to change the signi�cant content of the data-set and thus they
do not impact the integrity of the data. One example is the content-based dig-
ital signature proposed in [16] which used the histogram of divided data blocks
as the content to be hashed. If the voxel values are uniformly deduced by one
unit, or more generally, a Gaussian noise with a non-zero mean is added, this
signature may fail to authenticate the data. Therefore, we need a novel digital sig-
nature method which allows content-preserving manipulations. In other words,



the digital signature must authenticate the data set for such cases. However, if
somebody really tampers with the content, e.g. crops out the tumor region, then
the digital signature should indicate that data-set has been tampered with and
thus is unreliable. Thus traditional digital signatures are not useful but robust

authentication (robustness to allowable manipulations) is required.

The second possibility is the use of semi-fragile watermarks for the purpose
of authentication [13]. Many techniques have been developed for 2D digital im-
age data which could perhaps be adapted for 3D volume data. Unfortunately,
this is not possible for two reasons. Firstly, the image watermarks usually ex-
ploit the characteristics of the human visual system (HVS) in order to hide the
secondary watermark information. In case of volume data, the HVS cannot be
exploited because we can only visualize the 3D volume data through surface and
volume rendering. Secondly, there is an even more serious problem. All water-
marking techniques involve the modi�cation of the voxel values for the purpose
of embedding the watermark. However, for the case of volume data (and espe-
cially related to medical imaging), distortion of the voxel values is not allowed.
Even if small perturbations in the voxel values were allowed, there is no water-
marking method which can provably bound the distortion of the voxel values.
While the Parseval's theorem [6] can guarantee the bounding of the overall wa-
termark signal energy, simultaneously limiting the maximum distortion level in
the spatial domain and frequency domain appears to be very diÆcult. Therefore,
watermarking techniques are also not useful for authenticating 3D volume data.

In this paper, we present a new technique for authenticating 3D volume
data using a robust content-based digital signature. This signature is derived
from the signi�cant features of volume data so that if any of these features
are altered signi�cantly, the signature will not match the data-set. The term
content-based refers to the fact the important features of the data (whose in-
tegrity we are interested in certifying) should be somehow incorporated into the
digital signature. The rationale being that if some important content feature is
deleted/modi�ed/added, then the digital signature should not match the doc-
tored data-set. The term robust refers to the fact that any manipulation which
does not change the signi�cant features should not a�ect the veracity of the
signature. For such benign operations, the digital signature should indeed au-
thenticate the data-set. Common types of operations on volume data-sets are
scaling, thresholding, cropping, cut-and-replace a sub-volume, �ltering, addi-
tion/removal of noise and aÆne transformations. As long as these operations
do not change the content features, they are considered benign. We use a novel
wavelet-based foveation technique to accurately and succinctly capture the sig-
ni�cant content features. Moreover, the scheme allows a 
exible threshold to be
set which can determine the extent of the manipulations which can be considered
benign.



2 Overview of the Technique

We will now provide an overall description of the method for generating the ro-
bust content-based digital signature and the method for authenticating a volume
data-set using this digital signature. For the generation of the digital signature,
the following steps are required:

1. Feature extraction: The basic idea here is to capture the essential features which
need to be preserved for authentication. Since the size of a 3D volume data-set
is huge, this also allows us to create a compact key derived from the important
features. The process is done in three steps:

(a) Volume segmentation: The voxels of the input 3D volume data are separated
into two classes { the signi�cant \foreground" and the relatively less important
\background". While we present a method for doing the segmentation in this
paper, we recognize that di�erent types of data-sets need their own specialized
segmentation technique. Our authentication method is 
exible in the sense
that it does not really depend on the particular details of the segmentation
algorithm used. If required, this part can be customized either for a particular
application domain or for an individual volume data-set.

(b) Selection of key voxels: In general, the number of voxels in the foreground is
quite large. To reduce the amount of data, a few \key voxels" are chosen for
the purpose of data reduction.

(c) Wavelet-based foveation: To make sure that important content throughout the
foreground is captured, we apply the foveation technique which is basically a
space-variant �ltering technique. We believe it is very important to use this
since it summarizes all the important content throughout the foreground with
the key voxels as the foci. Thus all signi�cant features are compactly captured.
Additionally since it is a many-to-one mapping, it o�ers security. Thus, this
information can be used as a key.

2. Encryption: For additional security, public-key cryptography [20] is utilized to en-

crypt the key derived in the previous step. Basically, the secret key of the owner

of the volume data is used to encrypt the feature key obtained. For the purpose of

authentication, the public-key of the owner can be used to decrypt this information

and the feature key can be thus recovered. Since this step is well-understood, we

will not discuss it further in this paper.

For authenticating a particular volume data-set, the following steps are per-
formed:

1. AÆne transformation parameters recovery: Since, one of the benign manipulations
could be the aÆne transformation of the volume, the transform parameters are
computed �rst.

2. Matching: The content features of the transformed volume are compared with the

content features of the original data-set (obtained from the digital signature af-

ter decryption using the owner's public key). A match value between the original

features and the transformed volume features is computed. If this match value ex-

ceeds a certain threshold, then the volume is certi�ed as genuine else it is considered

untrustworthy.



3 Creation of the Content-Based Signature

Given a volume data-set, we �rst extract the feature points (key voxels) af-
ter performing segmentation. The number of the feature points must be small
in order to guarantee the acceptable small size of the signature. Based on the
extracted feature points, a weighted norm is selected. The volume is then loss-
ily compressed using this weighted norm as the measure. The description of the
weighted norm and the compressed data are encrypted using public-key cryptog-
raphy and they constitute the robust content-based digital signature associated
with this volume data-set.

3.1 Feature Extraction of Volume Data

In this subsection, we describe the process of extracting from the original volume
data a small number of voxel groups that represent the important information
(features). It consists of two steps: volume segmentation and key voxel sampling.
Volume segmentation is to identify and demarcate into foreground/background
the voxel in the original volume data. Note that the foreground voxels can belong
to di�erent sub-categories (like bone, skin, soft tissues, etc.). This results in the
segments (a connected sub-volume) with each one representing an important
feature of the data. It is similar to image segmentation, a common technique used
in computer vision. Usually the number of voxels in each segment is too large
to be directly used for the signature. Thus, key voxel sampling is used to derive
a few key voxels from each segment for the foveation process which e�ectively
summarizes the signi�cant content of the data-set, and will be detailed in the
next subsection.

We propose a segmentation method based on the voxel value analysis and
bounding box information of the isosurfaces. It can be summarized as follows.
We assume that the voxel values are scalar for the ease of description.

1. Partition of the voxel values by data analysis. First, all the voxel values are sorted
in the non-descending order. Second, partition the sorted list using the threshold
value. The threshold value is speci�ed by the user in our current implementation.
However, heuristics can be applied if the domain knowledge is known for the par-
ticular class of volume data. For many volume data sets, the density values of
signi�cant content components are distinguishable even though the voxels repre-
senting them are closely connected to each other. Sometimes, they may perhaps
even have similar voxel values in which case domain knowledge could be utilized
for distinguishing them. For example, human CT/MRI volumes can be partitioned
by using the density values as well as anatomical knowledge.

2. Isosurfacing. From the partition, we derive a set of voxel values that partition
di�erent parts. These voxel values are used to derive the same number of sets of
the isosurfaces.

3. Segmentation. One segment of voxels can be formed if they are bounded as a
closed sub-volume by (1) one isosurface, (2) several isosurfaces, or (3) one or several
isosurfaces with the one or several border planes of the volume. It can be eÆciently
derived using the scan conversion algorithm, an extension of the standard scanline



algorithm used in the rasterization and hidden-surface elimination, to derive and
accumulate the intervals bounded by the isosurfaces and border planes iteratively.

4. Feature extraction. It is a process of selection of key voxels. A 3D Gaussian mask

is applied on the volume several times as lowpass �ltering. Due to the large size of

volume data, we simulate the 3D Gaussian �ltering as a windowed lowpass �ltering

dimension by dimension. In the highly blurred resulting volume, the key voxels are

chosen to be local maximum voxels which are above a prede�ned threshold. The

key voxels are then used as the input to the foveation procedure.

If the size of volume data is N3, sorting in the �rst step takes O(N3logN)
time. It is O(N3 + logh) for isosurfacing in step 2 where h is the number of
di�erent extreme values (min or max) [5]. It is O(N3) for the scan conversion in
step 3. So the overall time complexity is O(N3logN). One example as a result
of this procedure is shown in Fig 1.
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Fig. 1. Examples of volume segmentation results: (a) the skull bone, (b) the skull
muscle and soft tissue, and (c) the internal part of a tomato.

3.2 Content-based Weighted Norm

We now brie
y present the idea behind summarizing the volume using a space-
variant wavelet based �lter. The basic idea is to summarize and compress the
important content information. Most 2D/3D imaging systems use a norm (usu-
ally the Euclidean 2-norm) to measure their performance. However, the 2-norm
treats each pixel/voxel equally. However, in most real-life data, it is possible to
determine some regions that are more interesting for the application at hand.
For example, through feature detection, we can �nd signi�cant voxels in a given
data-set. In such cases, a weighted norm is more appropriate. The weighted norm
k � kw for the volume V (x; y; z) with a weighting function w is given by:

kV k2w =
X
x;y;z

w(x; y; z)V (x; y; z)2;

where w(�; �; �) is the weighting function. In our authentication system, a content-
based weighted norm is used for measurement of the distortion caused by allow-
able and illegal operations. The weight of each voxel is determined through a



combination of segmentation and feature detection schemes. In the digital sig-
nature creation process, the original volume data is lossily compressed under the
weighted norm. The highly compressed data S, together with the description of
weighting function W , forms the signature (S;W ). This signature can then be
further encrypted. Because the description of the weighting function is part of
the signature, to satisfy compactness, w cannot contain the full information of
the original data set. We now describe in detail the whole procedure.

3.3 Wavelet-based Foveation Technique

Our visual system has a space-variant nature where the resolution is high in
a point (fovea) but falling o� towards the peripheral[17]. This distribution of
resolution provides a fast and simple way of reducing information in the visual
�eld, without sacri�cing the size of the visual �eld and the resolution around
the fovea. As the biological visual system is highly e�ective, this space-variant
nature has inspired the design of many computer vision systems which resembles
the biological foveated vision [3, 1, 18], video conferencing [2, 7], and visualization
systems [12].

The foveated volume is obtained from a uniform resolution volume through
a space-variant smoothing process where the width of the smoothing function is
small near the fovea but gradually increases towards the peripheral. The process
of going from a uniform volume to a foveated volume is known as foveation.
The foveation of a function V : Rd ! R is determined by a smoothing function

g : Rd ! R, and a weight function w : Rd ! R�0.

(TV ) (x) :=

Z
Rd

V (t)w(x)g (w(x)kt� xk2) dt: (1)

The weighting function w depends upon three parameters and takes the form

w(x) =
�
�kx� 
kd + �

��1
: (2)

We call � the rate as it determines how fast resolution falling o�, call 

the fovea as it determines the point of highest resolution, and call � the foveal

resolution as it determines the resolution at the fovea. Both � and � are non-
negative and the smoothing function g is normalized so that

R1
�1

g(x) dx = 1. In
general, we could replace the weighting function by any non-negative function.
This generalization is useful when we are interested in volumes with multiple
foveae. Given two weighting functions w1,w2, the blended w3 is

w3(x) = maxfw1(x); w2(x)g: (3)

Foveated volumes can also be treated as the approximation of an volume
using a �xed number of bit, using a weighted norm as the underlying measure.
This weighted norm can be derived from (1) and has the form,

kV kw =

Z
Rd

V (x)

w(x)
dx; (4)



where the weighting function w is the function in (2).

Wavelet bases have important applications in mathematics and signal pro-
cessing due to their ability to build sparse representation for large classes of
functions and signal [14]. It is a natural choice for foveated volume due to their
locality in space and frequency. Interesting, the choice of the weighting function
(2) gives a self-similarity across scales [4], which is illustrated in Fig 2. This
property leads to a simple but fast extraction algorithm [4].
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Fig. 2. Allowable Lowpass Filtering: (a) Original wavelet coeÆcients (Cw); (b) After
allowable lowpass �ltering (C 0

w
); (c) Remaining coeÆcients (Cw

�). Cw � C
0

w
= Cw
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3.4 Extracting the CoeÆcients

Recall that the �rst part of the signature (S;W ) is the highly compressed volume.
To obtain S, one could �rst compute the foveation (1) with respect to the multi-
foveae weighting function, and then compress the foveated volume using a known
lossy or lossless compression technique for uniform volumes. Because computing
(1) directly is computational intensive, we use the approximation (5).

(T fovI) � IDWT(M DWT(I)): (5)

In our implementation, S is extracted from the volume by quantizing the
wavelet coeÆcients M DWT(I), followed by a lossless compression using gzip.
For an intuitive illustration, we use a 2D image to show its compression result
(Fig 3). The (S;W ) can then be encrypted and be stored as the digital signature
for that image.

Note that gzip is a general lossless compression tool, which does not exploit
properties of volumes, especially the coherence of wavelet coeÆcients across space
and scale. Thus it is not the best technique for our application. A possible
improvement can be done by incorporating the well-known zero-tree algorithm
[19] into our scheme.



(a) (b) (c)

Fig. 3. (a) The maskM for the weighting function. (b) The original image (262Kbytes).
(c) The compressed image (4Kbytes) using the mask M.

4 Implementation and Experiment Results

The �rst phase of the authentication process is detection of the allowable aÆne
translation applied to the volume data-set. For consistency, the norm used in
the detection is the weighted norm whose weighting function is part of the sig-
nature. That is, the detection �nds the aÆne transformation Tmin such that
h0 = kTmin(S) � V kw is minimum. Through our preliminary experiment, we
�nd that such Tmin can be accurately determined for translation and rotation.
In the rest of this section, we assume that no aÆne transformation has been
applied to the data-set.

In the second phase of authentication, the similarity value h0 = kS � V kw is
compared with a predetermined threshold A0H, where A0 is a normalizing factor
depending only on the size and mean of the volume data-set. If h is smaller, then
the volume is declared to be authenticated. Otherwise, it is rejected and hence
considered unreliable. The choice of the H depends on the level of allowable
attacks. It can be determined analytically by assuming a certain distribution on
the voxel, or through experiment conducted a-prior to the signature creation.
In our experiments, we choose H = 0:08, which is analytically determined by
assuming that the allowable low-pass will �lter out only the �rst level wavelet
coeÆcients as illustrated in Figure 2.

We did experiments on two volume data sets with 256 gray levels, SKULL
(64� 64� 64) and TOMATO (128� 128� 64). In the selection of key voxels, we
used a windowed lowpass �ltering for �ve times with the window size 9 and the
threshold 1:5. The resulting numbers of key voxels are 25 for SKULL and 124
for TOMATO. The sizes of the signatures are 8K and 19K bytes respectively.

Five experiments were done with these two volume data sets. The �rst three
experiments examine the signature robustness under global manipulation like
low-pass �ltering, sharpening, and lossy compression, whereas the last two ex-
periments consider local manipulation like cropping and localized modi�cation.
In the �rst experiment, the volume data-sets are subjected to low pass �ltering.
The low �ltering is achieved by a rectangle window. From Figure 4(a), the sig-
nature remains authentic even under a 7x7x7 rectangular �ltering. In the second



experiment, Figure 4(b), Gaussian white noise is added. To test the robustness
of our signature under lossy compression, we applied zero-thresholding to the
volume data-set. That is, given a threshold T , all wavelet coeÆcient C satisfying
jCj < T are replaced by zeros. The results for di�erent T is shown in Figure 5.

Figure 6 (a) shows the robustness after the voxels in the center region are
replaced by zeros, and Figure 6(b) shows the robustness after the volume is
cropped.
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Fig. 4. Results for Lowpass Filtering (a) and Addition of White Noise (b)
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Modi�cation of information of a volume data can take three forms. One is
to modify a particular part of the voxel values to other values, e.g., set all voxel
values to zero (Fig 6 (a)). The second is to crop the volume to a subset of the



original one (Fig 6 (b)). Removal is acceptable as long as important information
remains. Since our method of important feature extraction does not aim at a
particular region of the volume, it is enough to give false-signature alarm when
too much information has been removed. This can be seen in Fig 6. In real-world
applications, users can de�ne the regions-of-interest for feature extraction, for
example, tumors or abnormal bones. The third modi�cation is the addition of
previously non-existent content feature. This is handled in a manner similar to
the one for the removal case. Thus, with the proposed robust digital signature
scheme, the signature will match only when all (and no more) regions-of-interest
can be detected.
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Fig. 6. Results for Removal (a) and Cropping (b)

5 Conclusion

We have described a novel robust content-based authentication technique for
volume data. The technique uses segmentation followed by key voxel selection
which are used as fovea for a wavelet-based foveation procedure to derive the
content-based key for the volume data-set. This key is then encrypted using
public-key cryptography and used as a robust digital signature. For authenti-
cating a questionable volume data-set, the aÆne transformation parameters are
�rst determined and feature extraction is done for the transformed volume. The
feature for the transformed volume is then matched against the feature values in
the original digital signature to determine whether the volume data is reliable
or not. The method has been implemented and tested against various manipu-
lations. The experimental results show that this is a very promising approach.

Our future work is to come up with a reliable volume authentication tech-
nique which can be incorporated into all types of scanners (like CT Scanners
and MRI devices) in order to make them trustworthy [8].
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