I/O-Conscious Volume Rendering

Chuan-Kai Yang and Tzi-cker Chiueh

Department of Computer Science, State University of New York at Stony Brook, Stony Brook,
NY 11794-4400, USA
emails:{ckyang, chiueh@cs.sunysb.edu

Abstract. Most existing volume rendering algorithms assume that data sets are
memory-resident and thus ignore the performance overhead of disk I/O. While
this assumption may be true for high-performance graphics machines, it does
not hold for most desktop personal workstations. To minimize the end-to-end
volume rendering time, this work re-examines implementation strategies of the
ray casting algorithm, taking into account both computation and 1/0 overhead-
s. Specifically, we developed a data-driven execution model for ray casting that
achieves the maximum overlap between rendering computation and disk 1/0O. To-
gether with other performance optimizations, on a 300-MHz Pentium-II machine,
without directional shading, our implementation is able to render a 128x128 grey-
scale image from a 128x128x128 data set with an average end-to-end delay of 1
second, which is very close to the memory-resident rendering time. With a little
modification, this work can also be extended to do out-of-core visualization as
well.

1 Introduction

Despite the fact that volumetric data sets are inherently huge, most previous ray casting
algorithms research reported performance numbers, assuming that data sets are entire
memory-resident. This assumption is not valid when individual data sets are too large to
fit into main memory ¢ut-of-core rendering or when users need to browse or explore

a large number of data sets. Such assumptions tend not to hold especially on personal
workstations, where volume visualization technology is gradually gaining grounds.

The motivation of this work is to develop a high-performance volume rendering
system on commaodity PCs without special hardware support, with a focus on reducing
theend-to-endendering delay, including the disk overhead of bringing the data sets in
and out of the host memory. The key technique to minimize the performance impacts
of disk 1/O is to overlap disk operations with rendering computation so that the disk
I/0 time is masked as much as possible. To achieve this goal, a volumetric data set is
decomposed into blocks, which are stored on disks and accessed as indivisible units.
As data blocks are retrieved from disks, rendering computation on those blocks that are
brought in earlier proceeds simultaneously. In this execution modemithienumtotal
rendering time for a disk-resident data set is the sum of the rendering time when the
data set is entirely memory-resident, and the time required to fetch the first data block.

Surprisingly, the above overlapping execution model is difficult to get right in prac-
tice. This paper presents one such optimal execution mddé&h-driven block-based

delivered by

www.eg.org

- = EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

volume renderingwhich hides most of the disk 1/0 delay while at the same time en-
sures that a data block is completed exercised once it is brought into memory from the
disk. The bottom-line result is that on a 300-MHz Pentium-1l machine, without direc-
tional shading, this implementation strategy is able to complete the task of rendering a
128x128x128 data set into a 128x128 image in 1 second on the average, including the
disk I/O time.

The rest of this paper is organized as follows. Section 2 reviews previous volume
rendering work that paid attention to disk I/O issues. Section 3 describes the design
dimensions of 1/0-conscious volume rendering algorithms, and their associated perfor-
mance tradeoffs. Section 4 proposes a simple extension of this work to do out-of-core
visualization as well. Section 5 shows the results of a detailed performance evaluation
of the prototype implementation, which is built on top of a Pentium-Il machine running
Linux. Section 6 concludes this paper with a summary of the major research result-
s. Due to space limitation, we have omitted some details. Please refer to full paper at
http://www.ecsl.cs.sunysb.edu/tr/TR89.pdf.

2 Related Work

The main focus of this work is to reduce the disk 1/0 performance overhead in vol-
ume rendering computation, particularly ray casting algorithitng-of-core rendering

refers to the case where the rendering machine’s physical memory can not hold the en-
tire data set and thus need to perform disk #fi@ing the rendering process. Cox [4],

[3] studied this problem by examining the performance impacts of the operating sys-
tem interfaces on the disk I/O cost, as well as related file cache management issues. In
contrast, our work attempts to use algorithm-specific prefetching to ensure that the data
blocks could be brought in before they are needed. The proposed prefetching mechanis-
m is closely tied with the rendering computation, and is completely algorithm-specific.
This tightly integrated approach also sets itself apart from other more general-purpose
disk prefetching research, as done in [6], [8], [9, 1] and [7]. Another way to reduce the
performance overhead due to disk I/O is to use compression to cut down the 1/O traf-
fic volume, as done in [10], [5], [2] and [11]. Our work assumes that the ray casting
algorithm is more computation-intensive than I/O-intensive, and therefore spending ad-
ditional decompression computation or restricting the data viewing scope to lower disk
traffic is not considered a desirable tradeoff. Rather, we focus on havaséthe disk

I/0O delay.

3 1/O-Conscious Ray Casting Algorithm

3.1 Optimization for Memory-Resident Ray Casting Algorithm

To reduce the end-to-end volume rendering time, the performance of the ray casting
algorithm when the data set is completely memory-resident should be optimized to the
extent possible. We have added the following performance optimizations to arrive at a
high-quality and high-performance ray caster, as the baseline case.

The first optimization replaces floating-point computation with integer arithmetic,
specifically in tri-linear interpolations. By replacing the floating-point numbers in tri-
linear interpolation, which are between 0.0 and 1.0, with 8-bit integers, we improve the
overall performance by almost an order of magnitude in certain cases on a Pentium-
Il machine, because our ray caster uses only integer arithmetic, and Intel processor’s
floating-point hardware traditionally lags significantly behind its integer counterpart.
This optimization, however, does not affect the rendering quality. For example, Figure
1 and figure 2 show two images rendered through floating-point arithmetic and integer
arithmetic without much perceptible differences. The second performance optimization

Fig. 1. Floating point computation. Fig. 2. Integer computation.

attempts to exploit the instruction-level parallelism using the MMX instruction set ex-
tensions available on the Pentium-Il processor. MMX is capable of executing multiple
low-resolution fixed-point operations in parallel on a high-resolution data-path, e.g., 4
16-bit multiplications on a 64-bit multiplier. By using integer arithmetic and four kinds

of MMX instructions: PMULHW, PMULLW, PMADDWD and PSUBW, we create a

new version of tri-linear interpolation which takes only 37 instructions. Unfortunately
the performance of this code on Pentium-II does not improve much over the non-MMX
version, and in some cases actually worsens. Please refer to the full paper for a detailed
explanation.

When volumetric data sets are represented as 3D arrays, the address generation
logic for the samples used in tri-linear interpolation is susceptible for optimization.
Specifically, the eight samples used in tri-linear interpolation have a fixed and simple
offset relationship among themselves. By exploiting these relationships to generate the
memory addresses of the eight samples involved in tri-linear interpolation, we are able
to improve the rendering performance by up to 15%.

The last optimization avenue that we explored is related to caching. We discovered
that the ray casting performances for different viewing directions could differ by as
much as 30%, although they require the same amount of computation. To improve the
cache performance, we have tried to cast a group of rays concurrently rather than one

ray at a time, so that each time a cache block is brought in, it can be utilized as much
as possible. However, for reasons as explained in the full paper, the ray group approach
does not improve the overall performance. Table 1 shows the performance improvement

Optimization Performance Improvement
Replace Floating-Point with Intege 4 to 6 times faster
Using MMX 0% faster on (Pentium-I1)
60-80% faster on (Pentium)
Hand-Code Address Generation up to 15%
Caching No obvious overall improvemet

Table 1. Performance improvements from various optimizations to a generic ray caster imple-
mentation on a 300-MHz Pentium-II machine.

from each of the performance optimizations. FaR& x 128 x 128 data set with 1-byte

voxel and al28 x 128 rendered image, the measured ray casting time is 0.68-1.0 sec
on a 300-MHz Pentium-Il machine. At the same time, the time to retrieve the same
data set from the disk is 0.33 sec, assuming that the data set is laid out sequentially.
Therefore, it is essential to minimize disk 1/O’s visible performance overhead to reduce
the end-to-end rendering time.

3.2 1/0O-Conscious Ray Casting

The general strategy to mask disk 1/0 delay is to overlap disk I/O with rendering compu-
tation. Each volume data set is decomposed into 3D sub-cubvaap-voxelswhich

are stored contiguously on the disk. However, when a macro-voxel is brought into mem-
ory, the voxels arscatterednto their corresponding positions in the 3D array. In the
ideal case, when a macro-voxel is being fetched from the disk, the CPU performs ren-
dering computation on the macro-voxel that is brought in previously, and thus hides all
the disk 1/0 delay. Therefore, the minimum end-to-end rendering time when the input
data set is disk-resident is the time to fetch the first macro-voxel plus the time to render
the data set when it is completely memory-resident. However, achieving such an ideal
overlap between disk I/O and rendering computation remains elusive in practice.

The fundamental mechanism to mask the disk 1/O delay is to prefetch the macro-
voxels in advance before they are actually needed for ray casting computation. To en-
sure that the rendering computation should never be stalled due to unavailability of
required voxels, the sequence of macro-voxels that are prefetched should be identical
to the traversal pattern of rendering computation. In other words, the prefetch stream
should traverse the volume data set in exactly the same way as the rays cast. To achieve
this effect, the prefetching module should execute the same traversal code as used in the
ray caster. Given a macro-voxel sizeé,x B x B, it can be shown that as long as the
origins of the rays that are cast for prefetching purpose are at Bipstels apart on
the image plane, and the sampling distance along these rays remain at 1, then these rays
can cover all macro-voxels in the input data set. During prefetching-induced traversal,
the algorithm checks whether each sample on each ray steps into a new macro-voxel. If

so, the algorithm brings in the new macro-voxel from the disk; otherwise it continues
sampling along the ray.

In summary, the 1/0-conscious ray casting algorithm consists of two modules, one
for casting rays and the other for prefetching macro-voxels according to the way rays
are cast into the input volume data sets. There are three dimensions along which one
can implement these two modules. The Cartesian product of the alternatives along each
dimension constitutes the entire design space.

Software Structure Because the ray casting module is data-dependent on the
prefetching module, careful scheduling between these two modules is essential to mask
the disk I/O delay. The current implementation uses the two-thread approach because
switching between these two threads incurs a fixed but small thread-level context switch
overhead, compared to the two processes approach.

Volume Traversal Strategy The ray casting module can either shoot one ray at a
time or a group of rays concurrently. As more rays are cast simultaneously, more states
are required to maintain the progress of each ray, and the accumulated color and/or
opacity values. On the other hand, the ray group approach enables more processing
parallelism in that as the number of concurrently cast rays increases, the CPU is less
likely to be idle for the lack of useful work to do. Unlike the CPU cache case, the
overhead of state maintenance is well worth the benefits it brings. Therefore, the ray
group approach is chosen in the current implementation.

Control Flow There are two ways to pass control between the prefetch and ray cast-
ing modules. The traditional approachpigram-driven which views the ray casting
module as the dominating entity that assumes control most of the time, and occasionally
passes control to the prefetch module to bring in the next macro-voxel. This approach
requires the system to check each ray in the ray group to see whether the macro-voxel
it needs to proceed is available, and if so, advances the ray as far as it can, and then re-
peats the cycle. When the entire ray group stops, the ray casting module yields the CPU
through busy-waiting, until the next macro-voxel is brought into memory. The other ap-
proach for passing control is tldata-drivenapproach, which advances each ray exactly
the same way as the previous approach, but attaches the ray to the macro-voxel that it
is waiting for when it stops. Every time a macro-voxel arrives, the system continues the
processing for the set of rays that are previously attached to this macro-voxel. The main
performance advantage of tldata-drivenapproach is that it allows the use of larg-
er ray groups, which improve the processing parallelism, without incurring excessive
synchronization checks, which will be the case for phegram-drivenapproach. Our
current implementation thus chooses da¢a-drivenapproach for control flow transfer.

Given these design decisions, the I/O-conscious ray casting algorithm works as fol-
lows. The prefetch and ray casting modules are implemented as separate threads. The
prefetch thread traverses the volume data sets in exactly the same way as the ray cast-
ing thread, except that the adjacent rays it shootsiapexels apart, where3 is the
dimension of the macro-voxel. The ray group size is the same as the size of the image
plane. That is, the ray casting thread starts with as many rays as there are pixels on the
image plane. Each ray is initially attached to the first macro-voxel that it encounters
while traversing through the volume data set. As the prefetch thread traverses the input
data set, it fetches from the disk macro-voxels that have not been brought into memo-

ry previously. Every time a macro-voxel arrives, the ray casting module continues the
rays that are currently attached to the macro-voxel. Each such ray will advance as far as
possible, until it runs into another macro-voxel that is not resident in memory, at which
point the ray is attached to the missing macro-voxel, or it runs to completion.

Figure 3 illustrates this process assuming a 2D data set and a 1D image plane.
The prefetch thread shoots only rays in circles whereas the ray casting thread shoots
every ray. When thé-st ray, initiated by the ray casting thread, reached teemacro-
voxel, it checks whether the macro-voxel is already brought into memory. If yes, it
steps through th&-st macro-voxel along thé-st ray. Otherwise, the ray casting thread
enqueues the state of thest ray to the work queue of thest macro-voxel. Figure
3 shows the content of each macro-voxel's work queue when each ray first touches
the volume data set boundary. In this case, wher2thd macro-voxel is loaded into
memory, Ray 3, 4, 5 and 6 will be dequeued in that order and proceed as far as possible
until they reach another macro-voxel that is not memory-resident.

rays

1(23(4)50)7®

Image Plane

macro-voxel 2's
queue

— le[s[4[3] —

macro-voxel 1's 0
queue macro-voxel 3's
enqueue . queue
2[1]
BV &
dequeue \

- Macro-voxels

macro-voxel 4's
queue

Fig. 3. A data-driven rendering.

4 Extension to Out-of-Core Rendering

Because the ray group size is the entire image plane, this means that whenever a macro-
voxel is brought inall the rays that need this macro-voxel to advance will be processed
before the next macro-voxel arrives. This ray processing pattern leads to two important
advantages. First, it exposes the maximum amount of parallelism by identifying all
possible rays that are ready to continue. Second, it makes it possible to use a simple
FIFO replacement policy for macro-voxels in the case of out-of-core rendering, because
once a macro-voxel is "touched,” it is no longer needed in future ray processing. For the
macro-voxel access pattern to be truly FIFO-like, macro-voxels need to be overlapped
with each other by 1 voxel to ensure that each macro-voxel is self-contained during
tri-linear interpolations even for rays that pass through the boundaries. Thatiss a

K x K logical macro-voxel actually contaifg + 2) x (K + 2) x (K + 2) voxels

physically. However, in general, the access pattern to macro-voxels is not always FIFO-
like, because some macro-voxels that are brought in earlier may be partially blocked by
others that are scheduled to be fetched in later. Consider ray 4 in Figure 3. If the first
macro-voxel brought in is macro-voxel 1, then because macro-voxel 2 that ray 4 needs
is still not in the memory, macro-voxel 1 will still be needed for ray 4 after its traversal

of macro-voxel 2, thus making the macro-voxel access pattern not FIFO-like. For the
macro-voxel access pattern to be truly FIFO-like, the prefetch thread should bring in
the macro-voxels according to their distances to the image plane. That is, the closer a
macro-voxel is, the earlier it should be brought into memory.

Instead of sorting all the macro-voxels based on their distances to the image plane,
we use the same idea as usedjlattingwhere voxel (in our case, macro-voxel) pro-
jection order can be pre-determined and there are only a fixed number of orders possible
with respect to all viewing directions. Macro-voxels are then dealt with in that order and
attached rays are processed/advanced accordingly.

5 Performance Evaluation

We have implemented a prototype ray caster that incorporates various 1/O-conscious
performance optimizations described in the previous section. All the following perfor-
mance measurements are collected from a 300-MHz Pentium-1l machine, except those
for application-specific file prefetching. The shading model we used is post-shading
model, i.e., only density values are interpolated during ray traversal, and then mapped
to color and opacity values. We applied linear color and opacity transfer functions and
mapped the density value range [0,max] to opacity value range [0,1], where max is
the maximal density value. Only grey-scale images are generated and no directional
shading is performed.

To overlap disk I/O with rendering computation, volume data sets should be brought
into memory incrementally in smaller units, i.e., macro-voxels. Every time one macro-
voxel of the input data is available, rendering computation based on this macro-voxel
can proceed immediately, presumably in parallel with the disk access for the nex-
t macro-voxel. Although smaller disk access granularity facilitates the exploitation of
parallelism between CPU and I/O, it has an undesirable effect: the disk access efficiency
may suffer because a single sequential disk read of an input data set is now decomposed
into a sequence of disk reads, one for each macro-voxel. On the other hand, when CPU
processing and disk 1/O are fully overlapped, larger macro-voxel increases the start-up
overhead, or the time to bring in the first voxel. In the extreme case, the macro-voxel is
of the same size of the entire data set, which degenerates into conventional “load and
render” approach.

Table 2 shows the loading time measurements fo2&x 128 x 128 data set un-
der different view angles. We found thét x 64 x 64 appears to be the best choice
considering both the total I/0 time and the start-up overhead. In all the following exper-
iments, we assumgl x 64 x 64 macro-voxels. Smaller macro-voxels do not perform
well because their associated disk access patterns tend to cause excessive random disk
head movements.

Orthographic Non-orthographic
Macro Voxel Siz¢g 0 0 1 100 111 |0.3-0.80.4
128 x 128 x 128 0.33(0.33) 0.33(0.33)|| 0.33(0.33)| 0.33(0.33)
64 x 64 x 64 |0.30(0.070)0.39(0.071)]0.40(0.070)0.36(0.070
32 x 32 x 32 0.30(0.020D0.37(0.020q0.60(0.030 0.79(0.044
16 x 16 x 16 |0.34(0.039)0.48(0.042)3.25(0.037)3.40(0.039
8x 8x8 0.25(0.038D0.51(0.038u3.25(0.037 3.50(0.035
4x4x4 0.28(0.018D0.93(0.016u4.20(0.025 4.90(0.040

Table 2. Total time (sec) to load a 2MB data set (128 x 128 x 128) into memory with different
macro-voxel sizes. Numbers in parentheses are the start-up overhead.

To evaluate the performance of the proposed I/O-conscious ray casting algorithm
on an end-to-end basis, we measured the rendering times for three data sets using the
conventional approach, which loads the entire data set and performs rendering, and
using the data-driven ray casting approach. Then we calculate the optimal bound for the
data-driven approach, which is the time to load the first macro-voxel and the maximum
of the two: the time to render a volume data set assuming it is entirely memory-resident,
and the time to load the remaining macro-voxels. The results are shown in Table 3. As
the size of the data set increases, the performance difference between the data-driven
ray casting algorithm and the conventional ray casting algorithm widens, because the
disk I/O cost is playing an increasingly important role.

Table 3 also demonstrates that the current implementation of the data-driven ray
casting algorithm is close to the theoretical optimal bound. The performance difference
between the current implementation and the optimal bound also decreases as the data
set size increases. This discrepancy comes from the prefetch thread’s computation, and
additional macro-voxel boundary checks and state maintenance overhead during ray
traversal.

To understand the performance gain of the proposed 1/0O-conscious ray casting al-
gorithm as processors get faster, we render only every other pixel on the image plane,
to simulate a factor of 4 improvement in rendering computation. The end-to-end delay
measurements for three data s€$head LobsterandBrain and for different view an-
gles are shown on the last two rows in Table 3. For large data sets, the performance gain
of the proposed approach, compared to the conventional approach, increases because
the disk I/O cost becomes more dominant and therefore the ability to mask it is more
important to minimize the end-to-end delay.

Table 4 shows the performance comparisons between the data-driven and program-
driven approaches for three different data s€Bhead LobsterandBrain, and for dif-
ferent view angles. In general, the performance difference between the two approaches
increases as the viewing direction moves away from the major axes, because the traver-
sal pattern of the prefetching thread tends to differ more from that of the rendering
thread. As a result, the program-driven approach is more likely to be delayed because
the prefetch thread is less likely to bring in all the macro-voxels in time for the rendering
thread.

Table 5 shows how the ray group size affects the total rendering time under different
viewing directions. The results show that the rendering performance improves with the

CThead (2MB) || Lobster (4MB) || Brain (8MB)
64 x 64 image ||128 x 128 image|128 x 128 image
Viewing | Conven.| Data- || Conven.| Data- || Conven.| Data-
direction| /Bound |driven|| /Bound |driven || /Bound |driven
00 11.33/1.10 1.10 ||2.97/2.43 2.60 ||5.63/4.36 4.78
111 |1.01/0.7% 0.91 ||2.49/1.90 2.07 ||4.86/3.59 3.88
0 0 1 |0.61/0.33 0.46 || 1.3/0.79| 0.92 ||2.43/1.33 1.60
111 |0.56/0.33 0.58 | 1.3/0.80] 1.17 ||3.37/1.33 2.10

Table 3. Comparison of rendering time (sec) on PII 300MHz between the 1/O-conscious data-
driven ray casting algorithm, its optimal bound, and the conventional load-and-render ray casting
algorithm, for different data sets under different viewing directions.
CThead (2MB) || Lobster (4MB) || Brain (8MB)
128 x 128 x 128|256 x 256 x 64{|256 x 256 x 128
Viewing direction| Data-| Prog.- || Data-| Prog.- || Data-| Prog.-
driven| driven ||driven| driven ||driven| driven
1.10 1.25 233 | 234 || 478 | 4.80
0.91 1.40 207 | 274 | 3.88| 4.98

001
111

Table 4. Rendering time comparison (sec) between the program-driven and data-driven approach-
es for three data sets under different viewing directions.

increase in the ray group size. That is, the performance gain from the ability to exploit
more parallelism always out-weighs the additional state maintenance overheads as the
ray group size increases.

Table 6 shows the rendering times foR86 x 256 x 256 using the out-of-core
rendering algorithm under different viewing directions and different memory capaci-
ty. That fact that the rendering times are within 8% of each other demonstrates this
algorithm’s insensitivity to the main memory size.

= 001111 Memory capacity|0 0 1{1 1 1
i};gmulp??ze 1.10 | 0.99 1MB 8.74 | 8.02
x : : 2MB 8.80 | 8.09
64 x 64 1.31 | 1.15

4 MB 8.90 | 8.22
32 x 32 142 | 1.23 VB 510 867

16 x 16 1.46 | 1.23 - -
16 MB 8.80 | 8.64

Table 5. Rendering time for a 128 x 128 x 128 Table 6. Rendering times for a 256 X 256 x
data set with different viewing directions and 256 data set with different viewing directions
different ray group sizes. and different amounts of memories.

6 Conclusion

In this paper, we studied the problem of hiding disk I/O delay associated with large-
scale volume data set rendering. We attacked this problem by considering in two steps:

make the rendering as fast as possible assuming the data set is already memory resident;
mask the 1/0O latency as much as possible by taking data loading overhead into account.
We tackle the former part of the problem by (1) approximating floating-point computa-
tion with integer arithmetic without causing perceptible loss of quality on the generated
images; (2) speeding up the address generation for the eight voxels used in tri-linear
interpolation by exploiting the fixed relationships among them; and (3) employing M-
MX instructions to execute multiple instructions simultaneously. To effectively mask
the 1/O delay, one has to overlap the disk accesses with rendering computation. Data
sets are divided into “sub-blocks” or “macro-voxels” to allow separate rendering and
I/0O threads to work on different macro-voxels. To hide the disk I/O delay, the prefetch
thread should preceed the rendering thread for each macro-voxel accessed. We have de-
veloped an innovative data-driven approach to exploit as much parallelism as possible
while at the same time reducing unnecessary synchronizations checks to the minimum.
By incorporating all these optimizations, given28 x 128 x 128 x 1(bytes) data set,

our system is able to renderl@8 x 128 grey-scale image in one second on the av-
erage using a Pentium Il 300MHz machine. For larger data sets, the rendering time
scales proportionally. Moreover, we found our system not only can mask the 1/0O over-
heads effectively, but also can perform out-or-core rendering effectively without much
modification.

References

1. P. Cao, E. W. Felten, A. Karlin, and K. Li. A study of integrated prefetching and caching
strategies. ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, May 1995.

2. Tzi-Cker Chiueh, Chuan-Kai Yang, Taosong He, H. Pfister, and A. Kaufman. Integrated
volume compression and visualizatioViisualization 97, pages 329—-336, October 1997.

3. M. Cox. Managing big data for scientific visualizatioddCM SIGGRAPH 98 Course,
August 1997.

4. M. Cox and D. Ellsworth. Application-controlled demand paging for out-of-core visualiza-
tion. Visualization *97, pages 235-244, October 1997.

5. J. Fowler and R. Yagel. Lossless compression of volume dafrotieedings of Visualiza-
tion ‘94, pages 43-50, October 1994.

6. D. Kotz and Carla Schlattr Ellis. Practical prefetching techniques for parallel file systems.
First International Conference on Parallel and Distributed Information Systems, December
1991.

7. Tulika Mitra, Chuan-Kai Yang, and Tzi-Cker Chiueh. Application-specific file prefetching
for multimedia programs. I[fEEE Multimedia 2000July 2000.

8. Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of a compiler
algorithm for prefetching.The Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 62—73, October 1992.

9. R. H. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefetching
and caching.I5th ACM Symposium on Operating System Principle, December 1995.

10. A. Trott, R. Moorhead, and J. McGinley. Wavelets applied to lossless compression and
progressive transmission of floating point data in 3-d curvilinear gridsualization ’96,
pages 385-388, October 1996.

11. S. K. Ueng, K. Siborski, and K. L. Ma. Out-of-core streamline visualization on large un-
structured meshe$CASE Report, April 1997.

