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Abstract
Representational accuracy of the isosurface meshes produced by well-known marching isosurfacing methods is
considered. Accuracy is determined versus the isosurface given by trilinear interpolation and quantified using a
new measure of volumetric divergence. The new measure is an accurate estimate of spatial discrepancy between
a produced mesh and the isosurface of trilinear interpolation. Through experimental testing using the measure,
suitability of the considered methods to well-model the isosurface of trilinear interpolation’s behavior on grid cell
interiors is also established.
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polant, Volumetric Data

1. Introduction

Visualizing isosurfaces is an important means to explore data
and discover knowledge in volumetric datasets. Many iso-
surface extraction methods have been developed for applica-
tion to datasets comprised of scalar data values at 3D recti-
linear grid points and produce a triangular mesh approxima-
tion of the true isosurface. Such meshes have an advantage of
being rendered quickly, even on older commodity graphics
hardware. Many methods have also been developed to im-
prove the performance, topological correctness or accuracy
of the popular isosurface extraction methods, with much of
the effort focused on marching methods [NY06].

Production of an isosurface mesh from rectilinear grid
datasets typically entails use of a data value variation model
for placement of mesh vertices. Early isosurfacing works
usually modeled variation using a linear model only along
grid lines. Some recent work has proceeded under less sim-
ple models of variation. That line of work has culminated
with schemes that produce isosurface meshes with proper-
ties tailored to follow those of the isosurface given by trilin-
ear interpolation.

In this paper, we examine the discrepancies of well-
established marching isosurface methods against the isosur-
face given by trilinear interpolation. The work here seeks to
gauge the suitability of well-established methods that arose
from simple variation model assumptions and of one of the

recent works that uses a less simple variation model. In addi-
tion to providing analysis that addresses suitability, this pa-
per introduces and employs a new measure of divergence be-
tween isosurfaces (in particular, watertight isosurfaces). The
measure can potentially aid designers in the development of
new isosurfacing algorithms and help isosurface visualiza-
tion users evaluate potential isosurfacing solution suitability
according to the requirements of their problem, such as the
level of quality, computational cost, etc.

The paper is organized as follows. In Section 2, back-
ground and related work are introduced. In Section 3, the
new measure is described. In Section 4, the analysis results
are presented. The paper is concluded in Section 5.

2. Background and Related Work

Marching Cubes (MC) has come to be a prototypical iso-
surfacing method for scalar rectilinear volumetric datasets.
In MC, the dataset is processed one grid cube (cell) at a
time in a scan-line (marching) fashion. As it marches, the
cell vertices less than the isovalue are labelled as outside.
The other vertices are labelled as inside. If the isosurface
encloses some portion of the volume (i.e., if it is water-
tight and does not intersect the boundaries of the volumetric
dataset), then the vertices marked as inside are within a re-
gion wrapped by the isosurface and the other vertices are on
the isosurface or outside the region it wraps. There are 256
possible sets of cube labelings. The original MC considered
rotational and reflective cube symmetry, which reduces the
256 sets to 15 base configurations. It also employed linear
interpolation along edges to determine isosurface mesh ver-
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tices (on grid edges terminated by oppositely labelled end
points). MC links the vertices to form the mesh according to
the connection topologies for the cube’s base configuration.

2.1. Marching Isosurfacing

The original MC can produce an isosurface mesh that is not
watertight due to its face ambiguity problem (i.e., the com-
mon face of adjoining cells can have mesh vertices that are
linked differently on one side than the other). Many work-
arounds to this problem have been proposed [NY06]. Ex-
ploiting only rotational symmetry to determine the topolog-
ical base configurations is one. Such an approach yields 23
base cases [Nie03]. The Marching Tetrahedra (MT) [PT90]
method, which first decomposes each cube into tetrahedra
and then extracts the approximating mesh from the tetrahe-
dra, is another. MT produces a mesh with more facets than
MC, however [SM04].

Some recent work ( [LB03, Nie03]) has addressed both
the face and internal ambiguity problems of the original MC.
The internal ambiguity problem for the original MC is that
the mesh topology within cubes can lack or add linking “tun-
nels” between nearby isosurface components. Specifically,
the linking topologies that are produced can differ from the
isosurface given by the trilinear interpolant on the cube’s val-
ues [Che95]. The approaches of Lopes and Brodlie [LB03]
and Nielson [Nie03] allow creation of an internal ambiguity-
free (topologically correct) isosurface that aims at main-
taining the trilinear interpolant’s component linking topol-
ogy. Carr [Car07] has recently shown that the configurations
given in Nielson’s method [Nie03] are complete and correct.
The Lopes and Brodlie [LB03] method also seeks to produce
an isosurface that closely matches the position of the isosur-
face given by the trilinear interpolant, mainly by allowing
some isosurface mesh vertices to be at locations other than
grid edges.

Cignoni et al. [CGMS00] have also described a method
that can produce isosurface mesh vertices that are not only
on grid edges. The method progressively refines its mesh by
subdividing facets and moving facet vertices toward the iso-
surface given by trilinear interpolation.

Variants on MC that can produce higher resolution meshes
or reduce the computational cost of isosurfacing have also
been presented. For example, Dividing Cubes (DC) [CLL88]
produces a high resolution isosurface by first recursively
subdividing each active cube into eight equal size subcubes
until certain termination criteria are satisfied and then ap-
plying MC in the subcubes. The DC isosurface mesh can
have a large number of facets when the degree of subdivi-
sion is high. Another variant is Discretized Marching Cubes
(DMC) [MSS94]. It can quickly produce a compact mesh
representation. Since it uses the midpoints of intersected
edges as the mesh vertices, its mesh is lower resolution than
the MC mesh, however.

2.2. Trilinear Interpolation

The isosurfacing methods that consider the trilinear inter-
polant use the trilinear interpolation function G:

G(x,y,z) = G000(1− x)(1− y)(1− z)

+G100x(1− y)(1− z)+G010(1− x)y(1− z)

+G110xy(1− z)+G001(1− x)(1− y)z

+G101x(1− y)z+G011(1− x)yz+G111xyz,

(1)

where x, y, and z represent a location in a cube in local co-
ordinates and Gi, j,k denotes the value at a grid cell corner.
Since the local coordinates vary from 0 to 1, the i, j, and k
values can be 0 or 1. An isosurface defined on such a scalar
field is denoted as the isosurface given by trilinear interpo-
lation or the trilinear interpolation isosurface.

2.2.1. Representation Accuracy Measurements

Due to the complex shape of the trilinear interpolation iso-
surface, developing good metrics to measure the accuracy
of the isosurface mesh produced by an isosurfacing method
against the trilinear interpolation isosurface is challenging.
The most common way to check it has been to use vi-
sual comparison. Often a very high resolution triangular
mesh has been used instead as the reference for compar-
ison with the extracted isosurface (e.g., [LB03, HTF97]).
In addition, some researchers have used visual comparison
to compare a newer isosurfacing method’s extracted isosur-
face mesh against the mesh produced by a classic algorithm
(e.g., [LB03,HTF97,CGMS00]). Visual examination can al-
low assessment of smoothness and of retention of notable
shape features (such as protrusions).

When a high resolution mesh is used as the benchmark
for a computational comparison of one extracted isosurface
against a reference isosurface, often measures related to the
closeness of the meshes are used to determine extracted
mesh accuracy. Use of distance-based metrics or derived
global geometric metrics are two closeness measure strate-
gies.

Examples of global geometric metrics are isosurface sur-
face area and volume inside the isosurface [TPG99]. How-
ever, such metrics don’t well-measure local deviation of
meshes. The nature of this shortcoming is illustrated in Fig-
ure 1, which shows cut away views of regions R and R′ which
contain two surfaces A (shown in red) and B (shown in blue).
Surfaces A and B have the same boundary size and they en-
close the same amount of space in both subfigures. Yet, the
surfaces are more distant in (b) than in (a). The boundary
size and enclosed region measures here fail to differentiate
that the left case has more similar boundaries than does the
right case.

Distance-based metrics, such as quadric error met-
rics [GH97], Hausdorff distance [KLS96], etc., are com-
monly used in graphics (e.g., in mesh simplification) for
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(a) (b)

Figure 1: Global geometric measure shortcomings illustra-
tion.

measuring closeness between meshes. However, such met-
rics usually consider only some points (e.g., mesh vertices)
of the mesh to determine the metric value. Some distance-
based metrics attempt to produce the sum of mesh devia-
tions at densely sampled locations of the meshes (e.g., not
only deviation between mesh vertices), such as the Metro
scheme [CRS98]. Since such an approach is not exhaus-
tive, it can not always well-approximate divergence between
meshes. Its measure is also only one-sided (i.e., not symmet-
ric) [CRS98]. Distance-based metrics also often use approx-
imate measures of mesh distance.

3. Isosurfacing Accuracy Evaluation

In this paper, the Volumetric Divergence Computation
(VDC) is proposed to evaluate the quantitative accuracy of
marching isosurfacing methods.

3.1. The New Metric: Volumetric Divergence for a Mesh

We first define the volumetric divergence between two
closed surfaces. The regions inside (i.e., enclosed by) and
outside (i.e., not enclosed by) some surface A are denoted Ain
and Aout , respectively. The volumetric divergence between
two closed surfaces A and B uses a region R, defined as:

R = (Ain ∩Bout)∪ (Aout ∩Bin) . (2)

The volumetric divergence between surface A and B is de-
fined as the volume of the region R, which is denoted as
V (R). V (R) can also be called a symmetric difference. Such
differences have been used previously for 2D divergences
(e.g., [Vel01]). Figure 2 illustrates the volumetric divergence
of two surfaces in the same 3D space in a 2D view. Figure 2
(a) shows a cut-away view of the region enclosed by surface
A (the yellow region is inside A). In Figure 2 (b), a cut-away
view of the region enclosed by B is shown (the blue region is
inside B). The cut-away view of the volumetric divergence
between the two surfaces is the red region in Figure 2 (c).
Volumetric divergence measures absolute divergence only;
it (or a variant on it) must be used judiciously if relative dif-
ferences are needed.

The new metric we propose to evaluate marching isosur-
facing methods is the volumetric divergence between the tri-
angular mesh isosurfaces extracted by a marching isosurfac-
ing method and the trilinear interpolation isosurface. Only

(a) (b) (c)

Figure 2: Illustration of a 2D view of volumetric divergence
between two surfaces.

isosurfaces that should form a closed enclosure of space
within the dataset’s extents are considered. Next, the com-
putation of the volumetric divergence is described.

3.2. Divergence Metric Calculation

Since the shape of a trilinear interpolation isosurface is very
complex, it is very hard to directly compute the exact volu-
metric divergence between it and the extracted isosurfaces.
Instead, we utilize a divide and conquer process that nearly
produces exact volumetric divergence.

In the computation, first volumetric divergence within
each unit cube (i.e., grid cell of the volume) is computed.
Then, V (R) is obtained by summing each cube’s volumet-
ric divergence (i.e., between the trilinear interpolation iso-
surface and the extracted isosurface). Specifically, if V (RC)
denotes the volumetric divergence for a unit cube, where
RC ⊆ R, then

V (R) =
N

∑
j=1

V (RC j ), (3)

where RC j is the volumetric divergence in the jth cube and
N is the number of cubes. Finding each cube’s volumetric
divergence involves first recursively and evenly subdividing
the cube into 8 subcubes until a certain subdivision depth is
reached. The data value at each corner vertex of a subcube
is defined by trilinear interpolation. Then, each subcube is
determined to be inside, outside, or on (i.e., intersecting) the
trilinear interpolation isosurface and labeled as such. In ad-
dition, each subcube is tested to find if it is inside, outside,
or on the extracted triangular mesh isosurface and labeled as
such. The steps to find the subcube’s locational relationships
with the trilinear interpolation and extracted isosurfaces are
given in Sections 3.3 and 3.4, respectively.

One subcube’s locational relationships with the trilinear
interpolation and extracted isosurfaces are shown in Fig-
ure 3. In this and other figures in the paper, a unit cube vertex
marked with a black dot is an inside vertex. In this case, the
subcube is inside the trilinear interpolation isosurface and
outside the extracted isosurface.

When the subcube does not intersect either the extracted
isosurface or the true isosurface, comparing its labels can de-
termine whether it belongs to region RC: if the subcube is in-
side or outside both the trilinear interpolation and extracted

c© The Eurographics Association 2008.

51



Cuilan Wang, Timothy S. Newman, and Jong Kwan Lee / On Accuracy of Marching Isosurfacing Methods

Figure 3: A scenario showing a subcube’s locational rela-
tionship with the trilinear interpolation isosurface (shown in
grey) and the extracted isosurface (shown in yellow) for one
unit cube. The subcube is shown in red.

isosurfaces, then it does not belong to region R; otherwise,
it belongs to region RC and its volume should be included in
V (RC).

If a subcube does intersect either the trilinear interpolation
or extracted isosurfaces, then it will be further subdivided
(unless the subdivision limit has been reached). We term the
smallest cube (i.e., when the subdivision limit is reached)
the final cube. If the final cube still intersects the trilinear
interpolation (or extracted) isosurface, then it is considered
as half inside and half outside the trilinear interpolation (or
extracted) isosurface. For a final cube with volume v, Table 1
shows its contribution to V (RC) for all possible locational re-
lationships with the trilinear interpolation and extracted iso-
surfaces.

The core steps of VDC are given in Figure 4, as function
compute divergence (cube, level). In the function, the cube
parameter contains the locations of and data values at the 8
corner vertices of the cube. Also, level is the current level
of subdivision and the subdivision depth is the maximum
subdivision level. The volumetric divergence for a unit cube
is computed by calling the function with parameters (unit
cube, 1). The VDC is performed for each unit cube.

If the final cube is infinitely small, then the result of the
VDC method is the exact value of V (R). Since our process is
finite, the VDC yields an approximate value for V (R). Later
in this paper, we show experiments that indicate when the
subdivision depth is large enough, this approximation can
be reasonable.

3.3. Subcube vs. Trilinear Interpolation Isosurfaces

Because of the property of linear variation along each axis
of the trilinear interpolation, it is not hard to prove that the
value determined using the trilinear interpolation on the 8
corner values of the unit cube is the same as the value deter-
mined by the the trilinear interpolation function defined by 8
corner values of the subcube (for any point in the subcube).

With Tri. With Extracted Contribution
Interp. Isosurfaces Isosurfaces to V (RC)

inside inside 0
inside outside v
inside on 0.5v

outside inside v
outside outside 0
outside on 0.5v

on inside 0.5v
on outside 0.5v
on on 0

Table 1: Illustration of the final cube’s contribution to vol-
umetric divergence V (RC) for all locational relationships
with the trilinear interpolation and extracted isosurfaces.
The volume of the final cube is v.

Based on this property, it is obvious that if the values at the 8
corner vertices of the subcube are all larger than or equal to
the isovalue, then the data values inside the subcube will be
all larger than or equal to the isovalue and hence the entire
subcube will be inside the region enclosed by the trilinear in-
terpolation isosurface. Similarly, if the values at the subcube
corners are all smaller than the isovalue, then the subcube
will be totally outside the region enclosed by the trilinear in-
terpolation isosurface. Thus, by checking the 8 values at the
subcube corners, the subcube’s locational relationship with
the trilinear interpolation isosurface can be determined.

3.4. Subcube vs. Triangular Meshes

Testing the subcube’s locational relationship with isosurface
triangular meshes is done using the following process. First,
determining if the subcube intersects the triangular mesh
within the unit cube is done using Voorhies’ [Voo92] algo-
rithm to test for cube-triangle intersection. Any subcube that
does not intersect any triangle of the unit cube’s triangular
mesh is either totally inside or outside the region(s) enclosed
by the triangular mesh.

To determine if the subcube is actually inside or outside,
a strategy that tests one point in the subcube is utilized. The
strategy is based on observation of a closed surface mesh
that divides 3D space into two regions: one inside (enclosed
by) this surface, and the other outside this surface. For such
surfaces, if a line segment has one endpoint that is inside
and one endpoint that is outside, it must intersect the surface
an odd number of times. If the line segment has two end-
points that are both inside the surface, then it must intersect
the surface an even number of times. Thus, in our strategy,
we choose a corner vertex, U , (of the unit cube) that has a
data value larger than the isovalue as one endpoint of a line
segment. This point is an inside vertex. We choose the center
of the subcube, F , as illustrated in Figure 5, as the other end-
point. By testing whether the number of intersection points
between line segment UF and the triangular mesh is even or
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               V = V + 1 / 8;

          E = compare subcube and extracted isosurface;
          // E = 1, 0, or −1 if subcube is inside, outside, or on the extracted isosurface, respectively.

               if (level < subdivision depth)

     divide cube into 8 subcubes;

          if (E=−1) or (T=−1)

V=0;     //V is the volume divergence
compute divergence ( cube, level ) {

          // T = 1, 0, or −1 if subcube is inside, outside, or on the trilinear interpolation isosurfaces, respectively.
          T = compare subcube and trilinear interpolation isosurface;

          //if subcube intersects either the extracted or trilinear interpolation isosurface

                    V = V + compute divergence ( subcube, level+1 ) / 8;

}
     return V;
     }

     for each subcube do {

               else

                    V = V + 0.5 / 8;

          //if the deepest subdivision level is not reached, recursively call this function

          //if the deepest subdivision level is reached

          if ((E = 1) and (T = 0)) or ((E = 0) and (T = 1))          //if subcube is in region R

     if ((E = −1) and (T = 0)) or ((E = −1) and (T = 1)) or ((E = 0) and (T = −1)) or ((E = 1) and (T = −1))

Figure 4: Divergence Calculation Function

Figure 5: Illustration of testing the subcube’s locational re-
lationship with triangular meshes.

odd, it can be determined whether F is inside or outside the
triangular mesh. Once F’s status is known, we know if the
whole subcube is inside or outside the triangular mesh.

4. Results

Next, analyses of marching isosurfacing accuracy are re-
ported. Eight datasets, named CT1, CT2, CT3, CT4, MR1,
MR2, MR3, and MR4 are used in testing. The first four are
CT datasets. The last four are MRI datasets. Table 2 de-
scribes characteristics of the datasets, including the number
of active cubes in each dataset for isovalue 70.5. Except for
MR4, all these datasets are from Roettger’s Volume Library.
For the experiments here we have also padded each dataset
with bounding zeros so that isosurfaces will totally enclose
regions of space within the dataset.

Datasets Name Dimension # of Active Cells
MR1 Tomato 256×256×64 4704
MR2 Orange 256×256×64 396364
MR3 Frog 256×256×44 144798
MR4 Human Brain 256×256×72 85908
CT1 Engine 256×256×256 313133
CT2 Lobster 301×324×56 133200
CT3 Monkey Head 256×256×62 194417
CT4 Human Head 128×256×256 453575

Table 2: Volumetric datasets

4.1. Subdivision Depth

As mentioned before, the subdivision depth in dividing the
unit cube into small final cubes defines the precision of the
isosurface volumetric divergence measure V (R). Here, we
report tests that consider the effect of subdivision depth on
the precision of V (R). The tests involved computing V (R) of
a dataset using subdivision depths from 1 to 10, with the
23 case MC applied in each final cube. The results from
the Frog (MR3) and Lobster (CT2) data sets are plotted in
Figure 6. The results show that the volumetric divergence
initially changes greatly but then converges (as subdivision
depth increases). The difference between the subdivision
depth 7 and 10 results are less than 0.007% in both datasets.
If the length of a unit cube side is 1, for the subdivision depth
7, each final cube has a side length 1/27 = 0.0078125.

We also considered the difference in results for the 7 and
10 subdivision depths on a base case-by-base case basis for
the 23 case Marching Cubes. 100 instances of each base case
were randomly generated for Monte Carlo testing as follows.
In these tests, since the datasets were byte-formatted for our
study, the outside labeled vertices were randomly generated
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Figure 6: Volumetric divergence computed by VDC with
subdivision depths 1 to 10

in the range of [0, isovalue); the inside labeled vertices were
randomly generated in the range of (isovalue,255]. Several
isovalues were tested. The maximum divergence in any case
between the level 7 and level 10 results was 0.00027. The
average divergence between these levels was 0.00003. Thus,
even for the worst base case, the difference between 7 and
10 as the terminal level is small. Hence, we used subdivi-
sion depth 7 as the baseline for comparison in the rest of our
experiments.

4.2. Study of MC23 Cases

Next, the volumetric divergence from the baseline trilinear
interpolation isosurface for each base case of the 23 case
Marching Cubes Algorithm is studied. Given an isovalue, for
each base case Monte Carlo testing on 100 instances were
randomly generated in the way described in Section 4.1.
Three isovalues were tested: 50, 128, and 180. For each iso-
value, the average, maximum, and standard deviation of the
volumetric divergences for each base case are shown in Ta-
ble 3. Since in Case 0 and Case 22 all vertices have the same
labels, the isosurfaces don’t intersect the cube. Thus, these
cases have a volumetric divergence of 0.

The results show that for a given isovalue, some cases tend
to have quite large volumetric divergences, such as Cases
13 and 7 for isovalue 50. However, some cases (e.g., Case
2 for isovalue 50) tend to have quite small volumetric di-
vergences. Which case may have large (or small) volumet-
ric divergences is somewhat dependent on the isovalue. Fig-
ure 7 (a)–(c) display renderings of the instance with maxi-
mum volumetric divergence for isovalue 50. In this case, it
was Case 13. (The figure shows the MC23 result, the trilin-
ear interpolant isosurface, and the two overlaid.) It is obvi-
ous that the reason that Case 13 has large volumetric diver-
gence is because face ambiguity, while resolved, was not re-
solved consistent with the trilinear interpolant. Figure 7 (d)–
(f) show the instance with maximum volumetric divergence

Case
Isovalue

50 128 180
Max. Avg. Std. Max. Avg. Std. Max. Avg. Std.

0 0 0 0 0 0 0 0 0 0
1 0.3390 0.1365 0.0919 0.0824 0.0205 0.0204 0.0188 0.0033 0.0041
2 0.3388 0.1716 0.0608 0.1502 0.0432 0.0264 0.0721 0.0165 0.0130
3 0.6260 0.3518 0.1138 0.3310 0.0794 0.0660 0.0691 0.0129 0.0145
4 0.6391 0.3077 0.1905 0.1752 0.0385 0.0374 0.0396 0.0064 0.0084
5 0.2693 0.1113 0.0419 0.2400 0.0859 0.0441 0.2441 0.1185 0.0632
6 0.5973 0.3816 0.0921 0.4119 0.1337 0.0893 0.1669 0.0353 0.0359
7 0.6647 0.5120 0.1213 0.5279 0.1815 0.1428 0.2706 0.0394 0.0530
8 0.2134 0.0529 0.0455 0.1608 0.0408 0.0255 0.1732 0.0422 0.0301
9 0.2605 0.1441 0.0407 0.2055 0.0912 0.0419 0.3358 0.1500 0.0599
10 0.5145 0.3489 0.0829 0.4181 0.2304 0.1096 0.3767 0.0672 0.0749
11 0.2588 0.1721 0.0376 0.2404 0.1173 0.0415 0.3289 0.1473 0.0486
12 0.4306 0.2305 0.0783 0.3680 0.1806 0.0771 0.3551 0.1363 0.0810
13 0.7461 0.6538 0.0509 0.7340 0.3744 0.1972 0.5570 0.0798 0.1094
14 0.2979 0.1760 0.0362 0.3056 0.1206 0.0432 0.3040 0.1587 0.0485
15 0.3357 0.2108 0.0636 0.4010 0.2315 0.0864 0.3543 0.1667 0.0694
16 0.4239 0.2249 0.0690 0.4426 0.2892 0.0759 0.4900 0.1715 0.0792
17 0.2360 0.0782 0.0425 0.1719 0.0677 0.0333 0.1481 0.0755 0.0274
18 0.0234 0.0028 0.0040 0.2764 0.0566 0.0572 0.5952 0.2187 0.1561
19 0.1592 0.0527 0.0346 0.2562 0.1046 0.0431 0.2042 0.1047 0.0288
20 0.0657 0.0089 0.0113 0.1149 0.0400 0.0253 0.2336 0.1088 0.0504
21 0.0120 0.0008 0.0016 0.1234 0.0186 0.0214 0.2940 0.0706 0.0611
22 0 0 0 0 0 0 0 0 0

Table 3: Volumetric Divergence for 23 Cases of MC23

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Max. volumetric divergence case for Isovalue 50
(Case 13): (a)-(c), Isovalue 128 (Case 13):(d)-(f), Isovalue
180 (Case 18): (g)-(i). (a), (d), and (g) show the extracted
isosurfaces. (b), (e), and (h) show the trilinear interpolation
isosurfaces. (c), (f), and (i) show overlays of the isosurfaces.

(i.e., Case 13) for isovalue 128. Figure 7 (g)–(i) show the
instance with maximum volumetric divergence for isovalue
180. The base case here was Case 18. For this instance, the
internal ambiguity is not resolved correctly.

In summary, MC23 isosurfacing produces only
marginally accurate results for some base cases. Mor-
ever, for some isovalues, some case can exhibit meshes that
are quite errant.
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4.3. Accuracy of Marching Isosurfacing Algorithms

Next, we report an evaluation of several marching isosurfac-
ing algorithms based on the volumetric divergence between
the algorithms’ isosurfaces and the true trilinear interpola-
tion isosurfaces. To our knowledge, the work here is the first
quantification of the accuracy of classic marching isosurfac-
ing algorithms versus the trilinear interpolant isosurface. Fo-
cus here is on isosurfaces that are watertight.

The algorithms tested include 23 case Marching Cubes
(MC23), Discretized Marching Cubes (DMC), Dividing
Cubes with dividing depths of 1, 2, 3, and 4 (DC1, DC2,
DC3, and DC4), and Marching Tetrahedra (MT). DMC was
implemented to produce mesh vertices at midpoints of inter-
sected cube edges. The connection topologies used for DMC
were based on the 23 base cases that result from use of only
rotational symmetry. The Dividing Cubes algorithms were
also based on MC23. The MT used subdivision of each cube
into 6 tetrahedra.

Several isovalues were tested for the 8 datasets. Due to
the spacing limit, we only reported results for isovalue 70.5.
The results we report include the average, maximum, and
standard deviation of the volumetric divergence per cube.
Table 4 summarizes these results. Three primary conclusions
can be drawn from the results. First, it is clear that MC23 is
more accurate than MT, even though MC23 produces fewer
mesh facets than MT. In MT, the intersection points’ loca-
tions are computed using linear interpolation along the diag-
onals of the cube faces and diagonals of the cubes. Those lo-
cations are not on the true trilinear interpolation isosurfaces.
Thus, the mesh vertex locations do not always well-match
locations on the trilinear interpolation isosurface. Second,
the results show that DMC has even less accuracy than MT.
DMC’s poor accuracy is due to its use of edge midpoints
as mesh vertices. Third, the results also show that Dividing
Cubes (DC) has better accuracy than MC23. In DC, the mesh
vertex points on each final cube at least are on the true tri-
linear interpolation isosurface. Since DC has more triangle
vertices on the true trilinear interpolation isosurfaces than
those from MC23 (due to DC’s subdivisions), DC is more
accurate. In addition, the deeper the dividing cube depth, the
more vertices there are on the true isosurfaces, thus the bet-
ter the triangular mesh becomes. The results reflect this ten-
dency among the different levels of DC and show a factor of
3 to 4 accuracy improvement for each increase in depth here.

Lopes and Brodlie’s marching isosurfacing
method [LB03] was also tested on three of the datasets,
Tomato (MR1), Engine (CT1), and Lobster (CT2). The
average volume divergence per cube for them are 0.0091,
0.0063, and 0.0033, respectively. We note that the Lopes
and Brodlie method, of course, achieved good accuracy
because of its improved topological correctness in the
interior of the cube. It is also interesting that DC even with
just one subdivision is already almost as accurate as the
Lopes and Brodlie results (e.g., for MR1). Lastly, we note

Data DMC23 MT MC23
Dividing-MC23

1 2 3 4

MR1
Max. 0.6788 0.4530 0.4068 0.1201 0.0305 0.0087 0.0041
Avg. 0.0886 0.0393 0.0310 0.0096 0.0032 0.0012 0.0005
Std. 0.0964 0.0553 0.0532 0.0135 0.0040 0.0014 0.0006

MR2
Max. 0.9114 0.6403 0.7299 0.2140 0.0532 0.0139 0.0065
Avg. 0.1141 0.0609 0.0482 0.0136 0.0043 0.0016 0.0006
Std. 0.1110 0.0743 0.0711 0.0167 0.0047 0.0016 0.0006

MR3
Max. 0.9159 0.6134 0.7162 0.1587 0.0398 0.0116 0.0044
Avg. 0.1137 0.0451 0.0352 0.0110 0.0038 0.0015 0.0006
Std. 0.0996 0.0569 0.0553 0.0138 0.0041 0.0015 0.0006

MR4
Max. 0.7422 0.6053 0.5802 0.1587 0.0419 0.0138 0.0042
Avg. 0.0911 0.0401 0.0362 0.0114 0.0037 0.0013 0.0005
Std. 0.0944 0.0571 0.0611 0.0158 0.0045 0.0015 0.0006

CT1
Max. 0.4936 0.2863 0.3841 0.1458 0.0458 0.0181 0.0054
Avg. 0.1256 0.0076 0.0121 0.0054 0.0023 0.0010 0.0005
Std. 0.0916 0.0101 0.0289 0.0098 0.0033 0.0013 0.0006

CT2
Max. 0.8304 0.5503 0.5774 0.1701 0.0476 0.0122 0.0041
Avg. 0.1091 0.0306 0.0281 0.0092 0.0033 0.0013 0.0006
Std. 0.0934 0.0470 0.0499 0.0128 0.0039 0.0015 0.0006

CT3
Max. 0.7439 0.5182 0.4328 0.1330 0.0408 0.0110 0.0060
Avg. 0.1165 0.0256 0.0199 0.0075 0.0028 0.0012 0.0005
Std. 0.0907 0.0322 0.0364 0.0109 0.0035 0.0013 0.0006

CT4
Max. 0.7658 0.5688 0.5500 0.1777 0.0508 0.0169 0.0313
Avg. 0.1342 0.0460 0.0389 0.0125 0.0039 0.0014 0.0007
Std. 0.1250 0.0558 0.0561 0.0143 0.0042 0.0015 0.0021

Table 4: Volumetric divergence per cube for several march-
ing isosurfacing methods with isovalue 70.5

that testing on other data suggests that RMS and Metro
schemes [CRS98] sometimes lead to mistaken conclusions
about the relative goodness of Lopes and Brodlie results.

One visual comparison between the marching isosurfac-
ing algorithms is shown in Figure 8. Figure 8 (a) shows one
view of a Lobster dataset isosurface from MC23. The region
in the yellow box in Figure 8 (a) is enlarged in the other sub-
figures to show the details of the isosurfaces. In those results,
it is evident that DMC produces the worst isosurface shape.
(Its isosurface is much more jagged than the others.) MT is
also poor as it produces some extraneous, false features due
to its topological incorrectness. These features are most vis-
ible near the right lower corner where there are wave-like
features and some jagged edges to isosurface components.
MC23 produces medium quality isosurfaces. The isosurface
extracted by the Lopes and Brodlie method is smoother and
has more topological accuracy than the first three methods.
The DC results are quite similar to the Lopes and Brodlie
results. As the subdividing depth of DC increases, the ex-
tracted isosurface becomes quite smooth.

5. Conclusion

This paper introduces use of volumetric divergence to as-
sess isosurfacing accuracy. This metric allows evaluation of
the meshes produced by common marching isosurfacing ap-
proaches versus the isosurface given by trilinear interpola-
tion. Our study shows that DMC has the worst accuracy
among all the marching isosurfacing methods we tested. MT
and MC23 produce medium quality isosurfaces and don’t al-
ways maintain good topological correctness. It is also worth
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Figure 8: Zoom-in Rendering Comparisons. A whole view of
Lobster dataset rendered by MC23 is shown in (a). Zoomed-
in views of isosurfaces extracted by DMC, MT, MC23,
Lopes’ method, DC1, DC2, DC3, and DC4 for the yellow
box region in (a) are shown in (b), (c), (d), (e), (f), (g), (h),
and (i), respectively.

noting that MT tends to produce worse results than MC23,
despite its production of a mesh with more facets. The Lopes
and Brodlie method appears to have similar accuracy as DC
with subdivision level 1. Both methods can maintain good
topological correctness. However, as the subdividing depth
of DC increases, DC has higher accuracy. Thus, DC, which
is straightforwardly implemented, is a good choice for pro-
ducing accurate isosurface meshes that are also face ambi-
guity free.
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