
Partially Ordered Search Indices in the Organization

of a Fixed Hierarchy 


Jorma Skyucl and Tapio Takala 

Helsinki University of Technology 

Department of Computer Science 


SF-02150 Espoo, Finland 


1. Introduction 

The mapping of even very advanced algorithms directly to hardware does not 
typically bring good results as these algorithms are originally designed for sequen­
tial processing. However, the power of the modern integration technology lies in its 
ability to produce high volumes of reasonably complex elements at moderate cost. 
For utilization of these possibilities the algorithms and data structures already 
developed must be redesigned for parallel computation. 

3-D models of natural objects contain large amounts of geometric data which 
must be efficiently manipulated, stored and retrieved. Traditionally computational 
and storage oriented problems have been kept strictly apart, and hardware 
enhancements have been proposed for the computational problems only. This has 
been largely due to the general purpose computer architectures which allow 
acceleration of computation with additional hardware easily, but keep the 110­
facilities strictly built into the original system architecture in an unmodifiable for­
mat. This has introduced severe bottlenecks into the system capacity at IIO-level, 
and several attempts have been made to enhance the cDmmunication to the peri­
pheral world with system integrated IIO-processors. 

The manipulation of geometric model data involves elaborate searches through 
the data structure containing the model, and these operations are comparable to the 
computational burden introduced by the calculations of geometric transformations. 
A search engine architecture equivalent to geometric transformation engines can be 
developed for hardware acceleration of data structure operations, but the present 
day level of integration technology also gives a possibility to propose a unified 
architecture. This line of approach has a network processor as a backbone. The 
intention is to create local domains of the geometric model with their own process­
ing and storage capacity. Global operations considering the whole model are 
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composed of local domain operations involving both local data and local process­
ing. Network wide algorithmic rules, which can be applied locally at each stage. 
control the conversions between local and global data sructures. The latter exists 
only in a logical sense. Actually its instances are assembled from local elements 
only when needed, for example for image generation. 

The aim of this paper is to introduce the outline of the algorithms needed to 
establish this kind of a distributed geometric model into a network processor of 
prefixed structure. 

2. 	 The centralized approach and network processing 

At the base level the geometric entities involved are points, line-segments. sur­
face areas and volumes. These elements must be accessed with attached geometric 
meanings, and thus special data structures and data base solutions have to be 
developed for their retrieval and manipulation. Utilizing a general purpose com­
puter as a means of implementation this has been a software design problem in the 
field of available programming languages and data base construction tools. 

The extendible cell idea [1] manages the potentially infinite amount of infor­
mation by splitting the space into cells recursively until everywhere the information 
contained in one cell fits into a physical storage element. The physical realization of 
these storage elements is supposed to be a disk block. The blocks are maintained in 
a hierarchy by using a spatial directory dividing the study area into a coverage of 
non-overlapping rectangular cells. The splitting means halving along one coordinate 
axis only, not by all axes as octtree, where splitting divides the ceU automatically 
into 8 subcells whether needed or not. This introduces a kind of adaptiveness to the 
data structure as only a necessarily needed amount of cell halvings is done. 

This method has a serious drawback for distributed hardware implementation. 
The cell directory grows in the direction where most entities reside as no balancing 
mechanism is introduced to the system. In disk realization this means only longer 
access pointer chains, but introduces no direct physical resource management prob­
lems. If we imagine our physical world to consist of a network of separate proces­
sors each of which contains its private storage we must simulate the pointer access 
method by a packet switched network. In processor world the physical connections 
are rigid and cannot be easily mapped to logical connections (reflecting another 
architecture) without severely sacrifying the performance. As we do not not know 
in advance the grow direction of the directory tree, the possibility of getting a 
severe mismatch between the physical and logical stuctures is obvious. 

3. 	 The outline of a distributed approach 

In order to develop a distributed solution for our problem we must be able to 
distribute the components of any 3-D model to our architecture. Because of the 
constraints imposed by the rigid hardware world we cannot adopt the flexible solu­
tions developed for software directly. The idea of using hierarchy for managing the 
unlimited spatial distribution is a useful concept, but needs modifications for 
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utilization in fixed environment. The first requirement for the hierarchy system is 
that it must keep itself in balance in all conditions. The basic idea of B-tree gives 
the framework for a system which grows in balance. The mechanism for balancing 
is creation of new intermediate nodes to the tree. In the hardware world this causes 
similar kinds of allocation problems as mapping of an imbalanced dynamically 
changing binary tree to our grid network. This is why we have to introduce a new 
kind of balancing mechanism which avoids the splitting of intermediate nodes. This 
neeessarily then involves transfer of data from one nod~ to the other as a means for 
balancing instead of node splitting. The processor grid network with reasonably fast 
interprocessor communication channels can do this in parallel for different parts in 
the tree supposed the network structure is kept stable. 

At the beginning the processor tree is empty and all cell borders are undeter­
mined. As elements (polygons or other simple geometric primitives) are brought 
into the system, they are first saved at the root node and then gradually transported 
towards the leaf store cells (processors). As the balance limit of a single processor 
cell is exceeded, geometric elements from left and right extremes are pushed to the 
respective son nodes. If the geometric outline of a single element does not fit into 
the space volume that can be associated with the son cell processor, that piece of 
geometric information is untransferable and must reside at the parent node whose 
extents cover the whole volume of interest. In the worst case this node is the root 
of the tree, which covers the whole space. However, a well behaving geometric 
model consisting of faceted elements does not contain large amounts of such ele­
ments. 

Let us inspect the case of breaking the balance limit. Balance limit is a tres­
hold parameter of our processor system. It depends on the state of the system and 
thus varies by time. It tells the amount of imbalance tolerated by the directory sys­
tem until balance enforcement procedures are started. Typically this parameter is 
expressed as ratio between memory load percentages of neighbouring processors. In 
order to prevent balancing of insignificant loads, a tresholding action is included to 
the specification of the balance limit. Thus the balance limit index and its associ­
ated measures can be expressed as: 

IF ( Imbalance ratio> balance limit AND fill level> treshold ) 

THEN lake measures for -balanCing 


The measures to be taken is transfer of geometric information, i.e. polygons or 
comparable primitives, between father and son, in both directions depending on 
imbalance. The element chosen to be transferred is the one nearest to the extent 
border. The distance measure used in this connection is the minimum offset from 
the border line of any of the defining points of the element as measured in terms of 
the dividing coordinate. 

The transfer operations lead to the destruction of the accurate border line con­
cept which is valid in space division systems [1]. In most cases the sets of elements 
are not linearly separable and we cannot find a new border line dividing the space 
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between these element groups and not splitting any of the elements. As element 
splitting is prohibited in order to avoid the generation of artificial geometric infor­
mation [2], we must accept an overlapping directory entry to the father node. It 
consists of six borders dividing the space with respect to the same coordinate axis: 
The left and right border line sets (LJ,Lr) and (Rl,Rr) tell the limits of the linearly 
separable left and right halfspaces (L and R in Figure 1) and the central border set 
(CI,Cr) tells the limits of nonseparable common area, later named as the overlap­
ping space (C in Figure I). 

LI CI Lr RI Cr Rr 

R 

m 

4 
~;: ;:: :: :::: ::: ::;:; I elements belonging to L 

elements belonging to R 

elements belonging to C 

Figure 1: The division of geometric elements in the hierarchy with border lines. 

By linearly separable elements we mean geometric elements whose extents do not 
overlap at the coordinate axis of inspection. The meaning of this construct is that 
geometric information considering the overlapping space between CI and Cr is logi­
cally stored with the directory of the father node, even in case of overflow stored in 
either of the son nodes. Thus a search procedure for elements at point x is distri­
buted according to the requested coordinates: 
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ASSERT LI <= lr AND RI <= Rr AND CI <= Cr ; 

ASSERT lr < = RI AND CI < = RI AND Lr < = Cr; 

IF LI < x < Lr THEN search in left subspace; 

IF RI < x < Rr THEN search in right subspace; 

IF CI < x < Cr THEN search in overlapping space; 

; the third alternative may be valid in addition to 

; either of the formers 


In terms of search operations the handling of elements residing in the overlap­
ping space is costly as it usually needs treatment of two space cells, and must thus 
be restricted to minimum. An advantage of this schema is that different search 
routes can be processed in parallel in the tree and the results of the different search 
paths just have to be combined in the father node. 

To formalize the problem for a more detailed analysis it can be simplified to 
one dimension. Then it reduces to the problem of constructing a B-tree of one­
dimensional coordinate intervals (i.e. the extents of geometric elements) as key 
values. It differs from the construction of a usual ordered binary tree in that inter­
vals are only partially ordered keys because they can overlap. 

4. 	 The balancing with intervru keys 

Our problem is to keep in balance a hierarchical network of fixed structure. In 
this case we do not know anything about the distribution or dynamical behaviour 
of the incoming data. The fixed structure of the network hierarchy prevents the use 
of conventional software methods which base on node splitting (B-trees). The space 
division in our tree structure is determined adaptively by the incoming data ele­
ments and the balancing principles mentioned above are obeyed to strive towards a 
bruanced distribution. 

In the following simplified analysis we describe each geometric element as a 
number pair (XI,Xr) which we associate with the extents of that element in a partic­
ular dimension. In a real 3-D situation this means a bounding box of 3 intervrus as 
constraints are given along each coordinate axis. In the hierarchy of processors each 
node actually considers only one coordinate in space, thus naturally reducing the 
problem into I-D. In the 1-0 case our sets of border lines are reduced to three 
number pairs (U,Lr), (Rl,Rr) and (CtCr) defining the dimensions of the node and 
its subtrees. We have already presented a search procedure for elements including a 
single point, and the search procedure for an interval is an extension of that: 
instead of searching for any element including a given point we can search for ele­
ments in touch with a given interval. In this case the search procedure can be 
divided into four subcases which we call for search classes in the following: 
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1) The element is included into the search interval, i.e. the both end points (EI,Er) 
of the searched element E belong to the search interval (XI,Xr). 

2) Only the left endpoint El of the element belongs to interval (Xl,Xr). 

3) Only the right endpoint Er of the element belongs to interval (XI,Xr). 

4) The search interval (Xl,Xr) is included to the element (El,Er). 

These can be recognized with the following function, which takes two intervals as 
arguments, the former of which is the search interval X and the latter (A) is the 
extents of the node possibly containing the element E. The boolean function 
returns a truth value FALSE if the area cannot contain any acceptable element 
according to the rules presented for each case. 

BOOLEAN FUNCTION may intersect (X,A); 

in CASE 1 : RETURN (AI inXOR Ar in X OR XI in A OR Xr in A) 


; the intervals A and X intersect 

in CASE 2 : RETURN (Xr in A) 


; right endpoint of search interval X must be in A 

; because the right end of X must belong to any acceptable E 


in CASE 3 : RETURN (XI in A) 

; symmetric with case 2 


in CASE 4 : RETURN (XI in A AND Xr in A) 

; both endpoints of X must belong to any acceptable E 


Thus for all classes we can write a common procedure using the defined function 
may_intersect for searching intervals: 

ASSERT LI <= Lr AND RI <= Rr AND CI <= Cr ; 

ASSERT Lr < = RI AND CI < = RI AND Lr < = Cr; 

IF may intersect (X,L) THEN search in left subspace; 

IF may-intersect (X,R) THEN search in right subspace; 

IF may-intersect (X,C) THEN search in overlapping space; 

; if none of the tests is valid the search along that path 

; is terminated with the given key pair 


In order to construct the hierarchy we represent the steps needed for adding a new 
interval. We begin with an empty tree. No space division is yet determined. As the 
first element is entered to the tree the border pair (Cl,er) of the root is set equal to 
the first coordinate pair (NI,Nr) introduced to the system. The subtrees on both 
sides stay empty and their borders are thus still undetermined. As the balance tres­
hold of the root node is exceeded, the first attempt for balancing is made. In this 
case it means distribution of the elements gathered in the root further down in the 
tree. From both sides the elements located at maximum distance from the weight 
point of the center area are chosen for transportation to the respective son nodes. 
Both of the sons act as roots of their respective subtrees and handle the initializa­
tion and downward balancing measures exactly as their father, the root of the 
whole tree. The leaf nodes with no sons contain only the center area and cannot 
balance downwards. 
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The algorithmic outline is the following: 

INSERT (NI, Nr); 

ASSERT LI <= Lr AND RI <= Rr AND CI <= Cr ; 

ASSERT Lr <= RI AND CI <= RI AND Lr <= Cr; 


BEGIN 

put interval in center area; 

IF CI > NI THEN CI := NI; 

IF Cr < Nr THEN Cr := Nr; 


END; 

IF imbalance ratio> balance limit THEN 
BEGIN ­

;choose either the leftmost (Min Xr) or the rightmost (Max XI) 

;object of C as the object X 


in CASE (Min Xr) DO 

BEGIN 


IF Xr > RI THEN RETURN balancing to left not succeeded; 

;placement to left is impossible due infringement of the 

;extent of the right subtree 

IF Xr > Lr THEN Lr Xr; 

;widen the the right border of the left subtree if needed 

IF XI < LI THEN LI XI; 

;widen the the left border of the left subtree if needed 

INSERT X to the left subtree; 

RETURN successfully balanced to left; 


END; 

in CASE (Max XI) DO 

BEGIN 


IF XI < Lr THEN RETURN balancing to right not succeeded; 

;placement to right is impossible due infringement of the 

;extent of the left subtree 

IF XI < RI THEN RI XI; 

;widen the the left border of the right subtree if needed 

IF Xr > Rr THEN Rr := Xr; 

;widen the the right border of the right subtree if needed 

INSERT X to the right subtree; 

RETURN successfully balanced to right; 


END; 

END; 


When there is no room any more for balancing with distribution downwards 
only, the spatial division of the tree created during the distribution process is 
adjusted. Geometric elements from the most loaded node are pushed upwards to 
the center area of the father, which in turn tries to balance by pushing downwards 
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to the opposite side This procedure involves compressing the borders of the 
transmitting node, and the element to be pushed upwards is chosen by the criterion 
of maximum border adjustment. 

With all data configurations this may not be possible as suitable elements for 
downward pushing are not found. In the worst case the center area grows large and 
for this situation an overflow handling mechanism exists (if we overload the storage 
capacity of one node). 

5. The simulation of the network architecture 

A simulator is under construction to test this network processor architecture 
with a real geometric model. 
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