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Figure 1: Animating the fluid into the EG logo with the proposed method.
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Abstract

In this paper we address the fluid control problem, where an arbitrary density distribution (a shape of any kind)
is given, and forces are exerted to get the fluid to flow into this shape and stop when the target distribution is

reached. We present a real-time solution.

1. Introduction

Fluid simulation means the mimicking of real fluids by solv-
ing the Navier-Stokes equations:

W VY= - Vp+ BV, (1)
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where i is velocity field, p stands for the density, p for pres-
sure, u/p denotes the kinematic viscosity of the fluid, which
is the ratio of dynamic viscosity u and the density, and dext
is the acceleration caused by external forces. The advection
term (i - V)i shows up because the fluid element is not fol-
lowed in the Eulerian viewpoint, but the location in focus
is fixed to the lattice points of a static grid. This equation
expresses the conservation of momentum. In addition, we
should also enforce mass conservation by V - = 0.

Fluid control, on the other hand, is the determination of
parameters in a way that the resulting fluid motion follows
a prescribed behavior. We have to find external forces that
make the density field converge to a target density. Several
solutions exists to solve the fluid control problem, such as
Jos Stam’s adjoint method [MTPS04], or the control of flu-
ids on triangle meshes [RTWT12]. The algorithm of Shi and
Yu adds a long range force field to even out the distribution
on macroscopic level, and a short range field to carve out
the fine details [SYO04]. Short range force field is obtained
as minimizing a functional that ensures that density change
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is maximal in excess density areas, the flow is divergence
free and the alignment of the velocity and the gradient of the
density. The computation of the short range forces may take
several minutes in each frame.

Fluid stopping is an essential part of fluid control. When
the target density is obtained, the converged state must be
maintained in a natural way. The most intuitive solution for
this is to increase the viscosity, i.e. the friction to dissipate
the kinetic energy and to make the fluid stop.

2. The new method

In this paper, we present a simple method for real-time fluid
control. We aim at a dynamic balance where the objective
is satisfied by a constantly moving fluid. Instead of com-
plicated short range force computation, we let the pressure
field do the local tuning of the densities. To help the pres-
sure field, when the target density is approximately reached,
the total internal force, including both the pressure and the
friction, is scaled up.

Our long range force field is similar to [SY04]. If some
part of the fluid domain has excess density, meaning that
the density at point j, p;, is higher than the target density
p’j given by the input distribution, the region will transport
density by exerting force towards the direction of its neigh-
borhood for those who have lower density than the target.
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The exerted force weakens with the square distance. The ac-
celeration due to this force field is
11+ =
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where c is a constant factor to control the magnitude of the
control force field, 7;; points from grid point i to j and su-

perscript © denotes replacing negative values by zero.

Fluid stopping strategy decides what happens after the tar-
get density is reached. The most straightforward solution is
to increase the viscosity to a very high value to “freeze” the
fluid in convergent subdomains. The results will remain cor-
rect, but not very lifelike and generally unconvincing. Here
we address the shortcomings of this approach by introduc-
ing a scaling factor s not only for the friction but for the
total internal force of the fluid, which includes the pressure
as well. This idea may sound counterintuitive: why speed
up the fluid at regions where it already looks correct? Let
us consider an example, where the target distribution can be
reached only by going through a narrow choke point. When
the fluid starts freezing, it prevents further fluid movement,
making it impossible to get density through. This scenario
shows up for almost every practical case on closed shapes
when the system gets close to the state of convergence.

Note that scaling both the friction and the pressure is
equivalent to decreasing the density while keeping the dy-
namic viscosity constant. As the fluid is stable for arbitrary
positive density because the energy is dissipated by the fric-
tion, the introduced scaling does not endanger the stability of
the simulation. Intuitively, classical freezing of the fluid can
be associated with the “after you are done, just stop and rest”
behavior, as opposed to simultaneously scaling up the pres-
sure and the friction, which would mean more like “after you
are done, start helping others”. This behavior will not only
allow the fluid to flow through narrow choke points, but ef-
fectively transfer density to neighboring regions of poor con-
vergence and preserve fluid movement after the target den-
sity is reached.

Putting it all together, the Navier-Stokes equation is mod-
ified and the internal force is scaled up by s where the actual
density is close to the target density. The scaled up inter-
nal force will maintain some motion even close to the con-
verged state when the control force drops to zero. The mod-
ified equation is:
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where 8 is small value to keep the fluid in motion after con-
vergence when the actual density is equal to the target den-
sity within error threshold €. This technique is capable of
guiding the fluid towards the target distribution in real-time.

Uncontrolled flow New method

Figure 2: Fluid simulation without control forces, only
boundary conditions are used (left). The example shows that
even if the fluid is locked inside the domain of interest, it is
highly unlikely that it would suddenly flow into the shape of
a star. The proposed method provides good coverage of the
target density, and is aware of the regions of poor conver-
gence, which are constantly helped out by nearby regions
(right). The same amount of density is used in both cases.

3. Results

We compared the new method to the uncontrolled one,
where Neumann-type boundary conditions are defined but
no control force field is applied. This uncontrolled flow does
not have a desirable degree of convergence (left image of
Figure 2). The new is unable to handle any amount of den-
sity which is not near or inside the target distribution domain.
The results using the new method were rendered in real-time
and are shown in the right image of Figure 2, which, using
the same amount of density, was able to achieve fast conver-
gence.

4. Conclusions

In this paper, we proposed a novel algorithm to the fluid con-
trol problem, where we scaled up the total internal force in
converged regions instead of computing complicated short
range force field and freezing the fluid.
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