
Continuously-Adaptive Haptic Rendering

Jihad El-Sana1 and Amitabh Varshney2

1 Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel

jihad@cs.bgu.ac.il
2 Department of Computer Science, University of Maryland at College Park,

College Park, MD 20742, USA

Abstract. Haptic display with force feedback is often necessary in sev-

eral virtual environments. To enable haptic rendering of large datasets we

introduce Continuously-Adaptive Haptic Rendering, a novel approach to

reduce the complexity of the rendered dataset. We construct a continu-

ous, multiresolution hierarchy of the model during the pre-processing and

then at run time we use high-detail representation for regions around the

probe pointer and coarser representation farther away. We achieve this

by using a bell-shaped �lter centered at the position of the probe pointer.

Using our algorithm we are able to haptically render one to two orders

of magnitude larger datasets than otherwise possible. Our approach is

orthogonal to the previous work done in accelerating haptic rendering

and thus can be used with them.

1 Introduction

Haptic displays with force and tactile feedback are essential to realism in virtual

environments and can be used in various applications such as medicine (virtual

surgery for medical training, molecular docking for drug design), entertainment

(video games), education (studying nano, macro, or astronomical scale natural

and science phenomena), and virtual design and prototyping (nanomanipulation,

integrating haptics into CAD systems). Humans can sense touch in two ways:

tactile and kinesthetic. Tactile refers to the sensation caused by stimulating the

skin nerves such as by vibration, pressure, and temperature. Kinesthetic refers

to the sensation from motion and forces, which trigger the nerve receptors in the

muscles, joints, and tendons.

Computer haptics is concerned with generating and rendering haptic stim-

uli to a computer user, just as computer graphics deals with visual stimuli. In

haptic interface interaction, the user conveys a desired motor action by physi-

cally manipulating the interface, which in turn provides tactual sensory feedback

to the user by appropriately stimulating her/his tactile and kinesthetic sensory

systems. Figure 1 shows the basic process of haptically rendering objects in a

virtual environment. As the user manipulates the generic probe of the haptic

device, the haptic system keeps track of the position and the orientation of the

probe. When a probe collides with an object, the mechanistic model calculates

the reaction force based on the depth of the probe into the virtual object.

G
e
o
m
e
t
r
y

I
n
f
o
r
m
a
t
i
o
n

Forward
Kinematices

Inverse
Kinematics

Force
Mapping

Servo
Loop

Collision
Detection

Generic Probe
Information

Modified
Force

Applied
Force

Contact
Data

Human
Machine
Contact

Touch
Effects

Fig. 1. The haptic rendering processes

Several haptic techniques have been developed to haptically render 3D ob-

jects which can have either surface-based or volume-based representation. Haptic

interaction in virtual environment could be Point-based or Ray-based. In point-

based haptic interaction only the end-point of the haptic device, known as Haptic

Interface Point (HIP), interacts with the objects. In ray-based haptic interaction,

the generic probe of the haptic device is modeled as a �nite ray. The collision is

detected between this ray and the object, and the orientation of the ray is used

in computing the haptic force feedback. In this approach the force reection is

calculated using a linear spring law F = kx.

In visual rendering several techniques are used to enhance the interactivity

and improve the realism of the rendered objects. Smooth shading and texture

mapping are good examples of these techniques. Similar algorithms are used in

haptic rendering to convey the tactual feeling of the inspected objects. Some of

these approaches have been adapted from graphics rendering while others have

been developed exclusively for haptic rendering.

2 Previous Work

In this section we overview some of the work done in haptics rendering for virtual

environment applications. Haptic rendering has been found to be particularly

useful in molecular docking [3] and nanomanipulation [19].

Randolph et al. [13] have developed an approach for point-based haptic ren-

dering of a surface by using an intermediate representation. A local planar ap-

proximation to the surface is computed at the collision point for each cycle of

the force loop. The reaction force vector is computed with respect to the tangent

plane. This approach has one major drawback { undesirable force discontinuities

may appear if the generic probe of the haptic device is moved over large distances

before the new tangent plane is updated. An improvement to this method has

been presented by Salisbury and Tarr [17].

Basdogan et al.[2] have developed a ray-based rendering approach. The generic

probe of the haptic device is modeled as a line segment. They update the sim-

ulated generic probe of the haptic device (stylus) as the user manipulates the

actual one. They detect collisions between the simulated stylus and the virtual

objects in three progressively nested checks: (a) the bounding boxes of the vir-

tual objects, (b) the bounding box of appropriate triangular elements, and (c)

appropriate triangular elements. They estimate the reaction force by using a

linear spring law model.

Ruspini et al. [16] introduce the notion of proxy on the haptic system as a

massless sphere that moves among the objects in the environment. They assumed

that all the obstacles in the environment could be divided into a �nite set of

convex components. During the update process, the proxy attempts to move to

the goal con�guration using direct linear motion.

Gregory et al. [8] have developed an eÆcient system, H-Collide, for comput-

ing contact(s) between the probe of the force-feedback device and objects in the

virtual environment. Their system uses spatial decomposition, a bounding vol-

ume hierarchy, and exploits frame-to-frame coherence to achieve a factor of 3 to

20 in speed improvement.

Polygonal or polyhedral descriptions are often used to represent objects in

virtual environments. The straightforward haptic rendering of these objects of-

ten does not convey the desired shape for the user. Morgenbesser and Srinivasan

[15] have developed force shading, in which the force vector is interpolated over

the polygonal surfaces. Haptic rendering has also been successfully pursued for

volumetric datasets [1] and for NURBS surfaces [4]. The sensations of touch

have been conveyed to the human tactile system using textures generated by {

force perturbation and displacement mapping. Force perturbation refers to the

technique of modifying direction and magnitude of the force vector to gener-

ate surface e�ects such as roughness [14]. In displacement mapping the actual

geometry of the object is modi�ed to display the surface details. To improve

the realism of the haptic interaction such as the push of a button or the turn

of a switch, friction e�ects have been introduced. Friction can be simulated by

applying static and dynamic forces in a direction tangential to the normal force.

2.1 Haptic Rendering

The haptic rendering process involves the following three steps:

{ Initializing the haptic device interface and transferring the dataset represen-

tation from the user data bu�ers to the haptic device drivers or API bu�ers.

This step may require translating the data from the user representation to

match the haptic API representation.

{ Collision detection between the elements representing virtual objects and

the probe of the haptic device. Such detection becomes much more complex

when the probe has multiple dynamic �ngers.

{ Estimating the force that the haptic device needs to apply to the user's hand

or �nger. This force is fed to the generic probe.

We would like to reduce the overhead for the above three steps. Di�erent ap-

proaches could be used to achieve this goal. A simple way could be subdivide the

dataset into disjoint cells (using octree or any other spatial subdivision) during

pre-processing. Then at run-time the cells which are within some threshold dis-

tance from the probe pointer are considered in the collision detection and force

feedback estimation. This approach has two drawbacks. First, the selected cells

may eliminate part of the force �eld that a�ects the user. For example, when

haptically rendering a surface as in Figure 2 the user may sense incorrect force

when using spatial subdivision. Second, if the user moves the probe pointer too

fast for the application to update the cells, the user could perceive rough (and

incorrect) force feedback. Another approach to reduce the above overhead could

be to reduce the complexity of the dataset through simpli�cation. Several di�er-

ent levels of detail could then be constructed o�-line. At run time, an appropriate

level is selected for each object. However, switching between the di�erent levels

of detail at run time may lead to noticeable changes in the force feedback which

is distracting. Also, if the objects being studied are very large, this method will

provide only one level of detail across the entire object.

Probe Cursor

Selected Region

Surface

Fig. 2. The use of spatial subdivision may result in incorrect sense of the force �eld

In this paper we introduce Continuously-Adaptive Haptic Rendering { a novel

approach to reduce the complexity of the rendered dataset { which is based on

the View-Dependence Tree introduced by El-Sana and Varshney [6]. We use

the same o�-line constructed tree and at run time we use a di�erent policy to

determine the various levels of detail at the di�erent regions of the surface.

2.2 View-Dependent Rendering

View-dependent simpli�cations using the edge-collapse/vertex-split primitives

include work by Xia et al. [20], Hoppe [10], Gu�eziec et al. [9], and El-Sana and

Varshney [6]. View-dependent simpli�cations by Luebke and Erikson [12], and De

Floriani et al. [5] do not rely on the edge-collapse primitive. Klein et al. [11] have

developed an illumination-dependent re�nement algorithm for multiresolution

meshes. Schilling and Klein [18] have introduced a re�nement algorithm that is

texture dependent. Gieng et al. [7] produce a hierarchy of triangle meshes that

can be used to blend di�erent levels of detail in a smooth fashion.

View-dependence tree [6] is a compact multiresolution hierarchical data-

structure that supports view-dependent rendering. In fact, for a given input

dataset, the view-dependence tree construction often leads to a forest (set of

trees) since not all the nodes can be merged together to form one tree. The

view-dependence trees are able to adapt to various levels of detail. Coarse de-

tails are associated with nodes that are close to the top of the tree (roots) and

high details are associated with the nodes that are close to the bottom of the

tree (leaves). The reconstruction of a real-time adaptive mesh requires the de-

termination of the list of vertices of this adaptive mesh and the list of triangles

that connect these vertices. Following [6], we refer to these lists as the list of

active nodes and the list of active triangles.

3 Our Approach

We have integrated view-dependent simpli�cation with haptic rendering to al-

low faster and more eÆcient force feedback. We refer to this as as continuously-

adaptive haptic rendering. Similar to graphics rendering, Continuously-adaptive

haptic rendering speeds up the overall performance of haptic rendering by re-

ducing the number of triangles representing the dataset. In our approach we do

not need to send the complete surface to the haptic system. Instead, we send

a surface with high details in the region close to the generic probe pointer and

coarser representation as the region gets far from the generic probe.

3.1 Localizing the View-Dependence Tree

The the construction of view-dependence trees results in dependencies between

the nodes of the tree. These dependencies are used to avoid foldovers at run

time by preventing the collapse or merge of nodes before others. Therefore,

these dependencies may restrict the re�nement of nodes, might have otherwise

re�ned to comply with the visual �delity or error metric. In order to reduce such

restrictions we reduce the dependencies between the nodes of the tree. We can

reduce the dependencies by localizing the tree, which refers to constructing the

tree to minimize the distance between the nodes of the tree.

We de�ne the radius of a subtree as the maximum distance between the root

of the subtree and any of its children. We are currently using the Euclidean

distance metric to measure the distance. We can localize a view-dependence tree

by minimizing the radius of each subtree. Since we construct the tree bottom-

up, the algorithm starts by initializing each subtree radius to zero (each subtree

has only one node). Each collapse operation results in a merge of two subtrees.

We collapse a node to the neighbor which result in the minimum radius. It is

important to note that our algorithm does not guarantee optimal radius for the

�nal tree. In practice, it results in fairly acceptable small radius.

3.2 Levels of Detail

When haptically rendering a polygonal dataset we need to detect collisions be-

tween the probe and the dataset and compute the force that the probe supplies

the user at very high rates (more that 1000 Hz). The triangles close to the probe

contribute more to the force feedback and have a higher probability of colli-

sion with the probe. The triangles far from the probe have little e�ect on the

force-feedback and have a smaller probability of collision with the probe.

In our approach we use high-detail representation for regions near the probe

and coarser representation farther away. We achieve this by using a bell-shaped

�lter as in Figure 3(a). In our �lter, the distance from the haptic probe pointer

dictates the level of detail of each region. This �lter could be seen as a mapping

of distance from the probe pointer to the switch value (switch value is the value

of the simpli�cation metric at which two vertices had collapsed at the tree con-

struction time). The surface close to the probe should be displayed in its highest

possible resolution in order to convey the best estimation of the force feedback.

In addition, regions far enough from the probe can not be displayed at less than

the coarsest level. We were able to achieve further speed-up by changing the

shape of our �lter from bell-shaped to multiple-frustums shape. This reduces

the time to compute the switch value of an active node, which needs to be exe-

cuted for each node at each frame. Figure 3(b) shows the shape of the optimized

�leter. This change reduces the computation of distance (from the probe) and

cubic function (which we use to estimate the bell-shaped �lter) to �nd the max-

imum di�erence along any of the three axes x, y, and z. We also allow the user

to change some of the �lter attributes that determine the relation between the

level of detail and the distance between the probe pointer.

(a) (b)

 ���

Fig. 3. Ideal verse optimized �lter

At run time we load the view-dependence trees and initialize the roots as

the active vertices. Then at each frame we repeat the following steps. First, we

query the position and the orientation of the probe. Then we scan the list of

active vertices. For each vertex we compute the distance from the probe posi-

tion, determine the mapping to the switch value domain, and then compare the

resulting value with the switch value stored at the node. The node splits if the

computed value is less than the switch value and the node satis�es the implicit

dependencies for split. The node merges with its sibling if the computed value

is larger than the switch value stored at the parent of this node and the node

satis�es the implicit dependencies for merge.

After each split, we remove the node from the active-nodes list and insert its

two children into the active-nodes list. Then we update the adjacent triangle list

to match the change; and insert the PAT triangles into the adjacent list of the

newly inserted nodes. The merge operation is carried out in two steps, �rst we

remove the two merged nodes from the active-nodes list, and then we insert the

parent node into the active-nodes list. Finally, we update the adjacent-triangles

list by removing the PAT triangles list and merging the two merged nodes tri-

angles (the interested reader may refer to the details in [6]). The resulting set of

active triangles is sent to the haptic interface.

4 Further Optimizations

We were able to achieve further speedups by �ne-tuning speci�c sections of our

implementation. For instance, when updating the active-nodes list and active-

triangles list after each step we replace pointers instead of removing and inserting

them. For example after split, we replace the node with one of its children (the

left one) and insert the second child. Similarly in merge we replace the left child

with its parent and remove the other child. Even though the active lists are lists

of pointer to the actual nodes of the tree, still their allocation and deallocation

requires more time because it relies on the operating system.

The haptic and graphics bu�ers are updated in an incremental fashion. Since

the change between consecutive frames tends to be small, this results in small

changes in the haptic and graphics bu�ers. Therefore, we replace the vertices

and triangles that do not need to be rendered in the next frame with the newly

added vertices and triangles. This requires very small update time that is not

noticeable by the user.

Since the graphics rendering and the haptic rendering run at di�erent fre-

quencies we have decided to maintain them through di�erent processes (which

run on di�erent processors for a multi-processor machine). The display runs at

low update rates of about 20 Hz, while the haptic process runs at higher rates of

about 1000 Hz. We also use another process to maintain the active lists and the

view-dependence tree structure. At 20 Hz frequency we query the haptic probe

for its position and orientation, then update the active lists to reect the change

of the probe pointer. Finally, we update the graphics and the haptic bu�ers. In

this scenario, the graphics component is updated at 20 Hz and runs at this rate

while the haptic component runs at 1000 Hz and is updated at only 20 Hz. To

better approximate the level of detail when the user is moving the probe fast,

we use the estimated motion trajectory of the probe pointer, and the distance

it has traveled since the previous frame to perform look-ahead estimation of the

probe's likely location.

5 Results

We have implemented our algorithm in C++ on an SGI ONYX2 with in�nite

reality. For haptic rendering we have used the PHANToM haptic device from

SensAble Technologies with six degrees of input and three degree of output

freedom. The haptic interface is handled through the GHOST API library (from

SensAble Techologies). This haptic device fails (the servo loop breaks) when it

is pushed to run at less that 1000 Hz frequency.

CHR OFF CHR ON

Dataset Triangles Average Average Average Average

Frame rate(Hz) Quality Frame rate (Hz) Quality

CAD-Obj1 2 K 1500 good 1500 good

CAD-Obj2 8 K 600 bad 1200 good

Molecule 20 K | breaks 1000 good

Terrain 92 K | breaks 1000 good

Table 1. Results of our approach

We have conducted several tests on various datasets and have received en-

couraging results. Table 1 shows some of our results. It shows results of haptic

rendering with (CHR ON) and without (CHR OFF) the use of continuously-

adaptive haptic rendering. For medium size datasets the haptic device works for

some time then fails. When the datasets become larger the haptic device fails

almost immediately because it was not able to run at the minimum required

frequency. This failure could be the result of failing to �nish the collision detec-

tion process or the failure to �nish the force �eld estimation process. Reducing

the dataset size using our algorithm enables successful haptic rendering of these

datasets. Figure 4 shows the system con�guration we used in our testing. In our

system the mouse and the haptic probe pointer is used simultaneously to change

and update the viewed position of dataset. Figure 5 shows high level of detail

around the probe pointer (shown as a bright sphere in the center).

Fig. 4. Our system con�guration

Shaded Wire frame

Fig. 5.Haptic rendering of terrain dataset, the yellow sphere is the haptic probe pointer

6 Conclusions

We have presented the continuously-adaptive haptic rendering algorithm, which

enables haptic rendering of datasets that are beyond the capability of the current

haptic systems. Our approach is based upon dynamic, frame-to-frame changes in

the geometry of the surface and thus can be used with any of the prior schemes,

such as bounding volume hierarchies, to achieve superior acceleration of haptic

rendering. Haptic interfaces are being used in several real-life applications such

as molecular docking, nanomanipulation, virtual design and prototyping, virtual

surgery, and medical training. We anticipate that our work highlighted in this

paper will achieve accelerated haptics rendering for all of these applications.

Acknowledgements

This work has been supported in part by the NSF grants: DMI-9800690, ACR-

9812572, and a DURIP award N00014970362. Jihad El-Sana has been supported

in part by the Fulbright/Israeli Arab Scholarship Program and the Catacosinos

Fellowship for Excellence in Computer Science. We would like to thank the

reviewers for their insightful comments which led to several improvements in

the presentation of this paper. We would also like to thank our colleagues at

the Center for Visual Computing at Stony Brook for their encouragement and

suggestions related to this paper.

References

1. R. S. Avila and L. M. Sobierajski. A haptic interaction method for volume vi-

sualization. In Proceedings, IEEE Visualization, pages 197{204, Los Alamitos,

October 27{November 1 1996. IEEE.
2. C. Basdogan, C. Ho, and M. Srinivasan. A ray-based haptic rendering technique

for displaying shape and texure of 3-d objects in virtual environment. In ASME

Dynamic Systems and Control Division, November 1997.

3. F. P. Brooks Jr., M. Ouh-Young, J. J. Batter, and P. J. Kilpatrick. Project GROPE

| haptic displays for scienti�c visualization. In Computer Graphics (SIGGRAPH

'90 Proceedings), volume 24(4), pages 177{185, August 1990.
4. F. Dachille IX, H. Qin, A. Kaufman, and J. El-Sana. Haptic sculpting of dynamic

surfaces (color plate S. 227). In Stephen N. Spencer, editor, Proceedings of the

Conference on the 1999 Symposium on interactive 3D Graphics, pages 103{110,

New York, April 26{28 1999. ACM Press.
5. L. De Floriani, P. Magillo, and E. Puppo. EÆcient implementation of multi-

triangulation. In H. Rushmeier D. Elbert and H. Hagen, editors, Proceedings Vi-

sualization '98, pages 43{50, October 1998.
6. J. El-Sana and A. Varshney. Generalized view-dependent simpli�cation. In Com-

puter Graphics Forum, volume 18, pages C83{C94. Eurographics Association and

Blackwell Publishers Ltd 1999, 1999.
7. T. Gieng, B. Hamann, K. Joy, G. Schussman, and I. Trotts. Constructing hier-

archies for triangle meshes. IEEE Transactions on Visualization and Computer

Graphics, 4(2):145{161, 1998.
8. A. Gregory, M. Lin, S. Gottschalk, and R. Taylor. H-COLLIDE: A framework for

fast and accurate collision detection for haptic interaction. Technical Report TR98-

032, Department of Computer Science, University of North Carolina - Chapel Hill,

November 03 1998. Tue, 3 Nov 1998 17:27:33 GMT.
9. A. Gu�eziec, G. Taubin, B. Horn, and F. Lazarus. A framework for streaming

geometry in VRML. IEEE CG&A, 19(2):68{78, 1999.
10. H. Hoppe. View-dependent re�nement of progressive meshes. In Proceedings of

SIGGRAPH '97 (Los Angeles, CA), pages 189 { 197. ACM Press, August 1997.
11. R. Klein, A. Schilling, and W. Stra�er. Illumination dependent re�nement of mul-

tiresolution meshes. In Computer Graphics Intl, pages 680{687, June 1998.
12. D. Luebke and C. Erikson. View-dependent simpli�cation of arbitrary polygonal

environments. In Proceedings of SIGGRAPH '97 (Los Angeles, CA), pages 198 {

208. ACM SIGGRAPH, ACM Press, August 1997.
13. W. Mark, S. Randolph, M. Finch, J. Van Verth, and R. Taylor II. Adding force

feedback to graphics systems: Issues and solutions. In Proceedings of SIGGRAPH

'96 (New Orleans, LA, August 4{9, 1996), pages 447 { 452. ACM Press, 1996.
14. M. Minsky, M. Ouh-young, O. Steele, F. P. Brooks, Jr., and M. Behensky. Feeling

and seeing: Issues in force display. In 1990 Symposium on Interactive 3D Graphics,

pages 235{243, March 1990.
15. H. Morgenbesser and M. Srinivasan. Force shading for haptic shape preception. In

ASME Dynamic Systems and Control Division, volume 58, pages 407 { 412, 1996.
16. D. Ruspini., K. Kolarov, and O. Khatib. The haptic display of complex graphical

environment. In Proceedings of SIGGRAPH '97 (Los Angeles, CA), pages 345 {

352. ACM SIGGRAPH, ACM Press, August 1997.
17. J. Salisbury and C. Tarr. Haptic rendering of surface de�ned by implicit functions.

In ASME Dynamic Systems and Control Division, November 1997.
18. A. Schilling and R. Klein. Graphics in/for digital libraries | rendering of mul-

tiresolution models with texture. Computers and Graphics, 22(6):667{679, 1998.
19. R. Taylor, W. Robinett, V. Chi, F. Brooks, Jr., W. Wright, R. Williams, and

E. Snyder. The nanomanipulator: A virtual-reality interface for a scanning tun-

nelling microscope. In Proceedings, SIGGRAPH 93, pages 127{134, 1993.
20. J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based ren-

dering for polygonal models. IEEE Transactions on Visualization and Computer

Graphics, pages 171 { 183, June 1997.

