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Abstract

In this paper, we analyze the evolution of van Gogh’s style toward the Auvers final period using informational
measures. We will try to answer the following questions: Was van Gogh exploring new ways toward changing his
style? Can informational measures support the claim of critics on the evolution of his palette and composition?
How "far" was van Gogh’s last period from the previous ones, can we find out an evolutionary trend? We will
extend here the measures defined in our previous work with novel measures taking into account spatial information
and will present a visual tool to examine the palette. Our results confirm the usefulness of an approach rooted in
information theory for the aesthetic study of the work of a painter.

Categories and Subject Descriptors (according to ACM CCS): Image Processing and Computer Vision [I.4.9]:
Applications—Computer Applications [J.5]: Arts and Humanities—

1. Introduction

Computer-aided analysis of art has gathered a large amount
of interest recently with surprisingly simple algorithms and
techniques being able to detect, for example, non-original
Pollock [TMJ99] and Breughel [HGR10] paintings, to
model the aesthetic perception of photographs [DJLW06], or
to categorize art periods [WFC∗09]. Apart from the econom-
ical interest in the outcome of these algorithms, more impor-
tantly such computational analyses can help to quantify un-
derlying principles in aesthetic perception —principles that
have so far largely defied a mathematical modeling. Whether
taking insights from computer vision [DJLW06], or from
efficient, neurally plausible coding mechanisms [HGR10],
novel methods from statistical machine learning and espe-
cially from information theory are starting to relate artistic
developments to specific changes in the palette, brush, or
texture statistics. In this paper, we present results on how
novel information-theory based measures can be used to
trace the aesthetic development of Van Gogh throughout his
oeuvre.

In order to correlate aesthetic judgments of pictorial art
with mathematical models, different measures and tech-
niques based mainly on information theory have been in-
vestigated to determine the information content of a paint-
ing [RFS08a]. These measures were based on the entropy of

the palette, the Kolmogorov complexity of an image mea-
sured using an image compressor, and the compositional
complexity of the painting. Some of these measures were
shown to correlate surprisingly well with the six different
periods of van Gogh’s paintings [RFS08b], as classified by
critics. However, only a reasonable subset of the paintings
was taken into account, and in addition interesting questions,
already pointed out by critics previously, surfaced in our re-
sults. For instance, was van Gogh heading in Auvers for a
new style? Was Paris a laboratory for his subsequent paint-
ings?

In this paper we want to investigate further —using this
time the full set of color digital images of van Gogh’s paint-
ings available in The Vincent van Gogh Gallery of David
Brooks [Bro10]— whether key features of van Gogh periods
can be determined by an extended set of informational mea-
sures. We will focus mainly on van Gogh’s Auvers period
and will try to investigate whether our measures can support
the claim of art critics on his evolution of palette and com-
position. We will also study how far van Gogh’s last period
was from his other periods, and try to trace his artistic devel-
opment. To this end, we will employ our previously defined
measures together with a set of novel measures that take into
account spatial information. In addition, we will also intro-
duce a novel visual tool to easier analyze the palette.
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This paper is organized as follows: Section 2 reviews
some previous work on aesthetic measures. In Section 3, the
information-theoretic measures used in the paper are pre-
sented. Section 4 interprets the measures to shed light on
van Gogh’s style evolution. Section 5 presents conclusions
and future work.

2. Informational Aesthetics

Ever since a measure of aesthetics was defined by George
D. Birkhoff [Bir33] as the ratio between order and com-
plexity, different authors have introduced diverse measures
that quantify the degree of order and complexity of a work
of art [Ben69, Mol68, MC98, Kos98, SN04] (see also Green-
field’s [Gre05] and Hoenig’s [Hoe05] surveys). Using infor-
mation theory, Bense [Ben69] transformed Birkhoff’s mea-
sure into an informational measure based on entropy. He as-
signed a complexity to the repertoire or palette, and an order
to the distribution of its elements on the work of art. Ac-
cording to Bense, in any artistic process of creation, there
exists a determined repertoire of elements (such as a palette
of colours, sounds, phonemes, etc.) that is transmitted to the
final product; thus, the creative process is also a selective
process.

Rigau et al. [RFS08a] presented a set of information-
theoretic measures to study some informational aspects of a
painting related to its palette and composition. Some of these
measures, based on the entropy of the palette, the compress-
ibility of the image, and an information channel to capture
the composition of a painting, were used to discriminate dif-
ferent painting styles [RFS08a] and to analyze the evolution
of van Gogh’s artwork [RFS08b], revealing a significant cor-
relation between the values of the measures and van Gogh’s
artistic periods. These measures are reviewed in the next sec-
tion. In two recent papers, we have also shown how these
measures can not only help to categorize art into different
periods [WFC∗09], but also how they are able to model loci
of interest when observers view an artwork, that is, where
gaze is attracted in an artwork [WCR∗09].

3. Information in a Painting

To further study the evolution of van Gogh’s artwork, we
use five measures based on palette entropy, compressibil-
ity, compositional complexity, randomness (entropy rate),
and structural complexity (excess entropy). The first three
were already used in [RFS08a]. While the entropy of the
palette only takes into account the color diversity, the other
measures also consider its spatial distribution. In fact, these
measures are not fully independent but offer complementary
views of complexity in an image, as we will see in the anal-
ysis of the results in Sec. 4.

From a given color image I of N pixels, we use its sRGB
and HSV representations to study the behavior of the pro-
posed measures:

• sRGB color representation is based on a repertoire of 2563

colors and its alphabet is given by Xrgb. From this space,
we also consider the luminance function Y709, which is
a measure of the density of luminous intensity of a pixel
computed as a linear combination of its RGB channels
(we use the Rec. 709: Y = 0.212671R + 0.715160G +
0.072169B). In this case, the alphabet is represented by
X` = [0,255].
• HSV (hue, saturation, value) is a cylindrical-coordinate

representation of sRGB which is more perceptually plau-
sible than the sRGB cartesian representation. In this case,
the alphabets are represented by XH, XS, and XV, accord-
ing to a given discretization of each parameter.

From the normalization of the corresponding histograms of
the alphabets of the color representations, the probability
distributions of the corresponding random variables (Xrgb,
X`, XH, XS, and XV) are determined, which represent the
palette features of a painting. The palette is considered as
the finite and discrete range of colors used by the artist.

3.1. Redundancy of the Palette

The entropy H(C) of a random variable C taking values c in
C with distribution p(c) = probability[C = c] is defined by

H(C) =− ∑
c∈C

p(c) log p(c), (1)

where logarithms are taken in base 2 and entropy is ex-
pressed in bits. In this paper, the set C will stand for color
alphabets (e.g., Xrgb), where C represents its corresponding
random variable (e.g., Xrgb). The maximum entropy Hmax of
a random variable is log |C|. The palette entropy H(C) fulfills
0≤H(C)≤Hmax and can be interpreted as the average color
uncertainty of a pixel. Following Bense’s proposal of using
redundancy to measure order in an aesthetic object [Ben69],
the relative redundancy of the palette is given by

MB =
Hmax−H(C)

Hmax
. (2)

MB takes values in [0,1] and expresses the reduction of
pixel uncertainty due to the choice of a palette with a given
color probability distribution instead of a uniform distribu-
tion [RFS08a]. In our tests, MB has been computed from al-
phabet Xrgb.

3.2. Compressibility

The Kolmogorov complexity K(I) of an image I is the
length of the shortest program to compute I on an appropri-
ate universal computer [LV97]. From a Kolmogorov com-
plexity perspective, the order in an image can be measured
by the difference between the image size (obtained using
a constant length code for each color) and its Kolmogorov
complexity. The ratio between the order and the initial im-
age size is given by

MK =
N×Hmax−K(I)

N×Hmax
. (3)
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MK takes values in [0,1] and the higher the MK the higher
the compression ratio [RFS08a]. Because of the noncom-
putability of K, we use real-world compressors (e.g., PNG or
JPEG) to estimate it, that is, we approximate the value of K
by the size of the corresponding compressed file [LCL∗04].
A compressor exploits both the palette redundancy and the
color position in the canvas. In our experiments, JPEG com-
pression is used because of its ability to discover such spatial
"patterns". To avoid losing significant information, we use a
JPEG compressor with the maximum quality option.

3.3. Compositional Complexity

The creative process described by Bense can be understood
as the realization of an information channel between the
palette and the set of regions of the image [RFS08a]. This
channel is defined between the random variables C (input)
and R (output), which represent the set of bins (C) of the
color histogram and the set of regions (R) of the image, re-
spectively. The mutual information I(C,R) between C and R
represents the correlation between colors and regions. For
an image I decomposed into n regions, the ratio of mutual
information is defined by

Ms(n) =
I(C,R)
H(C)

, (4)

where H(C) is the maximum value achievable for I(C,R)
(when each region coincides with a pixel) [RFS08a]. Given
a partitioning algorithm, the inverse function

M-1
s

(
I(C,R)
H(C)

)
= n (5)

yields the number of regions obtained from a given mu-
tual information ratio. The number of regions needed to ex-
tract a given quantity of information is taken as a measure
of compositional complexity. To compute the number of re-
gions, a BSP partitioning algorithm is used to produce quasi-
homogeneous regions extracting at each step the maximum
mutual information of the painting [RFS08a]. The global
composition of the image can be obtained after relatively few
partitions, while the details or forms in the painting begin to
appear at a finer scale. In our tests, I(C,R) and H(C) have
been computed from alphabet X`.

3.4. Randomness

The notation used here is inspired by the work of Feldman
and Crutchfield [CF03]. Given a chain . . .X-2X-1X0X1X2 . . .
of random variables Xi taking values in X , a block of L con-
secutive random variables is denoted by XL = X1 . . .XL. The
probability that the particular L-block xL occurs is denoted
by p(xL). The Shannon entropy of length-L sequences or L-
block entropy is defined by

H(XL) =− ∑
xL∈X L

p(xL) log p(xL), (6)

where the sum runs over all possible L-blocks. The entropy
rate is defined by

hx = lim
L→∞

H(XL)
L

= lim
L→∞

hx(L), (7)

where hx(L) = H(XL|XL−1,XL−2, . . . ,X1) is the entropy of
a symbol conditioned on a block of L−1 adjacent symbols.
The entropy rate of a sequence measures the average amount
of information (i.e., irreducible randomness) per symbol x
and the optimal achievement for any possible compression
algorithm [CT91, Fel02]. Entropy rate can be also seen as
the uncertainty associated with a given symbol if all the pre-
ceding symbols are known.

The entropy rate of an image quantifies the average un-
certainty surrounding a pixel, that is, the difficulty of pre-
dicting the color of its neighbor pixels. While a painting that
is highly random is difficult to compress, a painting with low
randomness has many correlations with pixel colors. It is in-
teresting to note that log |C|−hx can be also considered as a
measure of redundancy in a painting.

In the context of an image, X represents the color alpha-
bet and xL is given by a set of L neighbor pixel intensity val-
ues. In practice, we cannot compute L-block entropies for
high L, due to the exponential size —NL, where N is the
cardinality of X— of the joint histogram. In our tests (see
Sec. 4), the entropy rate has been estimated taking L-block
samples radially around each pixel. This pixel represents the
origin and becomes the first element of the block. To carry
out the computations, we set L = 3 and N = 256. Using dig-
ital photography software, we have conducted experiments
that showed a positive correlation between entropy rate and
contrast.

3.5. Structural complexity

A complementary measure to the entropy rate is the excess
entropy, which is a measure of the structure of a system. The
excess entropy is defined by

E =
∞
∑

L=1
(hx(L)−hx) (8)

= lim
L→∞

(H(XL)−hxL) (9)

and captures how hx(L) converges to its asymptotic value
hx. Thus, when we take into account only a few number
of symbols in the entropy computation, the system appears
more random than it actually is. This excess randomness
tells us how much additional information must be gained
about the configurations in order to reveal the actual uncer-
tainity hx. The way in which hx(L) converges to its asymp-
totic form tells us about the structure or correlations of a
system [CF03, FMC08].

Considered by many authors as a measure of the struc-
tural complexity of a system, the excess entropy is intro-
duced here to measure the spatial structure of a painting. If
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it is large the painting contains many regularities or corre-
lations [FMC08]. Thus, excess entropy serves to detect or-
dered, low entropy density patterns in a painting. In the case
of a completely random image, the excess entropy should
vanish, showing that correlations are not present in the im-
age. In our tests, the excess entropy has been estimated using
Equ. (9) and taking L = 5 and N = 32. While L = 3 is enough
to compute the entropy rate, excess entropy needs larger se-
quences, which implies reducing the number of bins due to
computational restrictions.

4. Artistic Analysis

In this section, we analyze how the style of van Gogh evolves
toward his last period. According to art critics, in Auvers,
van Gogh changes his style in the following way: he sees the
Northern landscape with a sharpened and heightened vision;
softens the hue in landscapes (reflecting the response to the
more subdued Northern light with whites, blues, violets, and
soft greens); uses harsher primary colors; exhibits a certain
unevenness and impetuosity of brushstroke; and simplifies
the composition (see Ronald Pickvance [Pic86]). Can our
measures support these claims on the evolution of the palette
and composition?

To analyze the evolution of van Gogh’s style, the mea-
sures presented in Sec. 3 have been applied to a set of im-
ages of van Gogh’s paintings obtained from The Vincent van
Gogh Gallery of David Brooks [Bro10]. In this website, van
Gogh’s oeuvre (861 paintings) is classified into six periods.
From this set of images, we have excluded 61 black and
white images which were not available in color yielding a
total of 800 color images for our experiments.

We will first consider the palette measures. From the
entropy-based measure MB (Table 1), we can see how the
palette evolves. There is a first palette simplification from the
Early to Nuenen period, but starting with the Paris-period the
palette entropy constantly decreases, obtaining its minimum
in Auvers. It is important to note that the measure of entropy
is logarithmic, that is, the constant although small increases
in the measure translates into a much larger absolute increase
in the variety of colors used.

In Fig. 1 we show the digital-image-palette (DIP, see Ap-
pendix A) based on the HSV representation. In this figure,
we show a painting of each period (a), the DIP of this paint-
ing (b), the DIP of the period (c), and the normalized DIP
(NDIP) of the period. The DIP representation has been ob-
tained from a discretization of the hue in 360 bins (XH) and,
for each bin, the average of both saturation and brightness
is depicted together with the hue. The average of the achro-
matic values is represented by the gray-color of the circum-
ference. For each painting, the frequency of bins has been
weighted by the real size of canvas. Observe that the canvas
size has been doubled from Paris on (Table 1). In the last
row of Fig. 1, the global palette of all periods is shown. As

the figure shows, the palette gains in chromaticity (except
for the somber palette of the Nuenen period) and evolves
toward softer colors, becoming more and more constrained
in hue space. At the same time, the palette also evolves to-
ward more yellowish and brighter hues overall. All of this
means that van Gogh was continuously evolving and opti-
mizing his palette. Also, let us note the remarkable similar-
ity of the global average to the Paris one, especially striking
in the NDIP (Fig. 1.d) —in a way the Paris period represents
van Gogh’s oeuvre remarkably well.

To quantify the palette difference between periods we use
a DIP-distance defined in Equ. (10). In Table 2, we show
the distances between the DIPs of all periods and global
artwork. The Nuenen period has the maximum average dis-
tance to the other periods, while the Paris period yields the
minimum distance, even to the global palette, reinforcing the
central role of Paris period in van Gogh’s artwork. Interest-
ingly, the distances from the Auvers period are more bal-
anced toward all the other periods, being of course closer to
Saint-Rémy which could be due to the fact that in Auvers van
Gogh reflected on all of his previous periods. Indeed, before
going to Auvers, he spent some days in Paris and had the op-
portunity of reviewing a large part of his previous paintings,
as he explains in a letter to his sister Wil [Sol07].

With respect to composition, we can group the six van
Gogh periods into three distinct groups (see Table 1):
Early/Nuenen, Paris/Arles, and Saint-Rémy/Auvers. The
composition from one group to the other one exhibits large
changes, doubling (for low mutual information ratios as 0.05
and 0.1) the number of regions to extract the same amount of
information. We see a peak of compositional complexity in
Saint-Rémy period, followed by a slight decrease in Auvers.
Again, this quantitative findings is in accordance with critics
opinion about this period with respect to the simplification
of composition [Pic86].

If we accept that entropy rate measure positively corre-
lates with contrast (see Sec. 3), then we can obtain from Ta-
ble 3 that contrast decreases from the Early period to Nuenen
but later constantly increases (entropy rate evolves inversely
similar to the palette redundancy MB). The entropy rates
achieve their maximum values in the last period, which is
again in accordance to art critics’ prevalent analysis: the sim-
plification of composition was accompanied by an increase
in contrast [Pic86]. Table 1 also shows how the complexity
MK , which expresses the compression ratio, behaves in an
inverse way to the evolution of entropy rate hx. This behav-
ior agrees with the fact that the entropy rate expresses the
optimal achievement for a compression algorithm.

As we interpret excess entropy as a measure of the degree
of correlation and patterns, we can read from Table 3 how
the Auvers period presents more brightness patterns, while
Arles period shows more structure in chromaticity (hue and
saturation). In Fig. 2 we show two paintings of Auvers pe-
riod to illustrate the behavior of the entropy rate and excess
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Early

Nuenen-Antwerp

Paris

Arles

Saint-Rémy

Auvers

Global

(a) (b) (c) (d)

Figure 1: Digital-image-palette of van Gogh’s periods. (a) Painting example. (b) DIP of painting (a). (c) DIP of the pe-
riod. (d) NDIP of the period. Global DIP and NDIP are shown in the last row. Painting images credit: c© 1996-2010 David
Brooks [Bro10].
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Period # Size MB MK M-1
s (0.05) M-1

s (0.1) M-1
s (0.15) M-1

s (0.20) M-1
s (0.25)

Early 26 17.5 0.422 0.769 6.154 39.769 147.538 413.538 1019.000
Nuenen 172 23.7 0.486 0.794 5.727 33.878 153.953 479.378 1144.616

Paris 209 22.0 0.384 0.712 12.177 81.301 309.541 813.287 1688.938
Arles 181 40.2 0.351 0.688 13.376 93.834 344.094 869.221 1748.387

St-Rémy 137 42.8 0.342 0.665 27.766 185.985 587.219 1286.766 2331.175
Auvers 75 39.5 0.334 0.659 27.613 164.307 509.187 1130.560 2081.400
Global 800 31.1 0.388 0.713 14.983 98.300 344.911 851.988 1710.363

Table 1: For each period and the global artwork, number of paintings, canvas size average (dm2), MB, MK, and M-1
s (0.1, 0.15,

0.20, and 0.25 are shown (N = 256 bins has been used).

Period Early Nuenen Paris Arles St-Rémy Auvers Global Avg
Early 0.000 26.775 28.559 47.213 37.197 44.498 25.658 36.848

Nuenen 26.775 0.000 31.437 57.830 52.633 53.289 29.425 44.393
Paris 28.559 31.437 0.000 35.976 37.259 43.895 13.955 35.425
Arles 47.213 57.830 35.976 0.000 23.857 38.076 29.824 40.590

St-Rémy 37.197 52.633 37.259 23.857 0.000 31.401 28.120 36.469
Auvers 44.498 53.289 43.895 38.076 31.401 0.000 36.074 42.232
Global 25.658 29.425 13.955 29.824 28.120 36.074 0.000 32.611

Table 2: DIP-distance matrix between periods and the global artwork. The average column is only computed from period
columns.

entropy. Observe first that entropy rates of top painting are
higher, specially for the brightness. This matches with the
high contrasted spots in the foliage of the trees due to the di-
versity in the illumination and chroma of the leaves. On the
other hand, the sheaves of wheat and the background present
a more uniform color which translates in lower entropy rate
values. The excess entropy of the top painting is also higher
revealing more patterns than the bottom one. This is due to
the fact that the apparent randomness of the color of the pixel
of the leaves disappears when we take into account the cor-
relations in the sequences of pixels. This is, we discover or-
der out of apparent randomness. In the bottom image, either
the sequences of pixels studied are too short, due to com-
putational limitations (L = 5 and N = 32), or the uniformity
is higher from the beginning. In either case, the uniformity
discovered out of randomness is lower.

Addressing the question whether van Gogh was exploring
new ways toward changing his style, we can answer for the
Auvers period that the measures, indeed, reflect the fact that
van Gogh traded off simplified composition against an ex-
tended palette and increased contrast. Furthermore, palette
extension, contrast increase, and compositional complexity
increase can be seen as van Gogh’s aesthetic development
from his Paris period to Saint-Rémy.

As we have seen, the case of the Paris period is interest-
ing in that, for almost all considered measures, this period
closely approximates the global average. Given that for art
critics this period constitutes an exploratory phase for van

Figure 2: Entropy rate and excess entropy values
of two paintings of Auvers period: (top) hx

HSV =
(5.718,7.696,9.279) and EHSV = (1.189,3.602,5.719);
(bottom) hx

HSV = (4.156,7.215,5.000) and EHSV =
(0.492,1.733,0.366).
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Period hx
H hx

S hx
V EH ES EV

Name x s(x) x s(x) x s(x) x s(x) x s(x) x s(x)
Early 5.251 0.724 6.551 0.443 6.802 0.452 1.791 0.376 1.785 0.523 1.961 0.477

Nuenen 4.899 0.810 6.219 0.602 6.215 0.776 1.739 0.345 1.590 0.557 1.669 0.534
Paris 5.564 0.709 6.802 0.469 6.972 0.405 1.771 0.360 1.898 0.477 1.886 0.382
Arles 5.855 0.598 7.034 0.305 7.272 0.286 1.935 0.309 2.063 0.381 2.151 0.366

St-Rémy 5.859 0.652 6.972 0.322 7.427 0.248 1.829 0.354 1.906 0.385 2.180 0.312
Auvers 5.925 0.531 7.116 0.309 7.471 0.305 1.880 0.279 2.009 0.339 2.223 0.305
Global 5.561 0.804 6.780 0.502 6.996 0.547 1.822 0.361 1.877 0.492 1.984 0.520

Table 3: For each period and the global artwork, average of entropy rate hx and excess entropy E for hue (H), saturation (S),
and brightness value (V ) are shown. Entropy rate has been computed using L = 3 and N = 256, and excess entropy using L = 5
and N = 32. The standard deviation is shown for each measure.

Gogh, our results show that in this period, indeed, past and
future styles are being contained and tested.

5. Conclusions

In this paper we have traced the artistic development of van
Gogh’s style using information-theoretic measures, intro-
ducing two novel measures for contrast and structure in an
image, as well as a novel, visual tool to analyze the palette.
Our results show how the Paris period (a period in which
van Gogh’s painting underwent crucial changes that would
define his characteristic style later) is, indeed, a period of ex-
perimentation: it seems to contain a representation of all pre-
vious and later periods. From Paris till Auvers, the evolution
of the style shows an enrichment of the chromaticity and an
increase in the contrast. The compositional complexity fol-
lows the same trend in Arles and Saint-Rémy. In Auvers, van
Gogh moved toward simplifying the composition. We can
thus say that van Gogh in the last period traded a simplifica-
tion in palette with an increase in contrast and chromaticity.
In the future, we plan to explore the Paris period in more de-
tail and to introduce long range correlations in entropy rate
and excess entropy measures to better capture the structure
of a painting. We will also apply the proposed measures to
identify different periods of other artists.

Appendix A: Digital-Image-Palette

In order to represent the palette of an image, we define the
Digital-Image-Palette (DIP) based on the next rules:

• The HSV color representation is selected to depict the col-
ors of the palette with hue, saturation, and value. We con-
sider the cylindric representation with H × S×V in the
range [0◦,360◦)× [0,1]× [0,1].
• The hue h of an hsv value refers to a pure color without

tint or shade (addition of white or black pigment, respec-
tively); the value v represents the brightness relative to
the brightness of a similarly illuminated white; and the
saturation s represents the colorfulness relative to its own
brightness v.

• The space is discretized into N bins Hi (e.g., 360) where
each one corresponds to a cylindrical sector. A bin Hi rep-
resents all the colors that fall inside it.

• The achromatic colors (gray-scale) have an undefined hue
and a null saturation. Thus, we consider N chromatic bins
and one achromatic: M = N +1 bins.

• Fi is the frequency of Hi weighted by the real size of can-
vas in order to avoid the heterogeneous scales of the im-
ages with respect to the real size of the paintings.

• The hue hi assigned to a sector Hi is given by the angle of
the middle of the arc of the sector.

• A point in the HSV space is projected into the plane S×V
of its corresponding Hi. This projected point is repre-
sented by −→sv containing the saturation and brightness in-
formation.

The DIP is obtained according to the next steps:

1. For each pixel p ∈ I do

a. hsv = HSV (RGB(p))
b. Hi← h, i ∈ {1, . . . ,M}
c. Increase Fi
d. Add −→sv into Hi

2. For each Hi do

a.
−→
SV i = vectorial sum for all −→sv in Hi

b. −→sv i = normalization of
−→
SV i from Fi

c. hsvi = (hi,π1(
−→sv i),π2(

−→sv i))
d. Paint sector Hi with color hsvi

The visual representation of a DIP is composed by the set
of sectors Hi in a circle of unitary radius for the chromatic
colors, and by a circumference painted with the achromatic
value (Fig. 3). The frequency Fi is normalized ( fi) to rep-
resent a normalized DIP (NDIP). Its visualization uses vari-
able radius (chromatic colors) and the circumference width
(achromatic colors) to express that normalization.

The dissimilarity, or DIP-distance, between two DIPs i
and j is defined by

di j =
1
M

M

∑
k=1
| fik ×

−→sv ik − f jk ×
−→sv jk |. (10)
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Figure 3: DIP representation examples. For all hues, (left)
s = 0.5 and v = 1, (center) s = 1 and v = 1, and (right) s = 1
and v = 0.5. The achromatic value v is represented on the
border of the circumference.
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