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Abstract

This tutorial covers a variety of methods for 3D shape matching and retrieval that are characterized by the use of
a real-valued function defined on the shape (mapping function) to derive its signature. The methods are discussed
following an abstract conceptual framework that distinguishes among the three main components of these class of
shape matching methods: shape analysis, via the application of the mapping function, shape description, via the
construction of a signature, and comparison, via the definition of a distance measure.
Goal of the tutorial is to facilitate the understanding of the performance of the various methods by a methodical
analysis of the properties of various methods at the three different stages.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

3D shape matching and retrieval are key aspects in the cur-
rent panorama of search engines. Shape models carry a high
value with them, and search engines able to retrieve this type
of visual media would be surely useful to speed-up content
design, re-use and processing. Keyword-based searching is
simply not sufficient to achieve the necessary capability of
resource exploration for 3D. Therefore, a variety of methods
have been proposed in the literature to tackle the problem
with different approaches that span from coarse filters suited
to browse very large 3D repositories on the web, to domain-
specific approaches.

Generally speaking, shape matching methods rely on the
computation of a shape description, also called signature,
that effectively captures some essential features of the ob-
ject. The shape descriptions are then compared using an ap-
propriate computational technique able to translate the sim-
ilarity between objects into some distance between descrip-
tors. The majority of the methods proposed in the literature
mainly focus on geometric aspects, that is, the description
characterizes the spatial distribution or extent of the object
in the 3D space [NK01, OFCD02, KFR03]. From a prac-

tical point of view, the main advantage of these methods
is that they do not make specific assumption on the topol-
ogy of the digital models and the computational efficiency.
Conversely, these methods generally fail in supporting more
elaborate shape comparisons, such as partial matching or
sub-part correspondence where the similarity has to be eval-
uated in terms of presence and similarity of features in the
shapes. In this case, more sophisticated descriptions should
be used, in order to properly characterize the essential fea-
tures and store them in an efficient and salient structure. Sev-
eral approaches to shape characterization have been adopted
in the literature (e.g. curvature, level-sets, enclosed spheres),
yielding to different structuring methods (e.g. patch segmen-
tation, Reeb graph, skeletons, medial axis).

Given the complexity of the problem, understanding and
evaluating the performance of methods for 3D matching
is not an easy task: first of all, there is neither a sin-
gle best shape characterization nor a single best simi-
larity measure, and the solution largely depends on the
type of shapes to be analyzed and on the application do-
mains. Recently, a 3D shape retrieval contest has been
proposed – SHREC – whose general objective is to eval-
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uate the performances of 3D-shape retrieval algorithms
http://www.aimatshape.net/event/SHREC/ . The initial
results of the contest provided the first opportunity to ana-
lyze the various algorithms, their strengths, as well as their
weaknesses, using a common test collection which allows a
direct comparison of algorithms. A single test collection nec-
essarily delivers only a partial view of the whole picture, and
for this reason the contest quickly moved towards a multi-
track organization, for partial and whole matching, polygon
soup and watertight model matching, as well as a number
of context-specific benchmarks, for example for mechanical
part matching, molecule matching, or 3D face matching.

2. Tutorial focus and contribution

While the performance of retrieval can be evaluated in
quantitative terms using appropriate benchmarks and ground
truth, it is not easy to understand the contribution to the re-
sults of the various components of the retrieval system. The
results, indeed, depend both on the shape descriptions and
the comparison tools, which are very often quite intertwined.
Moreover, existing surveys [BKS∗05, TV04, BP06] mainly
focus on a classification and discussion of geometry-oriented
methods, which target the conversion of statistical and geo-
metric shape analysis into feature vectors or histograms. The
comparison among methods usually addresses properties of
admissible input representations and formats, invariance of
the description with respect to a transformation class, and
retrieval performance.

The goal of the tutorial is to facilitate the understanding
of the performance of the various methods by a methodical
analysis of the properties of various methods at the three dif-
ferent stages of an abstract conceptual framework which dis-
tinguishes among the three main components of these class
of shape matching methods: shape analysis, via the appli-
cation of some mathematical technique, shape description,
via the construction of a signature, and comparison, via the
definition of a distance measure. More precisely, we will an-
alyze in depth methods that approach the analysis phase by
making use of the properties provided by some real function
f , called the mapping function, defined on the surface M
representing the 3D object. Therefore, the underlying con-
ceptual framework is structured in three-steps:

1. choice and evaluation of the real functions fi on 3D
shapes Mi;

2. construction of high-level descriptors Gi of Mi, using fi;
3. choice of the comparison techniques to be used for the

set of shapes and descriptors {(Mi,Gi)}i.

We believe that the discussion of the properties at the three
levels will facilitate the evaluation of theoretical and prac-
tical performances of the methods, will indicate more pre-
cisely the strength and weaknesses of the methods, and will
also suggest a way for adopting different shape descriptors
according to the properties and invariants that one wishes to

investigate. The choice of the real function and the nature
of the descriptor play indeed the role of the “lens” through
which we look at the properties of the shape. The general-
ity and flexibility of the framework is of interest for a wide
research community with applications to visualization and
topological modeling. In this tutorial, we will overview and
analyze a large set of solutions, evaluate their effectiveness,
and discuss perspectives, open issues, and future develop-
ments.

3. Outline
The proposed tutorial relies on recent survey work of the
authors in related fields, see [BFF∗06, Mar05, BAB∗07].

The updated version of the slides presented at Eurograph-
ics 2007 will be made available at the following URL:
http://www.ge.imati.cnr.it/ima/smg/training.html

In the following, we outline the main items that we plan to
discuss in the tutorial, by giving for each group a synthetic
description of the methods and a summary of the most rel-
evant references, which will be discussed in detail and with
examples and emphasis on shape matching applications.

3.1. Shape matching: motivations and challenges
The first part of the tutorial will provide an introduction to
the tutorial, explain the rationale of the presentation, and in-
troduce some of the main challenges of the topic area and its
perspective impact in a number of crucial applications.

3.2. Properties of the real functions
A variety of different functions have been used in the shape
matching literature for characterizing relevant features of
objects. In general, the availability of a-priori information
on the classes of the input database can be used to se-
lect the mapping functions which are best suited to identify
specific shape features (e.g., protrusions), thus constraining
the retrieval to match them with a higher degree of impor-
tance with respect to other features. This par of the tuto-
rial will provide some introductory definitions on the basic
concepts that will be discussed, concerning critical points,
Morse function, level sets and briefly introduce their dis-
cretization [Ban70, Ban67, GP74, Mil63]. Following, a vari-
ety of real-valued functions will be presented and discussed,
grouped into four main categories according to their defini-
tion, domain and properties:
• the height [SKK91, FK97] function is among the most

intuitive and simple choices for analysing the shape of
an object; since it depends on the direction considered,
its usage is preferred for applications in which objects
have a natural predefined direction (Figure 1(a)). A more
elaborate characterization of the shape according to dif-
ferences in the elevation value is provided by the ele-
vation [AEHW06] function, which derives from the tra-
ditional height function but aims at a rotation invariant
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analysis. The notion of elevation captured by this func-
tion measures how much a point is relevant in its normal
direction with respect to its neighbourhood. The eleva-
tion function is defined by pairing the critical points of
the height function in all directions.

• Shape properties can be effectively characterized by mea-
suring distances between feature points or by evaluat-
ing the elongation of the shape. In this broad class, the
analysis approaches based on the geodesic distance gen-
erally provide and isometry invariant characterization of
a shape [BBK06a]. Geodesic distance has been applied
in several settings, in particular for the evaluation the
geodesic distance of mesh vertices from selected feature
points [MP02, EK03], and for averaging all geodesic dis-
tances among the vertices [HSKK01, KT03, GSCO07] .
The Euclidean distance from a point p∈R

3 [FK97,SV01]
(e.g., the barycentre of M, Figure 1(b)) has also been
used, as it is invariant to the shape embedding and de-
tects protrusions (resp. hollows) of M with respect to p
as regions of influence of maxima (resp. minima) f .

• curvature-based analysis have been frequently used to
characterize the shape of 3D objects; generally, curvature-
based analysis are rather sensible to noise or small fea-
tures and to the quality of the shape discretization in terms
of sampling density and tiny triangles. More robust com-
putation is achieved either using variations of the curva-
ture evaluation function (e.g. [GCO06]), polynomial sur-
face fitting [ZP01], or with a multi-scale curvature evalu-
ation where details are discarded [MPS∗04].

• The local diameters function [GSCO07] aims at measur-
ing the shape by computing the diameter of the volume
enclosed by the surface. Therefore, it provides a volumet-
ric rather than a boundary characterization, similarly to
the distance tranforms [DS06] which is more focused on
the medial axis radius.

• If the shapes to be compared do not exhibit a uni-
form structure, harmonic [NGH04, Flo97, PP93] and
Laplacian-based functions [RWP06, DBG∗06] may pro-
vide a new and powerful set of descriptors for shape anal-
ysis as they are intrinsically defined by the Laplacian ma-
trix of the shape (see Figure 1(c-d)).
We will discuss the numerical (in)stability of extraction
of this type of functions from the Laplacian matrix of the
shape M, a very relevant aspect that has to be considered
to understand at which extent this instability affects the
descriptor of M, and eventually the matching algorithm
[GV89].

The presentation and discussion of the above-cited func-
tions will be carried out considering:

• the saliency of f , as its ability to identify relevant shape
features of M;

• the smoothness degree of f , meant as its behaviour with
respect to the number, nature and properties of its critical
points;

(a) (b)

(c) (d)

Figure 1: (a) Height function, (b) Euclidean distance from
the center of mass, (c) harmonic function, (d) first eigenfunc-
tion of the Laplacian matrix of the model.

• the stability of f with respect to its discretization and com-
putation on M;

• the robustness of f , that is, the variation of f with respect
to small geometric changes of the shape M;

• the degree of freedom (DoF) and the number of heuristics
used in the definition and evaluation of f .

• the efficiency of f in terms of the computational cost re-
quired by its evaluation on M;

• the invariance of f to transformation groups;
• the hypotheses or restrictions on the input.

The analysis of the properties and the potentialities of the
f s will provide an insight into the formalization of function
suites, beyond a generic best-practice or rule-of-thumbs.
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3.3. Properties of the shape descriptors
In the literature, it is quite common that functions used to
analyse the shape are directly associated to a corresponding
signature, or shape descriptor. For some of the methods this
association is exclusive, meaning that no other function can
be used to produce the same descriptor, while for other meth-
ods the descriptor is parametric with respect to the choice of
the function.

Among shape descriptors that are parametric with respect
to the choice of f , we will present:

• Reeb graphs [Ree46,CMEH∗03,HSKK01,ABS03,Bia04,
TS05, BFS00], size theory [Fro90, FL01, FL99, dFL06,
FM99, BCF∗07] and persistent homology tools [ELZ02,
CZCG04, CZCG05, WAB∗05, ZC05, CSEH05, CSEH07]
are topological descriptors that root in Morse theory.
When the function f varies, a collection of descriptors
may be obtained. For any f , these descriptors code the
shape by the configuration of elements or properties that
characterize the topological evolution of level sets or
lower level sets of f , see Figure 2;

• descriptors that decompose a function f given over sim-
pler basis functions; examples are the spherical har-
monic shape decompositions [KFR03,Vra04,VSR01] and
wavelets-based methods [LTN06].

Among shape descriptors that exclusively linked to a spe-
cific choice of f , we will present:

• descriptors based on quantities extracted by intrinsic
shape functions, such as the spectrum of the Laplace-
Beltrami operator [RWP06, RWP07, NRW∗07];

• descriptors built on isometry invariant quantities, as
for example the geodesic function [JZ06, JZ05, EK03,
BBK05, BBK06b, BBK06a] or the curvature [ZP01,
GCO06];

• the pose-oblivious shape signature [GSCO07], that asso-
ciate to M histograms of the distribution over the shape
of two real functions, the first related to surface and the
second to volume information;

• the centerline skeleton that connects feature points
through the geodesic distance [MP02])

The shape descriptors will be presented from a theoretical
and computational point of view, providing examples and
results to assess different aspects, in particular:

• the saliency of the descriptor, that is its ability to capture
the structure of the shape in terms of its features;

• the concisness of the descriptor, that is its ability to min-
imize the memory needed to store the descriptor while
maximizing the amount of information represented; this
property is related also to the type of output produced;

• the robustness with respect to small changes of the shape;
• the unicity of the descriptor: once the theoretical method-

ology for extracting the descriptor, the algorithm, and
possible parameters have been chosen, the descriptor is
unique;

Figure 2: (a) Reeb graph of the first eigenfunction of the
Laplacian matrix of the model.

• the completness in the sense that the same descriptor can-
not be associated to different shapes;

• the invariance of the descriptor to transformation groups;
• the degree of freedom (DoF) and the number of heuristics

used in the construction of the descriptor;
• the hypotheses or restrictions on the input;
• the efficiency of the descriptor in terms of the computa-

tional cost required by its construction.

3.4. Comparison methodologies
Although the surveyed descriptors are inspired by the same
idea of quantifying geometric properties conveyed by f ,
there are substantial differences in the shape interpretation
they provide and in the structures used to encode the shape
information. In particular, the type of structure produced
strongly influences the choice of the methods adopted for
the final shape comparison step. The methodologies will be
presented following a logical grouping according to the type
of coding of the shape descriptor:

• the similarity between descriptors encoded as histograms,
feature vectors, or matrix structures is evaluated by lin-
ear algebraic or statistical techniques [KFR03, Vra04,
LTN06];

• the similarity among descriptors stored as graphs is gen-
erally evaluated by graph-matching techniques [HSKK01,
SSGD03, LK03, CDS∗05, BSRS04, ZSm∗05, BRS06,
BMSF06] (see Figure 3).

• the similarity between combinatorial descriptors is mea-
sured by friendly and computationally efficient tools,
such as persistence diagrams and formal series [dFL06,
BCF∗07, CSEH07].

The methodologies will be presented and discussed high-
lighting their properties in terms of the following character-
istics:

• the properties of the similarity measure that characterize
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Figure 3: Sub-part correspondence obtained using the
graph comparison method defined in [BMSF06].

it as a metric, semi-metric, or pseudo-distance [VH01,
Tve77, SJ99];

• the robustness of the measure with respect to small
changes of the shape;

• the type of comparison provide by the measure, in terms
of supporting global, partial or sub.part correspondence;

• the type of information: according to the type of informa-
tion stored and the way it is coded in the descriptor, the
measure of similarity may take into account geometric,
topological or structural information;

• the efficiency in terms of computational complexity re-
quired to evaluate the measure;

• the application scenario in which the comparison is per-
formed.

3.5. Conclusions and future perspectives
In the conclusive part of the tutorial, we will try to provide
a coherent comparison of the various techniques at the three
levels of the framework, based on the analysis provided for
all the aspects discussed. Obviously, the tutorial does not
claim either to be an exhaustive survey of the wealth of exist-
ing methods for 3D matching or to examine all technical de-
tails of each single method. Rather, the objective of the com-
parison is to give a structured presentation of the methods in
terms of the several properties of the descriptors and compar-
ison tools, that are often not discussed in details in existing
surveys. We believe that the presentation and discussions or-
ganized in this manner should serve as a basis for extending
the performance analysis beyond standard precision-recall
diagrams and help the user to understand if the reasons of
good or bad retrieval results depend, for instance, on an in-
sufficient efficacy of the descriptor, on an intrinsic instability
of the function, or also on an inappropriate comparison tool.

Finally, we will list a series of topics deserving further

research, such as the role of invariance with respect to trans-
formation groups, the concurrent use of more than a single
characterizing function, and the need to balance the use of
geometrical and topological information for accurate shape
descriptions. Last but not least, we will also address issues
related to the emerging use of semantic indicators to perfom
matching and retrieval, based either on (semi)-automatic an-
notation of shapes or in supervised classification and proto-
type extraction.
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CNRCNR--IMATIIMATI--GEGE

The network of CNR research 
institutes, which are distributed 
all over the national territory, is 
multidisciplinary: it has 
competences in the field of 
health and biology, of 
computer science, of 
environment and climate, of 
chemistry and physics, of 
behavioural, economic and 
social sciences

107 institutes in 11 departments
Istituto di Matematica Applicata e 
Tecnologie Informatiche, Genova

Shape matching: motivations and challenges 304/09/2007

CNRCNR--IMATIIMATI--GEGE

Applied mathematics and information 
technology
– Geometric Modelling 
– Computational Geometry and Topology
– High Performance Computing
– Computational Electromagnetics
– Cognitive models based on ICT

Applications
– Product Design, Spatial Data Handling, Ergonomics, 

Bioinformatics

Staff
– 21 staff members
– 10 contract researchers (PostDoc)
– 1 PhD

Eurographics 2007 Tutorial T12

3D shape description and matching based on 3D shape description and matching based on 
properties of real functionsproperties of real functions

Shape matching: motivations and Shape matching: motivations and 
challengeschallenges

Speaker:

Michela Spagnuolo

CNR-IMATI-GE  - Italy

Shape matching: motivations and challenges 504/09/2007

3D shapes3D shapes

3D shapes are digital representations of 
either physically existing objects or virtual 
objects that can be processed by computer 
applications

why is 3D retrieval important ?why is 3D retrieval important ?
Shape matching: motivations and challenges 604/09/2007

3D users3D users
Professionals
– Product Modeling, 

CAD/CAM
– Design 
– Cultural Heritage
– Gaming
– Virtual Environments
– Medicine
– Bioinformatics
– Architects
– Archeology

Non professionals

why is 3D retrieval important ?why is 3D retrieval important ?
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Shape matching: motivations and challenges 704/09/2007

3D retrieval: why ?3D retrieval: why ?

Due to great technological advances, 3D content is 
poised to become the 4th wave of multi-media

– 3D shapes can be easily digitized

– modelling and processing of 3D shapes 
are mature research fields (geometric 
modelling & computer graphics)

– 3D content can be delivered easily as 
most of the PCs connected to the 
Internet are now equipped with high-
performance 3D graphics hardware

Shape matching: motivations and challenges 804/09/2007

3D retrieval : why ?3D retrieval : why ?

plenty of online stores selling 3D models 
target customers
– gaming industry, entertainment, simulation

industrial impact foreseen at short/medium-
term
– Product Design, 3D-TV, medical sector, gaming, ..
– SecondLife, EverQuest II, Sony Exchange Station 

everyday life impact foreseen at long-term
– shapes.google.com 
– 3D acquired and streamed on mobile devices

Shape matching: motivations and challenges 904/09/2007

3D media: why ?3D media: why ?

Shape matching: motivations and challenges 1004/09/2007

3D media: why ?3D media: why ?

Shape matching: motivations and challenges 1104/09/2007

3D retrieval3D retrieval

3D models carry a high value with them

Search & retrieval is necessary for supporting 
content creation and re-use :
– Designers
– Product models
– Drug design
– Gaming assets

Search & retrieval is necessary for supporting 
analysis and classification (understanding):
– Medicine
– Bioinformatics

Shape matching: motivations and challenges 1204/09/2007

3D media: problems and peculiarities3D media: problems and peculiarities
Data deluge for 3D content is even larger than for 
2D content
– Storage problems
– Delivery problems

Complete shape description
– Recognition/classification of 2D content has to handle 

occlusion problems, while 3D content is based on the full 
representation of the shape

Consistency
– The representation space has the same dimension of the 

object space
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Shape MatchingShape Matching

Given a query shape S,
does S belong to the 
repository ?

Aims the search at a specific 
shape – precise match –

Examples: bioinformatics, 
drug design, copyright 
protection

Shape matching: motivations and challenges 1404/09/2007

Shape Retrieval Shape Retrieval 

Given a query shape S
does the repository 
contain an object 
similar to S ?

Aims the search at a category 
level – similarity assessment –

Examples: design, 3D content 
authoring

Shape matching: motivations and challenges 1504/09/2007

Shape Classification Shape Classification 

Given a classified 
repository and a query 
shape S, find the class S 
belongs to

Aims the match at a category 
level – similarity evaluation –

Examples: bioinformatics, 
medical applications 

Shape matching: motivations and challenges 1604/09/2007

Shape Matching and RetrievalShape Matching and Retrieval

Global vs partial match

Correspondence Correspondence 
between parts in similar between parts in similar 
objectsobjects

Similarity among parts in 
dissimilar objects

Shape matching: motivations and challenges 1704/09/2007

Shape similarityShape similarity
Driven by the concept of similarity that one wants to 
implement: many different flavours of similarity !

geometric congruence structural equivalence 

“semantic” equivalence 
functional equivalence 

Shape matching: motivations and challenges 1804/09/2007

Shape similarityShape similarity

geometric congruence structural equivalence 

“semantic” equivalence 

functional equivalence 
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Shape matching: motivations and challenges 1904/09/2007

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture

Shape M&R pipelineShape M&R pipeline

Shape matching is done by associating a 
description, or signature, to the shapes and by 
defining a distance, or dissimilarity measure, 
between descriptors

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Euclidean space descriptor space 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

metric
pseudo-metric
semi-metric
…

graph matching
EMD
….

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture

real numbers

Shape matching: motivations and challenges 2004/09/2007

Shape descriptorsShape descriptors
Capture properties of the shape
– shape matching context is very relevant here
– usually driven by invariants

Reduce the complexity of the process
Plenty of different approaches and methods

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Euclidean space descriptor space 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

metric
pseudo-metric
semi-metric
…

graph matching
EMD
….

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

real numbers

Shape matching: motivations and challenges 2104/09/2007

Shape descriptorsShape descriptors

Descriptors have to take into account the context in 
terms of
– type of shapes and their variability/complexity in the 

context
– invariants or properties

Shape matching: motivations and challenges 2204/09/2007

What tools to What tools to describedescribe a shape ?a shape ?

Geometry
– 3D shape descriptors based 

on geometric descriptors 
(e.g., shape distributions, 
spherical harmonics, PCA, ..)

Structure
– 3D shape descriptors based 

on the configuration of 
features (e.g., skeletons)

Semantics
– 3D shape ontologies and 

domain conceptualization 
(e.g., metadata, ontology, 
reasoners and inference)

C
G

K
T

CG & KT

Shape matching: motivations and challenges 2304/09/2007

Tutorial focusTutorial focus

Among all the shape descriptors, we will 
focus on those that are defined by the 
application of a real-valued mapping 
function f that is applied to the shape
– different functions f provide different insights
– different signatures can be built on tje results of 

shape analysis with real-valued functions
– Different comparison methodologies can be 

applied to signatures

Shape matching: motivations and challenges 2404/09/2007

Shape M&R pipelineShape M&R pipeline

How to measure the performance of shape retrieval 
systems ?

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Euclidean space descriptor space 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

metric
pseudo-metric
semi-metric
…

graph matching
EMD
….

real numbers

SHREC'07 - Shape Retrieval Contest 2007SHREC'07 - Shape Retrieval Contest 2007
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ContentContent

Shape matching: motivations and 
challenges (Michi, 30 min)

Real Functions       (Giuseppe, 45 min)

Shape Descriptors            (Daniela, 45 min)

Comparison Methodologies  (Simone, 40 min)

Conclusions and future perspectives 
(Bianca, Michi, 20 min)

Eurographics 2007 Tutorial T12

QuestionsQuestions??
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Properties of Real FunctionsProperties of Real Functions

Real functionsReal functions

Speaker

Giuseppe Giuseppe PatanPatanèè

CNRCNR--IMATIIMATI--GE GE -- ItalyItaly

Real functions 2

OutlineOutline

Differential properties of real functions 
defined on 3D shapes.
Discrete case:
– critical points and level sets: definition and 

properties
– functions: 

• definition (ie., height and elevation, 
Euclidean-, curvature- and geodesic-based 
functions, local diameters, harmonic 
function, Laplacian eigenfunctions)

• properties (ie., saliency, smoothness, stability, 
robusteness, degrees of freedom and 
heuristics, efficiency, invariance))..

Real functions 3

Critical points [GP76,Mil63]Critical points [GP76,Mil63]

Given a smooth function f defined on a 
manifold:
– a point x is called regular if the differential dfx is 

surjective
– a point x is called critical is the differential dfx is 

the zero map
– a critical point x is called non-degenerate if the 

Hessian matrix H of f is non-singular at x
– if x is a non-degenerate critical point of f, then 

the number λ of negative eigenvalues of H is 
called the index of x.

Real functions 4

Morse functions and critical pointsMorse functions and critical points

In other words:
– a point p is critical for f if:

– f is Morse at p if:

The definition of critical points is local and sensitive
to small perturbations of the surface.
The function f is called simple if any pair x, y of 
distinct critical points verifies f(x) ≠f(y).
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Real functions 5

Morse functionsMorse functions

On any smooth compact manifold there exist Morse 
functions.
Morse functions are everywhere dense in the space 
of all smooth functions on the manifold.
On a compact manifold, any Morse function has 
only a finite number of critical points .
The set S of all simple Morse functions is everywhere 
dense in the set of all Morse functions.
Examples are: height function, distance functions, 
geodesic distance, etc.

Real functions 6

Morse theory & critical points Morse theory & critical points 

Morse Lemma.Morse Lemma.
In a neighbourhood of each non-degenerate 
critical point p, the function f can be expressed as:

where λ is the index of the critical point.

Euler formula.Euler formula.

#maxima - #saddles + #minima= χ(S). 

2 2 2 2
1 1( ) ( ) ... ( ) ( ) ...( )nf f p y y y yλ λ += − − − + +
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Real functions 7

Morse theory & critical pointsMorse theory & critical points

22 yxf −−= 22 yxf +−=

Maximum
λ=2

Saddle
λ=1

Real functions 8

Functions on 3D shapes: discrete caseFunctions on 3D shapes: discrete case

Define f on the mesh vertices and extend  f 
to the edges and faces by using barycentric
coordinates.

⊂ R
f

max( )f

min( )f

Real functions 9

Linear approximationLinear approximation

f is uniquely determined by its values on the 
surface vertices of M.

1 1 2 2 3 3 1 1 2 2 3 3( ) ( ) ( ) ( )p x x x f p f x f x f xλ λ λ λ λ λ= + + ⇔ = + +
1 2 30, 1, 2,3, 1i iλ λ λ λ≥ = + + =

1x

2x
3x

2( )f x1( )f x

3( )f x
p

( )f p
f

Real functions 10

Critical points classification [Ban67]Critical points classification [Ban67]

Each vertex pi of M is classified according to 
the values of f on its starstar.

11--star of istar of i{ }( ) : :  ( , ) is an edgeN i j i j=

{ }1 1( ) : ,..., ( ) : ( , ) edgek s sLk i j j N i j j += ∈ Link of iLink of i

Real functions 11

Critical points: minimum/maximumCritical points: minimum/maximum

is a maximum maximum (resp., minimum) ifip
( ) ( )i jf p f p>

( )j N i∈

(resp., ( ) ( ))i jf p f p<

{ }: : ( )p M f pαγ α= ∈ =
Level sets of fLevel sets of f

Real functions 12

Critical points: saddleCritical points: saddle

Let 
be the mixed link of i. Then, pi is a saddle if

{ }1 1( ) : ( , ) ( ) : ( ) ( ) ( )s s s i sLk i j j Lk i f j f p f j±
+ += ∈ > >

multiplicitymultiplicity
card( ( )) 2 2 ,  1Lk i m m± = + ≥
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Real functions 13

Critical point properties: discrete case [Ban67,Ban70]Critical point properties: discrete case [Ban67,Ban70]

If f is generalgeneral (ie., f(x) ≠f(y), whenever x and y
are distinct vertices of M), then the critical 
points of (M,f)
– satisfy the Euler formula

where saddles are counted with their multiplicity m.
– are located where the topological changes of (M,f) 

happen.

( ) # minima-#saddles+#maxima,Mχ =

Real functions 14

How can we study the behavior of functions on M?How can we study the behavior of functions on M?

Point-wise variation of its values
Evolution of its level sets
Number of its critical points
…

{ }1( ) : ( )f p M f pα α− = ∈ =

critical pointscritical points

Real functions 15

Evaluating the properties of Evaluating the properties of ff

Saliency: ability to measure the shape features we 
are focusing on.
Smoothness: behavior of f wrt the naturenature of its critical 
points.
StabilityStability wrt discretization and computation.
Robustness:Robustness: low variation of the f values wrt small 
changes of the shape.
DoFDoF and heuristics: and heuristics: number and type of parameters 
involved in the definition and/or computation of f.
Efficiency:Efficiency: computation cost.
Invariance Invariance wrt a group of transformations.

Real functions 16

ExamplesExamples

Common choices of f are:
– Height and elevation 
– Euclidean-based
– curvature-based 
– geodesic-based
– local diameters
– harmonic functions 
– Laplacian eigenfunctions 
– …

Real functions 17

Height function [Ban70,FK97]Height function [Ban70,FK97]

– Given a direction ξ, the height function value at 
p∈Μ with respect to ξ is defined as fξ(p):=<p,ξ>.

– The level sets correspond to the intersection of the 
surface with planes orthogonal to the direction ξ.

ξ

ξ

ξ

Real functions 18

Height functionHeight function

Saliency:Saliency: f is able to identify the shape 
features of M along the direction ξ.

Smoothness: Smoothness: 
– Critical points are points whose normal is parallel 

to the direction ξ. 
– In the continuous case, almost all height 

functions are Morse (ie, the critical points are non 
degenerate).

Stability:Stability: exact evaluation/computation of f
and interpolation on the faces/edges of M.
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Real functions 19

Height functionHeight function

Robustness:Robustness: the computation of f is robust, 
while its critical points aren’t.
DoFDoF and heuristic: and heuristic: the choice of ξ.
Efficiency: Efficiency: the computational cost is O(1).
InvarianceInvariance: the function f is
– invariant to translations
– dependent on rotations: the recognized 

properties depend on the chosen direction.

Real functions 20

Height function: robustness exampleHeight function: robustness example

Real functions 21

Height function: robustness exampleHeight function: robustness example

Real functions 22

ElevationElevation [AEHW04][AEHW04]

For any point x of M, there exists at least one 
direction ξ such that x is a critical point of 
the height functions fξ and f-ξ..
Then, for every ξ∈S2

– let x, y be two critical points of the height 
function wrt the direction ξ,

– if x, y are paired according to the topological 
persistence, then pers(x)=pers(y)=|fξ(y)-fξ(x)|

– the elevation is defined as
Elevation(x)=pers(x).

M

M

S1

S1

S2

S2

S3

S3

Real functions 23

ElevationElevation

Saliency:Saliency: f identifies the depression and 
protrusions of M wrt any normal direction.
Smoothness:Smoothness: f is continuous and smooth 
almost everywhere.
Efficiency:Efficiency: the overall computational cost 
for
– finding the persistence pairs is 
– classifying critical points is

Invariance: Invariance: f is invariant to translations and 
rotations.

).log( 25 nnO
)log( 2 nnO

Real functions 24

P
P

Euclidean distance from a point Euclidean distance from a point [FK97][FK97]

The level sets correspond to the intersection 
of the surface with a set of spheres centered 
at the point p.
Common choices of the point are the 
barycenter, the center of the bounding 
sphere, etc.

2||||:)( pxxf −=
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Real functions 25

Radial distance from a point Radial distance from a point [SV01][SV01]

{ }Mpqrrqf ∈−≥= )(:0max:)(

p

1q

2q

3q

In an analogous way, f can be 
defined on the unit sphere and used 
to define the spherical harmonics of f.

Radial distance from Radial distance from ppEuclidean distance from Euclidean distance from pp Real functions 26

Euclidean distance from a pointEuclidean distance from a point

Saliency:Saliency: maxima and minima are located on 
protrusions and concavities wrt p. 
Smoothness:Smoothness: in the continuous case, almost all 
distance functions from a point are Morse.
Stability:Stability: in the discrete case, exact 
computation at the mesh vertices.
Robustness:Robustness: the computation of f is robust, 
while its critical points aren’t. 
– For instance, the distance from the barycenter: due 

to its dependence on all the vertices, the 
barycenter is not affected by small perturbations of 
M.

Real functions 27

Euclidean distance from a point: robustness exampleEuclidean distance from a point: robustness example

Real functions 28

Euclidean distance from a point: robustness exampleEuclidean distance from a point: robustness example

Real functions 29

Euclidean distance from a pointEuclidean distance from a point

DoFDoF and heuristics: and heuristics: the point p.
Efficiency:Efficiency: f is computed in O(n) time. 
Invariance:Invariance:
– f is invariant to translations and rotations of the 

coordinate system
– f is suitable to distinguish among different poses.

Real functions 30

CurvatureCurvature--based function [GCO06,MPS*04, ZP01]based function [GCO06,MPS*04, ZP01]

The principal curvatures k1 and  k2 at a point 
p∈M measure the maximum and minimum
bending of a surface at p:
– the Gaussian curvature K=k1 k2

– the Mean curvature H=(k1+k2)/2.
According to behavior of the sign of K, the 
points of a surface may be classified as
– elliptic
– hyperbolic
– parabolic or planar.
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CurvatureCurvature--based functionbased function

SaliencySaliency: is provided by the characterization of the 
local shape as elliptic, hyperbolic, parabolic/planar.
Smoothness: Smoothness: related to the differentiability degree 
of M.
Stability: Stability: aa coarse surface sampling and an irregular 
connectivity affect the discretization of the 
curvature. 
Robustness: Robustness: low degree.
DoFDoF and heuristics: and heuristics: the size of the neighborhood 
used to compute K and H.
Efficiency: Efficiency: depends on the size of the 
neighborhood; at least O(n) wrt the 1-star.
Invariance:Invariance:
– K is intrinsic, ie it is invariant wrt isometries
– H is extrinsic and depends on the surface embedding.

Real functions 32

Geodesic distance: definition and propertiesGeodesic distance: definition and properties

Given two points p,q∈M, the geodesic 
distance g(p,q) is the length of the shortest 
path between p and q.
The geodesic distance is invariant to 
isometric transformations.
The shortest path is not unique.
Exact computation in
Approximations:
– Dijkstra [VL99]:
– [SSK*05]:
– Fast marching [KS98]: 

P

Q

).log( 2 nnO

)log( nnO
)log( nnO

).(nO
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Average geodesic distance Average geodesic distance [HSKK01][HSKK01]

The mapping function is defined as

where g represents the geodesic distance.
Surface protrusions are maxima of the 
mapping function.

( ) ( , ) ,
v M

f p g p v dm
∈

= ∫

Real functions 34

Average geodesic functionAverage geodesic function

Discretized using a set of base points {b1,…, 
bn} instead of all mesh vertices:

where area(bi) is the influence region of bi.
It has been extended to consider also the 
angle variation along a path [ST03].

)(),()( ii
i

bareabpgpf ∑=

Real functions 35

Average geodesic distanceAverage geodesic distance

Saliency:Saliency: f discriminates protrusions of M. 

Invariance: Invariance: f is invariant to isometries, that is, it does 
not distinguish among different poses of the same 
surface.

Real functions 36

Average geodesic distanceAverage geodesic distance

Smoothness:Smoothness: f is smooth.

Stability:Stability:
– the discretization and computation depend on the chosen 

algorithm, eg., Dijkstra [VL99], [SSK*05], fast marching [KS98]
– generally, a coarse surface sampling and an irregular connectivity 

affect the discretization of the geodesic distance
– the instabilities are averaged by the integral in the definition of f.

Robustness:Robustness: f is robust to local shape changes.

DoFDoF and heuristics: and heuristics: choice of the base points used to discretize
the integral.

Efficiency:Efficiency: depends on the discretization and number of base 
points. It is computationally expensive using the Dijkstra’s
algorithm with al vertices as base points: O(n2logn).
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Average geodesic distance: robustness exampleAverage geodesic distance: robustness example

Real functions 38

Average geodesic distance: robustness exampleAverage geodesic distance: robustness example

Real functions 39

Geodesic distance from feature points [MP02,VL99]Geodesic distance from feature points [MP02,VL99]

The geodesic distance can be used to
– measure the importance of points wrt the feature points
– characterize tubular shapes of M.

Choice of the feature points on 
the surface:
– curvature extrema [MP02]
– user-defined [VL99]

or uniform sampling.

pp

Real functions 40

Topological distance from curvature Topological distance from curvature extremaextrema [MP02][MP02]

Let p be the centroid of a high-curvature 
region, we define 

Given {p1,…, pk} k feature points, we define 
g as:

and 
{ }1

( ) : min ( ), , ( ) .
kp pg q g q g q= K

max( ) : ( ).f q g g q= −

gp(q):=min{k: q∈ k-neighborhood}.

Real functions 41

Topological & geodesic distance from curvature Topological & geodesic distance from curvature extremaextrema

Saliency: Saliency: f discriminates protrusions, especially 
those that include the curvature extrema as 
feature points.
Smoothness: Smoothness: low degree.
Stability: Stability: 
– topological distance: since f is discretized using the 

connectivity of M, the neighborhood expansion is 
computationally stable

– geodesic distance: the stability of f is affected by 
the mesh connectivity.

Real functions 42

Topological & geodesic distance from curvature Topological & geodesic distance from curvature extremaextrema

Robustness: Robustness: the geodesic (resp, topological) 
distance from feature points is robust wrt small 
geometric and connectivity (resp, geometric) 
changes.
DoFDoF and heuristics:and heuristics: choice of the feature points.
Efficiency: Efficiency: the computational cost of the 
topological expansion is O(n) and O(nlogn) for the 
geodesic distance.
Invariance: Invariance: 
– topological distance: f is invariant wrt any transformation 

that preserves the mesh connectivity
– geodesic distance: f is invariant to isometric 

transformations.
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Topological distance from curvature Topological distance from curvature extremaextrema: robustness example: robustness example

Real functions 44

Topological distance from curvature Topological distance from curvature extremaextrema: robustness example: robustness example

Real functions 45

Local diameter shape function Local diameter shape function [GSC07][GSC07]

On a smooth surface, the exact diameter of 
a shape at a point p is the distance to the 
antipodal point of p wrt the direction 
opposite to the normal at p.
The local diameter function at p
– is a statistical measure of the diameters in a cone 

around the direction opposite to the normal at p.
– requires closed shapes.

Real functions 46

Local diameter shape functionLocal diameter shape function

Saliency:Saliency: morphological characterization of the 
shape in terms of relative size of its parts.
Smoothness:Smoothness: no guarantees of smoothness for the 
local shape diameter: it may fail at sites of 
branching or in particular visibility cones.
Stability:Stability: yes.
Robustness: Robustness: robust to deformations that do not 
locally alter the shape volume.
DoFDoF and heuristics: and heuristics: no DoF and several heuristics to 
drive the statistical sampling of the diameters.
Efficiency: Efficiency: O(n2).
Invariance:  Invariance:  
– invariant to translations and rotations
– Invariance to pose changes is forced by averaging the 

values of f at the vertices of M wrt the values of neighbors.

Real functions 47

Harmonic functions [DBG*06]Harmonic functions [DBG*06]

Smooth functions with a (generally) low
number of critical points are achieved by 
solving the Laplace equation with Dirichlet
boundary conditions.

( ) 0,
( ) ,

C
i

i i

f p i I
f p i Iα

⎧Δ = ∈
⎨

= ∈⎩

Laplace equation

Dirichlet boundary conditions

Real functions 48

( )

( ) [ ( ) ( )] 0i j i ij
j N i

f p f p f p w
∈

Δ = − =∑
LaplacianLaplacian matrix of a triangle meshmatrix of a triangle mesh

( )

      

 ( , ) edge
0               else

ij
j N i

ij ij

w i j

L w i j
∈

⎧ =
⎪
⎪= −⎨
⎪
⎪
⎩

∑

 L f b=
Sub-matrix of L Unknown values of f Know right-hand vector

, ( ) 1n nL rank L n×∈ = −nR
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Discretization: weights [Flo97,PP93,Discretization: weights [Flo97,PP93,……]]

(1) (2)
:

2

cot cot
2

tan( / 2) tan( / 2)
|| ||

ij ij

ij ijij

j i

w
p p

α β

δ δ
=

+⎧
⎪
⎪⎪ +⎨
⎪ −
⎪
⎪⎩ K

ip

jp

ijα

ijβ

(1)
ijδ

(2)
ijδ
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Harmonic functionsHarmonic functions

3, 3, 6m M s= = =1, 1, 2m M s= = =

2, 2, 4m M s= = =
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Harmonic functionsHarmonic functions

Saliency:Saliency:
– the choice of the maxima and minima of f ( Dirichlet

conditions) on feature regions guarantees their 
characterization through (M,f)

– topological saliency: saddle points are located on the 
topological handles of M, if f has only 1 min and 1 max.

SmoothnessSmoothness: the number of critical points depends 
on:
– the number of critical points depends on the Dirichlet

boundary conditions and the genus of the input surface
– using as Dirichlet boundary conditions 1 max & 1 min 

guarantees to build a harmonic function f with a minimal 
number of critical points (ie., 2g).

– 2 ( , ).f C M≈∈ R
Real functions 52

Harmonic functionsHarmonic functions

Stability:Stability: the Laplace operator is local and uses only 
the 1-star of each vertex. Numerical instabilities might 
be introduced by its discretization:
– the cotangent weights might be negative if
– the mean-value weights are always positive and more stable 

than the cotangent weights.

Robustness: Robustness: the computation and the properties of f
are robust wrt changes of the surface and 
connectivity that do not make unstable the 
discretization of the Laplace operator.

ij ijα β π+ >

Real functions 53

Harmonic functions: robustnessHarmonic functions: robustness

Harmonic scalar fields with the same Dirichlet
boundary conditions: different postures of 
the same shape.

Real functions 54

Harmonic functionsHarmonic functions

DoFDoF and heuristics:and heuristics: the choice of the Dirichlet
boundary conditions.
Efficiency:Efficiency:
– solution of a sparse linear system O(nlogn)
– changing the Dirichlet boundary conditions does not 

require to re-build the coefficient matrix ( re-use its 
factorization to solve the same problem with different 
Dirichlet boundary conditions).

Invariance:Invariance:
– f is invariant wrt isometries
– with constant weights, f is affine invariant.
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EigensystemEigensystem of the of the LaplacianLaplacian matrix [NGH04,RWP06]matrix [NGH04,RWP06]

The spectrum of the Laplacian matrix 
associated to M enables to define a set of  
functions “intrinsically” defined by the input 
shape.
Since L is symmetric, it has a real 
eigensystem

and 
,   1,...,i i iLx x i nλ= =

1

,   .
n

n
i i

i

y y xα
=

∀ ∈ = ∑R
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Spectrum of the Spectrum of the LaplacianLaplacian MatrixMatrix

Eigenvalues:

Eigenvectors:

i-th function

1 20 ... nλ λ λ= ≤ ≤ ≤

( , ),     i i i i ix Lx xλ λ=

:if M → R

( ) [ ]
2,...,

i k i i kf p x
i n

λ=

=
4i =
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LaplacianLaplacian--based functions: examplesbased functions: examples

Large set of smooth eigenfunctions with a 
“generally” low number of critical points.

1f 2f 3f

Real functions 58

LaplacianLaplacian--based functions: examplesbased functions: examples

30f

40f

10f

20f
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EigenfunctionEigenfunction switchswitch

Generally, the numerical computation of 
the Laplacian spectrum may switch the 
order of some eigenvalues/eigenvectors.

iλ

i

1i iλ λ− ≥
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EigenfunctionEigenfunction switchswitch

21 0.011382λ = 22 0.011290λ =

21 22λ λ>
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EigenfunctionEigenfunction switchswitch

59 0.020054λ = 60 0.020038λ =

37 0.015696λ = 38 0.015493λ =

37 38λ λ>

59 60λ λ>
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EigenfunctionEigenfunction switchswitch

65λ 66λ

65 66λ λ>

86λ 87λ

86 87λ λ>
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LaplacianLaplacian--based functionsbased functions

Saliency: Saliency: each function is intrinsically defined 
by M.
Smoothness: Smoothness: the first eigenvectors 
correspond to smooth and slowly varying 
functions, while the last ones show rapid 
oscillations.
Stability: Stability: 
– the discretization of the Laplace operator is local 

and uses only the 1-star of each vertex
– numerical instabilities might be introduced by its 

discretization
– the switch of the eigenfunctions might happen 

regardless the mesh discretization.
Real functions 64

LaplacianLaplacian--based functionsbased functions

Robustness: Robustness: the computation and the properties of f
are robust wrt changes of the surface and 
connectivity that do not make unstable the 
discretization of the Laplace operator.
DoFDoF and heuristics: and heuristics: 
– choice of fi among (n-1) non-trivial functions
– sign of the eigenvalues/eigenvectors.

Efficiency: Efficiency: O(nlogn), O(n2) depending on the 
sparsity of L.
Invariance:Invariance:
– f is invariant wrt isometries
– with constant weights, f is affine invariant.

Real functions 65

LaplacianLaplacian--based functions: robustness (critical points)based functions: robustness (critical points)

if if

   m M s
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LaplacianLaplacian--based functions: robustness (level sets)based functions: robustness (level sets)

1f

1f

2f

2f
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LaplacianLaplacian--based functions: robustness (level sets)based functions: robustness (level sets)

4f 5f

4f 5f
Eurographics 2007 Tutorial T12

Questions?Questions?

Eurographics 2007 Tutorial T12

AppendixAppendix: Perturbation Theory for : Perturbation Theory for 
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors

[GV89][GV89]

Speaker

Giuseppe Giuseppe PatanPatanèè

CNRCNR--IMATIIMATI--GE GE -- ItalyItaly
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Perturbation theory: general casePerturbation theory: general case

Right eigenvector
Left eigenvector
If A is diagonalizable, 

Ax xλ=
* *y A yλ=

* 0,i jy x i j= ≠

Consider the matrix

with right eigenvector             and 
eigenvalue
Pb: Which relation exists between the   
eigensystem of 

: ,      | | 1ijA A B bε ε= + ≤

( )ix ε
( ).iλ ε

, ?A Aε
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EigenvalueEigenvalue perturbation: general caseperturbation: general case

For each eigenvalue, the following relation holds

Then, the above estimation is: 
– proportional to the l2-conditioning number of 

the perturbation matrix B
– inversely proportional to the angle between the 

left and right eigenvectors. 

*2( ) || || ,     ( ) : .
( )

i i
i i i

i

B s y x
s

λ ε λ λ
ε λ

−
→ =
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EigenvalueEigenvalue perturbation: general caseperturbation: general case

We note that

The term            is called conditioning number of the 
eigenvalue

Then, an eigenvalue is well-conditioned iff its 
conditioning number is not close to zero.

{
*

2 2

0

( ) 1.i i i i is y x y xλ
≥

= ≤ =

1( )is λ −

.iλ
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EigenvalueEigenvalue perturbation: perturbation: LaplacianLaplacian matrixmatrix

If the input surface is closed (or with boundary + 
virtual edges), the Laplacian matrix is symmetric and 

Each eigenvalue is well-conditioned and

The variation of the eigenvalues depends only on 
the l2-norm of the perturbation matrix B.

,     ( ) 1,     1,..., .i i iy x s i nλ≡ = =

2
( ) || || ,    0. i i Bλ ε λ ε

ε
−

→ →
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Eigenvector perturbation: general caseEigenvector perturbation: general case

For the i-th eigenvector, we have

Then, the bound depends on:
– the conditioning number of each eigenvalue

– the differences

– the factors

*
2

2
( ) ( ).

( ) ( )

n
j i

i i
j i i j j

y Bx
x x

s
ε ε ε

λ λ λ≠

− ≤ + Ο
−∑

i jλ λ−

( )is λ

*: .ij j iy Bxβ =
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Eigenvector perturbation: general caseEigenvector perturbation: general case

The perturbation in the eigenvector is proportional 
to the conditioning number of the whole set of 
eigenvalues.
If the eigenvalues are close to one another, we 
may have difficulties in computing the 
eigenvectors.
Let A have distinct eigenvalues. If for some 
eigenvalue then there exists a matrix E
such that      is a repeated eigenvalue of (A+E) and

( ) 1,s λ <
λ

2
2

2

( ) .
1 ( )

E s
A s

λ
λ

≤
−
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The perversity theorem does not holdThe perversity theorem does not hold

Then,  even if the eigenvalues are distinct, if one 
eigenvalue is ill-conditioned, the computation of the 
eigenvalues, and especially the eigenvectors, may 
be very difficult.

iλ
[ ]: max , 1,...,
[ ]

i k
i k

i k

Lx i n
x

δ
⎧ ⎫

= =⎨ ⎬
⎩ ⎭

iδ

i
k

1i iλ λ− ≥
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Jacobi iterations and stop criteriaJacobi iterations and stop criteria

The (first or last) elements of the eigensystem of the 
input matrix are evaluated by using the Jacobi 
method with 2 stop criteria:
– max. number of iteration
– approximation threshold

Increasing          and reducing      do not avoid the 
switching of eigenvalues and eigenvectors.

maxN α

maxN
.α
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max 300,N tol Lα= =

5 12
max 10 , 10N α −= =

Jacobi iterations and stop criteriaJacobi iterations and stop criteria
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EigenfunctionEigenfunction ““switchswitch”” on different shapeson different shapes

6f 7h

7f 6h
Real functions 80

EigenfunctionEigenfunction switch: discussionswitch: discussion

The switch of the eigenfunctions
– can happen among the eigenfunctions of the 

same surface;
– is strictly correlated to the computation of the 

eigensystem;
– a “good” geometry and connectivity (wrt the 

computation of the entries of L) do not guarantee 
to avoid the switch of the eigenfunctions.

Eurographics 2007 Tutorial T12

Questions?Questions?
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3D 3D ShapeShape DescriptionDescription and and MatchingMatching BasedBased on on 
PropertiesProperties of of RealReal FunctionsFunctions

ShapeShape DescriptorsDescriptors
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Shape Descriptors 2

OutlineOutline

Descriptors parametric with respect to f:
– Reeb graph
– Size theory tools
– Persistent homology tools
– Descriptors based on spherical decompositions

• Spherical harmonics
• Spherical wavelets

Descriptors linked to a specific f:
– Shape-DNA
– Bending invariant signature
– Spectral embedding
– Pose-oblivious shape signature
– Salient geometric features

Shape Descriptors 3

PropertiesProperties toto bebe discusseddiscussed

Saliency: ability to capture the essential features of 
the shape
Conciseness: ability to minimize the memory
needed to store the descriptors while maximizing
the amount of information
Robustness wrt small changes of the shape
Uniqueness and completeness
Invariance to transformation groups
DoF and Heuristics used in the construction of the 
descriptor
Input: hypotesis and restrictions
Efficiency: computational cost

Shape Descriptors 4

OutlineOutline

Descriptors parametric with respect to f:
– Reeb graph
– Size theory tools
– Persistent homology tools
– Descriptors based on spherical decompositions

• Spherical harmonics
• Spherical wavelets

Descriptors linked to a specific f:
– Shape-DNA
– Bending invariant signature
– Spectral embedding
– Pose-oblivious shape signature
– Pose-oblivious shape signature
– Salient geometric features

Shape Descriptors 5

M

Reeb graph Reeb graph [Ree46][Ree46]

f

Reeb graphs are used to store the evolution of the 
level sets of the mapping function f

Shape Descriptors 6

Reeb graph Reeb graph [Ree46][Ree46]

Let M be a compact 2-manifold and f: M→R a simple 
Morse function; 
Let “~” be the equivalence relation:
(P, f(P)) ~ (Q, f(Q)) ⇔ f(P) = f(Q) and P and Q are in the 

same connected component of f -1(f(P))

The quotient space on MxR is a finite and connected
simplicial complex K of dimension 1, such that the 
counter-image of each vertex of dim 0 of K is a singular
connected component of the level sets of f, and the 
counter-image of the interior of each simplex  of dim 1 is
homeomorphic to the topological product of one 
connected component of the level sets by R
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Reeb graphReeb graph

f

Shape M 1-simplex

The 1-simplex is often associated to a geometric embedding (centerline
skeleton), or used to store additional geometric data  

Shape Descriptors 8

RGsRGs whenwhen the the functionfunction ff variesvaries

height bounding sphere
center

integral
geodesic

curvature 
extrema

barycenter

f

min

max

Shape Descriptors 9

Reeb Reeb graphgraph basedbased representationsrepresentations

Different proposals for descriptors induced 
by the Reeb graph:
– Multiresolution Reeb graph (MRG) [HSKK01, 

BSR06]
– Augmented Multiresolution Reeb graph (aMRG) 

[TS05]
– Extended Reeb graph (ERG) 

[BFS00,Bia04,BMSF06]

Shape Descriptors 10

MultiresolutionMultiresolution Reeb Reeb graphgraph [HSKK01][HSKK01]

It is defined on the basis of the function:

where g represents the geodesic distance
Surface protrusions are maxima of the function f

f

min

max

Shape Descriptors 11

MultiresolutionMultiresolution Reeb Reeb graphgraph [HSKK01][HSKK01]

Provides a hierarchical graph encoding

The graph is extracted inserting contours in a 
progressive manner

The area A of a region and the relative size L of the 
interval of f are associated as attributes to nodes

Shape Descriptors 12

AugmentedAugmented MultiresolutionMultiresolution Reeb Reeb graphgraph [TS05][TS05]

The descriptor is the same but the nodes are 
enriched with attributes storing also other 
geometric measures related to the spatial 
extent of the regions associated to the 
nodes 
– Relative volume
– Statistic measure of the chords
– Koenderink shape index
– Statistic orientation of the triangle normals
– Statistic on the texture (when available)
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MultiresolutionMultiresolution Reeb Reeb graphsgraphs [HSKK01,TS05][HSKK01,TS05]

Saliency: captures protrusions of the shape
Conciseness: very good conciseness properties due 
to the synthesis of the information (geometry and 
topology) in an attributed graph
Robustness: no theoretical results
Uniqueness: fixed the resolution, the MRG is unique
Completeness: no
Invariance: inherited by f
DoF and heuristics: the resolution has to chosen
Input: manifold, closed triangle meshes
Efficiency: the cost of the graph extraction is
O(n+k), where k is the number of vertices added
during the construction

Shape Descriptors 14

EExtendedxtended Reeb Graph Reeb Graph [Bia04][Bia04]

Founds on an extended Reeb equivalence
– let f:M→R be a real valued function;
– let I={(fmin, f1),(fh,fmax),(fi,fi+1),i=1…h-1} ∪ {fmin,f1,…fh, 

fmax} be a partition of [fmin, fmax];
– the an extended Reeb equivalence between P, 

Q∈M is given by:
• f(P), f(Q) belong to the same element of I;
• P, Q belong to the same 

connected component 
of f -1(f(t)), t∈I.

f

fmax

fmin

fh

f1

fi
…

…
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Geometric embedding of the ERG [BMSF06]Geometric embedding of the ERG [BMSF06]

Each arc can be oriented using the growing 
direction of the mapping function: the ERG 
is a direct acyclic graph
Store with each ERG node n attributes 
measuring properties of regions or subparts 
associated to n (eg, using spherical 
harmonics)
Store for each ERG arc e the number of 
slices traversed by the arc (arc length)

Shape Descriptors 16

Saliency: 
– captures the structure among the features 

characterized by the critical points of the 
mapping function

– the geometric embedding influences the 
saliency

– it preserves the topology of the manifold
Conciseness: very good conciseness properties due 
to the synthesis of the information (geometry and 
topology) in an attributed graph
Robustness: no theoretical results
Uniqueness: fixed the partition, the ERG is unique
Completeness: no

EExtendedxtended Reeb Graph [Bia04]Reeb Graph [Bia04]

Shape Descriptors 17

EExtendedxtended Reeb Graph [Bia04]Reeb Graph [Bia04]

Invariance: inherited by f
DoF and heuristics: the partion has to be chosen
Input: orientable 2-manifold represented by triangle 
meshes
Efficiency: the cost of the graph extraction is O(n+k)
(where k is the number of vertices added during the 
construction )

Shape Descriptors 18

OutlineOutline

Descriptors parametric with respect to f:
– Reeb graph
– Size theory tools
– Persistent homology tools
– Descriptors based on spherical decompositions

• Spherical harmonics
• Spherical wavelets

Descriptors linked to a specific f:
– Shape-DNA
– Bending invariant signature
– Spectral embedding
– Pose-oblivious shape signature
– Salient geometric features
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SizeSize TheoryTheory and and SizeSize FunctionsFunctions [Fro90][Fro90]

Size Theory proposes an approach where Shapes
are toplogical spaces endowed with real functions, 
and comparing shapes means comparing the 
properties expressed by the real functions
If two shapes are similar, a homeomorphism
between the shapes almost preserving the function
values must exist
How can we measure how well a homeomorphism
can preserve the values taken by the considered
function?
In Size Theory two shapes are similar if their the 
natural pseudo-distance is small

Shape Descriptors 20

SizeSize TheoryTheory and and SizeSize FunctionsFunctions [Fro90][Fro90]

topological spaces
a (subset of) the set of all homeomorphisms

Consider two continuous measuring functions

Define the natural pseudo-distance

NM,
H

NM →:γ

kk NgMf ℜ→ℜ→ :,:

( ) ( )( ) ( )
⎩
⎨
⎧

∞+
Θ

= ∈

emptyisHif
emptynotisHif

gNfMd H γγinf
,,,

( ) ( ) ( )( )
∞∈ −=Θ PgPfMP γγ max
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SizeSize TheoryTheory and and SizeSize FunctionsFunctions [Fro90][Fro90]

The natural pseudo-distance is a powerful
tool to compare shapes, but difficult to
compute (we have to study all the 
homeomorphisms between two spaces)
We need a tool to study the natural pseudo-
distance
We can get information from size functions, 
a mathematical tool providing a lower
bound for the natural pseudo-distance

Shape Descriptors 22

((MultidimensionalMultidimensional) ) SizeSize FunctionsFunctions
[FM99,FL99,BCF*07][FM99,FL99,BCF*07]

Shape Descriptors 23

ExampleExample withwith kk=1=1

Shape Descriptors 24

ExampleExample withwith kk=1=1
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K=1: K=1: RepresentationRepresentation and and matchingmatching
[FL01,dAFL06][FL01,dAFL06]

Shape Descriptors 26

KK=1: =1: StabilityStability of of matchingmatching distancedistance [dAFL06][dAFL06]

Matching Stability Theorem:
The matching distance satisfy the following stability
condition:

Lower bound for the natural pseudo-distance:
Let δ be the matching distance between the two
size functions (M ,ϕ) e (N,ψ). Then

d((M ,ϕ),(N,ψ)) ≥ δ.

l l
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MultidimensionalMultidimensional sizesize functionsfunctions [BCF*07][BCF*07]

PROBLEMS WITH k>1:
– How to extend the representation as formal series of points

and lines? 
– How to compare size functions with k>1? A direct 

approach involves working in a domain of 
– How to obtain stability in computation?

SOLUTION: there exists a foliation in half-planes of 
the domain of multidimensional size functions s.t. on 
each leaf of the foliation the multidimensional size
function coincides with a particular 1-dimensional 
size function; this allow to difine a stable
multidimensional matching distance

k2ℜ
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MultidimensionalMultidimensional sizesize functionsfunctions [BCF*07][BCF*07]

Shape Descriptors 29

MultidimensionalMultidimensional sizesize functionsfunctions [BCF*07][BCF*07]

on each leaf of the foliation, size functions can be
represented by formal series of points and lines;
the induced 1D matching distance on each leaf of 
the foliation is stable wrt small changes of the 
leaves;
a multidimensional matching distance can be
defined

theorems about the stability of the matching
distance and the lower bound for the natural
pseudo distance can be stated also in the case k>1 

Shape Descriptors 30

SizeSize FunctionsFunctions

Saliency: 
– captures the structure among the features 

characterized by the critical points of the 
mapping function

– connection with the comparison of topological
spaces in terms of natural pseudo-distance

Conciseness: very concise combinatorial
description
Robustness: theoretically proven robustness wrt
small shape changes
Unique but not complete
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SizeSize FunctionsFunctions

Invariance: inherits invariance properties from the 
underlying measuring functions
DoF and heuristics: none
Input: representation of shapes as size graphs (from
discrete or discretized objects)
Efficiency: the computational complexity is O(nlogn
+ mα(2m+n,n))

Shape Descriptors 32

OutlineOutline

Descriptors parametric with respect to f:
– Reeb graph
– Size theory tools
– Persistent homology tools
– Descriptors based on spherical decompositions

• Spherical harmonics
• Spherical wavelets

Descriptors linked to a specific f:
– Shape-DNA
– Bending invariant signature
– Spectral embedding
– Pose-oblivious shape signature
– Salient geometric features
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PersistentPersistent HomologyHomology [ELZ02][ELZ02]

The idea of Persistent Homology is to control the 
placement of topological events in a growing space 
and assess their relevance according to their life-time

Given a growing complex K, represented by a filtration

the  j-persistent k-th homology group of Ki is a group
isomorphic to the image of the homomorphism

induced by the inclusion of Ki into Ki+j

Persistence represents the life-time of cycles in the 
growing filtration

{ }   of subcomplex,, 1
,...,

+
= = iin

ni
i KKKKK

( ) ( )ji
k

i
k

k
ij KHKH +→:η
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PersistentPersistent HomologyHomology [ELZ02][ELZ02]

The persistent homology of a growing complex can be
represented by a set of intervals, called persistence intervals: a 

P – interval is a pair

such that there exists a cycle that is completed at the level i of 
the filtration and remains non-bounding until the level j

jijiji <≤+∞∪Ζ∈ 0,,),,(
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PersistencePersistence HomologyHomology and and BarcodesBarcodes [CGCZ05][CGCZ05]

The shape of a complex K can be described by
filtering the complex by the increasing values of a 

real function

Idea: construct a new complex strictly related to K, 
namely the tangent complex T(K) (closure of the 
space of all tangents to all points in K), and filter it
with the function computing the curvature at a 

point along a tangent direction

The barcode of the shape is the set of P – intervals
for the filtered tangent complex

Shape Descriptors 36

BarcodesBarcodes and and PersistencePersistence DiagramsDiagrams [CSEH07][CSEH07]

More recently P – intervals have been described as
point sets in the extended plane, and named
persistence diagrams: barcodes are essentially a 
different representation of persistence diagrams for the 
tangent complex with the curvature function
The Bottleneck Stability Theorem has been proved: 
Let be a triangulable space with continuous tame
functions

Then the persistence diagrams satisfy

with the Bottleneck distance (also true for the 
Hausdorff distance)

X
ℜ→Xgf :,

( )
∞

−≤ gfgDfDd B )(),(
)(),( gDfD

Bd
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PersistentPersistent homologyhomology [ELZ02][ELZ02]

Recent research directions: 
– Vines and Vineyards [CSEM06]
– Multidimensional Persistence [CZ07a] 
– Localized Homology [CZ07b] 
– Persistence Intervals [DW07] 
– Extended Persistence[CSEH07]

Shape Descriptors 38

PersistencePersistence barcodesbarcodes and and diagramsdiagrams
[ELZ02,CGCZ05][ELZ02,CGCZ05]

Saliency: 
– captures the structure among the features characterized 

by the critical points of the mapping function
– the authors have confined themselves to compute

barcodes using a specific space and a specific function,
but the underlying theory is valid for more general classes
of shapes and functions

Shape Descriptors 39

PersistencePersistence barcodesbarcodes and and diagramsdiagrams
[ELZ02,CGCZ05][ELZ02,CGCZ05]

Conciseness: very concise combinatorial
description
Robustness: theoretically proven robustness wrt
small shape changes
Unique but not complete
Invariance: inherits invariance properties from the 
underlying measuring functions
DoF and heuristics: none
Input: Barcodes computed on curve PCD and 
mathematical surfaces, but triangulations and a 
more general input are admissible
Efficiency: Computing persistent homology requires
at most O(m3), with m the number of simplices

Shape Descriptors 40

OutlineOutline

Descriptors parametric with respect to f:
– Reeb graph
– Size theory tools
– Persistent homology tools
– Descriptors based on spherical decompositions

• Spherical harmonics
• Spherical wavelets

Descriptors linked to a specific f:
– Shape-DNA
– Bending invariant signature
– Spectral embedding
– Pose-oblivious shape signature
– Salient geometric features
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SphericalSpherical HarmonicsHarmonics [VSR01][VSR01]

Idea: build multi-resolution feature vectors using the 
Fourier expansion of a function defined on the 
sphere
Represent the spherical function f: S2→R (eg. the 
spherical extent function, measuring the extent of 
the object in given directions) as

Feature vectors can be extracted from the first rows
of coefficients, thereby providing a multiresolution
approach

∑ ∑≥ ≤
=

0 , ),(),(
l lm

m
lml Yaf ϕθϕθ
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Spherical HarmonicsSpherical Harmonics [KFR03][KFR03]

Represent a function f defined on the sphere through 
its spherical harmonics and consider the vector of 
energies (i.e. frequency norms)

with fl the frequency components

Let R be a rotation; then it holds:

( ) ( ) ( ){ },...,,,, 10 ϕθϕθ fffSH =

( ) ( )∑
−=

=
l

lm

m
llml Yaf ϕθϕθ ,,

SH(f)SH(R(f)) =
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Spherical HarmonicsSpherical Harmonics [KFR03][KFR03]

Extension to voxel description: 
• Restrict the voxel grid to a collection of concentric spheres 
• Represent each spherical restriction in terms of the energy of 

its frequency decomposition, thus obtaining a 1D descriptor  
• The final descriptor resulting from the analysis of spheres with

different radii is a 2D grid indexed by radius and frequency

Shape Descriptors 44

SphericalSpherical WaveletsWavelets [LTN06][LTN06]

The problem of the sensitivity of the sampling of the 
spherical function to latitude-longitude
parametrization of the sphere is addressed
A rotation invariant sampling is proposed, relying on 
the flat octahedron parametrization of the sphere
A Spherical Wavelet Transform is applied to the 
spherical shape function
Resulting descriptors:
– Matrix of wavelet coefficients (SWC)
– L1 energy-based feature vector (SWEL1)
– L2 energy-based feature vector (SWEL2)

Shape Descriptors 45

SphericalSpherical waveletwavelet descriptorsdescriptors [LTN06][LTN06]

SWEL2
SWC

SWC

SWEL1

SWEL2 SWEL1
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Spherical Harmonics and Wavelets [VSR01,KTR03,LTN06]Spherical Harmonics and Wavelets [VSR01,KTR03,LTN06]

Saliency: captures the geometrical properties expressed 
by the spherical function
Conciseness: very concise descriptors (feature vectors or 
matrices) 
Robustness: robustness wrt small changes of the 
spherical function derived from the decomposition
properties
Unique, but not complete, since a finite number of 
coefficients or energies is taken into account
Invariance: 
– Wrt translation
– Wrt rotation: [VSR01] requires alignment, [KTR03] is 

invariant only to rotations applied to the sampled 
input, in [LTN06] SWC requires alignment, while SWEL1 
and SWEL2 are rotation invariant
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Spherical Harmonics and Wavelets Spherical Harmonics and Wavelets 
[VSR01,KTR03,LTN06][VSR01,KTR03,LTN06]

DoF and heuristics: 
– Sampling and voxelization
– number of frequency components
– [LTN06] requires the choice of the wavelet

transform
Input: meshes (also poligon soups) and grids
Efficiency: the computational complexity in [KTR03] 
is O(n3) with n size of the voxel grid

Shape Descriptors 48

OutlineOutline

Descriptors parametric with respect to f:
– Reeb graph
– Size theory tools
– Persistent homology tools
– Descriptors based on spherical decompositions

• Spherical harmonics
• Spherical wavelets

Descriptors linked to a specific f:
– Shape-DNA
– Bending invariant signature
– Spectral embedding
– Pose-oblivious shape signature
– Salient geometric features
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ShapeShape DNA DNA [RWP06][RWP06]

The shape DNA is the beginning of the spectrum of the 
Laplace – Beltrami operator, defined for real valued
functions on Riemannian manifolds: 

Given a Riemannian n- manifold and
the Laplace – Beltrami operator is

(different from the discrete Laplacian on graphs) 

Shape DNA =

with eigenvalues of the Helmholtz equation

ℜ→Mf :

)(: fgraddivf =Δ

M

{ } 010 ... ≥ℜ∈≤≤≤ m
mλλλ

ff λ−=Δiλ
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ShapeShape DNA DNA [RWP06][RWP06]

Numerical computation:
Translate the Helmotz equation into a variational problem

and employ the Finite Elements Method (FEM)             
with form functions, leading to the generalized

eigenvalue problem:

with sparse positive (semi-)definite symmetric
matrices and                                 eigenfunctions with

corresponding eigenvalues 

m

BUAU λ=
BA,

),...,,( 21 mUUUU =
λ
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ShapeShape DNA DNA [RWP06][RWP06]

Courtesy of Martin Reuter
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ShapeShape DNA DNA [RWP06][RWP06]

Saliency: 
– description of geometrical and topological

properties intrinsic to the object
– scalable amount of captured shape information, 

related to the dimension of the cropped
spectrum

Robustness: continuously dependent on shape
deformations
Unique but not complete, since there exist
isospectral but not isometrical shapes
Invariance wrt isometry
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ShapeShape DNA DNA [RWP06][RWP06]

DoF and heuristics: 
– choice of the number of eigenvalues in the 

cropped spectrum
– choice of the form functions for FEM

Input: parametric surfaces, polygonal meshes, solid
polyhedra, but conversion to a dataform supported
by the FEM engine is required; independent w.r.t. 
parametrization
Efficiency: the eigenvalue computation is the most
time consuming step
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OutlineOutline

Descriptors parametric with respect to f:
– Reeb graph
– Size theory tools
– Persistent homology tools
– Descriptors based on spherical decompositions

• Spherical harmonics
• Spherical wavelets

Descriptors linked to a specific f:
– Shape-DNA
– Bending invariant signature
– Spectral embedding
– Pose-oblivious shape signature
– Salient geometric features
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BendingBending InvariantInvariant SurfaceSurface SignaturesSignatures [EK03][EK03]

Geodesic distances between surface points are 
invariant to surface bending
Idea: use geodesic distances to define an
isometrical embedding of a surface in a small
dimensional Euclidean space, in which
geodesic distances are approximated by
Euclidean ones
Method: apply a MultiDimensional Scaling
(MDS) procedure on a geodesic distance
matrix, with geodesics computed via the Fast 
Marching on Triangulated Domains (FMTD) 
algorithm

Shape Descriptors 56

BendingBending InvariantInvariant SurfaceSurface SignaturesSignatures [EK03][EK03]

Sample with n vertices a given triangulated surface, 
via iterative Voronoi sampling, and  build an n x n
dissimilarity matrix D

with the geodesic distance between vertices
computed following the FMTD algorithm

Define a dimension m for the Euclidean embedding
space and apply MDS on the matrix D, yelding an
n x m matrix whose rows define the coordinates in         
of the points of the signature surface

( )2ijijD δ=
ijδ ji,

mℜ
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BendingBending InvariantInvariant SurfaceSurface SignaturesSignatures [EK03][EK03]

These two steps define a bending invariant descriptor, 
that allows to translate the problem of matching non-
rigid objects in various posture into a simpler problem of 
matching rigid objects

Shape Descriptors 58

BendingBending InvariantInvariant SurfaceSurface SignaturesSignatures [EK03][EK03]

Drawback: embedding in the Euclidean space may
introduce metric distortions

Extension to non-Euclidean embeddings (such as
embedding on the sphere [BBK05]) and 
introduction of Generalized MDS [BBK07]

In [BBK06] partial surface matching is also
addressed, introducing the Partial Embedding
distance
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BendingBending InvariantInvariant SurfaceSurface SignaturesSignatures [EK03][EK03]

Saliency: 
– metric properties are captured by the geodesic

distance
– scalable amount of captured shape information, 

related to the dimension of the embedding
Invariance wrt isometry
Not unique, due to the randomly chosen
starting point in the sampling stage, and not
complete

Shape Descriptors 60

BendingBending InvariantInvariant SurfaceSurface SignaturesSignatures [EK03][EK03]

Input: triangulated surfaces
DoF and heuristics: 
– choice of the dimension of the sampling and the 

embedding
– choice of the specific MDS algorithm (classical, 

least squares, fast)
Efficiency: 
– Computing the matrix requires O(n2), with n the 

number of sampled vertices
– the MDS algorithm is at most O(nN), with N 

number of iterations
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OutlineOutline

Descriptors parametric with respect to f:
– Reeb graph
– Size theory tools
– Persistent homology tools
– Descriptors based on spherical decompositions

• Spherical harmonics
• Spherical wavelets

Descriptors linked to a specific f:
– Shape-DNA
– Bending invariant signature
– Spectral embedding
– Pose-oblivious shape signature
– Salient geometric features
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SpectralSpectral EmbeddingEmbedding [JZ07][JZ07]

Ideas similar to [Elad and Kimmel 2003] are 
developed, introducing a descriptor suitable to
compare articulated objects
The matrix is an affinity matrix involving a 
Gaussian of width

with geodesic distances approximated
through an heuristic
The embedding in       is given by the first     
eigenvectors of the matrix, computed via 
Nyström approximation

σ
D

σ
δ 2

,
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eD ji

−
=

mℜ m
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SpectralSpectral EmbeddingEmbedding [JZ07][JZ07]

The descriptor is given by the embedded
surface or by the matrix first eigenvalues 
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SpectralSpectral EmbeddingEmbedding [JZ07][JZ07]

Saliency: 
– metric properties captured by the geodesic

distances
– the possibility to use affinity matrices based on 

different functions (e.g. Euclidean or combined
distances) is suggested

– Scalable amount of shape information, related
to the embedding dimension

Stability: problems related to eigenmode switching
and eigenmode sign assignment have to be faced
Robustness: sensitiveness to outliers in the data
Invariance wrt isometries
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SpectralSpectral EmbeddingEmbedding [JZ07][JZ07]

Unique but not complete
Input: triangulated surfaces (possibly to be
repaired)
DoF and heuristics:
– sampling rate
– embedding dimension
– Gaussian width
– heuristic to compute the geodesic distance

Efficiency: O(Nnlogn+N3) operations required to
compute and eigen-decompose the affinity matrix, 
with n the number of vertices of the mesh and N the 
number of sampled points
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OutlineOutline

Descriptors parametric with respect to f:
– Reeb graph
– Size theory tools
– Persistent homology tools
– Descriptors based on spherical decompositions

• Spherical harmonics
• Spherical wavelets

Descriptors linked to a specific f:
– Shape-DNA
– Bending invariant signature
– Spectral embedding
– Pose-oblivious shape signature
– Salient geometric features
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PosePose--oblivious shape signatureoblivious shape signature [GCO06][GCO06]

The pose-oblivious shape signature is a 2D histogram that 
combines two scalar functions defined on the boundary 
surface of the 3D shape.
– the local diameter function: this function measures the diameter

of the 3D shape in the neighbourhood of each vertex
– the centricity function: this function measures the average 

geodesic distance from a vertex to all other vertices on the mesh 
[HSKK01]
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PosePose--oblivious shape signature [GSCO06]oblivious shape signature [GSCO06]

The shape signature is an 
histogram that combines 
both CF and DF 

The signature is represented 
as 2D array of scalar values 
between [0,0] and [1,1]

Each array bin with values 
(x,y) contains the 
approximated probability 
of a point on the boundary 
of the mesh to have a DF 
value of x and a CF value 
of y
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OutlineOutline

Descriptors parametric with respect to f:
– Reeb graph
– Size theory tools
– Persistent homology tools
– Descriptors based on spherical decompositions

• Spherical harmonics
• Spherical wavelets

Descriptors linked to a specific f:
– Shape-DNA
– Bending invariant signature
– Spectral embedding
– Pose-oblivious shape signature
– Salient geometric features
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Salient geometric featuresSalient geometric features [GCO06][GCO06]

The surface of the object is 
analyzed and a set of salient 
regions is identified
Salient regions are complex sub-
parts of the surface
Each salient feature is associated 
with a vector index (a signature) 
and inserted into a geometric 
hash table
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Salient geometric featuresSalient geometric features [GCO06][GCO06]

The local shape descriptor is a point p on a surface and its 
associated quadric patch that approximate the surface in a 
local neighbourhood of p.
Salient geometric features are obtained by clustering together 
a set of descriptors such that they have a high curvature 
relative to their surroundings, and a high variance of curvature
values Eurographics 2007 Tutorial T12

Questions?Questions?

S. Biasotti et al. / 3D shape description and matching 987



@ The Eurographics Association 2007.

Eurographics 2007 Tutorial T12

3D Shape Description and Matching Based on 3D Shape Description and Matching Based on 
Properties of Real Functions Properties of Real Functions 

Comparison MethodologiesComparison Methodologies

Speaker

Simone Marini

CNR-IMATI-GE  - Italy

Comparison methodologies 2

Evaluating the matching  characteristicsEvaluating the matching  characteristics

Properties of the similarity measure
Robustness of the similarity measure
– Low variation of the measure wrt small variations of the shape 

descriptor

Type of comparison
– global and/or partial matching

Type of information taken into account
– geometrical, topological, structural

Computational complexity of the matching algorithm
Application context

Comparison methodologies 3

Properties of similarity measuresProperties of similarity measures

Let S be the set of shape descriptors, the distance measure d
between two shapes descriptors is defined as:

Properties:

– (self identity)

– (positivity)

– (symmetry)

– (triangular inequality) 

– (strong t. i.)

ℜ→× SS:d

0x)d(x, =

yx0,y)d(x, ≠>

x)d(y,y)d(x, =

z)d(y,y)d(x,z)d(x, +≤

{ }z)d(y,,y)d(x,maxz)d(x, ≤
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Properties of similarity measuresProperties of similarity measures

The measure properties are grouped as in the 
following:
– semi-metric: self-identity, positivity, symmetry

– pseudo-metric: self-identity, symmetry, triangular inequality

– metric: a pseudo-metric that satisfies the positivity

– ultra-metric: a metric satisfying strong triangular inequality

The perceptual space can be approximated by the 
metric properties ?  [Tve77,SJ99]
– symmetry and triangular inequality should not holds for 

partial matching
Metrics can be used for indexing purposes

Comparison methodologies 5

Type of comparisonType of comparison

Global Matching: 
– Overall shape comparison
– Real number representing the similarity

estimation between the two objects

Sub-Part Correspondence:
– Real number as similarity estimation
– Mapping among similar sub-parts

Partial Matching:
– Real number as similarity estimation
– Similar sub-parts between objects

having different overall shape

Comparison methodologies 6

Type of information taken into accountType of information taken into account

according to the type of information stored and the 
way it is coded in the descriptor, the measure of 
similarity may take into account: 

– geometric information

– topologic information

– structural information
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Comparison methodologies 7

Comparison methodologiesComparison methodologies

for descriptors represented by matrices and vectors
– Spherical Harmonic representation [KFR03]
– Shape DNA [RWP06]
– Bending Invariant Surface Signatures[EK03,BBK06]
– Spectral Embedding [JZ07]
– Pose-oblivious shape signature [GSCO07] 
– Salient geometric features [GCO06]

for descriptors represented by formal series
– Size functions [dFL], [dAFL05]
– Barcodes and persistence diagrams [CZCG05]

for descriptors represented by graphs
– Multiresolution Reeb Graphs [HSKK01]
– Extended Reeb Graphs [BMSF06]

Comparison methodologies 8

Represent a function f defined on the sphere through its spherical 
harmonics and consider the vector of energies (i.e. frequency 
norms)
Extension to voxel description: 
• Restrict the voxel grid to a collection of concentric spheres 
• Represent each spherical restriction in terms of the energy of its 

frequency decomposition, thus obtaining a 1D descriptor  
• The final descriptor resulting from the analysis of spheres with

different radii is a 2D grid indexed by radius and frequency
2D descriptors are compared by using the L2 norm

Spherical Harmonic representation [KFR03]Spherical Harmonic representation [KFR03]

Comparison methodologies 9

Spherical Harmonic representation: matching Spherical Harmonic representation: matching 
characteristics [KFR03]characteristics [KFR03]

Properties of the similarity measure
– metric

Robusteness of the similarity measure
– induced by the properties of metrics

Type of comparison
– global matching

Type of information taken into account: 
– geometric information

Computational complexity of the matching algorithm
– linear in the number of entries stored in the 2D array

Application context
– retrieval of 3D objects, not suitable for articulated objects

Comparison methodologies 10

ShapeShape DNA DNA [RWP06][RWP06]

Shape DNA signatures are m-dimensional feature
vectors that can be compared using any metric
between vectors, e.g. the Euclidean p-norm

the Hausdorff distance, the Pearson correlation
distance
according to empirical evidence, d2 yields good
results while being easy to compute
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ShapeShape DNA DNA [RWP06][RWP06]

Matching results on a small database of meshes, including
different classes of deformed models, show a nice clustering
of objects

Other experiments on collections of grey-scale and colour
images [RWP07]
Medical applications on brain surfaces [NRW07], using
statistical methods to distinguish populations; extention to 3D 
brain data

Comparison methodologies 12

Shape DNAShape DNA:  matching characteristics:  matching characteristics [RWP06][RWP06]

Properties of the induced similarity measure
– metric (using the Euclidean p-norm)

Robustness of the similarity measure: 
– induced by the robustness of metrics

Type of comparison: global matching
Type of compared information
– the descriptor stores geometric and topological information, but

it is difficult to control them in a differentiated manner in the 
definition of the measure 

Computational complexity of the matching algorithm
– p-norms are linear in the number of vertices of the model

Application context: 
– medical applications, suitable for  articulated objects
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Comparison methodologies 13

BendingBending InvariantInvariant SurfaceSurface SignaturesSignatures [EK03][EK03]

Given the surface signatures, any algorithm to evaluate the 
similarity of rigid objects can be involved in the comparison
step
Example: Compute the vectors of the first few moments of the 
surfaces and compute their Euclidean distance

Comparison methodologies 14

BendingBending InvariantInvariant SurfaceSurface SignaturesSignatures [EK03][EK03]

Properties of the induced similarity measure
– Depends on the matching method used

Robustness of the similarity measure
– Depends on the matching method used

Type of comparison
– Global or partial matching depending on the matching method 

used

Type of compared information
– Depends on the matching method used 

Computational complexity of the matching algorithm
– Depends on the matching method used

Application context
– face recognition

Comparison methodologies 15

SpectralSpectral EmbeddingEmbedding [JZ07][JZ07]

Compare shapes by computing existing shape
descriptors (Light Field, Spherical Harmonics) 
on spectral embeddings
Use the vectors of normalized eigenvalues 
and define:

Compute a correspondence cost derived
from the correspondence between the 
vertices of the two shapes (possibly after a first 
filter using EVD)
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SpectralSpectral EmbeddingEmbedding [JZ07][JZ07]

PrecisionPrecision--Recall plot for McGill databaseRecall plot for McGill database

Comparison methodologies 17

SpectralSpectral EmbeddingEmbedding:  matching characteristics:  matching characteristics [JZ07][JZ07]

Properties of the induced similarity measure

–

–

– X2   is a semi-metrics if f and g are positives

Robustness of the similarity measure

– induced by the robustness of metrics
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SpectralSpectral EmbeddingEmbedding: matching characteristics: matching characteristics [JZ07][JZ07]

Type of comparison
– Global matching

Type of compared information
– geometric and topological information

Computational complexity of the matching 
algorithm
– DEVD is linear in the number of vertices of the embedded 

model

Application context
– suitable for articulated objects 
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Comparison methodologies 19

PosePose--oblivious shape signature[GCO06]oblivious shape signature[GCO06]

The pose oblivious is a 2D histogram that 
combines local diameter function and 
centricity function both  defined on the 
boundary surface of the 3D shape.

Matching:
– correlation coefficient:

– ∫ +
−
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gf
gfgfD
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2 )(),(χ

Comparison methodologies 20

PosePose--oblivious shape signature : matching oblivious shape signature : matching 
characteristics [GSCO07]characteristics [GSCO07]

Properties of the similarity measure
– X2   is a semi-metrics if f and g are positives
– correlation coefficient is a semi-metric

Robustness of the similarity measure
– induced by the properties of measures

Type of comparison
– global matching

Type of information taken into account
– the descriptor stores geometric information

Computational complexity of the matching algorithm
– linear in the number of entries stored in the 2D array

Application context
– retrieval of 3D objects, suitable for rticulated objects

Comparison methodologies 21

Salient geometric features [GCO06]Salient geometric features [GCO06]

Each salient feature is associated with a vector index (a 
signature) and inserted into a geometric hash table
Given a query object, its salient feature are extracted and used
to query the database for a list of matching features 
The returned features identify the models having larger number 
of matches.

Comparison methodologies 22

Salient geometric features [GCO06]Salient geometric features [GCO06]

The vector index used in the hash table encode the following 
information:
– area of the salient feature
– curvature of the salient feature
– number of local minimum(s) or maximum(s) curvatures in the 

salient feature
– the curvature variance in the salient feature

The similarity between objects is given by the number of 
correspondence among the salient features

Comparison methodologies 23

Salient geometric features : matching characteristics Salient geometric features : matching characteristics 
[GCO06][GCO06]

Properties of the similarity measure
– similarity measure is not proposed by authors

Type of comparison
– Sub-part correspondence and partial matching. 

Type of information taken into account: 
– geometric information

Computational complexity of the matching algorithm
– depends on the geometric hashing used

Application context
– retrieval of 3D objects, object alignement

Comparison methodologies 24

MultiresolutionMultiresolution Reeb Reeb GraphGraph [HSKK01][HSKK01]

Similarity between two nodes P,Q is weighted on 
their attributes:

101 <<−−+−= ααα |,)()(|)(|)()(|),( QLPLQAPAQPsim

Nodes with maximal 
similarity are paired if:
– Share the same range of f
– Parent nodes are matched
– Belong to graph paths 

already matched
The distance between two 
MRGs is the sum of all node 
similarities
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Comparison methodologies 25

MultiresolutionMultiresolution Reeb Reeb GraphGraph: matching characteristics: matching characteristics
[HSKK01][HSKK01]

Properties of the induced similarity measure
– metric

Robustness of the similarity measure
– stability properties of metric

Type of comparison
– global matching (suitable also for sub-part correspondence and partial 

matching)
Type of compared information

– structural and geometric information
Computational complexity of the matching algorithm

– where M and N is the number of nodes of the two  
multiresolution graphs

Application context
– Retrieval of free form objects

))(( NMMO +⋅

Comparison methodologies 26

Extended Reeb Graphs [BMSF06]Extended Reeb Graphs [BMSF06]

Two ERGs are compared using a 
graph-matching approach based on 
the “best common subgraph”
detection

Also sub-part correspondences are      
recognized

Heuristics are used to improve
– Quality of the results
– Computational time

Comparison methodologies 27

Extended Reeb Graphs [BMSF06]Extended Reeb Graphs [BMSF06]

Given G1 and G2, two direct, acyclic and attributed 
graphs:
– the distance d between two nodes v1∈G1 and v2∈G2 is

– the distance D(G1,G2) depends both on the  
geometry and the structure of the objects:

3
321

21
SSS Szw+Stw+Gw=)v,d(v

][wi 0,1∈

∑ 1=wi

Comparison methodologies 28

Extended Reeb Graphs [BMSF06]Extended Reeb Graphs [BMSF06]

Some examples of sub-part correspondence and partial 
matching

Comparison methodologies 29

Extended Reeb Graphs:Extended Reeb Graphs: matching characteristics matching characteristics 
[BMSF06][BMSF06]

Properties of the Induced similarity measure
– semi-metric

Robustness of the similarity measure
– Stability properties of semi-metrics

Type of comparison
– global matching, sub-part correspondence and partial matching

Type of compared information
– structural and geometric information

Computational complexity of the matching algorithm
– where n is

Application context
– free form objects and CAD models

)( 3nO { }21 GG ,max

Comparison methodologies 30

MatchingMatching distancedistance betweenbetween 11--dimensional dimensional sizesize
functionsfunctions [dAFL06][dAFL06]

Two size functions , with associated formal series C1 and C2, can 
be compared by measuring the reciprocal distances of cornerpoints
and cornerlines

and choosing the matching which minimizes the maximum of these
distances

when varies among the bijections between C1 and C2

2 1,l l

σ
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Comparison methodologies 31

MatchingMatching distancedistance betweenbetween 11--dimensional dimensional sizesize
functionsfunctions [dAFL06][dAFL06]

Matching Stability Theorem:
The matching distance satisfy the following stability
condition:

Lower bound for the natural pseudo-distance:
Let δ be the matching distance between the two
size functions (M ,ϕ) e (N,ψ). Then

d((M ,ϕ),(N,ψ)) ≥ δ.

l l

Comparison methodologies 32

MatchingMatching distancedistance betweenbetween multidimensionalmultidimensional sizesize
functionsfunctions [BCF*07][BCF*07]

On each leaf of a particular foliation of their
domain, multidimensional size functions coincide 
with a particular 1-dimensional size function
the induced 1D matching distance on each leaf of 
the foliation is stable wrt small changes of the 
leaves;
a multidimensional matching distance can be
defined

theorems about the stability of the matching
distance and the lower bound for the natural
pseudo distance can be stated also in the case k>1 

Comparison methodologies 33

MultidimensionalMultidimensional SizeSize FunctionsFunctions [BCF*07][BCF*07]

Comparison methodologies 34

SizeSize FunctionsFunctions:  matching characteristics :  matching characteristics 
[dAFL06,BCF*07][dAFL06,BCF*07]

Properties of the induced similarity measure
– the matching distance is a metric
– it provides a lower bound for the natural pseudo-distance

Robustness of the similarity measure
– stability theorem for the matching distance

Type of comparison
– global matching

Type of compared information
– geometric-topological

Computational complexity of the matching algorithm
– O(n2.5), where n is the number of cornerpoints taken into account

Application context
– Medical images, trademarks recognition, 3D retrieval

Comparison methodologies 35

BarcodesBarcodes [CZCG05][CZCG05]
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Comparison methodologies 36

BarcodesBarcodes [CZCG05][CZCG05]

Barcode pseudo-metric:

Minimizing is equivalent to maximizing the similarity

Recasting the problem as a graph problem, such
minimization is equivalent to the well known maximum
weight bipartite matching problem
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Comparison methodologies 37

BarcodesBarcodes [CZCG05][CZCG05]

Examples on mathematical surfaces
Classification results on a set of 80 hand-
drawn copies of letters

Comparison methodologies 38

PersistencePersistence DiagramsDiagrams [CSEH07][CSEH07]

Describing P – intervals as point sets in the extended
plane, i.e. by persistence diagrams,  the Bottleneck
Stability Theorem has been proved
Under conditions on the space and the functions
f,g, it holds that the Bottleneck distance between
persistence intervals satisfies

where dB is defined as

with X, Y multisets of points, x ∈X, y∈Y range over all
points and γ ranges over all bijections from X to Y
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Comparison methodologies 39

BarcodesBarcodes and and PersistencePersistence DiagramsDiagrams [CSEH07][CSEH07]

In terms of persistence diagrams, the distance
defined for barcodes can be written

with γ ranging in the set of bijections between D1
and D2, but this distance does not guarantee the 
stability property proven for persistence diagrams
under the Bottleneck distance
Under certain assumptions, the Barcode Theorem
holds, guaranteeing the stability property under the 
Bottleneck distance

( ) ∑ −=
p

ppDDd
121 )(inf, γγ

Comparison methodologies 40

BarcodesBarcodes and and persistencepersistence diagramsdiagrams:  matching :  matching 
characteristics characteristics [CZCG05,CSEH07][CZCG05,CSEH07]

Properties of the induced similarity measure
– pseudo-metric between barcodes 
– metric between persistence diagrams

Robustness of the similarity measure
– stability theorems for barcodes and persistence diagrams under 

the Bottleneck distance
Type of comparison
– global matching

Type of compared information
– geometric-topological

Computational complexity of the matching algorithm
– for the pseudo-metric between barcodes, it depends on the 

algorithm used to minimize D(s1, s2)
Application context: 3D and curve PCD comparison
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3D shape description and matching based on 3D shape description and matching based on 
properties of real functionsproperties of real functions

Conclusions Conclusions and future and future perspectivesperspectives

Speakers

Bianca Falcidieno       Michela Spagnuolo

CNRCNR--IMATIIMATI--GE GE -- ItalyItaly

2

Shape M&R: remarksShape M&R: remarks
Shape matching and retrieval is a complex 
process that involves reasoning at many different 
levels
– Perception
– Query formulation
– Context understanding and formalization
– Shape complexity (retrieval in broad or narrow domains)

Crucial aspects that determine the performance 
of shape and retrieval systems
– Saliency of the descriptors
– Efficiency of the matching
– Indexing

3

Shape M&R: remarks on performancesShape M&R: remarks on performances

Quantitative measures: relatively easy ..
– Precision/recall, first and second tier, CG, ..
– More attention to the ground truth definition
– Flexible classification tools

Qualitative measures : 
– more difficult, need users or scenarios and 

specific models
Reproducibility of results
– Executables should be provided
– Benchmarks for specific shape M&R tasks

4

Evaluation and benchmarking Evaluation and benchmarking 

SHREC'07 - Shape Retrieval Contest 2007 
promoted by AIM@SHAPE, and coordinated 
by Remco Veltkamp (UU)

– Organized every year, in conjunction with Shape 
Modeling International – SMI – (next year, Stony 
Brook, June 2008)

– Multi-track: this year 7 tracks for watertight 
models, partial matching, protein models, CAD 
models, relevance feedback, similarity measures, 
3D faces

http://www.aimatshape.net/event/SHREChttp://www.aimatshape.net/event/SHREC

5

why SHRECwhy SHREC

PSB has limited benchmarking capabilities

different representation models
– NOT format, but MODELS: triangle meshes, NURBS, Breps, 

that may have different characteristics

different retrieval modes
– Global
– Partial
– Sub-part correspondence

different “types of” similarity
– Form (geometry or structure)
– Function & Semantics 
– ..

6

Shape M&R: remarksShape M&R: remarks

The results did not show any method really 
outperforming others

Results per single query can give insights on 
what method is best suited for specific 
shapes

No single best method exists

Benchmarking can help the definition of best 
practices to help users selecting the most 

appropriate retrieval method for the application 
context, shape category and complexity, type of 

similarity implied

S. Biasotti et al. / 3D shape description and matching 995



© The Eurographics Association 2007.

7

How to How to describedescribe a shape ?a shape ?

Geometry
– Detect relevant local 

features

Structure
– Organize them in a structure

Semantics
– Use the structure to detect 

high-level features 
(semantics)

perception

understanding

8

How to embed semantics in Shape M&R?How to embed semantics in Shape M&R?

All methods use semantics/knowledge in the 
shape description process

Reasoning at semantic level (eg, logic 
based reasoning) on shape similarity requires 
the annotation of shapes and/or shape 
parts

How can we associate semantic “tags” to 
shapes or shape parts and use them in a 
Shape M&R sessions ? 

… starting from the shape description step …… starting from the shape description step …

9

is there a 
“best”
method to 
segment a 
shape ?

Katz & Tal 03    Katz et al. 05     Tailor        Plumber              HFP

How to use more 
effectively 

segmentation tools 
to annotate shapes ?

How to use more 
effectively 

segmentation tools 
to annotate shapes ?

10

Shape AnnotatorShape Annotator

Shape features are identified through multiple 
segmentation algorithms
– A single segmentation algorithm is usually 

not enough to capture all the feature 
classes necessary for a satisfactory 
annotation, even in a single domain

– Solution: Pick interesting features from 
different segmentations

Compose the best segmentation for a 
specific domain and annotate shape features 
with concepts formalized by an ontology

11

The The ShapeAnnotatorShapeAnnotator

window showing the results of 
each segmentation plug-in 

window showing the 
composition of the final 

segmentation 

12

Segmentation pluginsSegmentation plugins
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13

Segmentation results Segmentation results ((PlumberPlumber))

segmentations producing good results are  accepted 
and kept in the system

14

Segmentation result Segmentation result (Reeb)(Reeb)

segmentations producing good results are  accepted and 
kept in the system

15

MultiMulti--segmentationsegmentation

By clicking on the different segmentation results, the 
corresponding features are selected as “interesting” and shown 

on the right
16

Segments selected from PlumberSegments selected from Plumber

Here we take both the arms from this segmentation

17

Segments selected from Segments selected from ReebReeb

.. then we switch to another segmentation to pick the legs ..

18

AnnotationAnnotation
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19

Saving Saving the the annotated meshannotated mesh

The multi-segmented and annotated mesh can be saved 
and shared in a knowledge base

20

Shape AnnotatorShape Annotator

Submitted papers

Technical report available
(contacts: Francesco Robbiano, Marco 
Attene)

21

Shape Annotator and 3D SearchShape Annotator and 3D Search

From geometry-based to semantics-based 
search engines for 3D content
– See the presentation of Francesco, IMATI, this 

afternoon
– How to formalize shape descriptions (ShaDe)

Mixing geometric and semantic reasoning 
will allow for text-based query formulation to 
be used and mixed with geometric similarity 
evaluation and retrieval

22

Trends/challengesTrends/challenges

To make the creation and modification of 3D 
shapes, with the associated knowledge, as 
easy as cut & paste for texts

– the development of appropriate knowledge 
representations and data structures for intelligent
3D shapes management

– the ability to identify regions in 3D digital shapes 
that correspond to what humans perceive as 
regions of interest and tag them appropriately 
(semantic annotation)

23

Trends/challengesTrends/challenges

To make the creation and modification of 3D 
shapes, with the associated knowledge, as 
easy as cut & paste for texts

– To develop 3D search engines based not only on 
geometry but also on semantics

– To deliver the appropriate 3D content in the 
appropriate modality

• development of appropriate visualization techniques 
including semantic rendering and semantic LODs

• visual rendering of the relevance of retrieval results

Eurographics 2007 Tutorial T12

…… the end the end ……

QuestionsQuestions??

contacts:

{bianca,daniela,simone,patane,michi}@ge.imati.cnr.it
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