EG UK Theory and Practice of Computer Graphics (2010)
John Collomosse, Ian Grimstead (Editors)

Using the Discrete Fourier Transform for Character Motion

Blending and Manipulation - a Streamlined Approach

M.R.L.Molnos!, S.D. Laycock!, A. M. Day'

ISchool of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

Abstract

Motion capture data allows natural-looking motion to be bestowed upon simulated characters. Research has
sought ways of extending the range of motions it can reproduce. One such method involves blending between
captured sequences in the frequency domain. This paper streamlines the approach taken by similar previous work.
Higher efficiency is obtained both by shifting computations from runtime to pre-processing and by using a simpler
technique, which is also more flexible allowing the method to be used for a greater range of motions. Furthermore,
the already-known use of a triangular network defining a continuous blending space is instead presented as an
adjustable interface element which is both intuitive and more flexible than applied to earlier work.

As before input data may be sparse yet still allows the creation of a continuous spectrum of subtly varying motions,
enabling characters to integrate well in their environment. Weighting calculation, blending and Fourier synthesis
of realistic-looking motion using five harmonics requires 0.39 us per degree of freedom for each frame in the
created sequence - a one-off cost incurred only when blending ratios change. This figure can be improved further
using the proposed level-of-detail adjustments, which, combined with its small memory footprint, makes the method

particularly suitable for the simulation of crowds.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Animation

1. Introduction

Individual characters in a virtual environment should behave
differently, walking at different speeds, with different styles.
Moreover, precise control is required in the animations to
enable characters to interact convincingly with each other
and their surroundings, enacting, eg, the most subtle of turns
or gradual changes in speed and associated gait geometry.

Achieving this by storing a motion database comprising
many thousands of locomotion styles and actions is not prac-
tical, so this paper instead considers the synthesis of new
motions from a smaller amount of input data (Figure 1).
It provides an alternative to previous work on the discrete
Fourier transform (DFT) and Fourier synthesis to gener-
ate such an uninterrupted spectrum of motions, yet presents
a simpler, more efficient and more flexible approach. The
streamlining measures are put firmly in context, by includ-
ing an implementation-level description for the creation of a
Fourier-based blending system which incorporates them.

(© The Eurographics Association 2010.

DOI: 10.2312/LocalChapterEvents/ TPCG/TPCG10/207-214

2. Previous Work

The literature divides motion synthesis from motion capture
databases into two categories: pose rearrangement and mo-
tion interpolation. This work focusses on the latter. Previous
approaches investigated techniques employing scattered data
interpolation, [WH97,RCB98,PSS02]. Rose et al, [RCB9S],
pioneered the use of radial basis functions and Wiley and
Hahn, [WH97], employed tri-linear interpolation. However,
these approaches require a dense sampling of motion clips,
leading to high memory requirements for varied animations.
Recently, Lau et al [LBJK09] generated a continuous range
of varied output motions from a sparse set of similar input
motions by learning a dynamic Bayesian network model.
This created subtle variations in walk cycles but required a
set of similar input motions.

Glardon et al, [GBT04a, GBT04b], investigated the use of
principal component analysis (PCA) to reduce the data to a
set of coefficients; a character’s speed could be interpolated

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/207-214

208 Molnos, Laycock & Day / Using DFT for Character Motion - a Streamlined Approach

Figure 1: A continuous range of turns from sharp left, to
less sharp, straight, right, then sharp right, created in real
time from two short pre-processed input sequences (inset).

or extrapolated from the input data based upon the charac-
ter’s height. In order for an avatar to convincingly navigate
obstacles it is important to be able to control the degree of
turn and the style of their movement. Troje, [Tro02], con-
sidered the latter using PCA in a similar vein to Glardon et
al, but adjusting the style was not independent of the speed,
removing significant control from the animator.

Fitting BSplines to weighted combinations of multiple
motion clips, [AWO01], facilitates the creation of new motion
from a sparse set of clips, but also has the potential to remove
subtleties from recorded motion. These comprise unwanted
noise potentially created during acquisition, but also desired
high frequency content indicating the style of the motion.

Treating the motion sequences as a collection of one-
dimensional discrete signals, where the joint angles vary
over time, permits new motion to be synthesised using sig-
nal processing techniques, [UAT95,BW95,PL06]. Bruderlin
and Williams, [BW95], present several techniques, of which
the most relevant to this paper is multitarget interpolation
where angle sequences for the degrees of freedom (DOF) of
two or more skeletons are converted to the frequency domain
using a method akin to multiresolution image filtering, yield-
ing values in discrete frequency bands which can be adjusted
and/or blended to create a new motion when converted back
to the time domain. Unuma et al, [UAT95], used Fourier ex-
pansion for similar work in the frequency domain, and fa-
mously extracted qualities such as tiredness and briskness
from a pair of motions and superimposed them onto another.
Pettre and Laumond, [PLO6], used the discrete Fourier trans-
form (DFT) to obtain Fourier series expansion coefficients
prior to blending between sets of three cyclic motions. In-
put motions are represented as points in a two-dimensional
space, with coordinates giving the linear and angular veloci-
ties of the root node. The points are joined by a Delaunay tri-
angulation, whose coverage indicates all the velocities avail-
able via motion interpolation, providing useful information
for the motion-planning context their work focussed on.

This paper uses Fourier expansion as did Pettre and Lau-
mond, [PLO6], but expressed in a more compact form lead-
ing to a lower expense at runtime. They also required input
motions to be resampled so that all comprise the same num-
ber of frames, effectively giving them different timesteps,
which in turn generates the need for a procedure they term

"extracting postures" when adding frames to the synthesised
motion - another runtime cost avoided by our method.

Pettre and Laumond, [PLO6], employed automatic posi-
tioning of triangle apexes, but this imposes significant lim-
itations. Being based on root velocities, it cannot be used
for motions where these velocities are not significant, such
as standing near-motionless, gently dancing on the spot or
standing around while fidgeting. This limitation is avoided
with manual apex placement as proposed in this paper,
which also allows triangles to be stretched or squashed rel-
ative to each other allowing an adjustment of the blending
point sensitivity. Furthermore, with manual positioning the
triangle network can be displayed as an interface element,
proportioned for best user-friendliness, which is both more
intuitive and easier to control than the high-level editing
tools suggested in [BW95].

It is [PL0O6] which our work is most similar to and is pri-
marily compared with, showing advantages in certain con-
texts such as interactive simulations and games.

A high-level view is now given, of the motion synthesis
system to which our streamlining measures -described else-
where in this paper- are applied. Some similarity with pre-
vious work is evident at this level - the view serving only
to provide a context for streamlining. Input motion capture
data is pre-processed as described in Section 4. It is first
converted to smooth periodic motion sequences and subse-
quently represented in the frequency domain via the DFT.
A continuous space is defined by considering input motion
data to be positioned at the vertices of a triangle network. At
runtime the location of a blending point in this space spec-
ifies an interpolation to be performed on the frequency do-
main data. Synthesized motion is obtained by then returning
the blended data to the time domain using Fourier synthesis.
The runtime procedures are described in Section 5.

3. Fourier Series Representation and Phase Angle
Blending

Several parts of this paper make reference to our chosen rep-
resentation for Fourier series expansions, and the associated
issue of blending phase angles. A clarification is thus due.

The Fourier series expansion used in [PL06] is

kmt

N
%4, qucos(?)+ﬁksl‘n(7) (D
k=1

m(t) = 5

T

where a, o and P are magnitude coefficients obtained via
the DFT. The formula is shown only to illustrate how it in-
volves twice as many trigonometric functions as that used
with our representation (equation 8). The other terms are not
relevant to this paper and hence not further explained. By
comparison, Equation 8, used in our work, is just as able
to synthesize waveforms despite having only half as many

(© The Eurographics Association 2010.

Molnos, Laycock & Day / Using DFT for Character Motion - a Streamlined Approach 209

b =167.5° 170°

c=352.5°
200°

260°)

Figure 2: Potential phase angles, a, b, ¢ and d, from blend-
ing those shown in bold. Angle e -see text- is easily refuted.

trigonometric functions. With this equation the coefficients
from the DFT are given by my, my, and py, representing both
magnitudes and phase angles, which in turn creates the need
to blend phase angles. A comprehensive description of the
equation and its symbols — is given later in Section 5.2.

Blending is explained in Section 5.1 but in brief it consists
of taking a weighted average of the coefficients from each
motion in the blend. While blending o, oy and By, or myg
and my, in this manner is problem-free, this is not the case
for the phase angles, py.

A phase angle represents a time-shift in one of the sinu-
soidal components (harmonics) inherent in a single DOF’s
motion. While naively blending them may succeed in some
cases, there are others in which it generates uncoordinated-
looking motion. Figure 2, left, gives a simple case where
two phase angles, shown by thick lines, are blended using
a 50/50 weighting. Two possible blended angles are sug-
gested, shown by thinner lines. Angle a may seem like the
logical choice as it lies closer to the original angles being
blended between. However, the middle diagram shows this
approach to fail. Here, only one of the original angles has
changed and did so by only 10°, yet the blended phase angle
closest to the original angles is now d; it thus has jumped
by around 180°. Clearly, a small change in the motions be-
ing blended should not generate a large jump in the nature of
the output motion. The alternative would be to select blended
angle c, but for consistency this approach should also be used
in the right-hand diagram. This time, however, it is the alter-
native approach which is seen to fail. Phase angles change
the style of the motion, so blending between two angles close
to 180° should not give e, a very different angle close to
0° degrees. The situation becomes still more complex when
blending between three motions with variable weightings.

Our solution is to blend sin(py) from each motion, and do
the same with cos(py), the blended angle being given by

Phplended = arctan2(sin(py)piended €0S(Pk)biended) ()

where arctan? is the two-argument version of the arctangent
function. The cost of arctan2 can be reduced by replacing it
with an algorithm based on the following approximation of
the standard arctan(x) function, valid for positive x.

(© The Eurographics Association 2010.

q
xX+r

3

arctan(x) ~ p+

where p, g and r are 1.597, 1.992 and 1.237 respectively
for 0 <x < 0.5, and 1.583, 1.259 and 0.609 for x > 0.5.
Any angle calculated with the arctan2 algorithm has an er-
ror below 1°. While not required, higher accuracy is easily
achievable by subdividing the domain into further bands.

The above provides an unambiguous way of calculating
blended phase angles. It is equivalent to using Equation 1
for blending and subsequently deriving the blended angles
from it, but without the cost. The efficiency lies firstly in that
the sines and cosines of phase angles are calculated in pre-
processing. Secondly, the calculated arctan2 approximation
involves minimal cost. This is mainly because it remains
valid for the entire output sequence, while making redundant
half the trigonometric functions used in Equation 1, which
need to be calculated on a per-frame basis. This advantage
remains if lookup table are used instead of trigonemtric func-
tions. Section 7 (Results) quantifies the associated savings.

4. Pre-processing Input Motions

The steps discussed in this section prepare the input data for
blending and only need be performed once for any number
of subsequent animation sessions.

4.1. Selection

As blending is performed between input motion cycles, the
number required is relatively small -and can be minimal-
making it a trivial task to manually select them by brows-
ing motion capture files. The main requirement is that they
contain a complete cycle of data with start and end frames
depicting similar poses. Automating the process by using a
distance function as in [KGPO02] to select cycles with well-
matching endpoints is possible but not seen as an advantage
as the aim is not to acquire a large database of motions but
instead to select a relatively small number of the most visu-
ally appealing ones - a task best left to human judgement.

A principal difference here compared to [PL06] is not
only that their work was limited to walking motions, but
their requirement that all samples be in phase, eg that they
all commence with a left foot-strike. Motion synchroniza-
tion (Section 4.6) makes this unnecessary and instead allows
a post-selection adjustment to synchronize motions, thereby
allowing the input motion cycles to be selected solely on the
basis of quality without the restriction of enforcing a partic-
ular start frame - especially important when motion capture
data is sparse. Furthermore, detailed examination of the in-
put data is not required at this or any later stage, completely
obviating the difficulty mentioned by Unuma, [UAT95], in
estimating the period from measured joint angle data.

210 Molnos, Laycock & Day / Using DFT for Character Motion - a Streamlined Approach

4.2. Root Rotation Angle Re-sequencing

The position of each node in the skeleton relative to its par-
ent is given by the concatenation of a translation (fixed bone
length) and three rotations (of the parent node), RyR,R:T.

The position of the end node of a three-bone branch is

Pend node — Rroot a Rrgo[b Rroot ¢ Troot
+ Rmid a Rmid b Rmid c Tmid
+ Rend a Rend b Rend c Tend (4)

with the chain of transformations being applied from right to
left and ending with the three root rotations.

At runtime the pre-calculated angle increments discussed
in Section 4.4 are blended and accumulated frame by frame
to create a continuous stream of new y-axis rotations for the
root node, allowing any turning content in the motion to be
endlessly enacted and turns to be built up. This occurs in-
stead of blending and applying y-axis values taken straight
from the motion capture file, and gives the skeleton its re-
quired world-coordinate orientation, consistent with the path
so far followed, with no need for any additional transforma-
tion to correctly orient the character. Runtime cost reduction
is significant, especially in comparison with [KG03] where
frames have to be positioned and oriented prior to blending.

The above requires the final (leftmost) matrix rotation in
Equation 4 to be the root’s y-axis rotation. This ensures the
accumulated y-rotations merely rotate the skeleton about the
vertical axis. The root angles are thus pre-processed to use
Y XZ ordering while representing the same 3D rotation.

4.3. Cyclification

Cyclification, as, eg, in [AMHO03], modifies motion cycles so
their boundaries become compatible, allowing motion con-
catenation analogous to the tiling of graphic images.

In our approach, having selected and resequenced an input
cycle, the angular motion data for the first and last frames
of each DOF are offset by equal and opposite amounts so
they acquire the same values. Intermediate frames are ad-
justed accordingly by linear interpolation. The duplicate fi-
nal frame (describing a pose identical to the first) is then dis-
carded. This simple procedure creates an input motion cycle
which can be repeated without any perceived discontinuity.

Cyclification ignores root y-rotations, as making them
match at cycle endpoints would prevent characters from ac-
cumulating rotations during successive cycles and walking
in a circle.

4.4. Root Y-axis Angle Increments

Any discontinuity between the endpoints of root y-rotation
data is unaffected by cyclification (lower plot in Figure 3).

Such data, taken from three input motions, is to be combined
in the frequency domain and rebuilt into a single hybrid an-
gle sequence using Fourier synthesis. However, in order to
reduce cost the number of harmonics used during synthesis
is restricted, which, if left unaddressed, would result in dis-
tortions appearing in the regions of any discontinuity in the
input motion. Furthermore, the process of blending and con-
catenating motion is far simpler with continuous data. The
discontinuity is therefore removed by replacing the y-axis
data for the root with angle increments as shown in Figure 3.

0.5

~

2 Angle increments

8 0

° T

g

~ \V-mtatlon

9 -

s 0> e,

g e s VU

< -y
-1 '

20 25 30

o
(4]

10 15
Sample number
Figure 3: Example of the elimination of the sharp discon-
tinuity in the root node y-rotations at the ends of the motion
sequence by converting them to angle increments.

The increments are given by

(ay—1—ay—2+a;—ap)/2 n=0 ®

, { an —dp—1 n>1
in =
where a is the angle value and N the number of samples in
the motion cycle.

During animation it is the angle increments, instead of the
angles themselves, which are blended, and the new incre-
ments thus obtained are accumulated frame by frame creat-
ing the y-axis orientation used in the synthesised motion.

4.5. Limp Correction

Figure 4: Limp-removal by returning the root node to its
original elevation, if affected by cyclification.

While cyclification always generates motions which can
be repeated without discontinuity, it can, on occasion, gen-
erate a limp. This is removed by storing the vertical position
of the root node (pelvis) for each frame prior to cyclification,
and later adjusting the x-axis angles in the ankles, knees,
and hips (Figure 4) to re-establish the same elevations of the
pelvis as were present before.

(© The Eurographics Association 2010.

Molnos, Laycock & Day / Using DFT for Character Motion - a Streamlined Approach 211

4.6. Motion Synchronization

In order for three motions to blend, they must first be aligned
with each other. The process is simple, however, entailing
none of the complexity of the dynamic time warping used
in [BW95]. Pettre and Laumond, [PLO6], ensured alignment
by requiring that input sequences start with the same part of
their cycle, which can limit input motion selection as dis-
cussed in Section 4.1.

Our method, instead, aligns one sequence to another by
shifting the angle values for each DOF of one motion relative
to those of the other, with frames pushed out of a sequence
being re-inserted at the opposite end. The angle increments
calculated for root y-rotations are similarly rotated. Synchro-
nization is performed by blending 50% of one sequence with
the same of another, using real-time visual feedback of the
resulting motion to quickly determine the best rotation value.
It is performed on all DOFs simultaneously and need only be
done once for each pair of motions in a blend. To blend be-
tween three motions A, B and C, aligning A to B and Bto C'is
sufficient - the process will also have synchronized motion A
to motion C. Here, too, a distance measure as in [KGP02]
could be used to automate the process, but the benefit would
be insignificant in practice, as it takes only seconds to per-
form the procedure manually and save the results, which re-
main available for any number of animation sessions to be
run in future.

4.7. Discrete Fourier Transform

The DFT is then performed on the smoothed (i.e. post-
cyclification) motion data for every angular DOF and in the
case of the root y-rotations, on the angle increments. This
calculates, for each DOF, two sequences in the frequency-
domain (one real and one imaginary) of length N equal to
that of the original sequence. From these two, further se-
quences are calculated, also of length N, which give the am-
plitudes and phase angles of the input waveform’s compo-
nent sinusoids. Amplitude and phase angle sequences are
chosen for reasons of efficiency, and are not the same co-
efficients calculated by [PL0O6] (Section 3).

DFT formulae vary slightly and any could have been
used - the selected one being given by [Med00]

- 2Mnk

N—1
Xy = Z xne TN 6)
n=0

where X}, is a complex value comprising the K" element of
the real and imaginary sequences mentioned above and x,
is the n'" value of the time-domain sequence on which the
DFT is being performed.

The DFT is performed in pre-processing on relatively
short data sequences. A fast Fourier transform could have
been used but is not required.

(© The Eurographics Association 2010.

4.8. Phase Angle Blending Precalculation

As explained in Section 3, in order to enhance Fourier syn-
thesis efficiency while maintaining unambiguous blending
of phase angles, the sines and cosines of each phase angle
are calculated, which is done at this pre-processing stage.

5. Runtime Processing of Output Motion

The following blending and Fourier synthesis steps are re-
quired each time the weighting of the input motions needs to
change.

5.1. Blending

As blending is done between three motions at a time, it oc-
curs in a triangular blending space. Phase angle blending
is covered in Section 3. Magnitude blending calculates a
weighted average of the amplitude sequences which the DFT
produced for each of the three motions. This is done for each
DOF, creating a new hybrid set of Fourier coefficients. The
weightings used are given by areal barycentric coordinates,
thus

Wa+wp+we=1, 7

where wg, wy, and we are the weightings for the three input
motions. Extrapolation is possible by placing the blending
point outside the triangular area, in which case one or two of
the weightings will be negative.

5.2. Fourier synthesis

Fourier synthesis builds the output waveform from the
blended Fourier coefficients. It exists in a number of vari-
ants. The version shown by Equation 8 is matched to the
DFT formula given above.

H
my 2 2mtkn
R, = N + N kg‘lmkcos(—j\/, + i) 8)

where N is the length of the blended Fourier coefficient se-
quences, A is the desired output sequence length and H is
the highest harmonic used (indexing such that 1 is the funda-
mental). m, p and R hold the k™" blended Fourier magnitude
and phase angle coefficients, and the n’ " time domain output
value respectively, where n varies from 0 to A" — 1.

Unlike Equation 1 used by [PL06] ours includes no time
parameter. Instead n specifies the frame in the output motion
cycle for which time domain values are being calculated.

The use of A for the output length in addition to N for the
input allows the synthesized motion to have a dynamically
varying sequence length. It is chosen to be the weighted av-
erage of the lengths of the input motion data. Thus, the more

212 Molnos, Laycock & Day / Using DFT for Character Motion - a Streamlined Approach

the output sequence is based on a given input motion, the
more its length will resemble that motion’s. The adjustable
output length also provides a convenient way to resample in-
put motions, by applying the DFT followed by synthesis, to
create a sequence comprising any desired number of frames.

Input sequence lengths require consideration too, as in-
put motions may comprise different numbers of frames, and
consequently sequences of Fourier coefficients of varying
lengths. If these lengths are K, N and M, with M the short-
est, the generation of a weighted average can only take place
for the first M coefficients in each sequence. There are thus
at most M hybrid amplitudes and phase angles available
for Fourier synthesis, and the highest number of harmon-
ics which can be used to create the time-domain output se-
quence is M — 1. In practice this has never been a problem
however, as even an input motion with a very short sequence
of 10 frames would allow 9 harmonics to be used during
synthesis providing a very high quality output motion.

Using all the DFT-generated frequency domain data for
a given input motion, and replacing % by % in Equation 8,
would allow an exact copy of that motion to be rebuilt, akin
to using the inverse-DFT. However, this would be costly, and
Equation 8 is preferred which, unlike the aforementioned al-
ternative, generates output waveforms of the desired ampli-
tude when using small numbers of harmonics.

5.3. Root Translation

Our method makes no use of any fixed root offset or time-
varying root translation in the motion capture data. Foot con-
straints are employed instead.

When a foot which was previously higher than the other
becomes the lower one, the position of that foot is stored
and known as the ’anchor point’. In subsequent frames the
skeleton is translated such that the appropriate foot is placed
at the anchor point which propels the skeleton forward while
avoiding any footskate of the anchored foot.

Before ground contact some unwanted sliding of the foot
may, occasionally, be visible. However, as applied with each
of [UAT95], [BWI95] and [PL0O6], we do not include con-
straint satisfaction and footskate reduction in the scope of
our work and consider it the subject of post-processing ad-
dressed by other research. The elementary approach de-
scribed above is merely intended to allow demonstration of
the proposed Fourier blending method.

6. Blending Triangles
6.1. Triangle Networks as Interfaces

Individual blending triangles can be joined to create larger
blending areas. Figure 5 shows two similar versions of a
four-triangle area. The top left-hand network has different
diagonals from the top right-hand one, which means (almost)

reﬁt Straight f.;?\tt re ?t
turn fast turn turn

Slow Slow Slow Slow
left Straight right left Straight right
turn slow turn turn slow turn

Faster
More to left More to right

Slower

Figure 5: Diagonal directions, top left and right, have lit-
tle effect. The denser triangle networks, bottom, give higher
quality output and have different blending point sensitivities.

any point within the blending area will generate a blend
from different motions depending on which network is used.
In practice, however, little difference is noticed, if any, and
moving the blending point, say, vertically from the midpoint
of edge DC to that of edge BA creates a slow-paced mod-
erate left turn, accelerating to a faster-paced one, whichever
the diagonal direction.

The blending space in the figure spans from slow to fast,
and from right to left. If suitable motion capture clips are
available, the same area could be covered by a denser net-
work resulting in a higher quality synthesized output (bot-
tom left). However, even a sparse network, as shown top left
and right, can produce natural looking motion if the input
sequences are of high quality.

Triangle networks also form interface elements, either be-
tween the user and an interactive program, or between mod-
ules in the program itself. Showing the network and blend-
ing point on-screen provides an intuitive way for the user
to control a character. Hidden networks are useful too; tri-
angles can be stretched or squashed to modify the sensi-
tivity of a user-controlled input device, or that of an algo-
rithm autonomously driving the skeleton by controlling the
blending point. Assuming the same input motions are used
as in the bottom left diagram, the network on the right hand
side would aid delicate tracking of straight lines and slight
curves, while still allowing turns to be as sharp as before.

Networks are not confined to these simple two-
dimensional examples. The input motions at triangle apexes
can themselves be controlled by blending triangles which
have their own blending points. Thus the quality of input mo-
tions could -occasionally and hence efficiently- be automat-
ically adjusted, eg, between being tired, hurried or relaxed,
in response to the character’s current virtual circumstances.
In comparison, the superposition of qualities such as tired-

(© The Eurographics Association 2010.

Molnos, Laycock & Day / Using DFT for Character Motion - a Streamlined Approach 213

ness, as introduced by Unuma et al, [UAT95], would need
to be performed continuously to maintain a tired walk, thus
involving greater cost.

6.2. Substituting for Missing Input Motion

The small triangle network shown top left in Figure 5 can
be viewed in the movie accompanying this paper. The movie
furthermore demonstrates the variety of motion that can be
synthesised from a very small number of input motions, hav-
ing used only three short captured sequences (A with 30
frames, B with 34 and C having 42) to create all the motion
available in the rectangular blending area. While £ and F
were created by reflection, D was created using an extension
of the above-mentioned superposition technique.

Instead of adding a quality such as briskness to an existing
motion, a very different geometry was created. The straight
fast walk (A) was subtracted from the fast left turn (B) re-
sulting in a motion which is not a walkcycle but could be de-
scribed as "turning-left-ness" and this was then added to the
straight slow walk (C) to generate a slow left turn (D) where
previously none existed. Thus not only does Fourier blend-
ing function well with little input data, but it is sometimes
able to create input sequences where these are not available.

7. Results

Pre-processing of each input motion was performed in sec-
onds with the result being saved in BVH format. Animation
was then immediately available upon program launch.

A video can be downloaded from http://www.
crowdsimulationgroup.co.uk/fouBlend.mp4.
It demonstrates how blending is possible even with very few
input motions. It also shows a simple triangle network being
used as an interface device to assist user-interaction with
the skeleton. Furthermore, a section is included showing
interpolation of non-walking motions, which could not be
blended with the automatically created networks of [PLO6].
As applied to [UAT95], [BW95] and [PL0O6], we note that
synthesized motion may require final touching up which
we, as they did, consider beyond the scope of our work.

Harmonics 1 2 3 4 5 10

Blend. (us)| 0.14 | 0.24 | 0.37 | 0.49 | 0.59 | 1.18
Synth. (us)| 2.68 | 5.01 | 7.44 | 9.84 |12.30|24.23

Table 1: Fourier synthesis and blending times per DOF for
a 33-frame output sequence using various numbers of har-
monics. Times refer to sequence creation, not merely frames.

Measured times required for blending and Fourier synthe-
sis using various numbers of harmonics are given in Table 1.
They were obtained on an Apple MacBook Pro laptop with
Intel Core 2 Duo CPU running at 2.53 GHz with 4GB RAM.
The values refer to the creation of an entire 33-sample output

(© The Eurographics Association 2010.

sequence for a single DOF, created by blending sequences of
length 30, 34 and 42. Blending times shown include the as-
sociated triangle selection and weighting calculations.

A direct comparison with [PLO6] is difficult due to the
older hardware they used (in 2006). They reported 0.92ms
for their equivalent steps to compute a single posture on a
62 DOF skeleton using Fourier coefficients up to the eighth
rank. From Table 1, we deduce that a single posture for a 62
DOF skeleton using the same number of Fourier coefficients
as did [PLO6] would be computed in 38us. While admittedly
a simplistic comparison, the result does appear favourable.

It should be emphasized that blending and synthesis need
only be performed when a change in the currently playing
motion sequence is desired and that at all other times the
cost is nil.

[PLO6] state the triangle selection process to be logarith-
mically dependent on the number of motion captures. How-
ever, due to coherence of position of the blending point from
frame to frame, this can be reduced to O(1) by using an
appropriate data structure whereby blending triangles store
information about their immediate neighbours.

Harmonics 1 2 3 4 5 10

ttPLO6 | 1.0] 10 | 1.0] 10| 1.0 | 1.0
1,01 our work | 0.807] 0.726[0.718 | 0.691 [0.702] 0.689

Table 2: Synthesis times relative to the method of [PLO6].

The cost of Fourier synthesis can be objectively compared
with that of [PLO6]. Table 2 gives the times for our synthe-
sis formula relative to theirs, obtained by running an effi-
ciently coded version of each on the same hardware. While
our compact formula requires the arctan2 approximation for
phase angle blending, this overhead is trivial, as described in
Section 3 and shown in Table 1 (whose blending times in-
clude more than just phase angle blending). Table 2 shows
our formula to be significantly cheaper, and slightly more
so for higher numbers of harmonics. A further cost saving
of our method beyond that tabulated above, is that synthesis
generates a sequence of poses in a simple and direct manner,
without the expense of "extracting postures" used by [PLO6].

Unuma et al, [UAT95], stated that 3 to 7 harmonics are
required for realistic motion which our tests confirm, while
[PLO6] neglected Fourier coefficients above the eighth rank.
Figure 6 illustrates walk cycles using 1, 3 and 25 harmonics.
Using a single harmonic looks overly smooth and exhibits
a slight bounce due to the exaggerated vertical reach of the
step. Merely 3 harmonics are seen to create a walk cycle very
similar to the near-perfect motion constructed using 25.

The quality of motion achievable using different harmon-
ics is more objectively evaluated by comparing the node co-
ordinates of two skeletons. Table 3 gives the average error
between the node positions of a reference skeleton play-
ing back unaltered motion capture data, and another playing

http://www.crowdsimulationgroup.co.uk/fouBlend.mp4
http://www.crowdsimulationgroup.co.uk/fouBlend.mp4

214 Molnos, Laycock & Day / Using DFT for Character Motion - a Streamlined Approach

Figure 6: Walkcycles using (left to right) 1, 3 and 25 har-
monics. Horizontal lines show the vertical reach of the step.

Harmonics 1 2 3 4 5 10
Eravg (cm)| 222 | 0.83 | 0.46 | 0.38 | 0.19 | 0.08

Table 3: Average node position error during synthesis.

back a synthesized version of the same motion, using various
numbers of harmonics. It is seen that using 5 harmonics the
average error is below 2mm, which represents 0.11% of the
skeleton’s 1.673m height. In the context of a walking human
this error is almost imperceptible. Even with three harmonics
the average error is below Smm. Neither [UAT95], [BWO95]
nor [PLO6] measured the accuracy obtainable using various
numbers of harmonics, yet firmly establishing that 3 to 5 har-
monics suffice for realistic foreground views avoids unnec-
essary expense. It also lowers memory requirements, with
input motion stored as shorter Fourier coefficient sequences.

8. Conclusion

We have compared our Fourier blending method to previ-
ous work, especially that of [PLO6], which is the most sim-
ilar. Our simpler approach is more efficient, as confirmed
by measurements and explanations of how runtime expense
is reduced. The simplicity aids implementation, and, as
demonstrated in the accompanying movie, makes it possi-
ble to blend motions for which [PL06] would not be able to
create triangle networks. Our networks allow flexibility in
apex positioning, with advantages such as adjustable blend-
ing point sensitivity and their use as intuitive user-interface
devices. The streamlined approach is well suited to real time
interactive simulations and games, and while not intended
for the motion planning context [PL0O6] focussed on, it can
automatically follow a path as shown in the video.

Level of detail (LOD) adjustments for this, and previous
work, include limiting the number of DOFs in distant char-
acters, and reducing the number of harmonics in their anima-
tion. Our method, with its inherent resampling ability, makes
it easy for distant characters to be animated at a lower frame
rate, while still traversing the terrain at the same speed.

Combining such LOD measures with our lightweight

Fourier blending is ideal for the simulation of crowds. An
avenue for further research would be to map such charac-
ter animation to the GPU, since both Fourier synthesis and
blending are well suited to parallel processing, enabling this
method to be further exploited in large crowd simulations.

References

[AMHO3] AHMED A., MOKHTARIAN F., HILTON A.:
Cyclification of human motion for animation synthesis. In
Short Paper Proceedings of Eurographics 2003 (2003).

[AWO01] ASHRAF G., WONG K.: Constrained framespace
interpolation. In Comp. Anim. 2001 (South Korea, 2001),
pp. 61-72.

[BW95] BRUDERLIN A., WILLIAMS L.: Motion signal
processing. In SIGGRAPH ’95 (NY, USA, 1995), ACM,
pp. 97-104.

[GBT04a] GLARDON P., BoULIC R., THALMANN D.: A
coherent locomotion engine extrapolating beyond experi-
mental data. In CASA (2004), pp. 73-84.

[GBT04b] GLARDON P., BoULIC R., THALMANN D.:
Pca-based walking engine using motion capture data. In
CGI 04 (USA, 2004), IEEE Comp. Soc., pp. 292-298.

[KG0O3] KOVAR L., GLEICHER M.: Flexible automatic
motion blending with registration curves. In SCA '03
(Switzerland, 2003), EG Association, pp. 214-224.

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion
graphs. ACM Trans. Graph. 21, 3 (2002), 473-482.

[LBJK09] LAU M., BAR-JOSEPH Z., KUFFNER J.: Mod-
eling spatial and temporal variation in motion data. ACM
Trans. Graph. (SIGGRAPH ASIA 2009) 28, 5 (2009).

[Med00] MEDDINS R.: Introduction to Digital Signal
Processing. Newnes, 2000.

[PLO6] PETTRE J., LAUMOND J.-P.: A motion capture-
based control-space approach for walking mannequins:
Research articles. Comput. Animat. Virtual Worlds 17, 2
(2006), 109-126.

[PSS02] PARK S., SHIN H. J., SHIN S.: On-line loco-
motion generation based on motion blending. In SCA "02
(NY, USA, 2002), ACM, pp. 105-111.

[RCB98] ROSE C., COHEN M., BODENHEIMER B.:
Verbs and adverbs: Multidimensional motion interpola-
tion. IEEE Comput. Graph. Appl. 18,5 (1998), 32-40.

[Tro02] TROJE N.: Decomposing biological motion: A
framework for analysis and synthesis of human gait pat-
terns. Journal of Vision 2 (2002), 371-387.

[UAT95] UNUMA M., ANJYO K., TAKEUCHI R.: Fourier
principles for emotion-based human figure animation. In
SIGGRAPH 95 (NY, USA, 1995), ACM, pp. 91-96.

[WH97] WILEY D., HAHN J.: Interpolation synthesis of

articulated figure motion. IEEE Comput. Graph. Appl. 17,
6 (1997), 39-45.

(© The Eurographics Association 2010.

