
Graphics Hardware (2004)
T. Akenine-Möller, M. McCool (Editors)

Hardware-based Simulation and Collision Detection for
Large Particle Systems

A. Kolb∗ and L. Latta† and C. Rezk-Salama∗

∗Computer Graphics and Multimedia Systems Group, University of Siegen, Germany
†2L Digital, Mannheim, Germany

Abstract
Particle systems have long been recognized as an essential building block for detail-rich and lively visual environ-
ments. Current implementations can handle up to 10,000 particles in real-time simulations and are mostly limited
by the transfer of particle data from the main processor to the graphics hardware (GPU) for rendering.
This paper introduces a full GPU implementation using fragment shaders of both the simulation and rendering of
a dynamically-growing particle system. Such an implementation can render up to 1 million particles in real-time
on recent hardware. The massively parallel simulation handles collision detection and reaction of particles with
objects for arbitrary shape. The collision detection is based on depth maps that represent the outer shape of an
object. The depth maps store distance values and normal vectors for collision reaction. Using a special texture-
based indexing technique to represent normal vectors, standard 8-bit textures can be used to describe the complete
depth map data. Alternately, several depth maps can be stored in one floating point texture.
In addition, a GPU-based parallel sorting algorithm is introduced that can be used to perform a depth sorting of
the particles for correct alpha blending.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors I.3.5
[Computer Graphics]: Boundary representations I.3.7 [Computer Graphics]: Animation

1. Introduction

Physically correct particle systems (PS) are designed to
add essential properties to the virtual world. Over the last
decades they have been established as a valuable technique
for a variety of applications, e.g. deformable objects like
cloth [VSC01] and volumetric effects [Har03].

Dynamic PS have been introduced by [Ree83] in the con-
text of the motion picture Star Trek II. Reeves describes ba-
sic motion operations and basic data representing a particle
- both have not been altered much since. An implementation
on parallel processors of a super computer has been done
by [Sim90]. [Sim90] and [McA00] describe many of the ve-
locity and position operations of the motion simulation also
used in our PS.

Real-time PS are often limited by the fill rate or the CPU
to graphics hardware (GPU) communication. The fill rate is
often a limiting factor when there is a high overdraw due
to relatively large particle geometries. Using a large number

of smaller particles decreases the overdraw and the fill rate
limitation looses importance. The bandwidth limitation now
dominates the system. Sharing the graphics bus with many
other rendering tasks allows CPU-based PS to achieve only
up to 10,000 particles per frame in typical real-time appli-
cations. A much larger number of particles can be used by
minimizing the amount of communication of particle data by
integrating simulation and rendering on the GPU.

Stateless PS, i.e. all particle data can be computed by
closed form functions based on a set of start values and the
current time, have been implemented using vertex shaders
(cf. [NVI03]). However, state-preserving PS can utilize nu-
merical, iterative integration methods to compute the parti-
cle data from previous values and a dynamically changing
environment. They can be used in a much wider range of
applications.

While collision reaction for particles is a fairly simple ap-
plication of Newtonian physics, collision detection can be
a rather complex task w.r.t. the geometric representation of

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

A. Kolb, L. Latta and C.Rezk-Salama / Hardware-based Simulation and Collision Detection for Large Particle Systems

the collider object. [LG98] gives a good overview on col-
lision detection techniques for models represented as CSG,
polygonal, parametric or implicit surfaces. There are three
basic image-based hardware accelerated approaches to col-
lision detection based on depth buffers, stencil buffers or oc-
clusion culling. However, all these techniques use the GPU
to generate spatial information which has to be read back
from the GPU to the CPU for further collision processing.

The technique presented in this paper uses the “stream
processing” paradigm, e.g. [PBMH02], to implement PS
simulation, collision detection and rendering completely on
the fragment processor. Thus a large number of particles
can be simulated using the state-preserving approach. The
collision detection is based on an implicit, image based
object boundary representation using a sequence of depth
maps similar to [KJ01]. Several approaches are presented to
store one, two or six depth maps in a single texture. Storing
the normal vectors for collision reaction is realized using a
texture-based normal indexing technique.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview over works related to this paper. The
GPU based simulation for large particle systems is described
in section 3. Collision detection on the GPU is discussed in
section 4. Results and conclusions are given in sections 5
and 6 respectively.

2. Prior work

This section describes prior works related to particle systems
(PS) and their implementation using graphics hardware (sec-
tion 2.1). Additionally, we briefly discuss collision detection
approaches (section 2.2), techniques to generate implicit rep-
resentations for polygonal objects (section 2.3) and the com-
pression of normal vectors (section 2.4).

2.1. Stateless particle systems

Some PS have been implemented with vertex shaders on pro-
grammable GPUs [NVI03]. However, these PS are stateless,
e.g. they do not store the current positions of the particles.
To determine a particle’s position a closed form function for
computing the current position only from initial values and
the current time is needed. As a consequence such PS can
hardly react to a dynamically changing environment.

Particle attributes besides velocity and position, e.g. the
particle’s orientation, size and texture coordinates, have gen-
erally much simpler computation rules, e.g. they might be
calculated from a start value and a constant factor of change
over time.

So far there have been no state-preserving particle systems
fully implemented on the GPU.

2.2. Collision detection techniques

The field of collision detection is one of the most active in re-
cent years. Lin and Gottschalk [LG98] give a good overview
on various collision detection techniques and a wide range of
applications, e.g. game development, virtual environments,
robotics and engineering simulation.

There are three basic hardware accelerated approaches
based on depth buffers, stencil buffers and occlusion culling.
All approaches are image based and thus their accuracy is
limited due to the discrete geometry representation.

Stencil buffer and depth buffer based approaches like
[BW03, HZLM02, KOLM02] use the graphics hardware to
generate proximity, collision or penetration information.
This data has to be read back to the CPU to perform col-
lision detection and reaction. Usually, these techniques use
the graphics hardware to detect pairs of objects which are
potentially colliding. This process may be organized hierar-
chically to get either more detailed information or to reduce
the potentially colliding objects on a coarser scale.

Govindaraju et.al. [GRLM03] utilize hardware accel-
erated occlusion queries. This minimizes the bandwidth
needed for the read-back from the GPU. Again, the collision
reaction is computed on the CPU.

2.3. Implicit representation of polygonal objects

Implicit representations of polygonal objects have advan-
tages in the context of collision detection, since the distance
of any 3D-point is directly given by the value of the implicit
model representation, the so-called distance-map.

Nooruddin and Turk [NT99, NT03] introduced a tech-
nique to convert a polygonal model in an implicit one us-
ing a scanline conversion algorithm. They use the implicit
representation to modify the object with 3D morphological
operators.

Kolb and John [KJ01] build upon Nooruddin and Turk’s
algorithm using graphics hardware. They remove mesh arti-
facts like holes and gaps or visually unimportant portions of
objects like nested or overlapping parts. This technique gen-
erates an approximate distance map of a polygonal model,
which is exact on the objects surface w.r.t. to the visibility of
object points and the resolution of the depth buffer.

2.4. Compression of normal vectors

For collision reaction, an efficient way to store an object’s
normal, i.e. the collision normal, at a particular point on the
object’s surface is needed. Deering [Dee95] notes, that an-
gular differences below 0.01 radians, yielding some 100k
normal vectors, are not visually recognizable in rendering.
Deering introduces a normal encoding technique which re-
quires several trigonometric function calls per normal.

In our context we need a normal representation technique

c© The Eurographics Association 2004.

A. Kolb, L. Latta and C.Rezk-Salama / Hardware-based Simulation and Collision Detection for Large Particle Systems

which is space and time efficient. Possible decoding of the
vector components must be as cheap as possible, while the
encoded data must be efficiently stored in textures.

Normal maps store normal vectors explicitly and are not
space efficient. Applying an optional DXT-compression re-
sults in severe quantization artifacts (cf. [ATI03]).

Sphere maps, cube maps and parabolic maps, commonly
used to represent environmental information, may be used to
store normal vectors. Sphere maps heavily depend on a spe-
cific viewing direction. Cube maps build upon a 3D-index,
i.e. a point position in 3-space. Parabolic maps need two tex-
tures to represent a whole sphere. Additionally, they only
utilize the inscribed circle of the texture.

2.5. Other related works

Green [Gre03] describes a cloth simulation using simple
grid-aligned particle physics, but does not discuss generic
particle systems’ problems, like allocation, rendering and
sorting of PS. The photon mapping algorithm described by
Purcell et.al. [PDC∗03] uses a sorting algorithm similar to
the odd-even merge sort presented in section 3.3.3. How-
ever, their algorithm does not show the necessary properties
to exploit the high frame-to-frame coherence of the particle
system simulation.

3. Particle simulation on Graphics Hardware

The following sections describe the algorithm of a state-
preserving particle system on a GPU in detail. After a brief
overview (section 3.1), the storage (section 3.2) and then the
processing of particles is described (section 3.3).

3.1. Algorithm Overview

The particle simulation consists of six basic steps:

1. Process birth and death
2. Update velocities
3. Update positions
4. Sort for alpha blending (optional)
5. Transfer texture data to vertex data
6. Render particles

The state-preserving particle system stores the velocities
and positions (step 2. and 3.) of all particles in textures,
which are also render targets. In one rendering pass the tex-
ture with particle velocities is updated, performing a single
time step of an iterative integration. Here acceleration forces
and collision reactions are applied. A second rendering pass
updates the position textures in a similar way, using the ve-
locity texture. Depending on the integration method it is pos-
sible to skip the velocity update pass, and directly integrate
the position from accelerations (cf. section 3.3.2).

Optionally, in step 4. the particle positions can be sorted
depending on the viewer distance to avoid rendering ar-
tifacts. The sorting performs several additional rendering
passes on textures that contain the particle-viewer distance
and a reference to the particle itself.

Then the particle positions are transferred from the posi-
tion texture to a vertex buffer and the particles are rendered
as point sprites, triangles or quads.

3.2. Particle data storage

The positions and velocities of all active particles are stored
in floating point textures using the three color components
as x, y and z coordinates. The texture itself is also a render
target, so it can be updated with the computed positions and
velocities. Since a texture cannot be used as input and output
at the same time, we use a pair of these textures and a double
buffering technique (cf. figure 1). Depending on the integra-
tion algorithm the explicit storage of the velocity texture can
be omitted (cf. section 3.3.2).

Other particle attributes like mass, orientation, size, color,
and opacity are typically static or can be computed using a
simple stateless approach (cf. section 2.1). To minimize the
upload of static attribute parameters we introduce particle
types. Thus the simulation of these attributes uses one fur-
ther texture to store the time of birth and a reference to the
particle type for each particle (cf. figure 1). To model more
complex attribute behavior, simple key-frame interpolation
over the age of the particle can be applied.

Figure 1: Data storage using double buffered textures

3.3. Simulation and rendering algorithm

3.3.1. Process birth and death

Assuming a varying number of short-living particles, the
particle system must be able to process the birth of a new
particle (allocation) and the death of a particle (dealloca-
tion).

Since allocation problems are serial by nature, this can-
not be done efficiently with a data-parallel algorithm on the
GPU. Therefore an available particle index is determined on
the CPU using either a stack filled with all available indices
or a heap data structure that is optimized to always return

c© The Eurographics Association 2004.

A. Kolb, L. Latta and C.Rezk-Salama / Hardware-based Simulation and Collision Detection for Large Particle Systems

the smallest available index. The heap data structure guaran-
tees that particles in use remain packed in the first portion of
the textures. The following simulation and rendering steps
only need to update that portion of data, then. The initial
particle data is determined on the CPU and can use com-
plex algorithms, e.g. probability distributions (cf. McAllister
[McA00]).

A particle’s death is processed independently on the CPU
and GPU. The CPU registers the death of a particle and adds
the freed index to the allocator. The GPU does an extra pass
to determine the death of a particle by the time of birth
and the computed age. The dead particle’s position is sim-
ply moved to invisible areas. As particles at the end of their
lifetime usually fade out or fall out of visible areas anyway,
the extra clean-up pass rarely needs to be done.

3.3.2. Update velocities and position

Updating a particle’s velocity and position is based on the
Newtonian laws of motion. The actual simulation is imple-
mented in a fragment shader. The shader is executed for each
pixel of the render target by rendering a screen-sized quad.
The double buffer textures are alternately used as render tar-
get and as input data stream, containing the velocities and
positions from the previous time step.

There are several operations that can be used to manipu-
late the velocity (cf. [Sim90] and [McA00] for more details):
global forces (e.g. gravity, wind), local forces (attraction, re-
pulsion), velocity dampening, and collision responses. For
our GPU-based particle system these operations need to be
parameterized via fragment shader constants.

A complex local force can be applied by mapping the par-
ticle position into a 2D or 3D texture containing flow ve-
locity vectors~vflow. Stoke’s law is used to derive a dragging
force:

~Fflow = 6πηr(~vi−1−~vflow)

where η is the flow viscosity, r the particle radius and~vi−1
the particle’s previous velocity.

The new velocity ~vi and position P is derived from the
accumulated global and local forces ~F using simple Euler
integration.

Alternatively, Verlet integration (cf. [Ver67]) can be used
to avoid the explicit storage of the velocity by utilizing the
position information Pi−2. The great advantage is that this
technique reduces memory consumption and removes the
velocity update rendering pass.

Verlet integration uses a position update rule based only
on the acceleration:

Pi = 2Pi−1−Pi−2 +~a∆2
i

Using Euler integration, collision reaction is based on a
change of the particle’s velocity. Splitting the velocity vector

~vi into a normal component~v⊥i and a tangential component

~v‖i the velocity after the collision can be computed applying
friction ν and resilience ε:

~vi = (1−ν)~v‖i − ε~v⊥i
To avoid velocities from slowing down close to zero, the fric-
tion slow-down should not be applied if the overall velocity
is smaller than a given threshold.

Having collider with sharp edges, e.g. a height field, or
two colliders close to each other, the collision reaction might
push particles into a collider. In this case a caught particle
ought to be pushed out in the next simulation step.

To handle this situation, the collision detection is done
twice, once with the previous and once with the expected
position P∗i based on velocity~v∗i . This allows differentiating
between particles that are about to collide and those having
already penetrated (cf. figure 2). The latter must be pushed
in direction of the shortest way out of the collider. This di-
rection can be guessed from the normal component of the
velocity:

~vi =

{

~v∗i if
(

~v∗i · n̂
)

≥ 0 (heading outside)
~v⊥i −~vi

∗ if
(

~v∗i · n̂
)

< 0 (heading inside)

Pi−1

Pi

P∗i

Pi−1

Pi

Pi−2

P∗i−1P∗i

Figure 2: Particle collision: a) Reaction before penetration;
b) Double collision with caught particle and push-back.

Verlet integration cannot directly handle collision reac-
tions in the way discussed above. Here position manipula-
tions are required to implicitly change the velocity in the
following frames.

3.3.3. Sorting

If particles are blended using a non-commutative blending
mode, a depth-based sorting should be applied to avoid arti-
facts.

A particle system on the GPU can be sorted quite effi-
ciently with the parallel sorting algorithm "odd-even merge
sort" (cf. Batcher [Bat68]). Its runtime complexity is inde-
pendent of the data’s sortedness. Thus, a check whether all
data is already in sequence does not need to be performed
on the GPU, which would be rather inefficient. Additionally,
with each iteration the sortedness never decreases. Thus, us-
ing the high frame-to-frame coherence of the particle order,

c© The Eurographics Association 2004.

A. Kolb, L. Latta and C.Rezk-Salama / Hardware-based Simulation and Collision Detection for Large Particle Systems

the whole sorting sequence can be distributed over 20 - 50
frames. This, of course, leads to an approximate depth sort-
edness, which, in our examples, does not yield any visual
artifacts.

The basic principle of odd-even merge sort is to divide
the data into two halves, to sort these and then to merge the
two halves. The algorithm is commonly written recursively,
but a closer look at the resulting sorting network reveals its
parallel nature. Figure 3 shows the sorting network for eight
values. Several consecutive comparisons are independent of
each other and can be grouped for parallel execution (vertical
lines in figure 3).

Figure 3: Odd-Even sorting network for eight values; ar-
rows mark comparison pairs.

The sorting requires 1
2 log2

2 n+ 1
2 log2 n passes, where n is

the number of elements to sort. For a 1024× 1024 texture
this leads to 210 rendering passes. Running all 210 passes
each frame is far too expensive, but spreading the whole sort-
ing sequence over 50 frames, i.e. 1 - 2 seconds, reduces the
workload to 4−5 passes each frame.

The sorting algorithm requires an additional texture con-
taining the particle-viewer distance. The distance in this tex-
ture is updated after the position simulation. After sorting the
rendering step looks up the particle attributes via the index
in this texture.

3.3.4. Render particles

The copying of position data from a texture to vertex data
is an upcoming hardware feature in PC GPUs. DirectX and
OpenGL offer the vertex textures technique (vertex shader
3.0 rsp. ARB_vertex_shader extension). Unfortunately
there is no hardware supporting this feature at the moment.

Alternatively "über-buffers" (also called super buffers; cf.
[Per03]) can be used. This functionality is already avail-
able in current GPUs, but up to now it is only supported
by the OpenGL API. The current implementation uses the
vendor specific NV_pixel_data_range extension (cf.
[NVI04]).

The transferred vertex positions are used to render prim-
itives to the frame buffer. In order to reduce the workload
of the vertex unit, particles are currently rendered as point
sprites instead of as triangles or quads. The disadvantage
though is that particles are always axis-aligned. To allow a

2D-rotation, texture coordinates are transformed in the frag-
ment shader.

4. Collision detection

In this section we describe the implicit object representa-
tion used for collision detection (section 4.1). Furthermore,
the normal indexing technique (section 4.2) and various ap-
proaches to represent depth maps in textures are introduced
(section 4.3).

4.1. Implicit model representation

We use an image-based technique similar to [KJ01] to repre-
sent an objects outer boundary by a set of depth maps. These
depth maps contain the distance to the object’s boundary and
the surface normal at the relevant object point.

Each depth map DMi, i = 1, . . . ,k stores the following in-
formation:

1. distance dist(x,y) to the collider object in projection di-
rection for each pixel (x,y)

2. normal vector n̂(x,y) at the relevant object surface point
3. transformation matrix TOC→DC mapping from collider

object coordinates to depth map coordinates, i.e. the co-
ordinate system in which the projection was performed

4. zscale scaling value in z-direction to compensate for pos-
sible scaling performed by TOC→DC

The object’s interior is assigned with negative distance val-
ues. Assuming we look from outside onto the object and or-
thographic projection is used, the distance value f (P) for a
point P is computed using the transformation TOC→DC:

f (P) = zscale ·
(

dist(p′x, p′y)− p′z
)

, (1)

where P′ = (p′x, p′y, p′z)
T = TOC→DCP

TOC→DC usually also contains the transformation to texture
coordinates. Thus fetching the depth value dist(p′x, p′y) is a
simple texture lookup at coordinates (p′x, p′y).

Taking several depth maps into account, the most appro-
priate depth for point P has to be determined. The following
definition guarantees that P is outside of the collider if at
least one depth map has recognized P to be exterior:

f (P) =

{

max{ fi(P)} if fi(P) < 0 ∀i
min{ fi(P) : fi(P) > 0} else

where fi(P) denotes the signed distance value w.r.t. depth
map DMi.

Handling several depth maps DMi, i = 1, . . . ,k, f (P) can
be computed iteratively:

∨
(f (P) < 0∧ fi(P) > f (P))
(fi(P) > 0∧ fi(P) < f (P))

}

⇒ (f (P)← fi(P)) (2)

where f (P) is initially set to a large negative value, i.e. P is
placed “far inside” the collider.

c© The Eurographics Association 2004.

A. Kolb, L. Latta and C.Rezk-Salama / Hardware-based Simulation and Collision Detection for Large Particle Systems

If P′ = TOC→DCP lies outside the view volume for the cur-
rent depth map or the texture lookup dist(p′x, p′y) results in
the initial background value, e.g. no distance to the object
can be computed, this value may be ignored as invalid vote.
Alternatively, if the view volume encloses the complete col-
lider object, the invalid votes can be declared as “far out-
side”. To avoid erroneous data due to clamping of (p′x, p′y),
we simply keep a one pixel border in the depth map un-
changed with background values to indicate an invalid vote.

A fragment shader computes the distance using rule (2)
and applies a collision reaction when the final f (P) distance
is negative.

Note, that this approach may have problems with small
object details in case of an insufficient buffer resolution.
Problems can also be caused by local surface concavities.
In many cases, these local concavities can be reconstructed
with properly placed depth map view volumes (cf. section
5).

4.2. Quantization and indexing of normal vectors

Explicitly storing normal vectors using 8,16 or 32 bit
per component is sufficient within certain error bound (cf.
[ATI03]). Since we store unit vectors, most of the used 3-
space remains unused, though. The depth map representation
requires a technique which allows the retrieval of normal
vectors using a space- and time efficient indexing method.
Indices must be encoded in depth maps and the reconstruc-
tion of the normal vector in the fragment shader must be
efficient.

The normal representation, which is implemented by in-
dexing into a normal index texture, should have the follow-
ing properties:

1. the complete coordinate space [0,1]2 of a single texture
is used

2. decoding and ideally encoding is time efficient
3. sampling of the directional space is as regular as possible

y

z
xx

y

zy < 0
x > 0
z < 0z < 0

y < 0
x < 0

z > 0
y < 0
x < 0

z > 0
x > 0
y < 0

z > 0
y > 0
x > 0

y > 0
z > 0
x < 0

z < 0
y > 0
x < 0

y > 0
z < 0
x > 0

t

s

Figure 4: The eight octants of the L1-parametrization (left),
the octahedron after applying l1 (middle) and the sampling
of the unit sphere (right).

Cube maps can not be used, since the index to look-up
the function value is already a vector with three components.
Sphere maps, commonly used as reflection maps, heavily de-
pend on a specific direction, e.g. the viewing direction for the

reflection computation. On the other hand, parabolic maps
show a very uniform parameterization of the hemi-sphere
(cf. Heidrich and Seidel [HS98]), but two of these textures
are needed to span the whole sphere.

We propose the following mapping, which is based on the
L1-norm: ‖~v‖1 = |vx|+ |vz|+ |vz|:

l1(s, t) =

s
t

1−|s|− |t|

if |s|+ |t| ≤ 1

sgn(s)(1−|t|)
sgn(t)(1−|s|)

1−|s|− |t|

if |s|+ |t|> 1

(3)

where s, t ∈ [−1,1]. l1 maps (s, t)∈ [−1,1]2 onto the L1-unit
sphere, i.e. the unit octahedron (cf. figure 4). Applying an ad-
ditional affine transformation, we get a continuous mapping
of the standard texture-space (s, t) ∈ [0,1]2 onto the octahe-
dron. The resolution of the texture-space naturally implies
the resolution of the sphere, i.e. the normal space.

It should be pointed out, that the L1-parametrization pro-
posed above can easily be used to represent any directional
data, e.g. reflection maps.

4.3. Depth map representation

Ideally, we want to encode as many depth values and nor-
mal vectors as possible into a single texture, thus keeping
the amount of data to be transfered and kept in the graphics
hardware memory as small as possible.

Throughout our experiments, we have investigated the fol-
lowing depth map formats:

Floating point depth map
The simplest, but most storage ineffient variant uses a float-
ing point texture to store the surface normals uncompressed
in the R,G,B-components and the alpha-channel to hold the
distance value.

8-bit fixed point depth map
This variant uses a standard RGBA-texture with 8 bit per
component. Here the R,G-components contain the index
into the normal texture, whereas G,A store the depth value,
thus having a depth-resolution of 16-bit fixed point. The nor-
mal index texture with resolution 256× 256 is build using
the L1-parametrization technique described in section 4.2.
The RGB-components of this texture store the normal vec-
tors, which are looked up using the index stored in the depth
map.

16-bit floating point depth map (front-back)
Combining orthographic projection with depth compare
function LESS generates a front depth map. Naturally the
depth map taking the inverse z-direction (depth compare

c© The Eurographics Association 2004.

A. Kolb, L. Latta and C.Rezk-Salama / Hardware-based Simulation and Collision Detection for Large Particle Systems

Figure 5: Sample applications: “bunny in the snow” (left) and “Venus-fountain” (middle and right)

function GREATER) is a usefull back depth map counter-
part. We can easily represent both of these depth maps in
one 16-bit texture. Here the R,G components store the nor-
mal texture indices, where two 8 bit indices are packed into
a single 16-bit float. The B,A components store the depth
value for the front and back map respectively.

8-bit fixed point cubic depth maps (“depth cube”)
Another variant is to use cube maps to represent depth maps.
In this case perspective projection w.r.t. the view volume
center is applied. The depth map representation is analog to
the 8-bit fixed point variant.

Generally, the different types of depth maps can be com-
bined for collision detection within a single fragment shader,
in order to utilize the advantages of the various types for the
specific collider object (cf. section 5.2).

The depth cube variant uses perspective projection,
whereas the other variants use orthographic projection only.
Using perspective projection during the depth map genera-
tion distorts the z-values. To avoid this, the vertices of the
collider object are passed w.r.t. the normalized view volume
[−1,1]3 to the fragment shader. The shader simply uses this
information to compute the depth values dist(x,y) relative to
the center of the view volume.

To compute the distance value for a point P ∈ R
3 w.r.t.

the depth cube, the transformation TOC→DC in depth map
coordinates (cf. section 4.1) does not contain the perspec-
tive projection. TOC→DC transforms into the normalized view
volume [−1,1]3 only, thus picking the corresponding depth
value is just a cube map texture lookup

dist(p′x, p′y, p′z), P′ = TOC→DCP

The distance value for a point P ∈ R
3 is computed as

f (P)=

(

1−
dist(p′x, p′y, p′z)

‖P′‖

)

∥

∥

∥

∥

∥

∥

sx · p′x
sy · p′y
sz · p′z

∥

∥

∥

∥

∥

∥

, P′= TOC→DCP

where sx,sy,sz are the scaling factors from the normalized
view volume [−1,1]3 to the view volume’s extends in col-
lider object coordinates.

The placement of the depth cube w.r.t. the collider object
specifies the depth compare function for the generation of
the depth maps. In the default situation, where the view vol-
ume’s center is outside the object, the depth compare func-
tion LESS is used. Otherwise, if the center is inside the col-
lider object, GREATER is applied and the fragment shader
which computes the distance has to negate the distance value
(cf. equation 1).

5. Results

Several tests have been made with different setups for the
particle system, e.g. number of particles, sorting, complexity
of collider etc. We discuss the general particle system (PS)
issues in section 5.1 and describe different aspects on colli-
sion dection in section 5.2. Section 5.3 gives some hardware
aspects.

The presented particle system was implemented in Cg and
tested on NVIDIA Geforce FX 5900 XT graphics hardware,
which represents the first generation of floating-point GPUs.

5.1. Particle simulation

Using a position texture of size 1024× 1024, our PS is ca-
pable of simultaneously rendering and updating a maximum
of 1 million particles at about 10 frames per second. This
implementation uses Euler integration, point sprites for ren-
dering, no depth sorting and no collision detection.

In a typical application a particle texture of size 512×
512 can be rendered in real-time (about 15 fps) including
depth sorting (5 passes per frame) and collision detection
(one depth cube). Performance measurement for the fully-
featured collision detection is given in the next section.
Following the clear trend towards increasing parallelism, a
significant performance enhancement is expected with the
forthcoming second generation of floating-point GPUs.

Figure 5 shows two sample applications using a quarter
million particles. In example “bunny in the snow” each par-
ticle is rendered as a snow flake, i.e. the particles velocity is
set to zero after a collision has been detected. The collision

c© The Eurographics Association 2004.

A. Kolb, L. Latta and C.Rezk-Salama / Hardware-based Simulation and Collision Detection for Large Particle Systems

Figure 6: Visualization of the implicit torii model (top row) and the implicit bunny model (bottom row) along slices: In-
terior/exterior classification (left) and approximate distance map plotting absolute distance values (right). Additionally, the
wireframe model is rendered.

detection uses one depth cube and one 16-bit front-back tex-
ture. The simulation uses depth sorting and runs with 15 fps.
The second example, the “Venus fountain”, also simulates
5122 particles. The implicit object boundary is represented
using three 16-bit front-back textures and one 8-bit fixed
point texture. This examples runs with 10 fps.

5.2. Depth map based collision detection

The main difference between the above presented depth map
formats lies in the number of depth maps used and in the
projection type. In situations, where collisions occur only
from one direction and the collider object has a rather sim-
ple shape, a single 8-bit fixed point depth map may result in
a proper interior/exterior classification. If there is no restric-
tion to the potential collision direction, the complete collider
object has to be reconstructed. Here, either one depth cube
or three orthogonal 16-bit front-back textures are used. Con-
cave regions may have to be treated using additional depth
maps.

Concerning distance values, depth cubes work well for
sphere-like collider objects (cf. figure 6). If the model has
many concavities, is strongly twisted or is partly nested, the
reconstruction of the distance values based on depth maps
leads only to coarse approximations.

In our experiments we use six to 15 depth maps to rep-
resent the collider object boundary without restriction to the
potential collision direction. Testing a quarter million parti-
cles for collision takes 7,9 and 12 ms using the 8-bit fixed,
the depth cube or the 16-bit front-back format respectively.

We mainly made experiments with rigid objects, thus per-
forming the depth map generation in a preprocessing step.

Some tests have been made with deformable objects, forcing
the depth map generation to be part of the simulation pro-
cess. The generation of a complete depth map format with
resolution 5122 takes about 11,17 and 26 ms using the 8-
bit fixed, 16-bit front-back or the depth cube format respec-
tively. Thus deformable objects should be applied only in
combination with a small number of depth maps or particles.

Figure 6 visualizes the depth maps for two models: Two
torii and the Stanford bunny. The torii are reconstructed us-
ing two depth cubes and two 16-bit front-back textures, giv-
ing 16 depth maps in total. The bunny is captured using one
depth cube and one 16-bit front-back textures, giving 8 depth
maps in total.

5.3. Hardware aspects

We use a standard normal index texture with resolution 2562.
Even though the L1-parametrization would allow any appli-
cation specific resolution, the handling of n bit integers or
floats in the graphics hardware is hardly possible. Currently
we use NVIDIA’s pack/unpack functionality, which allows
the packing of four bytes in one 32-bit float, for example.
We would highly appreciate more functionality of this kind,
e.g. to pack 5,5,6-bits in a 16-bit float.

Additionally, improved integer arithmetic and modulo op-
erators would simplify the implementation of various shader
functionality, e.g. the parallel sorting.

6. Conclusions and future work

A fully GPU based approach to realize the simulation and
collision detection for large particle systems (PS) has been

c© The Eurographics Association 2004.

A. Kolb, L. Latta and C.Rezk-Salama / Hardware-based Simulation and Collision Detection for Large Particle Systems

introduced. The simulation of PS is based on the “stream
processing” paradigm, using textures to represent all data
necessary to implement a state-preserving PS and collison
detection using fragment shaders. The collision detection is
based on depth maps. These are used to reconstruct an im-
plicit model of the collider objects at the time of collision
detection for particles. A novel technique to represent direc-
tional data was introduced and applied to store normal vec-
tors using an indexing technique. When rendering the PS a
parallel sorting algorithm can be applied to keep a proper
particle order for non-commutative blending modes.

The proposed L1-parametrization should be investigated
further, especially its applicability to represent directional
data, e.g. reflection maps. Additionally, investigations to-
wards GPU based collision detection using polygons or
more complex objects instead of particles should be made.

References

[ATI03] ATI TECHNOLOGIES INC.: Normal map com-
pression. Tech. rep., ATI Technologies Inc., 2003.
http://www.ati.com/developer/techpapers.html. 3, 6

[Bat68] BATCHER K.: Sorting networks and their applications.
In Spring Joint Computer Conference, AFIPS Proceed-
ings (1968), pp. 307–314. 4

[BW03] BACIU G., WONG S.-K.: Image-based techniques in a
hybrid collision detector. In IEEE Trans. on Visualiza-
tion and Computer Graphics (2003), vol. 9, pp. 254–
271. 2

[Dee95] DEERING M.: Geometry compression. In ACM Pro-
ceedings SIGGRAPH (1995), vol. 14, pp. 13–20. 2

[Gre03] GREEN S.: Stupid opengl shader tricks.
http://developer.nvidia.com/docs/IO/8230/
GDC2003_OpenGLShaderTricks.pdf, 2003. 3

[GRLM03] GOVINDARAJU N., REDON S., LIN M., MANOCHA

D.: Cullide: interactive collision detection be-
tween complex models in large environments using
graphics hardware. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware (2003), Eurographics Association, pp. 25–
32. 2

[Har03] HARRIS M.: Real-Time Cloud Simulation and Ren-
dering. PhD thesis, Department of Computer Science,
University of North Carolina at Chapel Hill, 2003. 1

[HS98] HEIDRICH W., SEIDEL H.-P.: View-independent
environment maps. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware (1998), ACM Press, pp. 39–45. 6

[HZLM02] HOFF K., ZAFERAKIS A., LIN M., MANOCHA D.:
Fast 3D Geometric Proximity Queries between Rigid
and Deformable Models Using Graphics Hardware
Acceleration. Tech. Rep. TR-02-004, University of
North Carolina at Chapel Hill, 2002. 2

[KJ01] KOLB A., JOHN L.: Volumetric model repair for

virtual reality applications. In EUROGRAPHICS
Short Presentation (2001), University of Manchester,
pp. 249–256. 2, 5

[KOLM02] KIM Y., OTADUY M., LIN M., MANOCHA D.:
Fast penetration depth computation using rasterization
hardware and hierarchical refinement. In Proceedings
ACM SIGGRAPH/Eurographics symposium on Com-
puter animation (2002), ACM Press, pp. 23–31. 2

[LG98] LIN M. C., GOTTSCHALK S.: Collision detection be-
tween geometric models: a survey. In Proceedings of
IMA Conference on Mathematics of Surfaces (1998),
pp. 37–56. 2

[McA00] MCALLISTER D.: The Design of an API for Particle
Systems. Tech. rep., Dep. of Computer Science, Uni-
versity of North Carolina at Chapel Hill, 2000. 1, 4

[NT99] NOORUDDIN F., TURK G.: Simplification and re-
pair of polygonal models using volumetric techniques.
Tech. Rep. GITGVU -99-37, Georgia Institute of Tech-
nology, Atlanta, 1999. 2

[NT03] NOORUDDIN F., TURK G.: Simplification and re-
pair of polygonal models using volumetric techniques.
IEEE Trans. on Visualization and Computer Graph-
ics9, 2 (2003), 191–205. 2

[NVI03] NVIDIA CORPORATION: NVIDIA SDK.
http://developer.nvidia.com, 2003. 1, 2

[NVI04] NVIDIA CORPORATION: OpenGL ex-
tension EXT_pixel_buffer_object.
http://oss.sgi.com/projects/ogl-sample/registry/EXT/
pixel_buffer_object.txt, 2004. 5

[PBMH02] PURCELL T., BUCK I., MARK W. R., HANRAHAN P.:
Ray tracing on programmable graphics hardware. In
ACM Proceedings SIGGRAPH (2002), vol. 21, ACM
Press, pp. 703–712. 2

[PDC∗03] PURCELL T., DONNER C., CAMMARANO M.,
JENSEN H., HANRAHAN P.: Photon mapping on
programmable graphics hardware. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware (2003), Eurographics Association,
pp. 41–50. 3

[Per03] PERCY J.: OpenGL Extensions. www.ati.com/ devel-
oper/techpapers.html, 2003. 5

[Ree83] REEVES W.: Particle systems - technique for mod-
eling a class of fuzzy objects. In ACM Proceedings
SIGGRAPH (1983), vol. 2, pp. 91–108. 1

[Sim90] SIMS K.: Particle animation and rendering using data
parallel computation. In Proceedings of the 17th an-
nual conference on Computer graphics and interactive
techniques (1990), ACM Press, pp. 405–413. 1, 4

[Ver67] VERLET L.: Computer experiments on classical flu-
ids. i. thermodynamical properties of lennard-jones
molecules. Physical Review 159 (1967). 4

[VSC01] VASSILEV T., SPANLANG B., CHRYSANTHOU Y.:
Fast cloth animation on walking avatars. In Proc. EU-
ROGRAPHICS (2001), vol. 20, Eurographics Associa-
tion, pp. 260–267. 1

c© The Eurographics Association 2004.

