
The Triangle Shading Engine

Hans-J osef Ackermann and Christoph Hornung

ABSTRACT This paper describes an algorithm implementing the Gouraud-shading of
triangles and its realization in hardware. Different realizations using span shading hard­
ware are discussed. Their drawbacks lead to the concept of a triangle shader, designed as
an ASIC. Interfaced to a signal processor for geometry computations, this chip will provide
an effective and low-cost 3D-extension to graphics subsystems in the PC environment.

1 Introduction

Simultaneously with the growing complexity in VLSI, there has been an explosion of
computational power in personal computer systems. Personal or Entry Level Workstations
feature system performances, which were reached only by minicomputers and mainframes
few years ago. Higher performances and system resources brought up the demand for
better user interfaces and, as a picture is worth a thousand words, the new user interfaces
were menu systems using simple forms of graphics. New graphics hardware meaning better
video adapters were developed, and graphics software standards like GKS and PHIGS were
brought from workstations to the PC. The demand for more than low level and fa~ter
graphics is ever growing through popular graphics applications like CAD/CAM which
run on PC platforms. These applications however, require some hardware acceleration to
release the CPU from time intensive visualization tasks.

2 Graphics Hardware

Today, all state-of-the-art, workstations feature some form of hardware support for graph­
ics. There have been several approaches to achieve major graphics performance in the field
of high-end workstations. One of the first to become known was the pixel plane architec­
ture by H. Fuchs which is a massive parallel system Pl. Another approach is the geometry
engine now marketed by Silicon Graphics [2] making intensive use of pipelining. Common
to all these systems is their complexity, the use of highly integrated custom chips, their
restriction to one workstation architecture and their costs.

The rendering pipeline, supported by graphics hardware basically consists of geometric
modelling, transformation, clipping, lighting, scan conversion, shading, and in the case
of 3D-graphics, z-buffering and hidden surface removal. These tasks can be sub divided
into two blocks, geometry calculations and raster calculations. Geometry calculations
cover modelling, transformation, clipping and lighting, whereas raster calculations handle
scan conversion and hidden surface removal by z-buffering. In order to achieve a balanced

http://www.eg.org
http://diglib.eg.org

4

system, the units performing the tasks of these two blocks should have a comparable
performance. In single processor systems the CPU works on the operating system, the
application and the whole geometric and rendering pipeline ne, a burden too heavy even
for the fastest general purpose CPUs. In order to improve the performance, accelerators are
used. The widest spread form of an accelerator is an arithmetic-coprocessor chip plugged
in a prepared socket on the processor board. More powerful and complex accelerators are
add·on boards, communicating with the main CPU via its bus-backplane. These add-on
accelerators may be classified according to their field of application.

2.1 Floating Point Accelerators

This first group uses RISC or Digital Signal Processor systems for the acceleration of
floating point intensive tasks. In the case of graphics these tasks are those of the first
group mentioned above: transformation, clipping and lighting. With single state-of-the-art
processors like the i860 or the TMS 320C30 floating point performances up to 50 MFLOPs
can be reached. According to [3] this performance is sufficient for the transformation and
the clipping of 100,000 to 300,000 vectors/so

2.2 Graphics Processors

The second group is covered by so called graphics cards. Graphics cards typically consist of
processors or controllers with some graphics properties, a frame buffer and the video logic
necessary for the connection to a monitor. Processors often applied, are the TMS 34010
and 34020 by TI [4J and the DP 8500 by National Semiconductor [5]. These chips mainly
support BitBLT operations and simple 2D-line drawing. 3D-functions are not supported.
So these graphics cards do not reach the performance for shading an d hidden line removal
necessary to achieve a balanced system together with a floating point accelerator.

2.3 Goal for a Hardware Shader

The goal of a hardware shader is to reach an equivalent performance of about 50,000
to 100,000 shaded and z-buffered triangles per second. The shading algorithm to be im­
plemented is the Gouraud Shading [6], which does a linear interpolation of the color
between the edges of a triangle. This algorithm is supported by major graphics standards
like PRIGS·PLUS. It is well fit for an implementation in hardware. Color and z-values of
the vertices have to be computed according to a chosen lighting model.

3 Triangle Shading

In comparison to other area primitives, triangles have some major advantages. Triangles
are inherently planar. This leads to a constant increment for color (r, g, b) and depth (z)
along the scanEnes. A fixed shading algorithm for triangle shading can be formulated.
This is especially important for a hardware implementation. Arbitrary areas, delimited
by polygons can be decomposed into triangles. This shows that triangles are a well-suited
rendering primitive.

5

3.1 Conception

The shading of triangles consists of three main steps:

• initialization

• edge interpolation

• span interpolation

3.2 Initialization

Initially, a triangle is defined by its three vertices (x, y, z) and the respective color val­
ues (r, g, b). This representation has to be converted into another one, better suited for
shading. Depending on the requirements to the triangle shading algorithm, different for­
mats may be used. An important requirement hag been the implementation of an exact
point sampling. Exaet point sampling is essential for the support of texture mapping and
transparency, planned features of future versions of the triangle shader. Furthermore, dur­
ing edge interpolation, no pixels are missed or drawn twice. To fulfill this requirement,
the following data structure was chosen:

typedef struet short f, i; tFix;
typedef struet tFix x, y, z, r, g, b; tPoint;
typedef strud tFix dx, dy, dz, dr, dg, db; tDeltaPointj
typedef struet

{
tPoint PToPi
tDeltaPoint dEdgej
tDeltaPoint dSpan;
tFix xTop;
tFix yMid;
tFix yBot;
tFix dxMidTop;
tFix dxBotMid;
}

tTrianglej

This structure represents a triangle as shown in Figure 1. In our implementation,
interpolation always starts from the longest edge of a triangle. Thus, in any case, only one
edge-increment dEdge of type tDeltaPoint has to be calculated. This algorithm requires
the ability to interpolate the spans along both, the positive and the negative x-axis.

Figure 1 illustrates the meaning of the components of tTriangle. dEdge does not cor­
respond to the exaet edge from PTop to PBot. Instead of the exact edge, the closest edge
through PTop pointing to the outside of a triangle and having and integer slope dx/dy
is chosen. This construction allows the implementation of a Bresenham-like algorithm
guaranteeing that only the centers of the pixels are taken into account. All data val­
ues are stored using the type tFix with an integral and a fradional part, as usual in
a DDA-algorithm. Therefore, this concept combines both the accuracy of the Bresenham­
algorithm and the speed of the DDA-algorithm.

6

PTop
xrop oIxM cHop

~EcI ~ \J
/ \

/ oISp :l.n \
)

If
1\

/ oIx otM .01\-J l ,-­,-­ yl

~V ~

MID

yBat

Fig. 1.

3.3 Edge Interpolation

During edge interpolation, a triangle is scanned along y from top to bottom. This algo­
rithm delivers the boundary of a triangle as well as the initial values of r, g, band z,
which are necessary for the span interpolation.

The initial values for r, g, band z are calculated by incrementing PTop along dEdge
until yBot is reached (Figure 1; dEdge.dy = 1 in any ca.'5e). The final x-value is initialized
with xTop and first incremented by dxMidTop until the line yMid is reached, and then
incremented by dxBotMid until reaching yBot.

o Longest Edge Pixel
x Short EdQes Pixels
a Spun Pixe[s

Fig. 2.

http:dEdge.dy

7

3.4 Span Interpolation

The span interpolation forms the inner loop of the triangle shading. Starting from the
longest edge, all pixels are set until the corresponding short edge is reached (Figure 2).
This iteration is done using the variable dSpan, including the elements x, y, z, r, g and b.
The values of these increments are constant throughout a whole triangle. During span
interpolation, the value of dSpan.dy is constantly 0, while dSpan.dx is 1 or -1 depending
on the direction of iteration.

4 	 Realizations of Triangle Shading Using Span Shading
Hardware

4.1 The Zebra Chip

Starting point for the realization of Gouraud shading in hardware was the Zebra chip [7],
an ASIC designed by National Semiconductor to fit into a system controlled by National's
raster graphics processor DP 8500. This chip mainly contains a set of four adders for the
interpolation of r, g, band z and a comparator for hidden pixel removal calculation. The
minimum cycle time for the interpolation is 100 ns, meaning that pixels could be written
to the frame buffer with a maximum rate of 10 Mpixels/s.

As mentioned above, the triangle shading algorithm consists of the subtasks initializa­
tion, edge interpolation and span interpolation. Implementing the triangle shading using
the Zebra chip, both the initialization as well as the edge interpolation have to be done
in software by the host, while only the span interpolation can be boosted by the Zebra
chip. Initialization data for each span have to be transferred to the Zebra chip's set-up
registers. This leads to a high data stream and communication overhead between the host
and the Zebra chip. The maximum performance according to the interpolation rate with­
out communication is 100,000 triangles/s with 100 pixels each. In order to test the true
resulting system performance, three different systems using the Zebra chip were designed
and analysed.

4.2 An Initial Approach

The initial system consisted of a Zebra chip with a 2 x 256 x 256 x 24 bit frame buffer and
a 2 x 256 x 256 x 16 bit z-buffer, both static RAM, controlled by a hardware state machine
for address generation and fed by a '1'800 transputer [8J. Due to the memory access time
of 100 ns and the timing of the z-comparison, an interpolation rate of 4 Mpixelsjs was
reached.

4.3 An Improved System

This system was redesigned using fast page mode DRAMS for a 2 x 512 x 512 frame buffer
and a 2 x 512 x 512 z-buffer. The state machine was optimized for the maximum speed
which could be achieved using standard page mode DRAMs. The result was an interpo­
lation rate of about 7 Mpixels/s. Like in the first system, initialization and preprocessing
is done by a T800 transputer. The z-buffer can be automatically cleared while image data
are transferred to the output stage of the system.

http:dSpan.dx
http:dSpan.dy

8

4.4 A Different Approach

The third approach was an AT-based system [9J built around the whole Advanced Graph­
ics Chip Set of National Semiconductor [10J. In this system the interpolation was con­
trolled by the linedraw cycle of the raster graphics processor (RGP). According to the
framebuffer of 2048 x 2048 x 8, the z-buffer was 2048 x 2048 x 16 and the Zebra chip interpo­
lated color indices. Due to the fairly£omplex timing an interpolation rate of about 2 Mpix­
els/s was reached. A FIFO for initialization data was used to decouple three possible data
sources. Transfer from the FIFO to the Zebra chip's registers was realized by a hardware
state machine.

4.5 Analysis of the Results Using Span Shading Hardware

The Zebra chip can be parallelly initialized while interpolation is going on. The time
required for transferring initialization data for one span depends on different aspects:

• 	 the chosen interface bus width (16- or 32-bits)

• 	 the write cycle time of the initializing device

• 	 the number of color planes (when using index colors, g and b values are not used)

• 	 the type of the transferred span (the transfer of the increment values is required
only for the first span of a triangle; see Section 3.4.)

It could be pointed out, that the break even point between initialization and interpo­
lation was in the area of 12 to 29 pixels. There are two consequences:

• 	 the number of spans which can be initialized is restricted to about 400,000/s.

• 	 a higher interpolation rate only pays for spans considerably longer than break even
spans.

In advanced quality pictures only a small percentage of lines exceeds this length.
Assuming a maximum data block of 44 bytes per span and triangles with 100 pixels
and 10 spans, the requested 50,000 triangles/s would require a peek dataflow of 22 Mbyte/s
for initialization. In addition, at least the edge interpolation must be done by the trans­
ferring device.

This led to the conclusion, that using spans as primitive, our goal of 50,000 to 100,000
shaded triangles/s cannot be reached. Doing the edge interpolation in software and real­
izing a communication for each span drops down the system performance dramatically.
Especially for high quality pictures with small triangles the resulting data rates cannot be
handled. The primitive one level above is the triangle. Using triangles as primitive could
reduce the datasets for triangles with 100 pixels by one order of magnitude. So the logical
consequence was to design a triangle shader.

5 The Triangle Shader Chip

5.1 Conception

The triangle shader chip was designed to implement both edge and span interpolation
described in Sections 3.3 and 3.4. Up to now, the initialization has to be done in software
running on the host CPU or the floating point accelerator.

5.2 System Overview

A system utilizing the triangle shader chip will consist of three major components. The
host processor running the operating system controls the whole graphics subsystem via the
standard bus system. The graphics subsystem will be built out of a floating point accel­
erator and a rendering engine carrying frame buffer, z-buffer, video logic, triangle shader
chip and a graphics controller for buffer management. The datapath between floating
point accelerator and rendering engine will use one of the accelerator CPU's busses for
fast transfer of initialization data. During shading operation, frame buffer and z-buffer
are controlled by the triangle shader chip.

5.3 Hardware Implementation of the Triangle Shader

The triangle shader chip contains three major functional blocks (Figure 3). A 16-bit­
wide data interface provides access to the set-up registers holding initialization data.
A 12-bit-wide control interface provides access to the state machine with its associated
microcode RAM. Nine memory strobes can be independently programmed within 25 ns
periods to fit the necessary frame and z-buffer timing. Furthermore, the control interface
provides lines for automatic control of an external FIFO memory containing initialization
data. Data are transferred to the set-up registers while the preceding triangle is processed
by the interpolators. The interpolator section contains six independent parallelly working
interpolation units for x, y, z, r, g and b. The interpolators work on both edges and spans.
During span processing, edge data are in internally latched. A mask function protects
specified bit planes from interpolation.

~ONTROL MICROCODE II STATE MACHINE
12 	 RI\Io1

STROBES

- H 	
9

2

j l::=
2- I

INTERPDLATIlR I 16

~ R- I R
INTERl'[JLATIlR I 8 --

DATA SETUP H
 G- I G
16 REGISTERS - INTERP[JLATIlR I e

- H 8- I 	 B
INTERPDLATIlR 8

~

I -==l ADDRESS- I Ig
INTE:RP[JLATIlR Y

12

Fig. 3.

10

R-INTERPOLATOR

R

SAT

Fig. 4.

Figure 4 shows the datapaths of the r-interpolator consisting of registers, multiplexors,
adder, saturation logic and output buffer. All values except yare processed in fixed-point
representation. The widths of the fractional parts have been chosen to prevent rounding
errors while interpolating the longest line possible in a 2048 by 2048 pixels frame buffer.
The actual formats are,

INT FRAC
x: 12 bit + 12 bit
y: 12 bit + Obit
z: 20 bit + 12 bit
r,g,b: 8 bit + 12 bit

The triangle shader chip has been designed as an ASIC using a 2 mm standard-cell
process. The gate equivalent count is 11,358 (kernel).

5.4 Simulated Performance

All simulations have been done assuming a clock frequency of 40 MHz for the internal
state machine of the triangle shader chip.

Initialization Data Transfer

An advantage of the triangle shading algorithm is, that unlike to the span shading ap­
proach, the number of initialization values is constant for any triangle. According to the
chosen data structure tTriangle and formats, 37 16-bit words per triangle have to be
transferred to the registers of the triangle shading chip. The state machine supports the
reading of initialization data from an external FIFO memory. Depending on the used
micro program, the read cycle time is 50 ns (linear program) or 100 ns (loop). This leads
to a fixed initialization time for a triangle of 1.85 ns (3.7 ns). Therefore the number of
triangles which can be initialized is 540,000/s (270,000/s). The initialization works in
parallel with either edge or span interpolation.

Edge Interpolation

Due to the restricted chip complexity, edge and span interpolation have to use the same
interpolator circuitry. Therefore, a parallel interpolation of edge and span data is not
possible. The cycle time for the calculation of the next longest edge pixel (Figure 2)
is 350 ns. If a correction step in y direction is necessary (Figure 2) an additional 100 ns

11

are added. Switching from the first short edge to the second short edge requires 200 ns
for loading the new parameters.

Span Interpolation

The span interpolation cycle time has been simulated assuming standard fast page mode
DRAM timing for z-buffer and frame buffer access. The resulting interpolation cycle time
is 150 ns which corresponds to a maximum interpolation rate of 6.7 Mpixels/s.

Analysis

In comparison to the span shading approaches, the data flow of initialization data for 50,000
triangles/s could be reduced from 22 Mbytes/s to 3.7 Mbytes/s. The resulting transfer
cycle time can be still easily met for 100,000 triangles/so

The break-even point between initialization data transfer and iteration depends on the
ratio between number of spans and pixels per span. In the case of a triangle degenerating
to a horizontal line, the break-even point is 9 pixels per triangle. The break-even point
decreases to 4 pixels if a triangle degenerates to a vertical line. These values show, that the
problems of initialization data transfer have been solved with our design. The maximum
shading performance is limited by the span interpolation rate of 6.7 Mpixels/s. Figure 5
shows a performance diagram assuming triangles with 100 pixels and shapes changing lin­
early from a horizontal to a vertical line. Figure 6 shows a performance diagram assuming
rightangled, isosceles triangles.

30····....

1000 triangles/s70

60

50 .. .

40

············

20

10

10 20 30 40 50 60 70 80 90 100
spans/triangle

Fig. 5,

5.5 Status of the Triangle Shader

The algorithm of the triangle shader has been implemented first as a C program. The
function of the algorithm has been certified to produce correct results using comprehensive
and difficult case test patterns. The transfer from the C program to the VLSI design has
been finished including logical and timing simulation of the design. The turn-around time
for the chip production will be about six months. During this time, an evaluation system
will be designed and built. This system is expected to work using the triangle shader chip
in Spring 1991.

12

6

1000 trio.ngles/s600

~

.', ,' , ,." .. " , ,."

500 , ,.. ,.. ,..... , ",' , , , ..

400 ~, ... ,., ... , " .. , '" ,

300 ~ ,., " , " , , ..

200 • , ... , ~....................... , , ,

100

10 20 30 40 50 60 70 80 90 100
pixels/trio.ngle

Fig. 6.

Future Work

The triangle shader as described above, is only the first step towards the development
of an integrated hardware renderer. Two extensions are planned for the future: higher
integration and enhanced, programmable functionality. With a higher scale integration
process available, the initialization task will also he integrated on chip. The initialization
requires an ALU supporting fast multiplication and division as well as a control sequencer.

Functionality enhancements will include alpha blending and texture mapping. Alpha
blending can be implemented by adding an alpha channel to r, g and b. Furthermore, a
blending stage consisting of adders and multipliers is required. This functionality can be
used for features like anti-aliasing and transparency. Texture Mapping is more complex.
A separate address generator and interpolation logic is required. Texture mapping will be
combined with alpha blending. Goal will be to design a shading processor, which can be
programmed for a flexible use of internal ALU-resources depending on the algorithm to
be performed.

It should he noted, that all these extensions are already implemented in software.
The conceptional background is clear and the implementation will be done within a short
time.

References

[1] 	 Fuchs, H, and Poulton, J.: Pixel-planes a VLSI-oriented design for a raster graphics engine, VLSI
Design, 2(3), 1981, pp. 20-28.

[2] 	 Akeley, K. and Jermoluk, T.: High-Performance Polygon Rendering. Computer Graphics Volume 22,
Number 4, 1988, pp. 239-246.

[3] 	 Wilner, M.: Untersuchung eines Arit.hmetik-Spezialprozessors auf Eignung zur Realisierung float­
ingpoint intensiver Grafik-Algorithmen. DIploma Thesis. Universitat Gesamthochschule-Paderborn
Fachgebiet Datentechnik, 1989,

[4] 	 Asal, M., Short, G., Preston T. et al.: The Texas Instrument 34010 Graphics System Processor, IEEE
Computel' Graphics and Applications, Volnme 6, Number 10, October 1986, pp, 24-39.

[5] 	 Carinalli, C. and Blair, J.: National's Advanced Graphics Chip Set for High-Performance Graphics,
IEEE Computer Graphics and Applications, Volume 6, Number 10, October 1986, pp. 24-39,

13

[6] 	 Gouraud, II.: Continuous Shading of Curved Surfaces. IEEE Transactions on Computers C-20, 6,
1971, pp. 623-629.

[7] 	 National Semiconductor Corporation 'Zebra' Gouraud Shading and Z Buffer Engine. Preliminary
Datasheet, May 1989.

[8J 	 Nicklas, J.: Aufhau, Programmierung und Anschlua eines Graphik-Subsystems Zu Schattierung von
3D-Objekten an das Echtzeit-Bildverarbeitungssystem PEBSY. Diploma Thesis. Technische IIochschule
Darmstadt, Fachbereich Informatik, Fachgebiet Graphisch-Interaktive Systeme, 1989.

[9] 	 Ackermann, If.-J., Mehl, M., Peischl, M.: Halbjahresbericht des Projektes NT 2815 A 8: Modulares
Graphik-Subsystem fiir die Echtzeitdarslellung von 3D-Anwendungen, April 1989.

