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Abstract

Engineering design would be easier if a computer could interpret initial concept drawings. We outline an ap-
proach for automated interpretation of line drawings of polyhedra, and summarise what is already possible, what
developments can be expected in the near future, and which areas remain problematic. We illustrate this with par-
ticular reference to our own system, RIBALD, summarising the published state of the art, and discussing recent
unpublished improvements to RIBALD. In general, successful interpretation depends on two factors: the number
of lines, and whether or not the drawing can be classified as a member of special shape class (e.g. an extrusion
or normalon). The state-of-the-art achieves correct interpretation of extrusions of any size and most normalons of
20–30 lines, but drawings of only 10–20 lines can be problematic for unclassified objects. Despite successes, there
are cases where the desired interpretation is obvious to a human but cannot be determined by currently-available
algorithms. We give examples both of our successes and of typical cases where human skill cannot be replicated.

Categories and Subject Descriptors(according to ACM CCS): J.6 [Computer Aided Engineering]: Computer Aided
Design
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1. Introduction

Can computers interpret line drawings of engineering ob-
jects? In principle, they cannot: any line drawing is the
2D representation of an infinite number of possible 3D ob-
jects. Fortunately, a counter-argument suggests that comput-
ersshouldbe able to interpret line drawings. Human engi-
neers use line drawings to communicate shape in the clear
expectationthat the recipientwill interpret the drawing in the
way the originator intended. It is believed [Lip98,Var03a]
that human interpretation of line drawings is a skill which
can be learned. If such skills could be translated into algo-
rithms, computers could understand line drawings.

There are good reasons why we want computers to in-
terpret line drawings. Studies such as Jenkins [Jen92] have
shown that it is common practice for design engineers to
sketch ideas on paper before entering them into a CAD pack-
age. Clearly, time and effort could be saved if a computer

could interpret the engineer’s initial concept drawings as
solid models. Furthermore, if this conversion could be done
within a second or two, it would give helpful feedback, fur-
ther enhancing the designer’s creativity [Gri97].

The key problem is to produce a model of the 3D object
the engineer would regard as the most reasonable interpreta-
tion of the 2D drawing, and to do so quickly. While there are
infinitely many objects whichcould result in drawings cor-
responding to e.g. Figures1 and2, in practice, an engineer
would be in little doubt as to which was the correct interpre-
tation. For this reason, the problem is as much heuristic as
geometric: it is not merely to find a geometrically-realisable
solid which corresponds to the drawing, but to find the one
which corresponds to the engineer’s expectations.

We suggest the following fully automatic approach, re-
quiring no user intervention; our implementation verifies its
utility for many drawings of polyhedral objects. (In a com-
panion paper [VTMS04], we summarise an approach for in-
terpreting certain drawings ofcurvedobjects with minimal
user intervention.)
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Figure 1: Trihedral Draw-
ing [Yan85]

Figure 2: Non-Trihedral
Drawing [Yan85]

• Convert the engineer’s original freehand sketch to a line
drawing. This is described in Section3.

• Determine thefrontal geometryof the object. The three
most crucial aspects of this are:
– Label the lines in the drawing as convex, concave, or

occluding. See Section4.
– Determine which pairs of lines in the drawing are in-

tended to be parallel in 3D. See Section5.
– Inflate the drawing to 212D by determining z-

coordinates for each vertex. See Section6.
Performing these three tasks sequentially, in any order,
presents difficulties, as each yields information useful to
the others. Approaches which iterate these steps, or per-
form them in parallel, while still obtaining results in a
reasonable time are a subject of current work—see later.

• Determine any symmetry elements (mostly mirror planes)
in the object. This is not strictly necessary—the approach
outlined in this paper in most cases works just as well
without symmetry information. See Section7.

• Classify the drawing (e.g. extrusion, normalon, general
case). See Section7.

• Complete the object topology by determining the topol-
ogy of the hidden part of the object. See Section8.

• Tidy or “beautify” the geometry of the completed object.
Beautification also has applications in other fields, such
as reverse engineering [VM02]—it is an area of active re-
search in its own right. See Section9.

2. Glossary

A solid model of a 3Dobject describes thetopology and
geometryof its faces, edgesandvertices. Topologyrecords
connectivity betweene.g. vertices and edges;geometrygives
shape and positions e.g. the spatial coordinates of vertices.

A natural line drawing[Sug86] is a 2D drawing which
represents the object as viewed from some viewpoint, and
compriseslines(corresponding to visible or partially-visible
edges) andjunctions(where lines meet—most, but not all,
junctions correspond to visible vertices of the object). Loops
of lines and junctions formregions, which correspond to vis-
ible or partially-visible faces of the object. Note the careful
distinction between 2D ideas (drawings, regions, lines, junc-
tions) and 3D ideas (objects, faces, edges, vertices).

A frontal geometryis an intermediate stage between
2D drawing and 3D object (and thus is sometimes called
“2 1

2D”). In a frontal geometry, everything visible in the nat-
ural line drawing is given a position in 3D space, but the oc-
cluded part of the object, not visible from the chosen view-
point, is not present.

A polyhedron istrihedral if three faces meet at each ver-
tex. It is extended trihedral[PLVT98] if three planes meet
at each vertex (there may be four or more faces if some are
coplanar). It istetrahedralif no more than four faces meet at
any vertex. It is anormalonif all edges and face normals are
aligned with one of three main perpendicular axes.

Junctions of different shapes are identified by letter: junc-
tions where two lines meetareL-junctions, junctions of three
lines may beT-junctions, W-junctionsor Y-junctions, and
junctions of four lines may beK-junctions, M-junctionsor
X-junctions. Vertex shapes follow a similar convention: for
example, when all four edges of aK-vertexare visible, the
drawing has four lines meeting at aK-junction.

When reconstructing an object from a drawing, we take
thecorrectobject to be the one which a human would decide
to be the most plausible interpretation of the drawing.

3. Convert Sketch to Line Drawing

For drawings of polyhedral objects, we believe it to be most
convenient for the designer to input straight lines directly,
and our own prototype system, RIBALD, includes such an
interface. However, it could be argued that freehand sketch-
ing is more “intuitive”, corresponding to a familiar interface:
pen and paper. Several systems exist which are capable of
converting freehand sketchesinto natural line drawings—see
e.g. [ZHH96], [Mit99], [SS01].

4. Which Lines are Convex/Concave?

Line labelling is the process of determining whether each
line in the drawing represents a convex, a concave, or an oc-
cluding edge. For drawings of trihedral objects with no hole
loops, the line labelling problem was essentially solved by
Huffman [Huf71] and Clowes [Clo70], who elaborated the
catalogue of valid trihedral junction labels. This turns line
labelling into a discrete constraint satisfaction problem with
1-node constraints thateachjunction must have a label in the
catalogueand 2-node constraints thateach line must have
the same label throughout its length. The Clowes-Huffman
catalogue forL-,W- andY-junctions is shown in Figure3; +
indicates a convex edge,− indicates a concave edge, and an
arrow indicates an occluding edge with the occluding face
on the right-hand side of the arrow. In trihedral objects,T-
junctions (see Figure4) are always occluding.

For trihedral objects, algorithms for Clowes-Huffmanline
labelling, e.g. those of Waltz [Wal72] and Kanatani [Kan90],
although theoretically takingO(2n) time, are usuallyO(n) in
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Figure 3: Clowes-Huffman Catalogue
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Figure 4: Occluding T-Junctions

practice [PT94]. It is believed that the time taken is more a
function of the number of legal labellings than of the algo-
rithm, and for trihedral objects there is often only a single
legal labelling. For example, Figure1 has only one valid la-
belling if the trihedral (Clowes-Huffman) catalogue is used.

Extending line labelling algorithms to non-trihedral nor-
malons is fairly straightforward [PLVT98]. The additional
legal junction labels are those shown in Figure5. Note, how-
ever, that a new problem has been introduced: the newT-
junctions are not occluding.
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Figure 5: Extended Trihedral Junctions

Extension to the 4-hedral general case is less straight-
forward. The catalogue of 4-hedral junction labels is much
larger [VM03]—for example, Figure6 shows just the possi-
bilities forW-junctions. Becausethe 4-hedral catalogue is no
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Figure 6: 4-HedralW -Junctions

longersparse, there are oftenmanyvalid labellings for each
drawing. Non-trihedral line labelling using the previously
mentioned algorithms is nowO(2n) in practice as well as
in theory, and thus too slow. Furthermore, choosing thebest
labelling from the valid ones is not straightforward either,
although there are heuristics which can help (see [VM03]).

Instead, an alternative labelling method is to use a relax-
ation algorithm. Label probabilities are maintained for each
line and each junction; these probabilities are iteratively up-
dated. If a probability falls to 0, that label is removed; if a
probability reaches 1, that label is chosen and all other la-
bels are removed. In practice, this method is much faster—
labels which are possible but very unlikely are removed
quickly by relaxation, whereasthey are not removed at all by
combinatorial algorithms. However, relaxation methods are
less reliable (the heuristics developed for choosing between
valid labellings when using combinatorial methods are rea-
sonably effective). In test we performed on 535 line draw-
ings [Var03b], combinatorial labelling labelled 428 entirely
correctly, whereas relaxation labelling only labelled 388 en-
tirely correctly.

The most serious problem with either approach is that
in treating line labelling as a discrete constraint satisfaction
problem, thegeometryof the drawing is not taken into ac-
count, e.g. the two drawings in Figure7 are labelled the
same. The problems created by ignoring geometry become

Figure 7: Same Topology

much worse in drawings with several non-trihedral junctions
(see [VSM04]), and for these, other methods are required.

A new approach to labelling outlined in that paper and
subsequently developed further [VMS04] makes use of an
idea previously proposed for inflation [LB90]:

• Assign relativei, j,k coordinates to each junction by as-
suming that distances along the 2D axes in Figure8 cor-
respond to 3D distances along spatiali, j,k axes.

• Rotate the object fromi, j,k to x,y,zspace, where the lat-
ter correspond to the 2Dx,y axes andz is perpendicular
to the plane of the drawing.

• Find the 3D equation for each planar region using vertex
x,y,zcoordinates.

• For each line, determine from the equations of the two
faces which meet the line whether it is convex, concave or
occluding (if there is only one face, the line is occluding).
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Figure 8: Three Perpendicular Axes in 2D

On its own, this method does not work well: e.g. it is dif-
ficult to specify a threshold distanced between two faces
such that a distance greater thand corresponds to a step, and
hence an occluding line, while if the distance is less thand
the planes meet and the line is convex or concave. However,
using the predictions made by this method as input to a re-
laxation labelling algorithm provides far better results than
using arbitrary initialisation in the same algorithm.

This idea can be combined with many of the ideas in Sec-
tion 6 when producing a provisional geometry. Various vari-
ants of the idea have been considered(see [VMS04]), partic-
ularly with reference to how thei, j,k axes are identified in a
2D drawing, without as yet any firm conclusions as to which
is best overall. Another strength is that the idea uses the
relaxation labeller to reject invalid labellings while collat-
ing predictions made by other approaches. This architecture
allows additional approaches to labelling, such as Clowes-
Huffman labelling for trihedral objects, to make a contribu-
tion in those cases where they are useful [VMS04].

Even so, the current state-of-the-art only labels approxi-
mately 90% of non-boundary edges correctly in a represen-
tative sample of drawings of engineering objects [VMS04].

Note that any approach which uses catalogue-based la-
belling can only label those drawings whose vertices are in a
catalogue—it seems unlikely that 7-hedral and 8-hedral ex-
tended K-type vertices of the type found in Figure9 will be

Figure 9: Uncatalogued Vertices

catalogued in the near future. In view of this, one must ques-
tion whether line labelling is needed. Humans are skilled at
interpreting line drawings, and introspection tells us that line
labelling is not always a part of this process—it may even

be that humans interpret the drawing first, and then (if nec-
essary) determine which lines are convex, concave and oc-
cluding from the resulting mental model.

Our investigations indicate that line labellingis needed, at
least at present. We are investigating interpreting line draw-
ings without labelling, based on identifying aspects of draw-
ings which humans are known or believed to see quickly,
such as line parallelism [LS96], cubic corners [Per68] and
major axis alignment [LB90]. Current results are disappoint-
ing. Better frontal geometry can be obtained if junction la-
bels are available. More importantly, the frontal geometry is
topologically unsatisfactory. Distinguishing occluding from
non- occludingT-junctions without labelling information is
unreliable, and as a result, determination of hidden topology
(Section8) is unlikely to be successful.

5. Which Lines are Parallel?

Determining which lines in a drawing areintendedto be par-
allel in 3D is surprisingly difficult. It is, for example, obvious
to a human which lines in the two drawings in Figure10 are
intended to be parallel and which are not, but determining
this algorithmically presents problems.

Figure 10: Which Lines are Parallel?

Sugihara [Sug86] attempted to define this problem away
by using a strict definition of thegeneral positionrule: the
user must choose a viewpoint such that if lines are parallel
in 2D, the corresponding edges in 3Dmustbe parallel. This
makes no allowance for the small drawing errors which in-
evitably arise in a practical system.

Grimstead’s “bucketing” approach [Gri97], grouping
lines with similar orientations, works well for many draw-
ings, but fails for both drawings in Figure10. Our own
“bundling” approach [Var03a], although somewhatmore re-
liable, fares no better with these two drawings. The basic
idea used in bundling is that edges are parallelif they look
parallelunlessit can be deduced from other information that
they cannot be parallel.The latter is problematic for two rea-
sons. Firstly, if ‘other information’ means labelling, iden-
tification of parallel lines must occur after labelling, limit-
ing the system organisation for computing frontal geome-
try. Secondly, to cover increasingly rare exceptional cases,
we must add extra, ever more complex, rules for deducing
which lines may or may not be parallel. This is tedious and
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rapidly reaches the point of diminishing returns. For exam-
ple, a rule which can deduce that the accidental coincidence
in Figure11should not result in parallel lines would be both
complicated to implement and of no use in many other cases.

*

*

Figure 11: Accidental Coincidence

Furthermore, there are also cases where it is far from clear
even to humans which edges should be parallel in 3D (edges
A, B, C andD in Figure12are a case in point).

A
B

C
D

Figure 12: Which Edges Should Be Parallel?

In view of these problems, more recent approaches to
frontal geometry (e.g. [VMS04]) simply ignore the possi-
bility that some lines which appear parallel in 2D cannot in
fact be parallel in 3D. Initially, it is assumed that they are
parallel; this information is then re-checked after inflation.

6. Inflation to 21
2D

Inflation is the process of converting a flat 2D drawing into
21

2D by assigningz-coordinates (depth coordinates) to each
vertex, producing afrontal geometry. The approach taken
here is the simplest: we usecompliance functions[LS96] to
generate equations linear in vertex depth coordinates, and
solve the resulting linear least squares problem. Many com-
pliance functions can be translated into linear equations in
z-coordinates. Of these, the most useful are:

Cubic Corners[Per68], sometimes calledcorner orthogo-
nality, assumes that aW-junction orY-junction corresponds
to a vertex at which three orthogonal faces meet. See Fig-
ure13: the linear equation relates depth coordinateszV and
zA to anglesF andG. Nakajima [Nak99] reports successful
creation of frontal geometry solely by using a compliance
function similar to corner orthogonality, albeit with a limited
set of test drawings in which orthogonality predominates.

Line Parallelismuses two edges assumed to be parallel in
3D. The linear equation relates the fourz-coordinates of the

V

A B

C

EF

G

V

A

B

C

E

F
G

Figure 13: Cubic Corners

vertices at either end of the two edges. Line parallelism is
not, by itself, inflationary: there is a trivial solution (z = 0
for all vertices).

Vertex Coplanarity uses four vertices assumed to be
coplanar. The linear equation relating theirz-coordinates is
easilyobtained from 2D geometry. Vertex coplanarity is also
not, by itself, inflationary, having the trivial solutionz = 0
for all vertices. General use of four-vertex coplanarity is not
recommended (Lipson [Lip98] notes that if three vertices on
a face are collinear, four-vertex coplanarity does not guar-
antee a planar face). However, it is invaluable for cases like
those in Figure14, to link vertices on inner and outer face
loops: without it the linear system of depth equations would
be disjoint, with infinitely many solutions.

* *

Figure 14: Coplanar Vertices

Lipson and Shpitalni [LS96] list the above and several
other compliance functions; we have devised the following.

Junction-Label Pairs[Var03a] assumes that pairs of junc-
tions with identified labels have the same depth implications
they would have in the simplest possible drawing contain-
ing such a pair. An equation is generated relating the vertex
depths at eachend of the line based on the junction labels of
those vertices. For example, see Figure15: this pair of junc-
tion labels can be found in an isometric drawing of a cube,
and the implication is that theY-junction is nearer to the
viewer than theW-junction, with the ratio of 2D line length
to depth change being

√
2 : 1.

Note that two of the most successful compliance func-
tions, line parallelism and junction line pairs, require in-
put information (parallel lines and line labels respectively)
which, as we have seen, cannot always reliably be obtained.
However, when this input information is both available and
correct, inflation using the above compliance functions is the
most reliable of the stages of processing described in this
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+

++

Figure 15: Junction La-
bel Pair

*

Figure 16: Incorrect Infla-
tion?

paper. Although it occasionally fails to determine correctly
which end of a line should be nearer the viewer, such failures
arise in cases like the one in Figure16where a human would
also have difficulty. The only systematic case where using a
linear system of compliance functions fails is for Platonic
and Archimedean solids, but a known special-case method
(Marill’s MSDA [Mar91]) is successful for these.

In order to make the frontal geometry process more ro-
bust when the input information (especially line labelling)
is incorrect, we have experimented with two approaches to
inflation which do without some or all of this information.

The first is the ‘preliminary inflation’ described in Sec-
tion 4: find thei, j,k axes in the drawing, inflate the object in
i, j,k space,then determine the transformation betweeni, j,k
andx,y,zspaces. This requires parallel line information (to
group lines along thei, j,k axes). Where such information is
misleading, the quality of inflation is unreliable, but this is
not always a problem, e.g. the left-hand drawing in Figure10
is labelled correctly despite incorrect parallel line informa-
tion. Once (i) a drawing has been labelled correctly and (ii)
there is reason to suppose that the parallel line information is
unreliable, better-established inflation methods can be used
to refine the frontal geometry. However, the right-hand draw-
ing is one of those which isnot labelled correctly, precisely
because of the misleading parallel line information.

A second promising approach, needing further work, at-
tempts to emulate what is known or hypothesised about hu-
man perception of line drawings. It allocates merit figures
to possible facts about the drawing; these, and the geometry
which they imply, are iteratively refined using relaxation:

• Face-vertex coplanaritycorresponds to the supposition
that vertices lie in the plane of faces. We have already
noted the difficulty of distinguishing occluding from non-
occluding T-junctions; to do so, we must at some time
decide which verticesdo lie in the plane of a face.

• Corner orthogonality, which was described earlier. At
leastone inflationary compliance function is required, and
this one has been found reliable. Although limited in prin-
ciple, corner orthogonality is particularly useful in prac-
tice as cubic corners are common in engineering objects.

• Major axis alignmentis the idea described above of using
i, j,k axes. This is also an inflationary compliance func-
tion. It is newer than corner orthogonality, and for this
reason considered less reliable. However, unlike corner

orthogonality (which can fail entirely in some circum-
stances), major axis alignment does always inflate a draw-
ing, if not always entirely correctly.

• Line parallelismis useful for producing ‘tidy’ output (e.g.
to make lines terminating in occludingT-junctions paral-
lel in 3D to other lines with similar 2D orientation). How-
ever, the main reason for its inclusion here is that it also
produces belief values for pairs of lines being parallel as
a secondary output, solving the problem in Section5.

• Through linescorrespond to the requirement that a contin-
uous line interceptedby aT-junction orK-junction corre-
sponds to a single continuous edge of the object.

A third, simpler, approach assumes that numerically cor-
rect geometry is not required at this early stage of pro-
cessing, and identifying relative depths of neighbouring ver-
tices is sufficient. Schweikardtand Gross’s [SG00] work, al-
though limited to objects which can be labelled using the
Clowes-Huffman catalogue, and not extending well to non-
normalons, suggests another possible way forward.

7. Classification and Symmetry

Ideally, one method should work for all drawings of poly-
hedral objects; identification of special cases should not be
necessary. However, the state-of-the-art is well short of this
ideal—in practice it is useful to identify certain frequent
properties of drawings and objects. Identification of planes
of mirror symmetry is particularly useful. Knowledge of
such a symmetry can help both to construct hidden topol-
ogy (Section8) and to beautify the resulting geometry (Sec-
tion 9). Identification of centres of rotational symmetry is
less useful [Var03a], but similar methods could be applied.

The technique adopted is straightforward: for each possi-
ble bisector of each face, create a candidate plane of mirror
symmetry, attempt to propagate the mirror symmetry across
the entire visible part of the object, and assess the results us-
ing the criteria of (i) to what extent the propagation attempt
succeeded, (ii) whether there is anything not visible which
should be visible if the plane of mirror symmetry were a
genuine property of the object, and (iii) how well the frontal
geometry corresponds to the predicted mirror symmetry.

Classification of commonly-occurring types of objects
(examples include extrusions, normalons, and trihedral ob-
jects) is also useful [Var03a], as will be seen in Section8.

One useful combination of symmetry and classification
is quite common in engineering practice (e.g. see Figures1
and2): a semi-normalon (where many, but not all, edges and
face normals are aligned with the major axes)alsohaving a
dominant plane of mirror symmetry aligned with one of the
object’s major axes [Var03a]. The notable advantage of this
classification is that during beautification (Section9) it pro-
vides constraints on the non-axis-aligned edges and faces.

We recommend that symmetry detection and classifica-
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tion should be performed after creation of the frontal geom-
etry. Detecting candidate symmetries without line labels is
unreliable, and assessing candidate symmetries clearly ben-
efits from the 3D information provided by inflation. The
issue is less clear for classification. Some classifications
(e.g. whether the object is a normalon) can be done directly
from the drawing, without creating the frontal geometry first.
However, others cannot, so for simplicity it is preferable to
classify the object after creating its frontal geometry.

8. Determine Hidden Topology

Once the frontal geometry has been determined, the next
stage of processing is to add the hidden topology. The
method is essentially that presented in [VSMM00]: firstly,
add extra edges to complete the wireframe, and then add
faces to the wireframe to compete the object, as follows:

While the wireframe is incomplete:

• Project hypothesised edges from each incomplete vertex
along the appropriate axes

• Eliminate any edges which would be visible at their points
of origin

• Find locations where the remaining edges intersect, as-
signing merit figures according to how certain it is that
edges intersect at this location (e.g. an edge intersecting
only one other edge has a higher merit figure than an edge
has potential intersections with two or more other edges)

• Reduce the merit for any locations which would be visible
(these must be considered, as drawing errors are possible)

• Choose the location at which the merit is greatest
• Add a vertex at this location, and the hypothesised edges

meeting at this location, to the known object topology

The process of completing the wireframe topology varies
in difficulty according to the type of object drawn. We il-
lustrate two special-case object classes, extrusions and nor-
malons, and the general case. In some cases (e.g. if the ob-
ject is symmetrical or includes a recognised feature), more
than one vertex can be added in one iteration, as described
in [Var03a]. Such cases increase both the speed and reliabil-
ity of the process of completing the wireframe.

Completing the topology of extrusions from a known
front end cap is straightforward. Figure17 shows a draw-
ing and the corresponding completed extrusion wireframe.

Figure 17: Extrusion

Knowing that the object is a normalon simplifies recon-
struction of the wireframe, since when hypothesised edges
are projected along axes, there is usually only one possibil-
ity from any particular incomplete vertex. Figure18 shows
a drawing of a normalon and the corresponding completed
wireframe. Similarly, if the object is trihedral, there can be

Figure 18: Normalon [Yan85]

atmost one new edge from each incomplete vertex, simplify-
ing reconstruction of the correct wireframe. Figure19shows
a drawing of a trihedral object and the corresponding com-
pleted wireframe.

Figure 19: Trihedral Object [Yan85]

However, in the general case, where the object is neither a
normalon nor trihedral, there is the significant differencethat
hypothesised edges may be projected in any direction paral-
lel to an existing edge. Even after eliminating edges which
would be visible, there may be several possibilities at any
given incomplete vertex. The large number of possible op-
tions rapidly becomes confusing and it is easy to choose an
incorrect crossing-point at an early stage. Although such er-
rors can sometimes be rectified by backtracking, the more
common result is a valid but unwanted wireframe. Only very
simple drawings can be processed reliably. Figure20shows
a general-case object and the corresponding completed wire-
frame; this represents the limit of the current state of the art.

Figure 20: General Case Object

One particular problem, a specific consequence of the ap-
proach of completing the wireframe before faces, is that
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there is no assurance that the local environments of either
end of a new edge match. It may happen that a sector around
a new edge is solid at one end and empty at the other. This is
perhaps the single most frequent cause of failure at present,
and is especially problematic in that the resulting completed
wireframe canappear correct. We aim to investigate faster
and more reliable ways of determining the correct hidden
topology of an object, starting with approaches aimed atcor-
recting this conflicting local environment problem.

Adding additional faces to the completed wireframe
topology for which the frontal geometry is already known is
straightforward. We use repeated applications of Dijkstra’s
Algorithm [Dij59] to find the best loop of unallocated half-
edges for each added face, where the merit for a loop of
half-edges is based both on the number of half-edges re-
quired (the fewer, the better) and their geometry (the closer
to coplanar, the better). We have not known this approach
to fail when the input is a valid wireframe (which, as noted
above, is not always the case).

9. Beautification of Solid Models

As can be seen from the Figures in the previous Section,
even when topologically correct, the solid models produced
may have (possibly large) geometric imperfections. They re-
quire ‘beautification’. More formally, given a topologically-
correctobject and certain symmetry and regularity hypothe-
ses, we wish to translate these hypotheses into constraints,
and update the object geometry so that it maximises some
merit function based on the quantity and quality of con-
straints enforced.

In order to make this problem more tractable, we decom-
pose it into determination of face normals and determination
of face distances from the origin; once faces are known, ver-
tex coordinates may be determined by intersection. The ra-
tionale for this partitioning [KY01] is that changing facenor-
mals can destroy satisfied distance constraints, but changing
face distances cannot destroy satisfied normal constraints.

However, there are theoretical doubts about this sub-
division, related to theresolvable representationprob-
lem [Sug99] of finding a ‘resolution sequence’ in which
information can be fixed while guaranteeing that no previ-
ous information is contradicted. For example, determining
face equations first, and calculating vertex coordinates from
them, is a satisfactory resolution sequence for many polyhe-
dra, including all trihedral polyhedra. Similarly, fixing vertex
coordinates and calculating face planes from them is a satis-
factory resolution sequence for deltahedra and triangulated
mesh models. Sugihara [Sug99] proved that:

• all genus 0 solids have resolution sequences (although if
neither trihedral nor deltahedra,finding the resolution se-
quence might not be straightforward);

• (by counterexample) genus non-zero solids do not neces-
sarily have resolution sequences.

Thus, there aretwo resolvable representation issues:

• finding a resolution sequence for those solids which have
a non-trivial resolution sequence;

• producing a consistent geometry for those solids which do
not have a resolution sequence.

Currently, neither problem has been solved satisfactorily.

Thus, although there are objects which have resolution se-
quences, but for which determining face normals, and then
face distances, and finally vertex coordinates, is not a satis-
factory resolution sequence, the frequency of occurrence of
such objects has yet to be determined. If low, the pragmatic
advantages of such an approach are perhaps more important
than its theoretical inadequacy.

Our overall beautification algorithm is [Var03a]:

• Make initial estimates of face normals
• Use any objectclassificationto restrict face normals
• Identify constraints on face normals
• Adjust face normals to match constraints
• Make initial estimates of face distances
• Identify constraints on face distances
• Adjust face distances to match constraints
• Obtain vertex locations by intersecting planes in threes
• Detectvertex/face failuresand adjust facesto correct them

We use numerical methods for constraint processing, as
this seems to be the approach which holds most promise. Al-
ternatives, although unfashionable for various reasons, may
become more viable as the state of the art develops: see Lip-
son et al [LKS03] for a discussion.

In addition to the resolvable representation problem, there
is a further theoretical doubt about this approach. When at-
tempting to satisfy additional constraints, it is necessary to
know how many degrees of freedom are left in the system
once previous, already-accepted, constraints are enforced.
This apparently-simple problem appears to have no fully-
reliable solution. One solution proposed by Li [LHS01] per-
turbs the variables slightly and detects which constraints
have been violated. However, this is slow, and not necessar-
ily theoretically sound either (e.g. a constraint relating face
distancesA andB may allow them to move together, but not
independently of one another).

Two differing approaches have been tried to the problem
of finding whether or not a geometry exists which satis-
fies a new constraint while continuing to satisfy previously-
accepted constraints.

The first encodes constraint satisfaction as an error func-
tion (the lower the value, the better-satisfied the con-
straint), and face normals and/or face distances as vari-
ables, using a downhill optimiser to minimise the error
function [CCG99,LMM02,Var03a]. Such algorithms use a
‘greedy’ approach, in which the constraint with the highest
figure of merit is always accepted and enforced, and then
for each other constraint, in descending order of merit: if the
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constraint is already satisfied numerically by the object, it is
accepted; otherwise we attempt to adjust the variables nu-
merically to accommodate the new constraint as well as all
previous acceptedconstraints. If this succeeds, the new vari-
able values are stored and the constraint is accepted; oth-
erwise, the constraint is rejected and the previous variable
settings are restored. The use of a downhill optimiser guar-
antees that progress is always downhill. However, progress
can often be slow, and there is the possibility (unlikely in
practice if the initial geometry is reasonable [Var03a]) that
the downhill optimiser will be trapped in a local minimum.

To speed up the algorithm, a logical reasoning stage may
be used, capable of directly accepting or rejecting con-
straints which duplicate or contradict previously-accepted
constraints. On one hand [Var03a] reports difficulties with
this approach, in view of (i) the unsolved resolvable rep-
resentation and degrees-of-freedom problems, and (ii) the
difficulty of reasoning whether constraints of different types
duplicate or contradict one another. Such reasoning becomes
harder as extra constraint types are added to a system: even
simple 2D systems allowing only distance constraints re-
quire 30 inference rules [SAK90]; the number of inference
rules required for 3D systems allowing both angular and
distance constraints is certainly much greater. On the other
hand, Langbein et al [LMM04] report considerable success
with a logical reasoning approach used in a reverseengineer-
ing system. Logical reasoning to accept or reject constraints
is clearly faster than anentirely numerical approach, and rep-
resents the current state of the art.

An alternative which may warrant further study is to re-
place the downhill optimisation step above by a faster ap-
proach which iteratively updates the variables (face normals
and/or distances)geometrically, using their current values
and geometric inferences based on the constraint set un-
der consideration to predict next-iteration values. While it
is harder to guarantee that such updates are converging to-
wards a solution, by making direct use of geometric infor-
mation they have the potential to be faster.

There has been recent progress in solving systems of
geometric constraints using Cayley-Menger determinants
(e.g. [PRTT03]), but such work has concentrated on prob-
lems where all constraints can be represented as distance
constraints. It is not clear that it can be extended to all con-
straints relevant to sketching, e.g. “macro”-constraints such
as enforcement of a plane of mirror symmetry.

Apart from numerical methods, several other possible
techniques may be relevant, too many to list here; two with
unexplored potential are described. Firstly, although the sim-
ple constructivist approach of Suzuki et al [SAK90] cannot
be recommended—the chains of reasoning required form
so-called ‘loops’—more recent graph-based methods such
as [FH97] may make it possible to disentangle these loops.
Auxiliary construction methods such as those of Lipson et
al [LKS99] and Benko et al [BKV*02] have the merit that

seem to correspond to the way a human would approach the
same problem.

10. Summary

So, can computers interpret line drawings? Yes, to some ex-
tent, but they are nowhere near as skilful as human engi-
neers. On the one hand, there is a whole category of line
drawings (extrusions) which computers can interpret flaw-
lessly. On the other hand, there is another category (those
with ‘extendedK ’ vertices) which, as yet, cannot be inter-
preted at all. In between, the proportion of objects which can
be interpreted grows steadily as existing methods are refined
and extended.

However, if there is to be a breakthrough, rather than in-
cremental improvement, we must recall our aims: to dupli-
cate the ability of humans to interpret line drawings. By and
large, those aspects of this skill which have been identified
have already been translated into algorithms. The fact that
these algorithms are not enough makes it clear that there are
more aspects of this skill still waiting to be identified.
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