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Abstract

In a three-dimensional space considered as a set of uniform vozels, an object is defined within a volume
represented by a subset of vozels. The illumination of a scene requires the determination of overlapping
of lines and objects. This task is a large part of the computation times in illumination methods. The
algorithms used for it are based on the DDA method. We present an original method to determine
the vozels crossed by a line. The speed of this method is then compared with the speed of Kaufman’s

methodlO.
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1. Introduction

As usualll: 10 we represent the three—dimensional
space by elementary uniform cubes (voxels). Objects
are included in voxel-based volumes. Illumination
methods require to compute lines. For ray-tracing
these lines are light rays®. For radiosity the lines com-
puted connect objects together. In these two cases,
for each line the overlapping of each voxel must be
detected.

The computation time of a scene’s illumination de-
pends of these overlapping computations. Most algo-
rithms are adaptations of well known 2D algorithms.
For example Stolte!3, Cohen et al.”- 10 adapt the 2D
DDA method presented by Bresenham in 19654.

This paper presents an adaptation of the last im-
provements of the 2D line drawing methods to 3D lines
computation.

2. 3D Line

“Line” denotes the discrete straight segment between
two points. Let P(xp,¥yp, 2p) and Q(zq, yq, zq) be the
extremities of the line. As these coordinates are inte-
gers, the segment is an exact translation of the line
((0,0,0)(u,v,t)), where:
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U=2Tq— Tp,
U ="Yq — Yo,
t=2zq— 2p.

The projections of the 3D line along the axis pro-
duce three 2D lines: (u,v,t) transforms into (u,v)
along Z-axis, (u,t) along Y-axis and (v,t) along X—
axis. Two of such projections suffice to compute the
3D line.

3. Previous method

Kaufman’s'® method is based on the projection pro-
priety. Two linear interpolations are computed with
Bresenham’s DDA method4. Two error values are
computed to measure the distance between a point
of the continuous line and the current discrete point.
The first one measures an ordinate difference and the
second one a height difference. An increment system is
used to compute incrementally the next error values.

4. 2D line improvement

Bresenham’s method? is improvable. Double step
(Rokne!?), triple step (Graham?), repeating gcd times
a regular pattern (Angel!) are well known improve-
ments. Castle® uses a combinatory approach. Run



Length Encoding (RLE) by Bresenham® computes di-
rectly the length of each monotonous span. Berstel
reduced the problem to the analysis of continuous
fractions?.

Boyer et al.3 use an inner symmetry to compute only
one half of the line. They use also an adaptation of
RLE. These different spans are then placed on the line
by a DDA algorithm. Symmetric properties permit to
work only in one hexadecant. These choices shorten
significantly the computation. The speed—up ratio to
Bresenham’s algorithm is 21.

5. A New 3D algorithm

Our purpose was to adapt these last improvements to
3D space. Let v/u and t/v be “reduced slopes” (i.e.
the gcd’s of u,v and ¢,v are 1). The span length is
approximately m = u/v. The square span (S) is 0™1
and the diagonal span (D) is 0™~ '1. The spans are
distributed homogeneously with a DDA method. Ver-
tical moves are coded “2” and will be placed during
this distribution according to the sign of é, which is
computed incrementally. See for example the compu-
tation of the line ((0,0,0) (21,11,4)):

u=27v=11t=4,m=2,S=001,D =01

i 1 2 3 4 5 6

span S D S2 D S D2

moves 001 01 0012 01 001 012

i 6 7 8 9 10 11

span D2 S D S2 D D2

moves 012 001 01 0012 01 012

Table 1: Span computation trace

The symmetry demonstrated for the 2D discrete
line3 is preserved for 3D. Spans are disposed symmet-
rically and only the extremes (¢ = 1 and ¢ = v) are
different (respectively S and D2). So the computation
of half the line produces the whole line. The execution
time, linear with regard to v, is divided by 2. Below
we present the algorithm (benchmarks are based on
an implementation in C, Figure 1). Parameters are:

t=v number of spans
j=v—u%v number of diagonal spans
k=t number of vertical moves
S square span

D diagonal span

PutSpan and PutReverseSpan are functions dis-
playing the spans respectively at the beginning and

void SymetricCompute(int i, int j, int k,
int H[], int O[1) {
int io, ih, iv;
int d, dz;

io = j—i;
ih = j;

iv = k—1i;
d = 2%j—i;
dz = 2%z—i;

PutSpan(H); PutReverseSpan(2);
PutReverseSpan(0);
i=(i-1)/2;
while (i——) {
if (delta>=0) {
PutSpan(0); PutReverseSpan(0);
delta+=io;
} else {
PutSpan(H); PutReverseSpan(H);
delta+=ih;

if (dz>=0){
PutSpan(2); PutReverseSpan(2);
delta+=k;

} else
delta+=iv;

Figure 1: 3D straight lines algorithm

at the end of the line. Further speed gain is due to
the integration of Rokne’s'? “double step” into this
algorithm. The vertical 2—proximity, is well adapted
to the line/voxels computation.

6. Benchmarks

Every line starting at the origin and ending within
a pyramid is computed. The pyramid is: ((0,0,0),
(2,0,0), (z,2/2,0), (z,z/2,2/2), (x,0,2/2)). Three al-
gorithms are tested: Kaufman’s', the algorithm pre-
sented above and the same with double step method!2.
The times given in the following table were obtained
by the total time field of the profile Unix program on
a Silicon Graphic Elan Workstation. Times of Table 2
are given in seconds.

As ged computations are slow, the corresponding
improvement was abandoned in 3D algorithm. The
double step increases the speed—up (20%).

7. Conclusion

Our new method is clearly the fastest. As the com-
puting is done span by span and no more point by
point, we have decreased the number of operations
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x Kaufman'’s by Spans New
100 2,50 0,37 0,32
500 1621,93 192,50 152,58
1000  26123,60 3001,48  2359,23

Table 2: Results in user-time

necessary to compute linear bi-interpolation. Between
Kaufman’s algorithm and ours the speed—up is at
least 7. This value increases if the line has a gentle
slope. It increases also with the length of the line:
for a 1000 voxels line the ratio is 11. It will permit
the use of a larger amount of objects or a reduction
of the scale. Using this algorithm for a set of linear
bi-interpolations in a discrete space composed of uni-
forms voxels, we can obtain a better interactivity be-
tween users and computers.
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