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Abstract
This paper describes an interactive software tool for the visualisation and the design of artistic fractal images.
The software (called AttractOrAnalyst) implements a fast algorithm for the visualisation of basins of attraction of
iterated function systems, many of which show fractal properties. It also presents an intuitive technique for fractal
shape exploration. Interactive visualisation of fractals allows that parameter changes can be applied at run time.
This enables real-time fractal animation. Moreover, an extended analysis of the discrete dynamical systems used
to generate the fractal is possible. For a fast exploration of different fractal shapes, a procedure for the automatic
generation of bifurcation sets, the generalizations of the Mandelbrot set, is implemented. This technique helps
greatly in the design of fractal images. A number of application examples proves the usefulness of the approach,
and the paper shows that, put into an interactive context, new applications of these fascinating objects become
possible. The images presented show that the developed tool can be very useful for artistic work.

1. Introduction

The developments in the research of dynamical systems and
its attractors, chaos and fractals has already led some peo-
ple to declare that god was a mathematician, because mathe-
matics could be found behind the stunning beauty of nature.
And indeed have researchers found with it a receipt to gain
an insight into a series of real-world processes and problems,
many of which have been inaccessible by other mathemati-
cal disciplines. The fact that many natural and social phe-
nomena, from the growing of plants [PL90] and population
evolution of entire species [Zha03] over the ups and downs
of the stock market [JCVT93] to weather changes and par-
ticular weather effects [Lor63], can be understood better in
the light of theories that emerged from the study of iterated
systems is, of course, a major motivation to deal with this
topic.

It is now more than 30 years ago that the first images of
Julia sets and the Mandelbrot set have been presented. Since
then, more and more pictures of fractal objects have been
generated, and there is still an increasing interest in using
these structures in the graphical design process.

Fractal image generation is fairly time–consuming, and

an interactive application was not really feasible till the ex-
ploitation of the capabilities of new, fast graphics hardware.

The development of an interactive fractal visualisation
method, is the main objective of this paper. This can give
to the artist new possibilities in the design process, and help
the researcher in the analysis of discrete systems used to pro-
duce these images.

This paper is organized as follows. In the next section we
review fractal visualization tools. In section 3 we present the
mathematical approach of our fractal generation technique,
section 4 deals with the visualization of the generated frac-
tals, and in section 5 we present some of visualizations to-
gether with possible applications of our technique. Finally
the last section is devoted to conclusions and future work.

2. Related Work

The fundamentals of the modern research in discrete dy-
namical systems have been formulated in 1918 by G. M.
Julia, analysing the behaviour of iterated rational functions
in the complex domain [Jul18]. He described the most im-
portant properties of those sets, which are called Julia sets
nowadays. Since then dynamical systems, chaos and frac-
tal theory have been applied in many different scientific ar-
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eas (e.g., [Lor63, Bar88, JX93, JCVT93, Man97]). In fact,
there exist entire volumes dedicated only to the application
of chaos and fractals in scientific research [AJCJ93]. For this
reason, and also because we are mainly interested in the vi-
sualisation of fractals, this section concentrates on existing
tools for fractal image generation.

The number of software tools available for fractal image
generation is tremendous and they may differ greatly in the
mathematical knowledge required to work with them. Some
of them form an attempt to improve the user’s understanding
of the mathematics behind fractal objects, others are mainly
oriented to the artist providing powerful routines for colour
modifications and fractal animation.

Since it is impossible to consider all applications in de-
tail, we will look at a selection of tools, which, to the au-
thors’ point of view, are the most advanced and related to the
program presented in this paper. A comprehensive overview
however can be found on the web page of Paul N. Lee [Lee],
where a wide range of software examples is listed and briefly
evaluated.

2.1. A Selection of Fractal Generation Tools

In the following, we will discuss three fractal generation and
visualisation tools. We will focus on the following charac-
teristics (other characteristics such as output resolution are
not discussed here for lack of space):

• the program’s relevance for education and dynamical sys-
tems study,

• the interactivity of the application,
• the application’s capability to produce fractal animations,
• the colour setting routines and the visual quality of the

final images.

The first tool we consider is Fractint [Gif], which is a free–
ware fractal generator available for MAC, UNIX, Linux,
Windows, etc. There is a large number of different fractal
types which can be visualized by this application, including
several strange attractors of physical systems solved by nu-
merical integration of the underlying differential equations.
Moreover, a series of higher-dimensional dynamical systems
is implemented, and images of the attracted regions of these
systems can be created by projecting them on the 2D plane.

Regarding the relevance for education purposes, above all,
the "Parameter Explorer/Evolver" should be mentioned. It
links the classic Mandelbrot set and its Julia sets in a very
interesting way. The visualisation of the changing Julia set is
quite fast, however, not real-time at all. The update rates do
not allow a continuous real–time animation. Nevertheless, it
succeeds to point out the correlation between Julia sets and
the Mandelbrot set. The interactive analysis mode presented
in this paper makes use of this correlation and generalizes
this concept.

On top of all, Fractint is a scientific tool. Routines for
colour settings are not so well developed, although proba-

bly outstanding images can be produced by the experienced
user. In Fractint, it is unfortunately not possible to change
parameters of the visualised set at run time. This means that
it is necessary to redefine the iterated system and to revisu-
alise this new set afterwards.

With Ultra Fractal [Ult07], the next tool to be considered
here, in contrary to Fractint, even the inexperienced user can
produce wonderful fractal images. The main reason for this
is the artistic purpose it follows. Ultra Fractal is a commer-
cial software and the carefully designed user interface fol-
lows the spirit of Photoshop. It implements layering and fil-
tering techniques, which are important features for graphical
tools.

Additionally, a compiler for new, user–specific formulas
exists. This can make the tool interesting for researchers and
students, even though the real purpose of this software is
not in education, and its relevance for learning about fractals
and attracted sets is reduced. For particular fractals, there
exists the possibility to navigate through the Mandelbrot set,
in order to get the desired Julia shape, similar to the analysis
mode presented here. Regarding interactivity and animation,
Ultra Fractal is clearly superior to Fractint.

However, the only real interactive component is the zoom-
ing in and out routine. Changing parameters and updating
the image at runtime is not possible and the tool is not suited
for real–time fractal animations.

But there exists the possibility of producing key frame an-
imations. This is a powerful feature. In each key frame, the
user can set particular parameters values. The animation is
then computed by linear interpolation between these values.

The last program taken into account here is Fractal Ex-
plorer [Fra06], which has been released only two years ago.
Not least the combination of 2D fractal generation, 3D at-
tractor visualisation, the visualisation of geometric iterated
function systems, and the implementation of maps acting in
the quaternions makes this free software an interesting tool
for image generation and scientific work.

Basically, the program implements all the standard com-
plex fractal types, the parameters of which can be chosen
before starting the visualisation. Additionally, there exists a
formula parser, and it is possible to work with the specific
system the user is interested in. The only interactive feature,
implemented in this application, is the analysis mode. This
is made possible by a very reduced image size for the real–
time update. In the normal fractal visualisation mode, the
user cannot change parameters and, as in the other tools, a
re–specification of the system is necessary.

In the Fractal Explorer, there is a separate dialog for an-
imation production, in which video of zooming animation
can be created. Here, as in the case of Ultra Fractal, it is
also possible to produce animations of Julia sets under the
change of particular parameters. However, real–time anima-
tion is not possible.
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This overview shows that existing fractal visualisation
tools provide sophisticated means for the creation of static
fractal images. With Ultra Fractal and the Fractal Explorer,
moreover, the offline production of fractal animations is pos-
sible. However, none of the existing fractal tools allows frac-
tal parameters to be changed at runtime.

3. Mathematical Representation

In the literature, as well as in most applications for the visu-
alisation of fractals in the plane, a complex system definition
is used. This means that the system is defined by a function
F : C→C. Iterating such systems over and over, and visual-
ising those point regions that are attracted under the repeated
iteration of F , very interesting fractal images can be created.
However, in general, the same fractals can be obtained when
F : R2 → R2. And in fact, the possible number of different
shapes is increased by such a definition.

Primarily for this reason, a definition in R2 is used. This
facilitates an extended control over the fractal parameters
while incorporating some of the most common fractals con-
sidered by previous authors. The system map hence takes the
form

F(x,y) =
(

g(x,y)
h(x,y)

)
, (1)

where F(x,y) : R2 → R2 is a map acting on the x–y–plane,
since g : R2 →R and h : R2 →R. Therefore, the initial values
of the system p0 = (x0,y0)T are points in the real plane.

The orbit of an initial point p0 is defined by

s(p0) = (p0,F(p0),F
2(p0), . . . ,F

∞(p0)), (2)

where

Fn(p0) = F ◦Fn−1(p0) = F ◦ . . .◦F︸ ︷︷ ︸
n times

(p0) (3)

must not be confused with the nth power of F . It is, instead,
the repeated application of F to an initial value p0. Since
F : R2 → R2, the elements of the orbit are also points in the
real plane. For the computation of these point sequences, the
iterative scheme(

xi+1
yi+1

)
= F(xi,yi) =

(
g(xi,yi)
h(xi,yi)

)
(4)

is used. Hence, the (i+1)th element pi+1 = (xi+1,yi+1)T is
computed by applying F to the preceding element pi. This it-
eration process, beginning with p1 = F(p0), yields the orbit
of p0.

Depending on p0, the orbit s(p0) either converges to some
state (e.g., to a fixed point) or it tends to infinity. The region
of those initial values the orbit of which converges is called
attracted region, basin of attraction or filled Julia set. And in
many cases these regions are fractal–shaped.

The characteristics of the dynamical system and therefore

also the appearance of the attracted region exclusively de-
pend on the functions g(x,y) and h(x,y). In this paper, we
concentrate on polynomials up to order 4, namely:

g(x,y) = ∑
4
k=1 ag

kxk +∑
4
k=1 bg

kyk + cg
1xy+

cg
2x2y+ cg

3xy2 + cg
4(xy)2 +dg,

(5)

h(x,y) = ∑
4
k=1 ah

kxk +∑
4
k=1 bh

kyk + ch
1xy+

ch
2x2y+ ch

3xy2 + ch
4(xy)2 +dh.

(6)

The coefficients of the polynomials, ag
k ,b

g
k ,c

g
k ,d

g in Eq. (5)
and ah

k ,b
h
k ,c

h
k ,d

h in Eq. (6), are the free parameters of the
system. All 26 (13 in g and 13 in h) of them can be changed
at runtime to generate differently–shaped basins of attrac-
tion. This is also suited to analyse the influence of particular
parameters on the behaviour of the dynamical system.

There is a major reason to look at this polynomial class
of dynamical systems. It was chosen because a typical class
of fractals, commonly defined in the complex plane, can be
represented by this means, among them the map Fc(z) = z2 +
c with z,c∈C studied by B. B. Mandelbrot. Splitting Fc into
its real and its imaginary component, F< and F=, this map
corresponds to

F< = g(x,y) = x2 − y2 + c<,
F= = h(x,y) = 2xy+ c=

(7)

with the used system definition (Eq. (5) and (6)). In fact, all
polynomial complex maps up to order 3 can be represented
in that way.1

Of course, this representation does not incorporate all sys-
tem types in which researchers and artists might be inter-
ested. On the other hand, however, it allows all possible vari-
ations within this polynomial class, and there does not yet
exist any software implementing this. And not least due to
the internal vector representation used in the fractal compu-
tation, the extension of the program to other systems (includ-
ing, for instance, trigonometric or exponential functions) is
possible without much effort.

Such a vector formulation is obtained when passing to the
GPU the 26 coefficients of the system in vector form as

~a g =


ag

1
ag

2
ag

3
ag

4

 ,~b g =


bg

1
bg

2
bg

3
bg

4

 ,~c g =


cg

1
cg

2
cg

3
cg

4

 ,dg (8)

for g(x,y), and respectively for h(x,y), defining
~a h,~b h,~c h,dh in the same way. For the computation

1 By allowing components (x3y) and (xy3), all complex polynomial
maps of order 4 could be incorporated as well.
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of (i + 1)th element of the iterated sequence, pi+1, we
construct the base vectors

~xi =


xi
x2

i
x3

i
x4

i

 ,~yi =


yi
y2

i
y3

i
y4

i

 , ~xyi =


xiyi
x2

i yi
xiy2

i
(xiyi)2

 (9)

and calculate pi+1 = (xi+1,yi+1)T by

xi+1 = (~a g ·~xi)+(~b g ·~yi)+(~c g · ~xyi)+dg

yi+1 = (~a h ·~xi)+(~b h ·~yi)+(~c h · ~xyi)+dh,
(10)

using hardware supported dot products. This not only facil-
itates fractal computation at real–time rates, but also allows
the extension to very different fractal types by using other
base functions in Eq. (9).

4. Fast Fractal Visualisation

In the AttractOrAnalyst software tool, fractals are drawn on
a square surface. This surface is placed perpendicular to the
viewing direction of the user, and the rendering is done on
the GPU.

The texture coordinates (u,v) ∈ [0,1]2 of the square are
used to define the coordinates of the initial points (p0 =
(x0,y0)), the orbit of which is to be computed for the fractal
generation. In order to be able to arbitrarily change the do-
main for fractal visualisation, the coordinate transformation

x0 = xmin +u(xmax − xmin)
y0 = ymin + v(ymax − ymin)

(11)

is applied, where xmin, xmax and respectively ymin, ymax rep-
resent the borders of the visualisation range. The user is al-
lowed to change these parameters at runtime (explicitly or
by using mouse gestures), which makes possible interactive
zooming and translation.

The basin of attraction of a system F is obtained by com-
puting the orbits of all the initial points, p0, and by testing
whether these orbits tend to infinity or not, i.e., whether they
"escape in time" or not. Therefore, this algorithm is called
the escape–time algorithm.

The orbit of an initial point p0 is given by Eq. (2). In prac-
tice, the orbit computation is stopped after a certain num-
ber of iterations N (usually, 25 ≤ N ≤ 100). Therefore, we
decide if p0 belongs to the attracted region by looking at
FN(p0) = pN . If the squared distance of the point pN from
the origin is smaller than a threshold value β, p0 is said to
belong to the basin of attraction. The definition of a basin of
attraction thus reads

AN
F =

{
p0 :

∥∥∥FN(p0)
∥∥∥ < β

}
, (12)

where the norm
∥∥∥FN(p0)

∥∥∥ = (x2
N + y2

N) is the squared eu-
clidean distance between pN and the origin.

4.1. Computing Filled Julia Sets

The escape–time algorithm is a perfect candidate to be im-
plemented on the GPU, for the same operations have to be
performed for all the initial points p0. The coordinates of p0
obtained by the transformation of the incoming texture coor-
dinates (see Eq. (11)) are used as an input to Eq. (10) to com-
pute FN(p0) = pN . For each point independently, Eq. (12)
is then used to decide if the point belongs to the attracted
region AN

F (i.e., the filled Julia set).

4.2. Automatic Computation of Bifurcation Sets

The idea of integrating an automatic procedure for the com-
putation of bifurcation sets is largely inspired by the work
of R. Devaney [Dev89, Dev90]. He also points out the im-
portance of these sets in the analysis of dynamic systems,
showing that bifurcation sets can be seen as a catalogue of
Julia sets. This is because each point in the bifurcation set
represents a specific system map F with its specific dynami-
cal properties. At that time, the required computations could
still take hours (or even days), but due to the capabilities of
modern graphics hardware it is possible to integrate these
methods into an interactive application nowadays.

For the computation of bifurcation sets, we do not iterate
the system (10) for different initial points p0 = (x0,y0), but
for all different parameter values (points in parameter space)
of two of the 26 free parameters in the system. This means
that the transformed texture coordinates are assigned to two
user–specified parameters (say, for example, dg and dh), and
for all possible values (dg,dh) the same point p∗ = (x∗,y∗)
is used as initial input to (10). We discuss the meaning of the
critical point p∗ later on. The bifurcation set with respect to
dg and dh is then defined by

BN
F =

{
(dg,dh) :

∥∥∥FN
dg,dh(p∗)

∥∥∥ < β

}
. (13)

This means that we compute the orbit of the critical point
for different parameter values dg,dh and look whether these
orbits tend to infinity or not. All those points (dg,dh) which
remain below β belong to BN

F . BN
F can therefore be looked at

as the basin of attraction in parameter space.

Computing the critical point p∗ is actually the most dif-
ficult part in an automatic computation of bifurcation sets.
The critical point of a map F(p) is a point at which the first
derivative of F vanishes and whose second derivative is not
zero, thus F ′(p∗) = 0 and F ′′(p∗) 6= 0. The reason for which
an automatic computation is, in fact, not always possible for
a system map defined in the real and not in the complex plane
(i.e., F : R2 → R2) is that, in general, F ′(p) /∈ R2.

In these cases, usually, the Jacobian J of the system is
taken as differentiation of F , since it is the matrix of the par-
tial derivations of g(x,y) and h(x,y), denoted by gx,gy and
hx,hy. According to the theory, systems of the form (1) are
differentiable (in a way that F ′(p) ∈ R2) only if the partial
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derivations are continuous, and the Cauchy–Riemann equa-
tions are satisfied by them.2 With the used mathematical rep-
resentation, this is not the case, and we experimented if the
Jacobian matrix J of the system can be used for the compu-
tation of p∗.

Consequently, we looked at the equation system J(x,y) =
0, solving gx = hy = gy = hx = 0. Obviously, this system
is over–determined, for having four equations and only two
unknowns, x∗ and y∗. Nevertheless, in particular cases this
reasoning yields sensible results. For instance, the point
x∗ = 0,y∗ = 0 solves J(x,y) = 0, if the linear terms in the
system are zero (ag

1 = bg
1 = ah

1 = bh
1 = 0). Since this already

covers a considerable range of possible parameter constel-
lations, it was implemented in the software, and the point
(0,0) is usually used as the default critical point. In the At-
tractOrAnalyst, moreover, the user is given the possibility to
set x∗ and y∗ to experiment different critical points.

And since we are using a system definition with 26 free
parameters, the user can also choose with respect to which
two parameters the bifurcation set is generated. The incom-
ing transformed texture coordinates are then assigned to the
chosen parameters and BN

F is computed. This makes possi-
ble the automated generation of bifurcation sets for all possi-
ble pairs of parameters. However, we advise the user to very
carefully interpret the resulting bifurcation sets in the case
the critical point is unknown.

4.3. Applying Colours

Once having computed AN
F (respectively BN

F ), the simplest
way of putting this information into colour is to assign (say)
black to all the points for which FN(p0) ≤ β (FN

dg,dh
(p∗) ≤

β) and white if not. However, the dynamic properties of the
point sequences that yield to FN can be used to achieve more
appealing fractal images.

Basically, a more adequate colouring is achieved by al-
lowing the user to specify two colours, Cs and Cf , for the
attracted and the non–attracted region independently.3 For
both regions, different dynamic properties are used to create
colour gradients starting from Cs to Cf .

4.3.1. The Non–Attracted Region

In the case of the non–attracted region (with FN > β) the ve-
locity of divergence is used, in a way that Cs will be assigned
to regions of very fast divergence and Cf to regions that need

2 If this is the case, F is called a complex analytic function, the
derivation of which is also complex, since the partial derivations are
pairwise equal, gx = hy and gy = hx. For detailed considerations,
the reader is referred to general literature on complex analysis, for
instance [Sil72, BSMM97].
3 Here, the RGBA–representation is used, i.e., C = (R,B,G,A)T

with R,B,G,A ∈ [0,1].

a larger number of iterations to exceed the bound threshold
β. Colours C in between both extremes are defined by

C =
(

Cs −
n
N

(Cs −Cf )
)e

, (14)

where n is the iteration number at which the orbit exceeds β

for the first time. In order to give the user more control over
the colour gradient, an exponent e, which can be set by the
user, is used in the interpolation.

Figure 1: The result of gradient smoothing.

The left–hand image in Fig. 1 shows the result of Eq. (14).
Since there are large regions of pixels which are coloured
in the same way (for the velocity of divergence, computed
by n

N , is itself not smooth), a gradient smoothing method
was applied. Smooth gradients, as shown in the right–hand
image, are achieved by taking into account the amount by
which β is exceeded. The colour of a pixel, the orbit of which
passes β at the nth iteration, is then determined by

C =

Cs −

n+ β

‖pn‖
N

(Cs −Cf )

e

, (15)

where pn is the nth element of the orbit of the considered
point p.

4.3.2. The Attracted Region

Basically, the same colouring method is used for the at-
tracted region, but no gradient smoothing is applied. The
user defines Cs and Cf , and pixel colours are interpolated
in between these two values. The difference comes with the
dynamic property that is used in the interpolation. In this
case, the difference between the norms of two consecutive
elements of the orbit is mapped into colour. The colour of
a pixel in the attracted region is defined by Eq. (14), but
in this case, n corresponds to the first iteration for which
(‖pn‖−‖pn−1‖)2 < 0.0005. This dynamic property may
not be that interesting from the scientific point of view, but
fascinating colour patterns can be created in this way.
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5. Selected Applications

Due to its high interactivity, the AttractOrAnalyst provides
useful means in the image design process, for the new image
is available without any time delay (as opposed to existing
fractal visualisation tools). Visual results are shown in Fig.
6–9. The possibility to change the fractal parameters at run-
time, furthermore allows for real–time fractal animations. In
this section, we discuss a selection of applications of the pre-
sented method in the artistic context, even though we believe
that the tool is also suited for scientific research of discrete
dynamical systems.

5.1. Image Design using Bifurcation Sets

As explained in [Dev89] and [Dev90], a bifurcation set can
be seen as a catalogue set for all different Julia sets. For in-
stance, if the parameter point (dg,dh) does not belong to
BN

F , it follows that the attracted region AN
F (the filled Julia

set) computed with this parameter configuration is empty.

Visualising, at the same time, Julia sets and their corre-
sponding bifurcation set, and allowing the user to navigate
through the bifurcation set while updating the Julia images,
facilitates greatly the image design process. In fact, this pro-
cedure is by far more intuitive to the non–expert, than chang-
ing specific formula parameters.

Figure 2: The (dg,bg
1)–bifurcation set and four filled Julia

sets are shown for the Hénon map.

Fig. 2 illustrates this way of image design, called anal-
ysis mode in the application. With the mouse the user can
move the (green) parameter points in the bifurcation set, and
the Julia images corresponding to the points are updated in
real–time. Since the user can choose freely the bifurcation
parameters, the analysis mode provides a fast and intuitive
way to explore all the shapes possible with the used polyno-
mial representation.

5.2. Real–Time Video Production

Changes applied to the system map are updated without a
noticeable delay, and also zooming and translation of the

fractal works interactively. Provided the user changes the pa-
rameters in a smooth way, therefore, a consistent fractal ani-
mation is created on the run. Currently, these animations are
transformed to common video formats by screen capturing
software.

Saving the parameter sequence, however, which is possi-
ble at runtime, allows the created animation to be reproduced
in the application. On basis of this data, the image sequence
could be converted to standard video output formats in an
offline process. Integrating this will make the presented tool
a powerful instrument for artistic video production.

Moreover, the authors believe that, with a bit of training,
the AttractOrAnalyst can be used directly in an interactive
artistic context, such as the life–production of images syn-
chronized to music. This makes the tool interesting to VJ
(video jockey) artists.

Creating a procedure which maps audio data directly into
parameter changes of the system will further support these
types of application, and it is one of the issues to be consid-
ered in the future.

5.3. Multiple Layers

Another interesting application is the combination of real
video or images with fractal animations. Interesting video
blending effects and image modification techniques can be
achieved by allowing a real image (or video) layer in addi-
tion to the fractal layer, and by merging the two layers into
a single output. Fig. 3 shows an example of using multiple
layers, for the creation of leaf textures that decompose with
time.

Figure 3: A leaf gets "eaten up" in a fractal way.

In this example, the image of a leaf is placed behind the
fractal layer with a very small offset between the two layers.
The attracted region of the system is completely transparent,
and the non–attracted region is white just as the background
of the leaf image. Therefore, only that part of the leaf image
that lies within the attracted region is visible. Since the at-
tracted region is fractal–shaped, a realistic impression of the
natural decomposition process is achieved.
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6. Conclusions and Future Work

This paper presented a software tool for the real–time visu-
alisation and the interactive design of artistic fractal images,
and it shows that, put into an interactive context, new appli-
cations of this fascinating objects become possible.

Fractal images are produced by mapping into colour cer-
tain dynamical properties of 2D discrete dynamical sys-
tems, most importantly, by computing the basins of attrac-
tion (filled Julia sets) of those systems. The escape–time al-
gorithm, used for this computation, is perfectly suited to be
implemented on the GPU, since, for each initial point in-
dependently, the same iteration sequence is to be evaluated.
In order to further speed up the algorithm, the underlying
dynamical system, represented by two real–valued functions
g(x,y) and h(x,y), was transformed into a vector form which
allows the use of hardware supported dot products in the
computation.

In the program, which we called the AttractOrAnalyst, the
user has access to a large number of parameters, including 26
free parameters that define the dynamic system, routines for
interactive zooming and translation, as well as for the colour
definition. Having at hand a visualisation method that works
interactively, means that the user is immediately confronted
with the visual result of the changes applied to the program.
This enables real–time fractal animation which is not possi-
ble with existing fractal tools.

Another novelty presented in this paper is a method for
the automatic computation of bifurcation sets for all possi-
ble pairs of system parameters. (The most popular example
of a bifurcation set is the Mandelbrot set.) The program im-
plements an analysis mode in which a particular bifurcation
set and different filled Julia sets are visualised at the same
time (see Fig. 5). To scientists and students, this gives the
possibility of understanding by visual means the dynamics
of the underlying mathematical formulas.

And it helps the artist in the design of beautiful dynamic
images. Since bifurcation sets can be looked at as catalogues
of different Julia sets, they provide very intuitive means for
exploring new fractal shapes. In the future, the program in-
terface will be based more strongly on this metaphor, which,
we believe, will further facilitate the image design process.

Also the production of real–time fractal animations will
profit from a more intuitive interface design. Real–time frac-
tal animation is already possible, since all parts of the Attrac-
tOrAnalyst perform at interactive rates. In the current state of
the application, video capturing tools can be used to convert
the created live animations into video data. The future imple-
mentation of methods to import from and export to standard
video file formats, however, will not only improve the pro-
duction of fractal videos, but it will also make possible to
mix fractal animations and real video in an artistic way. In
this way, the presented tool can become even more useful in
the creation of aesthetic visual content.
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Figure 4: The AttractOrAnalyst showing a filled Julia set.

Figure 5: The AttractOrAnalyst in the analysis mode.

Figure 6: Painting with mathematical formulas.

Figure 7: A typical fractal image.

Figure 8: The program allows interactive zooming into the
fractal.

Figure 9: Another fractal example.
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