
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2003)
G.-P. Bonneau, S. Hahmann, C. D. Hansen (Editors)

Isosurfaces on Optimal Regular Samples

Hamish Carr,1 Thomas Theußl,2 and Torsten Möller3

1 Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
2 Institute of Computer Graphics and Algorithms, Vienna University of Technology, Vienna, Austria.

3 Graphics, Usability, and Visualization (GrUVi) Lab, Simon Fraser University, Vancouver, BC, Canada.

Abstract
Volumetric samples on Cartesian lattices are less efficient than samples on body-centred cubic (BCC) lattices. We
show how to construct isosurfaces on BCC lattices using several different algorithms. Since the mesh that arises
from BCC lattices involves a large number of cells, we show two alternate methods of reducing the number of cells
by clumping tetrahedra into either octahedra or hexahedra. We also propose a theoretical model for estimating
triangle counts for various algorithms, and present experimental results to show that isosurfaces generated using
one of our algorithms can be competitive with isosurfaces generated using Marching Cubes on similar Cartesian
grids.

1. Introduction

One of the fundamental techniques for visualizing scalar vol-
umetric data is the isosurface, the surface defined by a par-
ticular value in the data (the isovalue). Isosurfaces can be
used to detect boundaries in the data set: recent work has
dealt with selecting suitable isovalues16 � 17.

One of the drawbacks of isosurfaces, and of volumetric
data in general, is sheer size, with data sets frequently com-
posed of millions of data points. Theußl et al.19 proposed
using the body-centered cubic (BCC) lattice to reduce file
sizes and processing time for volume rendering by nearly
30%. They did so by reducing the question of sampling to a
well-known mathematical problem: packing spheres in three
dimensions. Neophytou & Mueller 14 have extended this to
four-dimensional data sets, where the reduction in file sizes
reaches 50%. This is a strong reason for using BCC lattices
instead of Cartesian lattices.

After acquisition and storage, the next task is to visual-
ize the data: Theußl et al.19 showed how to volume render
BCC data using splatting, and achieved speedups of roughly
30%, largely due to the reduced number of samples. Neo-
phytou & Mueller14 extended this to four-dimensional BCC
lattices, slicing the data to 3D, then splatting in 3D. Again,
they achieved a 20-30% speedup. We review previous work
in Section 2, and review the justification for BCC lattices in
more detail in Section 3.

This paper does not seek to justify BCC lattices based on
advantages in isosurface rendering. Instead, we assume that
data is already available on a BCC lattice. It is then natural
to ask whether it is possible to achieve similar speedups for
isosurfacing to the speedups that can be achieved for volume
rendering methods. One could simply resample the given
BCC lattice into a more costly Cartesian lattice, but this
would defeat the purpose. Instead, in this paper, we inves-
tigate different algorithms to extract isosurfaces from BCC
grids directly, without a costly resampling step.

Constructing isosurfaces generally depends on subdivid-
ing the volume of interest into polyhedral cells, then deal-
ing with each cell separately. In Section 4, we extend the
sampling lattice to a polyhedral mesh that is suitable for iso-
surface generation. We start off by showing that the Delau-
nay complex of the samples is the natural set of cells for
isosurfacing. In general, the Delaunay complex is built by
connecting each sample to its nearest neighbours. It can also
be found by taking the spatial dual of the Voronoï diagram,
which defines regions according to the nearest sample: an-
other characterization is that the Voronoï diagram is the spa-
tial support for the nearest neighbour interpolant.

For cubical lattices, we show that the Delaunay complex
of the samples is in fact the cubical cells used by Lorenson
& Cline10 for Marching Cubes. We then show that the cor-
responding natural cells for samples on a BCC lattice are

c
�

The Eurographics Association 2003.

39

http://www.eg.org
http://diglib.eg.org


Carr et al / Isosurfaces on Optimal Regular Samples

the tetrahedra defined by the Delaunay complex of the BCC
lattice.

Unfortunately, the Delaunay complex turns out to be less
efficient than Marching Cubes on a resampled Cartesian lat-
tice, due to a substantially increased number of polyhedral
cells in the mesh. We deal with this by substituting octa-
hedra and hexahedra for tetrahedra in the BCC mesh. This
requires that we define the cases for Marching Octahedra in
Section 5, and that we show how to simplify tetrahedra to
octahedra in Section 6. In Section 7, we then repeat this for
the hexahedral decomposition of the tetrahedral mesh.

In Section 8, we present a theoretical model for estimat-
ing the size of an isosurface, based on Itoh & Koyamada’s
estimate8 that O � N2 � 3 � of the cells intersect any given iso-
surface, and that the number of triangles in any given cell
can be approximated by the average of the number of trian-
gles in the various Marching Cubes, Tetrahedra, Octahedra
or Hexahedra cases.

Finally, we test our hypotheses in Section 9, state our con-
clusions in Section 10, and discuss future work in Section 11.

2. Previous Work

Early work on visualizing volumetric data used boundary
detection. Herman & Liu6 represented a volume by subdi-
viding it into small cubes called cuberilles. Each cuberille
was centred on a single sample: samples were assumed to
have been acquired on a cubic lattice. In order to render sig-
nificant boundaries, a threshold was chosen. Cuberilles cen-
tred on samples with values above the threshold were then
rendered: values below the threshold were omitted.

This approach implicitly chooses the nearest neighbour
interpolant to evaluate the function between samples. The
boundary generated coincides with the isosurface under the
nearest neighbour interpolant. This also ties the cuberille ap-
proach to the idea of Voronoï regions. A Voronoï region is
the set of points closest to a given sample: it follows that
each cuberille is the Voronoï region of the sample at its cen-
tre.

The principal drawback of the cuberille approach is that
the surfaces generated were not smooth. The next develop-
ment, Marching Cubes10 � 24, addressed this using the Delau-
nay mesh: the spatial dual of the Voronoï regions.

Instead of using a mesh of regions centred on each sample,
Marching Cubes divides the space into cells whose vertices
are the samples (Figure 1(b)). Two vertices are connected if
they are adjacent in either x, y, or z. These directions corre-
spond to the faces of the cuberilles: it is easy to see that this
generates the Delaunay mesh, in which two vertices are con-
nected if their Voronoï regions share a face. Once the mesh
has been constructed, each cube is processed separately to
obtain part of the isosurface10 � 24. This part of the surface is

(a) Cubic Samples (b) Cubic Mesh

Figure 1: Building a Cubic Mesh

chosen to approximate a trilinear interpolation function, with
varying levels of accuracy10 � 12 � 13 � 15 � 22.

Either the cuberilles (i.e. Voronoï regions) or March-
ing Cubes (i.e. Delaunay meshes) can be extended to non-
Cartesian lattices. Ibañez et al.7 implemented the Voronoï
approach for both BCC and FCC grids. In both cases, how-
ever, the Voronoï regions of the samples are more complex
than the cube. The Voronoï region of a sample on the BCC
lattice is a truncated octahedron requiring 44 triangles to ren-
der: the Voronoï region on the FCC lattice is a rhombic do-
decahedron. As with cuberilles, using the Voronoï cells as-
sumes the nearest neighbour interpolation, and fails to gener-
ate smooth surfaces. Ibañez et al., moreover, do not give any
details of isosurface complexity, or compare the artifacts to
other methods.

The Delaunay mesh of the BCC lattice was used by
Chan and Purisma in a tessellation scheme using Marching
Tetrahedra2, and also by Treece et al.20. Again, no results in
terms of triangle complexity were presented.

We now turn to the layout of samples in the volume of
interest, to justify why we should generate isosurfaces from
BCC lattices.

3. Non-Cubic Sampling

In order to discuss different ways of laying out samples in a
volume, we need a framework to locate individual samples.
Following Dudgeon and Mersereau4, we describe sampling
as a mapping of indices to actual sample positions, using
matrices to describe the mapping. For any given layout, the
matrix V , the sampling matrix, converts indices to sample
positions as follows:�

x
y ��� V 	 � i

j � (1)

Note that the columns of V are basis vectors for the space:

c
�

The Eurographics Association 2003.

40



Carr et al / Isosurfaces on Optimal Regular Samples

x

y

. . . 

.

.

.

T1

T2

(a) Rect, Spatial

y

. . . 

u2

.

.

.

W

u1

ω

xω

(b) Rect, Frequency

.

.

.

T1

T2

x

. . . 

y

(c) Hex, Spatial

y

u1

u2

. . . 

W

.

.

.

x

ω

ω

(d) Hex, Frequency

Figure 2: Lattices in the Spatial and Frequency Domains

each choice of basis vectors will give a different set of sam-
pling locations. For example, the matrix

Vrect2D � � T1 0
0 T2 � (2)

describes the commonly used rectangular sampling, shown
in Figure 2 (a) and (b).

The rectangular sampling, however, is not the optimal
sampling scheme in 2D. The optimal sampling scheme, also
shown in Figure 2 is the hexagonal close packing, or HCP,
lattice. For isotropic band-limited functions, the primary
spectrum of the samples is a sphere (circle, in 2D) in the
frequency domain. For lattice-based sampling schemes, the
primary spectrum is replicated in the frequency on another
lattice, with the property that

UV � I (3)

where U is the sampling matrix in the frequency domain,
and V is the sampling matrix in the spatial domain.

In order to sample data optimally, we wish to pack the
replicas of the primary spectrum as tightly as possible in the
frequency domain. This reduces to the well-known problem
of packing spheres in 2, 3, or higher dimensions. For 2D,
the optimal packing is known to be the hexagonal packing11:

that this is better than the rectangular packing is clear from
Figure 2 (b) and (d).

For the hexagonal packing in the frequency domain, the
corresponding sampling in the spatial domain is also hexag-
onal packing, and can be described by the matrix

Vhex2D � � T1
1
2 T1

0 T2 � for T2 ��
 3
2

T1 (4)

To keep the samples in a rectangular area, we note that
the samples of every second row take the same x-positions,
shifted by one unit. Consequently, we only shift rows with
odd index by half a unit:

Vhex2D � � T1
1
2 j T1 � j mod 2 �

0 T2 � for T2 ��
 3
2

T1, j 
 0

(5)
Using this matrix we get indices from zero to the maximum
in each dimension and still describe a rectangular area.

For 3D, there are an infinite number of optimal regular
packings in the frequency domain, although there are two
principal such packings: the face-centred cubic (FCC) and
the hexagonal close-packing (HCP). In particular, the FCC
packing in the frequency domain corresponds to a sampling
lattice called the body-centred cubic (BCC) lattice in the spa-
tial domain. Theußl et al.19 showed that the BCC lattice can
be described by the sampling matrix

VBCC ���� T 0 1
2 T

0 T 1
2 T

0 0 1
2 T

��
(6)

which is modified to

VBCC ���� T 0 1
2k T � k mod 2 �

0 T 1
2k T � k mod 2 �

0 0 1
2 T

��
for k 
 0 (7)

for an intuitive memory layout scheme (note that the corre-
sponding formulae 20 and 21 in 19 are incorrect). The data
set is stored in a 3D array where every second plane is im-
plicitly translated half the sampling distance in the x and y
directions, and the distance between planes in the z direction
is half that in the other two directions.

The hexagonal close-packing is more difficult to convert
into the spatial domain than the BCC, principally because,
in 3D, it cannot be described simply by a sampling matrix.
Accordingly, we focus our attention principally on the BCC
lattice for generating isosurfaces.

4. Mesh Construction

Once we have defined a sampling lattice, we need to convert
the lattice to a mesh before performing isosurface construc-
tion. As described in Section 2, we use the Delaunay com-
plex of the sampling lattice. For body-centred cubic lattices,
the Delaunay complex is shown in Figure 3(b), and is com-
posed entirely of tetrahedra. This BCC mesh involves two

c
�

The Eurographics Association 2003.

41



Carr et al / Isosurfaces on Optimal Regular Samples

(a) Case 0 (b) Case 1 (c) Case 2 (d) Case 3A (e) Case 3B (f) Case 4 (g) Case 5

Figure 4: Marching Octahedra Cases

(a) BCC Samples (b) BCC Mesh

Figure 3: Generating Meshes from Regular Samples

superimposed cubic meshes, shown in dark grey, with diag-
onal connections between the two meshes, shown in light
grey. For convenience, we refer to the two superimposed cu-
bic meshes as the primary and secondary lattices. Note that
we have to deal with boundary cases at the edge of the pri-
mary lattice, where the secondary lattice would stretch past
the boundary. These cases can be dealt with either by us-
ing pyramidal cells, as shown in Figure 3(b), or by adding
an extra layer of secondary lattice vertices off the boundary,
with an assigned isovalue of 0. We have chosen the latter
approach.

Since all of the cells in this mesh are tetrahedra, we need
only define the cases for tetrahedral cells in order to extract
isosurfaces. For tetrahedral cells, we apply Marching Tetra-
hedra2. However, we will also need octahedral cells for one
of the alternate algorithms: we describe the octahedral cases
in the next section. In Section 6, we will then describe how
to adjust the octahedral cases to match the topology of the
tetrahedral cells. And in Section 7, we will define a set of
hexahedral cases that also match the tetrahedral topology.

5. Marching Octahedra

Following Marching Tetrahedra and Marching Cubes, we
classify each vertex of an octahedron as above or below the
isovalue. After eliminating symmetries and complements,

Figure 5: Ambiguous Faces

we are left with six basic cases, shown in Figure 4. Note that
case 3 can be tessellated in two different ways, shown as 3A
and 3B. Unlike Marching Cubes, this ambiguity does not
result in cracks in the isosurface, such as those that Dürst5

noted. These cracks only occurred when two diagonal cor-
ners of a face of the cube were above the isosurface, and the
other two below. As shown in Figure 5 (a) and (b), there are
two possible cases: in each case, the light areas are “above”
the isosurface, and the dark areas “below”. Cracks occur
when the two cubes sharing a face choose opposite cases.
One solution to this was the asymptotic decider introduced
by Nielson & Hamann15.

For the triangular face of an octagon, however, there is
only one possible case, shown in Figure 5(c), and no ambi-
guity is possible on the face. The ambiguity between 3A &
3B is instead similar to the cases that Natarajan introduced13,
in which topological changes in the surface can occur in
the body of the cube, depending on the interpolant function
used. These body saddles do not, however, cause cracks in
the surface. As a result, we can choose either 3A or 3B with-
out fear of cracks in the surface.

We propose four possible ways of deciding between case
3A and 3B. The simplest solution is to use case 3A all the
time, as it generates fewer triangles than case 3B. The sec-
ond solution is to base our choice on the interpolant function
for the octahedron. As with Nielson & Hamann’s asymptotic
decider15, we could test for saddle points in the function to
distinguish between the two cases. Unfortunately, unlike the
cube and the tetrahedron, no interpolant function is immedi-
ately apparent for the octahedron.

The third solution is to assume the function value at the
centre of the octahedron should be the average of the values

c
�

The Eurographics Association 2003.

42



Carr et al / Isosurfaces on Optimal Regular Samples

(a) Case 3A (b) Case 3B

Figure 6: Modified Marching Octahedra Cases

at the vertices. If the isovalue is less than this average value,
we would choose 3B, else 3A. All other cases are unaffected
by this assumption, at least to the extent that no topological
change to the surfaces shown in Figure 4 is required. Using
this average value is topologically equivalent to subdividing
the octahedron into 8 simplices by adding an interpolated
vertex at the centre.

The fourth solution is to choose the cases so that we repli-
cate the topology generated by isosurfacing with four tetra-
hedra instead of the octahedron. This forms the basis for a
simplification of the BCC lattice, which we discuss in the
next section.

6. Modified Marching Octahedra

In the body-centred cubic lattice, we observe that four tetra-
hedra share each edge in the primary and secondary lat-
tices. If we select either the primary or secondary lattice,
we can group tetrahedra to form octahedra, based on this
shared edge, as shown in Colour Figure 9(a). Note that, un-
like Figure 4, we have shown. For convenience, we refer to
the shared edge as the spine of the octahedron: the spine of
the octahedron is shown in red in Colour Figure 9(a); the
edges of the octahedron are shown in green.

For all cases except case 3, if we extract isosurfaces sep-
arately in the four tetrahedra along the spine, we obtain the
same surface topologically. To see this, consider case 1 in
Figure 4. Suppose that the light grey vertex is “above” the
surface, and along the spine of the octahedron. It is not dif-
ficult to see that the spine will pass through the centre of
the quadrilateral surface, dividing it into four triangles. If
we extract the surface separately in the four tetrahedra along
the spine, each tetrahedron will contribute one of the four
triangles. In comparison, we can render the surface in the
octahedron with two triangles. The analysis for other cases
is similar, except for case 3.

In case 3, if the two vertices “above” the isosurface are
along the spine of the octahedron, Marching Tetrahedra

would render the surfaces shown in Figure 6(b). Similarly,
if the two vertices “above” the isosurface are not along the
spine of the octahedron, Marching Tetrahedra would render
the surfaces shown in Figure 6(a). This leads to a simple
test for whether we use case 3A or 3B: if the two “above”
vertices are along the spine, use case 3B. Otherwise, use
case 3A. Again, we guarantee that the surfaces generated
are topologically equivalent to the surface extracted using
tetrahedra.

In most of our cases, the number of triangles generated by
Marching Octahedra is fewer than that generated by March-
ing Tetrahedra. Thus, by substituting octahedra for tetrahe-
dra, we can reduce the number of triangles rendered for an
isosurface on a body-centred cubic lattice.

Although this modified version of Marching Octahedra
does reduce the number of triangles generated, we will see
in Section 8 and Section 9 that the reduction is not sufficient
to compete with Marching Cubes on a cubic mesh. Although
the octahedron has 6 vertices instead of the 8 vertices of the
cube, each vertex is degree 4 rather than degree 3. Thus, a
surface that separates one vertex from the rest takes a mini-
mum of 2 triangles, compared with 1 for the cube. As a re-
sult, the average number of triangles per cell is significantly
greater than for Marching Cubes.

To further reduce the number of triangles, we note that
Modified Marching Octahedra only uses the primary and
secondary lattice edges as spines. If we instead choose di-
agonal edges as spines, we can reduce the BCC mesh to a
set of hexahedra, as discussed in the next section.

7. Modified Marching Hexahedra

In the BCC mesh, there are four different diagonal direc-
tions, shown as dark grey edges in Figure 3(b). Any three of
these directions form a basis for the lattice. The hexahedron
defined by the basis edges consists of six tetrahedra sharing
the remaining direction as a spine, as shown in Colour Fig-
ure 9(b). As with octahedral reduction of the BCC mesh, we
show the spine in red, and the edges of the hexahedron in
green. Six edges from the primary and secondary lattice also
appear as diagonals of the faces of the hexahedra: these are
shown in blue.

In the previous section, we modified the Marching Oc-
tahedra cases to obtain a guarantee of topological consis-
tency with the tetrahedrally-extracted isosurface. We now
construct a set of cases for the hexahedra that give a simi-
lar guarantee. We show these cases in Colour Figure 9(b):
the cases are drawn in cubes in order to maintain consis-
tency with the Marching Cubes cases, and to save space on
the page. Unsurprisingly, we have the same basic cases (0 -
13) as Marching Cubes.

In Marching Cubes, as noted in Section 5, the cases
are carefully chosen so that face diagonals are consistently

c
�

The Eurographics Association 2003.

43



Carr et al / Isosurfaces on Optimal Regular Samples

Figure 7: Cases for Modified Marching Hexahedra

treated. The rule applied is that two vertices above the iso-
surface, and diagonal to each other, are never connected, but
two vertices below the isosurface, and diagonal, are always
connected.

For our hexahedral simplification, this rule does not cap-
ture the correct topology. In Figure 3(b), we see that each
face of the hexahedron is divided by a blue tetrahedron edge.
If both vertices on this edge are above the isosurface, then
the entire edge must also be above the isosurface. Similarly,
if both are below, the entire edge must also be below the iso-
surface. And the same rule applies to the spine of the hexa-
hedron. Thus, instead of the rule above, we have a new rule:
if two vertices above (below) are connected by an edge, they
may not be separated by an isosurface. If they are not con-
nected by an edge, they must always be separated. Once we
have defined these constraints, it is easy to construct the full
set of cases shown in Figure 7. In contrast to the original
Marching Cubes, where rotations around the x-, y-, or z-
axes define the symmetric case reductions, our symmetric
case reductions are based on rotations around the spine, or
flipping the spine end-over-end. Moreover, the complemen-
tary cases obey the same rule, so we need only show cases 0
- 13, with their subcases.

In case 13, we found it necessary to add a vertex along the
spine of the hexahedron, to avoid separating vertices con-
nected by an edge. In all other cases, we avoided adding a
vertex along the spine, to keep the triangle count down.

We have now defined the necessary cases for extracting
isosurfaces on a BCC lattice, and wish to predict how they
will perform. For this, we define a theoretical model of iso-
surface size in the next section.

8. Expected Triangle Counts

Visualization using isosurfaces has two principal steps: iso-
surface extraction, and (finally) isosurface rendering. The
basic technique, Marching Cubes, costs O � N � to extract each
isosurface, where N is the number of polyhedral cells in the
mesh. A related parameter, n, counts the number of samples.
For regular grids such as those discussed here, n � Θ � N � . For
extracting a single isosurface, the extraction cost is at least
Ω � N � 10. Much effort has since gone into reducing this cost
for extracting multiple isosurfaces, using techniques such as
octrees23, span space9, interval trees3, extrema graphs8, and
contour trees21 � 1.

Broadly speaking, these techniques trade off preprocess-
ing time (of as little as N log � N � ) to reduce the cost of ex-
tracting individual isosurfaces to as little as logN � k, where
k is an output-sensitive parameter. Since k is generally ex-
pected to be O � N2 � 3 � , it is clear that k is the dominant term
in defining an individual isosurface. The cost of rendering
the isosurface is generally borne by specialized hardware,
which takes a surface defined by triangles and renders it to
the screen. Since there is a fixed bound on the number of tri-
angles generated in a single cell, it is clear that the rendering

c
�

The Eurographics Association 2003.

44



Carr et al / Isosurfaces on Optimal Regular Samples

time after extraction is Ω � k � : Θ � k � if Z-buffering is used, but
as much as Θ � k log k � if a sorting-based algorithm is used.
Moreover, modern graphics hardware generally caches the
triangles in video RAM: since a triangle occupies as much
as 100 bytes in OpenGL, the memory bandwidth required
between the CPU and the video card is also Ω � k � .

Thus, we claim that k, the number of triangles construct-
ing the isosurface, is the parameter that needs to be ad-
dressed when comparing isosurfacing schemes. Even if iso-
surface simplification is to be performed, k will still describe
the input to the simplification routine. We do not address the
effect of point-based isosurfaces, beyond noting that the iso-
surface is defined by the cells that it passes through: point-
based isosurfaces will generally wish to render at least one
point per cell: thus, k will be a lower bound for such tech-
niques.

In order to compare schemes on an abstract level, we first
look at an abstract model based on a random distribution of
cases, then consider some experimental results in Section 9.
We have two reasons for considering it at this abstract level:
first, to predict which approaches are merited, and second,
because BCC data is, at present, difficult to obtain for non-
analytical functions.

Here we would like to point out that the comparison
of techniques on Cartesian grids (Marching Cubes) and on
BCC grids (Marching Tetrahedra or Marching Octahedra or
Marching Hexahedra) assumes an equivalent representation
of the data set on each lattice. In practice this is not always
possible and we have to take sampling artifacts into account
for resampling a Cartesian lattice from a given BCC lattice
(or vice versa).

Our model assumes that the number of triangles in an iso-
surface can be predicted by the formula:

Ntriangles � Ncells � Ntriangles � cell (8)

We follow Itoh & Koyamada8 in estimating that Ncells �
O � N2 � 3 � . This leaves us with the problem of estimating
Ntri � cell . As an initial approximation, we assume that all
cases of Marching Cubes, Marching Tetrahedra or March-
ing Octahedra, with two exceptions, are equally likely. In
practice, we expect that topologically complex cases will be
less common than topologically simple cases. Since topo-
logically complex cases require more triangles than simple
cases, this means that our initial estimate is likely to be a
conservative over-estimate. In practice, our results bear this
out, as is shown in Section 9. These results also show that
the average number of triangles per cell is consistent across
different types of data.

The exceptions to our assumption are case 0 and its com-
plement in each scheme. Case 0 occurs when all of the ver-
tices of the cell are above the isosurface: its complement ap-
plies when all of the vertices are below the isosurface. Since

most isosurfaces pass through a relatively small fraction of
cells, case 0 is expected to predominate. However, since no
triangles are generated in either case, this makes it fairly easy
to compensate, by leaving these cases out of the computa-
tion.

For Marching Tetrahedra, with four vertices, there are 16
distinct possibilities, including 1 instance of case 0, 1 in-
stance of its complement, 4 cases each of case 1 and its
complement, and 6 instances of case 2. Since case 1 uses
1 triangle, and case 2 uses 2, the average number of triangles
generated per cell is:

4
14 � 1 � 6

14 � 2 � 4
14 � 1 � 20

14 � 1 � 43 (9)

For the basic Marching Octahedra, where case 3A is al-
ways chosen, the calculation is similar. Where the comple-
ment of a case exists, we simply double the calculation for
the basic case, rather than listing it separately:

12
62 � 2 � 24

62 � 4 � 6
62 � 4 � 12

62 � 6 � 8
62 � 4 � 248

62 � 4 � 00
(10)

For the Modified Marching Octahedra, there are two in-
stances of case 3B, in each of which 4 additional triangles
are rendered. Thus, the expected number of triangles in-
creases to 4.07. Since Marching Cubes has 256 cases, falling
into 13 types, we omit the detailed calculation. The result is
2.85 triangles per cell. For the Modified Marching Hexahe-
dra of Section 7, the corresponding figure is 3.51 triangles
per cell, principally because respecting the diagonals in the
cell adds complexity, and therefore triangles, to the cases.

To compare the expected results for different sampling
methods, we assume that N samples are required for a cu-
bic mesh. Looking at Figure 1(b), we note that each cubic
cell has 8 vertices, so we charge 1 � 8 cell to each vertex (i.e.
sample). Since each vertex is involved in 8 cells, the average
number of cells per sample is 1, disregarding cases at the
boundary of the mesh. Thus, the cubic mesh is composed of
roughly N cells. Of these, we follow Itoh & Koyamada8 in
assuming that roughly N2 � 3 cells intersect the isosurface.

Thus, the expected number of triangles for an isosurface
using Marching Cubes is:

2 � 85N2 � 3 � (11)

In comparison, 0 � 707N samples are required for either a
body-centred cubic lattice or a hexagonal close packing. For
the body-centred cubic lattice, 1 � 4 of each tetrahedron is
charged to each of its vertices (samples). Each sample is in-
volved in 24 tetrahedra, so we expect 6 tetrahedra on average
per sample, for a total of 6 � 0 � 707N � 4 � 24N cells, of which� 4 � 24N � 2 � 3 � 2 � 62N2 � 3 are expected to intersect the surface.

c
�

The Eurographics Association 2003.

45



Carr et al / Isosurfaces on Optimal Regular Samples

Multiplying by the average number of triangles per cell, we
get an expected number of triangles of:

1 � 43 � � 6 � 0 � 707N � 2 � 3 � 3 � 75N2 � 3 (12)

Compared to the figure for Marching Cubes, we predict that
Marching Tetrahedra on the body-centred cubic lattice will
generate approximately 3 � 75 � 2 � 85 � 1 � 32 times as many tri-
angles as Marching Cubes.

For Modified Marching Octahedra, each sample on the
primary lattice is involved in 12 octahedra: each sample on
the secondary lattice is involved in 6 octahedra. We charge
1 � 6 to each sample, giving an average of 1 � 5 octahedra per
sample. Note that we use the estimate of 4.07 triangles per
cell, as we are using case 3B instead of case 3A for two of
the 64 cases. The expected number of triangles is then:

4 � 07 � � 1 � 5 � 0 � 707N � 2 � 3 � 4 � 23N2 � 3 (13)

and we expect that Modified Marching Octahedra will gen-
erate 4 � 23 � 2 � 85 � 1 � 48 times as many triangles as Marching
Cubes. This reduces to 1 � 46 if we always use case 3A.

If we use the Marching Hexahedra to simplify the BCC
mesh, we note that there is exactly one spine edge for each
sample, and therefore one hexahedron per sample. But we
have 0 � 707 times as many hexahedra as we would cubes.
Thus, the number of expected triangles is:

3 � 51 � � 0 � 707N � 2 � 3 � 2 � 79N2 � 3 (14)

and we expect 0 � 98 times as many as for Marching Cubes.

Although these results should be taken cautiously, what
they indicate is that isosurfaces generated from optimal reg-
ular samples should be composed of roughly similar num-
bers of triangles as those generated from the same data set
using a cubic mesh and Marching Cubes. In the next section,
we present some experimental results to test this hypothesis.

9. Experimental Triangle Counts

In this section we present the results of experimentally mea-
suring k, the number of triangles in an isosurface, for dif-
ferent data sets sampled on both BCC as well as Cartesian
grids. We must first note, however, that data is not presently
acquired using BCC lattices. Thus, except for synthetic func-
tions, we have been forced to resample from Cartesian-grid
data to BCC data. We do not claim that this is ideal. Un-
til someone constructs a BCC-based scanner, however, we
have little choice. Notwithstanding this, we claim that it is
worthwhile testing the abstract model as rigorously as pos-
sible.

In order to test our hypothesis, we took a selection of volu-
metric data sets from volvis.org, each of which was sampled
on both BCC and Cartesian lattices: these sets are summa-
rized in Table 1. Of these, one data set was synthetic (M-
Lobb), and was sampled independently on both lattices. The

remaining data sets were only available on the cubic lattice,
so we resampled to the body-centred cubic lattice using a
width three Kaiser windowed sinc with alpha=8.9318. We
note that it is entirely possible that this affected our results.

Data Cartesian Dimension BCC Dimension

M-Lobb 40x40x40 28x28x56
Fuel 64x64x64 45x45x90

Hipiph 64x64x64 45x45x90
Neghip 64x64x64 45x45x90
Lobster 120x120x34 84x84x48

Skull 256x256x256 181x181x362
Tooth 256x256x161 181x181x227

Vessels 256x256x256 181x181x362

Table 1: Datasets

All data was stored as 8 bit data. We note that the isosur-
face at a height of 0.5 must pass through the same cells as
any other isosurface in the interval � 0 � 1 � , using exactly the
same cases. The interval is half-open because the Marching
tables assume that any isovalue is either above or below the
value at a vertex: isosurfaces at the vertex’ value are gener-
ated as if they were a small amount higher.

Thus, in order to test our hypothesis, we need only gen-
erate 255 distinct isosurfaces: for convenience, we took the
isosurfaces at 0 � 5 � 1 � 5 � 2 � 5 ��������� 254 � 5 for each data set, and
each possible isosurfacing scheme: sample isosurfaces of the
lobster data set are shown in Colour Figure 8. Note that, in
order to highlight differences, we used normals based on the
triangles generated, rather than the gradient of the field at the
surface. We expect that the visual artifacts using gradient-
based normals would be significantly reduced.

Sadly, the isosurfaces extracted on the BCC lattice in
Colour Figure 8 (b) - (d) are significantly less smooth than
the isosurface extracted using Marching Cubes in Colour
Figure 8(a). We attribute this to two factors. First, the lobster,
and most of the other data sets were resampled from cubic
data. We expect, therefore, that the Marching Cubes will be
a more faithful replication of the function. However, we ob-
served similar artifacts even for the one analytical data set.
We think that the reason for this is rather subtle. We initially
assumed that our function was band-limited and anisotropic.
Under these assumptions, the region of influence of each
sample ought to be inherently spherical in the spatial do-
main. This is perhaps why the results of Theußl et al. for
splatting were so good: the splatting kernels were spheri-
cal distributions. Here, the tetrahedra we use are not good
approximations of a sphere: they are longer on two edges
than the other 4. Even if they were regular, these tetrahedra
are still worse approximations of a sphere than a cube is. It
is difficult to prove this assertion, but we suspect that some
such effect plays a part.

c
�

The Eurographics Association 2003.

46



Carr et al / Isosurfaces on Optimal Regular Samples

For each isosurface, we computed the number of cells in-
tersected by the isosurface, the number of triangles gener-
ated for the isosurface, and the average number of triangles
per cell. We summarize this information in Table 2 and Ta-
ble 3. Where no isosurface existed (e.g. no isosurface exists
at a value of 200 � 5 if the highest valued sample in the data set
is 100), we excluded that isosurface from the computation.

From Table 2, we observed that the average number of
triangles per cell was remarkably consistent in each data set,
and even between data sets. We were expecting a value of
2.85 for Marching Cubes. While the ratio was lower than ex-
pected (around 2.00), they were quite consistent. For March-
ing Tetrahedra (MT), we expected 1.43, and got approxi-
mately 1.25. For Modified Marching Octahedra (mmo), we
expected 3.75, and got roughly 3.1. For Modified Marching
Hexahedra (MMH), we expected 3.51, and got apprximately
2.20. Only the hipiph data set was unusual. On inspection,
we discovered that this data set is quite unevenly distributed:
high isovalues have small cell counts, which seem to consist
entirely of simple cases, with a ratio close to 1.0 for nearly
1 � 3 of the possible isovalues. Since we averaged over all
isovalues, these cases significantly distorted the average. In
all cases, the average number of triangles per cell was lower
than expected, but remarkably uniform (standard deviations
were around 0.05 for each data set). We conclude that it is
reasonable to predict triangle counts based on the type of
cell, although the distribution is less uniform than we had
predicted.

Lattice Cubic BCC BCC BCC

Method Marching Marching Modified Marching
Cubes Tets Octs Hexes
(MC) (MT) (MMO) (MMH)

M-Lobb 2.07 1.32 3.48 2.68
Fuel 1.98 1.25 3.08 1.58

Hipiph 1.75 1.15 2.60 1.58
Neghip 1.99 1.29 3.20 2.25
Lobster 2.02 1.27 3.10 2.17

Skull 1.99 1.28 3.20 2.24
Tooth 1.98 1.26 3.13 2.07

Vessels 1.92 1.27 3.09 2.14

Table 2: Triangles per Cell

Turning our attention to the actual triangle counts in Ta-
ble 3, we recall that we predicted ratios of 1 � 32 (BCC/MT),
1 � 48 (MMO), and 0 � 98 (MMH), as compared to Marching
Cubes (MC). We show the actual ratios in Table 4. As pre-
dicted, Marching Hexahedra is the best BCC-based scheme:
here, however, the prediction fails, as Marching Cubes was
marginally superior to Marching Hexahedra, with March-
ing Octahedra and Marching Tetrahedra doing significantly
worse.

We also noted that these competitive ratios varied more

Lattice Cubic BCC BCC BCC

Method Cubes Tets Octs Hexes
(MC) (MT) (MMO) (MMH)

M-Lobb 11,398 18,821 15,208 8,574
Fuel 3,341 11,267 8,847 4,806

Hipiph 3,446 11,532 8,984 4,838
Neghip 20,755 85,428 66,037 36,531
Lobster 69,835 174,716 134,851 72,513

Skull 1,246,032 3,410,422 2,656,530 1,491,528
Tooth 335,500 904,491 708,326 395,789

Vessels 186,264 586,556 454,815 255,157

Table 3: Triangle Counts

Lattice Cubic BCC BCC BCC

Method Cubes Tets Octs Hexes
(MC) (MT) (MMO) (MMH)

Predicted 1 1.32 1.46 0.98

M-Lobb 1 1.66 � 0.15 1.34 � 0.10 0.75 � 0.07
Fuel 1 3.15 � 0.57 2.48 � 0.46 1.34 � 0.27

Hipiph 1 3.42 � 1.43 2.68 � 1.13 1.32 � 0.47
Neghip 1 4.00 � 0.49 3.10 � 0.38 1.74 � 0.22
Lobster 1 2.33 � 0.41 1.82 � 0.32 0.98 � 0.18

Skull 1 3.23 � 0.53 2.53 � 0.42 1.43 � 0.26
Tooth 1 3.59 � 0.98 2.83 � 0.79 1.56 � 0.45

Vessels 1 2.96 � 0.63 2.30 � 0.49 1.28 � 0.29

Table 4: Competitive Ratios: Means / Standard Deviations

between data sets than did the average number of triangles
per cell. The ratio also varied significantly between different
isosurfaces in the same data set.

From these observations, we conclude that, although it
is reasonable to predict the average number of triangles
per cell, the model used for predicting average number of
cells intersected is less reasonable. We can see two possi-
ble reasons for this. The estimate of O � N2 � 3 � due to Itoh
& Koyamada8 could be incorrect, or the constants of propor-
tionality could be dependent on mesh type and data type. We
also conclude, however, that Marching Hexahedra are suffi-
ciently competitive with Marching Cubes to warrant further
investigation.

10. Conclusions

We have introduced and analyzed new algorithms that enable
us to generate isosurfaces directly from a given BCC lattice
without resampling the BCC lattice into a Cartesian lattice.

Secondly, we have introduced a theoretical model for es-
timating isosurface siz: we used this model to guide our de-
cisions when establishing the Modified Marching Octahedra

c
�

The Eurographics Association 2003.

47



Carr et al / Isosurfaces on Optimal Regular Samples

and Modified Marching Hexahedra algorithms. From our ex-
perimental results in Table 2, we see that, across multiple
isosurfaces and different data types, we can estimate the av-
erage number of triangles per cell. However, our results from
Table 4 imply that, even if the O � N2 � 3 � estimate of Itoh &
Koyamada8 is correct, different constants apply for different
mesh and data types.

Finally, we note that the isosurfaces generated from BCC
grids seem to be of poor quality compared with those gen-
erated from Cartesian grids. However, we have shown that
isosurfaces on BCC grids can be computed in such a way
that they are within a reasonable factor of the cost of March-
ing Cubes isosurface construction, and, in one case, we
achieved a reduction in isosurface size similar to the results
of Theußl et al. for volume rendering and file size.

11. Future Work

There are a number of issues left unresolved. For complete-
ness, triangle counts should be computed for the hexagonal
close-packing. We have seen that the triangle counts do not
quite match the estimates in Section 8. These estimates could
be refined by computing average numbers of triangles per
cell for differing types of data, and by conducting experi-
ments to test Itoh & Koyamada’s hypothesis that O � N2 � 3 �
cells intersect any given isosurface.

References

1. H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees
in All Dimensions. Computational Geometry: Theory and Ap-
plications, 24(2):75–94, 2003.

2. S. L. Chan and E. O. Purisima. A new tetrahedral tessela-
tion scheme for isosurface generation. Computers & Graph-
ics, 22(1):83–90, Feb. 1998. ISSN 0097-8493.

3. P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno.
Speeding Up Isosurface Extraction Using Interval Trees.
IEEE Transactions on Visualization and Computer Graphics,
3(2):158–169, 1997.

4. D. E. Dudgeon and R. M. Mersereau. Multidimensional Dig-
ital Signal Processing. Prentice-Hall, Inc., Englewood-Cliffs,
NJ, 1st edition, 1984.

5. M. Dürst. Letters: Additional Reference to "Marching Cubes".
Computer Graphics, 22(4):65–74, 1988.

6. G. T. Herman and H. K. Lun. Three-Dimensional Display
of Human Organs from Computed Tomograms. Computer
Graphics and Image Processing, 9:1–21, 1979.

7. L. Ibáñez, C.Hamitouche, and C.Roux. Determination of dis-
crete sampling grids with optimal topological and spectral
properties. In Procceedings of the 6th International Workshop
in Discrete Geometry for Computer Imagery DGCI’96, pages
181–192, 1996.

8. T. Itoh and K. Koyamada. Automatic Isosurface Propaga-
tion Using an Extrema Graph and Sorted Boundary Cell Lists.

IEEE Transactions on Visualization and Computer Graphics,
1(4):319–327, 1995.

9. Y. Livnat, H.-W. Shen, and C. R. Johnson. A Near Opti-
mal Isosurface Extraction Algorithm Using the Span Space.
IEEE Transactions on Visualization and Computer Graphics,
2(1):73–84, 1996.

10. W. E. Lorenson and H. E. Cline. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm. Computer
Graphics, 21(4):163–169, 1987.

11. R. Mersereau. The processing of hexagonally sampled two-
dimensional signals. Proceedings of the IEEE, 67(3):930–946,
June 1979.

12. C. Montani, R. Scateni, and R. Scopigno. A modified look-up
table for implicit disambiguation of Marching Cubes. Visual
Computer, 10:353–355, 1994.

13. B. Natarajan. On generating topologically consistent isosur-
faces from uniform samples. Visual Computer, 11:52–62,
1994.

14. N. Neophytou and K. Mueller. Space-Time Points: 4D Splat-
ting on Efficient Grids. In Proceedings of Volume Visualization
2002, 2002.

15. G. M. Nielson and B. Hamann. The Asymptotic Decider: Re-
solving the Ambiguity in Marching Cubes. In Proceedings of
Visualization 1991, pages 83–91. IEEE, 1991.

16. V. Pekar, R. Wiemker, and D. Hempel. Fast detection of mean-
ingful isosurfaces for volume data visualization. In T. Ertl,
K. Joy, and A. Varshney, editors, Proceedings of IEEE Visual-
ization 2001, pages 223 – 230, 2001.

17. S. Tenginakai, J. Lee, and R. Machiraju. Salient iso-surface
detection with model-independent statistical signatures. In
T. Ertl, K. Joy, and A. Varshney, editors, Proceedings of IEEE
Visualization 2001, pages 231 – 238, 2001.

18. T. Theußl, H. Hauser, and M. E. Gröller. Mastering windows:
Improving reconstruction. In Proceedings of IEEE Symposium
on Volume Visualization, pages 101–108, 2000.

19. T. Theußl and T. Möller and M. E. Gröller. Optimal regular
volume sampling. In T. Ertl, K. Joy, and A. Varshney, editors,
Proceedings of IEEE Visualization 2001, pages 91–98, 2001.

20. G. M. Treece, R. W. Prager, and A. H. Gee. Regularised
marching tetrahedra: improved iso-surface extraction. Com-
puters and Graphics, 23(4):583–598, Aug. 1999.

21. M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and
D. R. Schikore. Contour Trees and Small Seed Sets for Isosur-
face Traversal. In Proceedings of the 13th ACM Symposium
on Computational Geometry, pages 212–220, 1997.

22. J. Wilhelms and A. van Gelder. Topological Considerations
in Isosurface Generation. Computer Graphics, 24(5):79–86,
1990.

23. J. Wilhelms and A. van Gelder. Octrees for Faster Isosurface
Generation. ACM Transactions on Graphics, 11(3):201–227,
1992.

24. G. Wyvill, C. McPheeters, and B. Wyvill. Data Structure for
Soft Objects. Visual Computer, 2:227–234, 1986.

c
�

The Eurographics Association 2003.

48



Carr et al / Isosurfaces on Optimal Regular Samples

Figure 8: Four Lobsters

(a) Octahedral BCC (b) Hexahedral BCC

Figure 9: Grouping Tetrahedra

c
�

The Eurographics Association 2003.

284




