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Abstract

This paper describes an efficient method for the hierarchical approximation of implicit surfaces from polygonal

meshes. A novel error function between a polygonal mesh and an implicit surface is proposed. This error function

is defined so as to be scale-independent from its global behavior as well as to be area-sensitive on local regions.

An implicit surface tightly-fitted to polygons can be computed by the least-squares fitting method. Furthermore,

this function can be represented as the quadric form, which realizes a compact representation of such an error

metric. Our novel algorithm rapidly constructs a SLIM (Sparse Low-degree IMplicit) surface which is a recently

developed non-conforming hierarchical implicit surface representation. Users can quickly obtain a set of implicit

surfaces with arbitrary resolution according to errors from a SLIM surface.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, Surface, Solid and

Object Representations, G.1.2 [Numerical Analysis]: Approximation of Surfaces and Contours

1. Introduction

Polygonal mesh is nowadays recognized as a de facto

standard geometric representation in the area of Computer

Graphics (CG). A large variety of applications to generate

or edit polygonal meshes have been developed. However,

these polygonal meshes often contain defects such as gaps,

T-junctions, self-intersections, and non-manifold structure.

These problems must be handled with care for many pur-

poses. Geometrically unfavorable conditions such as bad as-

pect ratios also render them unsuitable for other purposes

such as numerical simulations.

On the other hand, an implicit surface is a well-known

surface representation. Geometric details of an object can be

represented using less surface primitives than meshes. Since

the combination of multiple implicit surfaces can define a

solid model strictly, issues for meshes described above do

not occur. Implicit surfaces are convenient even for geometry

processing because we do not need to take into consideration

the connectivity of neighbor surfaces.

This paper provides a tool for rapidly converting polygo-

nal meshes into implicit surfaces. We specifically deal with

SLIM (Sparse Low-degree IMplicit) surfaces [OBA05]. Our

algorithm can approximate a SLIM surface which has the

hierarchical structure of implicit surfaces. Each node of a

SLIM surface contains an error between parts of a polygo-

nal mesh and an implicit surface which is calculated in our

algorithm. It is then possible to quickly extract different res-

olutions of SLIM nodes according to the error specified by

the user.

The technical contributions of our approach include:

Surface Fitting using Polygon-Implicit Error Metrics.

We propose a novel error function of an implicit surface

for polygons. It combines the algebraic distance and the

normal error distance and is a natural extension of error

functions for points. The function is also represented as

a quadric form. This provides several advantages, for

example, a compact storage and efficient approximation.

Coefficients of an implicit function can be calculated

by the least-squares fitting method. This requires only

solving a small linear system.

Hierarchical Implicit Surface Approximation. Our

scheme for the approximation to a SLIM surface from

a polygonal mesh is originated from the mesh simplifi-

cation method. The algorithm itself is quite simple, fast,

and robust for creating a hierarchical tree structure of
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E < 1.0× 10−1 E < 1.0× 10−2 E < 1.0× 10−3 E < 1.0× 10−4 E < 1.0× 10−5

Figure 1: Error-driven approximation of SLIM surfaces for “bimba” mesh (1.2M polygons). Different specifications of error

thresholds enable us to quickly generate various resolutions of SLIM surfaces. The number of nodes is: 721, 2,258, 7,076,

22,317, and 70,273 (from left to right). Color balls shown in the bottom denote a set of supports for the corresponded SLIM

surfaces. Colors are assigned according to the error E which decreases from red to green.

implicit surfaces. Since our algorithm computes a set of

implicit surfaces in the order of increasing errors, it is

easy to build such a hierarchy based on errors. Geometric

features such as creases or corners can be preserved in

the process of our algorithm.

Partition of Unity Evaluation with Sharp Features. To

polygonize and visualize implicit surfaces with sharp

features, we propose a new Partition of Unity (PU)

evaluation method which can exactly estimate crease

edges. This new PU method is valid for the generic

representation of SLIM surfaces and is well-fitted to our

approximation algorithm.

Fig. 1 clearly demonstrates the characteristics of our ap-

proach. We assign an error value calculated in the approxi-

mation process to each node of a SLIM surface. Using the hi-

erarchical structure of a SLIM surface, we can then quickly

extract a set of implicit surfaces within an error threshold

specified by the user. Such the run-time extraction is useful

for LOD rendering of SLIM surfaces. Also, the idea of such

an error-driven extraction is a natural approach to control fit-

ting errors for the use of the applications such as CAD.

1.1. Related Work

The most relevant research to ours can be seen in [SOS04].

They have proposed a construction method of implicit sur-

faces which approximates or interpolates polygonal meshes.

Their method uses Moving Least Squares (MLS) surfaces

imposed with additional constraints such as points, nor-

mals, or integrals over polygons. The difference between

their approach and ours is the algorithm of surface construc-

tion. Their algorithm first collects neighbor primitives (e.g.

points, polygons) within an error threshold for each primi-

tive. For such neighbor primitives, they fit a plane to gener-

ate a MLS surface. In contrast, our algorithm is performed

hierarchically. A set of implicit surfaces with different res-

olutions can be generated by executing the algorithm only

once.

Many approaches on implicit surface reconstruction from

a set of input points have been proposed. In [SPOK95,

CBC∗01, TO02, YT02] the function is represented by

globally-supported radial splines. This class of functions has

a favorable property related to a solution’s global behavior.

One disadvantage of these approaches is that it takes con-

siderable time to obtain the functions. [YT02] has proposed

a method to roughly match polygons by using these splines.

However, the resulting implicit surfaces still deviate substan-

tially from the input.

Other types of tools for reconstruction use locally-

supported implicit functions [Mur91, MYC∗01, OBA∗03,

OBA05]. These approaches have the advantage that the po-

sition on a surface or its gradient can be rapidly evaluated

due to their local property. Hence the local fitting scheme

can be used to represent even a dense object by a large set of

implicit surfaces. Our approach presented in this paper also

uses this type of function.
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More recently, the implicit surface fitting scheme is uti-

lized to obtain surface objects in some applications. [IH03]

fits implicit surfaces to generate smooth 3D objects from

sketch information. Basic primitives such as spheres or

cylinders are locally fitted to a mesh to extract characteristic

features in [WK05].

1.2. SLIM Surfaces

Our approach mainly uses SLIM (Sparse Low-degree IM-

plicit) surfaces [OBA05]. It is composed of hierarchical tree-

structured surfel nodes, each of which has low-degree im-

plicit polynomial functions. Each surfel node is a local ap-

proximation of an object and an implicit function of a node is

a rough approximation of those of its all children. A position

or its gradient on a SLIM surface is represented as a blend

of several wrapped neighbor surfels. MPU (Multi-level Par-

tition of Unity) implicit surface [OBA∗03] is quite a similar

representation to the SLIM surface. The only difference is

that a hierarchical structure of a MPU surface is created by

the spatial partitioning of its object.

Although the original SLIM surface [OBA05] supports

up to cubic degree polynomials, we use here only quadratic

implicit functions for convenience. However, our approach

can be applied to cubic or higher-degree polynomials. In

these cases, formulae discussed in later sections are rela-

tively complicated.

2. Implicit Quadratic Surface Fitting for Polygonal

Meshes

In this section, we propose a novel method to fit an implicit

surface to a polygonal mesh. We indicate here a special func-

tion to measure the distance between a polygon and an im-

plicit surface.

The implicit curve or surface fitting problem has a his-

tory of over twenty years in the area of computer vision

(See [Pra87] and [Tau91] for summary). One well-known

function is the so called algebraic distance. It uses an ab-

solute value of a function as an approximate distance. Al-

though using an exact distance between a point and surface

achieves better fit, it requires high computational costs be-

cause non-linear equations need to be solved [KP90].

The other function solved by linear equations is the 3L al-

gorithm proposed in [BLCC00]. Additional points are sam-

pled in the shrunken and expanded regions and their func-

tional values are computed. A combined error function based

on these function values is minimized by solving a lin-

ear system. [TTC00] proposed the gradient one algorithm

which adds the gradient constraint of implicit curves or sur-

faces. [HBM04] extended an approach of [TTC00] to fit an

implicit curve robustly.

The difference between these error functions and ours is

that our function evaluates over a polygon itself, whereas the

others evaluate at a point set. We will show the comparison

of results later in this section.

In the computer graphics community, similar algebraic

functions to ours are proposed in [GWH01, CSAD04]. In

their functions the distance between two polygons is mea-

sured. On the contrary, our functions described in the follow-

ing subsections are formulated so as to efficiently compute

the distance between an implicit surface to a polygon.

2.1. Polygon-Implicit Error Metrics

A quadratic implicit function f (x) and its gradient ∇ f (x)
(x = (x,y, z)) are represented by:

f (x) = f (x, y, z)

= a1 x
2 +a2 y

2 +a3 z
2 +a4 xy+a5 yz

+a6 zx+a7 x+a8 y+a9 z +a10 = 0, (1)

∇ f (x) = (2a1 x+a4 y+a6 z +a7,

2a2 y+a4 x+a5 z +a8,

2a3 z +a5 y+a6 x+a9) . (2)

On the other hand, a point x on a triangle T ≡ {v0,v1,v2} is

represented using barycentric coordinates (s, t):

x = sv0 + tv1 +(1− s− t)v2, (3)

0 ≤ s ≤ 1− t, 0 ≤ t ≤ 1.

As noted above, we know that the exact distance between

x and f (x) can be calculated. However, it is non-linear and

requires high computational cost [KP90]. Instead, we use the

algebraic distance | f (x)| adopted in previous approaches on

implicit surface fitting as an approximate distance. We de-

fine a distance error function εdis as the squared algebraic

distance integrated over a triangle:

ε
dis(T ) ≡ A

Z 1

0

(

Z 1−t

0
| f (x)|2ds

)

dt, (4)

where A denotes the area of a triangle.

In addition, we define a gradient error function εnrm as an

error between a normal vector n of a triangle and a gradient

∇ f (x) integrated over a triangle:

ε
nrm(T ) ≡ A

Z 1

0

(

Z 1−t

0
|n−∇ f (x)|2ds

)

dt, (5)

n =
(v1 − v0)× (v2 − v0)

|(v1 − v0)× (v2 − v0)|
.

Note that |n −∇ f (x)| is a more strict representation than

a function |n∇ f (x)− 1| used in the gradient one algorithm

[TTC00].

Fig. 2 illustrates the geometric meanings of our error func-

tions. εdis (Fig. 2 left) is the integral sum of squared function

values. It is then regarded as a volume surrounded at a trian-

gle (hatched region in Fig. 2). Since such a volume is often
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not changed when we slide a surface to the horizontal direc-

tion of a triangle, εdis has a high degree of freedom in this

direction. In contrast, εnrm (Fig. 2 right) prescribes in order

to approach the average direction of gradients to the direc-

tion of a normal vector. In this case, εnrm has a high degree of

freedom in the vertical direction of a triangle. Consequently,

we expect that the above two functions restrain the move-

ments of each other.

f (x)

triangle

quadratic surface

normal vector

f (x)

εdis εnrm

Figure 2: Geometric meanings of error metrics.

εdis and εnrm have a good property for the optimization

of implicit functions. Let a coefficient vector of an implicit

function f (x) in (1) be p = (a1, a2, . . . ,a10). Both εdis and

εnrm are then represented by the quadric forms as follows:

ε
dis(T ) = pA

dis
p

T , (6)

ε
nrm(T ) = pA

nrm
p

T − 2b
nrm

p
T + c

nrm. (7)

The derivation of formulae from (4), (5) to (6), (7) is de-

scribed in Appendix. Both Adis and Anrm are a 10×10 sym-

metric matrix respectively. Each matrix is composed of 55

floating point elements. bnrm is a 10-dimensional vector (10

floating points) and cnrm is a scalar (a floating point). We can

then store 55 and 66 floating points for the above two func-

tions. A total set of elements {Adis,Anrm,bnrm,cnrm} repre-

sents an error metric between a triangular polygon and im-

plicit surface. We call it the quadratic Polygon-Implicit Error

Metric (PIEM) here.

PIEM is an analogy of QEM (Quadric Error Metric) pro-

posed in [GH97]. It inherits good properties from QEM: An

addition of error functions for two triangles T1,T2 can be

written by:

ε
dis(T1)+ ε

dis(T2) = p
(

A
dis
1 +A

dis
2

)

p
T ,

ε
nrm(T1)+ ε

nrm(T2) = p
(

A
nrm
1 +A

nrm
2

)

p
T

− 2
(

b
nrm
1 +b

nrm
2

)

p
T

+
(

c
nrm
1 + c

nrm
2

)

.

This is because the function is independently defined for a

triangle.

2.2. Implicit Surface Fitting Using PIEMs

We discuss here that a quadratic implicit function f (x) is

fitted to a mesh composed of a set of triangles M = {Ti ;

i = 1 . . .n}. We define an error function E(M) as follows:

E(M) ≡ E
dis(M)+ λE

nrm(M)

=
n

∑
i=1

(

ε
dis(Ti)

)

+λ
n

∑
i=1

(

ε
nrm(Ti)

)

, (8)

where λ denotes a parameter for adjusting the dimen-

sional scale between Edis(M) and Enrm(M). εdis is a

two-dimensional quantity defined as the squared distance,

whereas εnrm is a dimensionless quantity. If we do not set λ

appropriately, fitting results would be changed according to

the scale of an object. For this scale parameter λ, we set here

the sum of triangle areas λ = ∑
n
i Ai. This setting works very

well in all our experiments.

It should be noted that from (8) an error function for two

neighbor meshes M1, M2 is given by:

E(M1 +M2) = E
dis(M1)+ E

dis(M2)

+ (λ1 +λ2)
(

E
nrm(M1)

+ E
nrm(M2)

)

, (9)

which does not satisfy the linearity described above. For this,

we put λ in (8) to a PIEM as the 122nd element. An extended

PIEM is then {Adis, Anrm, bnrm, cnrm, λ}. Each element of a

PIEM including λ is independently added in (9).

From (6) and (7), (8) is finally represented as the follow-

ing quadric form:

E(M) = pAp
T − 2bp

T + c. (10)

A coefficient vector p minimizing E can be computed by

solving the following linear system:

Ap = b. (11)

We use SVD [PFTV92] to compute the inverse matrix of A

because A becomes singular in rare occasions.

Evaluation of our error metrics. We investigate here the

property of our error metric by comparing with the error

function for a point set. We evaluate the fitting of curves

in 2D to visually understand the results. A 2D error func-

tion is essentially the same as that in 3D. In the case of 2D,

the length of a line segment of a poly-line is used as weight

instead of the area of a polygon. We use the gradient one al-

gorithm [TTC00] as a reference for the fitting method for a

point set. However, we alternate a gradient error function to

the 2D version of our function instead of the original func-

tion in [TTC00]. We measure the arithmetic average d̃ of the

following approximate distances from a sampled point set

proposed in [Tau94]:

d̃ =
1

N

N

∑
i

(

| f (xi)|

|∇ f (xi)|

)

. (12)

Fig. 3 shows the fitting results to an implicit curve from

a poly-line consisting of six vertices or from its sampled

point set. It can be seen from the results that our function in
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(a) d̃ = 0.691 (b) d̃ = 0.550 (c) d̃ = 0.529 (d) d̃ = 0.526

Figure 3: 2D implicit curve fitting results. A point or a line colored as red shows the geometry to be fitted. A black-colored bold

curve denotes a contour curve of an implicit function f (x) = 0. (a) Fitted to a sparse point set with constant sampling for each

line segment (26 points). (b) Fitted to a sparse point set with spatially uniform sampling (27 points). (c) Fitted to a dense point

set with spatially uniform sampling (138 points). (d) Fitted to a poly-line (6 vertices) by our approach. d̃ represents the average

of approximate distances to an implicit curve from points.

Fig. 3(d) has a minimum average distance among four exam-

ples and thus achieves the best-fit. In Fig. 3(a)-(c) three types

of sampling methods are used. The same number of points

(5 points) is sampled for each line segment of a poly-line in

(a). In this case, a curve is attracted to a high-density region

due to spatially irregular sampling. In (b) and (c), points are

generated by spatially-uniform sampling. The sampling of

(b) is sparser than that of (c). In these cases, the fitting result

with more densely sampled points approaches our result (d).

Consequently, it can be thought that our error metric

yields the same effects as fitting with a highly dense point

set. This means that our approach is effective compared to

approaches for a point set. In case of the fitting using a point

set instead of a polygon, it is difficult to determine how dense

we should sample points from a polygon to achieve better

approximation. In contrast, our approach does not need to

take into consideration such sampling rate issues. Moreover,

our approach has the additional advantage that it is fast com-

pared to the fitting computation for highly dense point sets.

3. SLIM Surface Approximation

In this section, we describe a novel algorithm to approximate

a polygonal mesh to a SLIM surface based on PIEMs for

the accurate restoration of surface geometry. Since a well-

known mesh simplification scheme adopts the fine-to-coarse

approach, we can obtain the hierarchical structure of a SLIM

surface once the algorithm is performed.

3.1. Implicitization of Polygonal Meshes

The first step of our algorithm is the implicitization of a

polygonal mesh i.e. to convert each triangle of a polygo-

nal mesh to an implicit surface. A plane of a triangle is

also defined as a linear degree implicit polynomial: That is,

a1, a2, . . ., a6 in the coefficients of (1) are zero. We set these

polynomials to a SLIM surface as leaf nodes with E = 0. We

also define the support center c as a barycenter of a triangle.

The support radius r is calculated by the distance between

the farthest point (one of three vertices) of a triangle and c.

Figure 4: Visual comparison between a polygonal mesh

(left) and SLIM surface with leaf nodes (right).

It can be seen from Fig. 4 that there is almost no visual

difference between the rendering result of a polygonal mesh

and that of leaf nodes in its converted SLIM surface.

3.2. Hierarchical Surface Approximation Using Face

Clustering

Our simple scheme for approximation to a SLIM surface is

based on the hierarchical face clustering [GWH01, She01,

SSGH01] proposed as the approach for mesh simplification.

The algorithm begins to construct the dual graph from

an input mesh. In the dual graph, the node corresponds to a

face of a mesh, and the edge corresponds to the connectivity

between two neighbor faces. For each edge of a dual graph,

we next compute a minimum value Emin of an error function

as well as approximating to an implicit surface in case two

end nodes are combined together (we call the edge-collapse

operation hereafter). This is done by minimizing a combined

error function of two end nodes described in (9). We then

push such an edge to a priority queue setting Emin as a key.

In the approximation algorithm, we pull out an edge of a

minimum key and perform an edge-collapse operation using

two end nodes (See Fig. 5). An implicit surface by solving
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(11) is then added as a node of a SLIM surface. A com-

bined node of a dual graph is a parent of two end nodes.

Neighbor edges of each node are copied to such a newly-

created node (duplicated edges are deleted here). Each Emin

of neighbor edges in a combined node is re-computed and

a priority queue is updated. We repeat the above processes

until the priority queue becomes empty. When the algorithm

terminates, a SLIM surface which has twice the number of

hierarchical implicit surfaces as faces of a mesh is created.

Figure 5: Edge-collapse operation. One of two nodes shown

in red-filled circles is collapsed to create a combined node

shown in a black-filled circle. A green-colored line shows a

neighbor edge and is also collapsed due to the duplication

of two end nodes at a combined node.

Dual graph construction. If a mesh face has the connec-

tivity of neighbor faces, the construction of a dual graph is

quite easy. We simply create an edge for each pair of neigh-

bor faces. Even if a mesh face does not have the connectiv-

ity of neighbor faces (called as polygon soup), we can con-

struct such a connectivity by using, for example, a simpli-

fied version of the approach proposed in [BDK98]. We first

store edges of mesh faces to a spatial data structure such

as an octree or a kD-tree. We next find a pair of neighbor

faces by applying an adjacency processing method described

in [BDK98]. An edge of a dual graph is created if a pair of

faces is judged as adjacent to each other.

Approximation by PIEMs vs. on-the-fly approximation.

There are two types of methods to manage error functions

during the approximation. One is to use PIEMs similarly as

QEMs described in [GH97]. In this case, we always store

122 floating points of a PIEM {Adis, Anrm, bnrm, cnrm, λ}

in each node of a dual graph. In an edge-collapse operation,

we simply sum up two PIEMs by using (9) and an implicit

surface is approximated by using (11). Since the preparation

for the approximation is only the addition of two PIEMs, the

computational cost is dramatically reduced. However, quite

a large memory space is required because we have to store

122 floating points for each node. In our implementation, the

construction of a SLIM surface from 0.2M polygons requires

325MB memory space.

The other is the so called on-the-fly approximation by stor-

ing a list of mesh faces for each node. In a leaf node, only

one face for creating an implicit surface is stored. In an edge-

collapse operation, we combine face lists of two end nodes

and compute A and b in (11) directly using a combined face

list. We then free these elements as soon as the computation

is finished. In this case, the memory space can be reduced.

However, the computational cost considerably increases es-

pecially before the end of the algorithm due to the need to

query a face list in each edge-collapse operation.

The best choice seems to use a hybrid scheme of the above

two methods especially for more than 1M polygons. In our

current implementation, the algorithm starts with the on-the-

fly approximation scheme. As the algorithm processes, we

change to the management scheme to the approximation by

using PIEMs when the number of the rest nodes in a pri-

ority queue becomes less than one-tenth of the number of

mesh faces. Since the above two computations are exactly

the same, such a change of the management schemes makes

no difference in the final result.

Support center and radius for a new node. We compute a

support center and radius in a combined node by the method

introduced in [JP04]. [JP04] shows two approaches for these

computations. One is the wrapped hierarchy which a parent

sphere tightly bounds the geometry of a set of triangles in

two child nodes. The other is the layered hierarchy which

a parent sphere bounds two child spheres. We adopt here a

layered hierarchy which can be computed by using only a

support center and radius. This is especially advantageous

for both two management schemes described above.

3.3. PU Evaluation and Sharp Features

A SLIM surface created by our proposed method is defined

by the Partition of Unity (PU) evaluation method [OBA∗03]

as follows:

f̃ (x) =
∑i wi(x) fi(x)

∑i wi(x)
, (13)

where w(x) denotes an average weight function. As in

[OBA∗03], we use a one-dimensional quadric B-spline basis

function whose parameter is the distance between a point x

and a support center.

Preserving sharp features such as creases or corners is

quite important especially for mechanical objects. Given a

SLIM surface, we can obtain a globally smooth surface by

using (13). However, if we perform a PU evaluation method

as it is, sharp features are rounded as shown in Fig. 7 (a). One

approach to address this issue is to define two or more im-

plicit functions with Boolean operations for a node around

a crease. Sharp features for such nodes can be evaluated by

using the PU method as proposed in [OBA∗03]. However in

this case, our approximation algorithm is more complicated

including a special process for such a node.

Instead, we introduce a different approach for evaluating

sharp features. Based on an alternative approach, we can pre-

serve such features by simple extension of our approxima-

tion scheme. In a new PU evaluation method, sharp features

can be exactly evaluated with considering the discontinuities
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x

F1 F2

Figure 6: Separating implicit functions into two clusters at

a point x to be evaluated. Red and blue bold lines indicate

separated sets of implicit functions F1,F2 respectively. Dot

lines show the support spheres.

of surface normals, even if only an implicit function is as-

signed to each node.

A new PU evaluation method is based on the on-the-fly

estimation of the discontinuities of surface normals, which

is composed of the following four steps:

1. Implicit functions F = { fi|wi(x) > 0} where a point x is

included in their support spheres are collected.

2. A normalized gradient gi(x) = ∇ fi(x)/|∇ fi(x)| is eval-

uated for each function.

3. F is clustered according to {gi(x)} by using the method

proposed in [OBA∗03] (See Fig. 6 which is in the case of

two clusters).

4. For each cluster, a function (13) is evaluated. A max/min

operation is applied according to the convex/concave

judgment at x.

In Step 4, the convex/concave judgment for a pair of clus-

ters F1 and F2 is performed as follows: For each cluster, we

first compute a PU of normalized gradients g1(g2) and an av-

erage position of support centers c1(c2). If (g2 − g1) · (c2 −
c1) is positive, a point is on a concave region because both

the variation of normals and that of their surface positions

are in the same direction (here we assume that normals are

oriented to the inside of an object). In case of three clusters,

we perform the convex/concave judgment for two pairs of

clusters (F1,F2), (F2,F3) and then apply Boolean operations

to the resulting two judgments. In our current implementa-

tion, we can handle up to three clusters.

Extension of the approximation algorithm for sharp fea-

tures. For polygonal meshes with sharp features, we ad-

ditionally extend our approximation algorithm described in

Section 3.2. We first judge an edge as a crease if a dihedral

angle of neighbor faces is more than a threshold when con-

structing edges of a dual graph. In the optimization process,

we simply multiply a big number (e.g. 1,000) to an error

function value in (9) when collapsing such a crease edge.

This avoids the binding of neighbor faces around a crease.

Moreover, we add a “crease edge” flag to each node of an

implicit function including a crease edge. When simplifying

the nodes, we inherit such a flag to a newly-created node if

at least one of two nodes has a flag. A new PU evaluation

(a) (b)

Figure 7: Fitting results of a “fandisk” mesh with sharp

features. (a) A SLIM surface (5K nodes) without preserving

sharp features. (b) A SLIM surface (5K nodes) with preserv-

ing sharp features.

method described above is applied only if a collected set of

implicit functions in Step 1 has more than two flags. This

achieves more robust evaluations in the vicinity of sharp fea-

tures.

Nodes around crease edges are preserved wherever possi-

ble by applying the above extended algorithm. Each of such

nodes has an implicit function created from a face neigh-

boring a crease edge. This is a suitable state to use a new

PU evaluation method. It should be noted, however, that an

extended algorithm works well if support spheres of nodes

around crease edges are sufficiently small (only a crease

edge is covered with a sphere). To do so, the simplification

of nodes around such crease edges needs to be restrained.

This is a limitation of our new PU evaluation method.

Fig. 7 (b) shows the result of our approximation consid-

ered with sharp features. In Fig. 7 (b), two clusters around a

crease edge and three clusters around a corner are created

on the new PU evaluation method. Since we can use the tree

structure for searching the local functions which include a

point x, the time-complexity per each evaluation of f̃ (x) is

log(N), where N is the number of local functions. Thus, we

can achieve reasonable speed for polygonizing our implicit

surfaces.

4. Results and Discussion

To display implicit surfaces, we first polygonize the con-

tour defined by such surfaces and then render created poly-

gons. For polygonizing our implicit surfaces f̃ (x) = 0, we

firstly sample f̃ (x) at each grid point on a uniformly sized

grid, then polygons are generated by using Dual Contouring

proposed by Ju et al. [JLSW02]. Since our implicit func-

tion f̃ (x) is not defined if the point x is not included in

any supports, we sampled f̃ (x) only near implicit functions

like in [Blo94]. Roughly 30K evaluations per second can be

achieved by the new PU evaluation method. The polygoniza-

tion of a model of 1M polygons requires approximately two

minutes.
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(a) (b)

(c)

Figure 8: Fitting results of a “gargoyle” mesh (1.7M faces).

(a) A low-res. SLIM surface (1K nodes). (b) A high-res.

SLIM surface (90K nodes). (c) Adaptive refinement of a

SLIM surface (9.4K nodes). Only a part (head) of a gar-

goyle is composed of high-res. nodes. Color balls shown in

the right denote a set of support spheres.

Fig. 1 and Fig. 8 show the results of our hierarchical ap-

proximation scheme of implicit surfaces. By just one execu-

tion of our approximation algorithm, we obtain a hierarchy

of a SLIM surface. A set of implicit surfaces with any res-

olution is quickly extracted by traversing such a hierarchy.

We can also extract a set of implicit surfaces where a part

of an object has different resolution as shown in Fig. 8 (c).

Such an extraction is especially useful for view-dependant

LOD rendering of a SLIM surface described in [OBA05].

Fig. 9 shows the approximation results of a polygon soup

which does not have the connectivity between neighbor

faces. In Fig. 9, random noise is added to each vertex. Our

approximation scheme is also applicable for such a poly-

gon soup which contains noises. Fig. 9 (b) shows the ren-

dering result of leaf nodes by applying implicitization. As

shown in this figure, our approach can be performed as a

simple method for repairing a mesh: We first implicitize a

polygon soup, and then polygonize such constructed implicit

surfaces. Meshes with different resolutions can be easily ob-

tained by our approximation approach.

(a)

(b) (c)

Figure 9: Fitting results of a “venus” polygon soup (67K

faces). (a) Random noise is added to each vertex. (b) A SLIM

surface (67K nodes) by the implicitization of a polygon soup.

(c) A SLIM surface (2.5K nodes).

Our approximation algorithm of implicit surfaces is sim-

ple but very robust. Even if an edge construction method on

a dual graph is not as perfect in the example as shown in

Fig. 9 (a), our algorithm could never fail. We then prescribe

the conditions loosely for the construction of a dual graph, in

other words, a larger threshold for the judgment of neighbor

faces can be set. Such loose conditions enable generation of

redundant edges. However, such edges are deleted as dupli-

cated edges in the approximation algorithm process.

Tab. 1 shows the statistical summary of all examples in

this paper. In our experiments we used an Athlon 64 3500+
PC with 2GB RAM. In the example of an “Armadillo” mesh,

three types of management schemes for error metrics are

tested. In Tab. 1, it can be seen that both the on-the-fly

scheme and hybrid scheme use the same amount of peak

memory space, whereas the PIEM scheme needs a larger

space. On the other hand, a PIEM scheme has lowest com-

putational cost among the three schemes. The advantage of

a hybrid scheme can be confirmed by the examples of a

“bimba” mesh. Although the computational time is slightly

longer, memory space is dramatically reduced. Note that the

approximation for a “gargoyle” mesh via a PIEM scheme

failed due to the lack of memory space in our implementa-

tion.

Roughly 70-80% of the computation time for each exam-
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#faces type mem. time

(MB) (sec.)

fandisk (Fig. 7) 12,946 PIEM 25 3.8

venus (Fig. 9) 67,178 PIEM 112 22.5

Armadillo (Fig. 4) 345,944 otf. 388 160.5

Armadillo (Fig. 4) 345,944 PIEM 563 107.1

Armadillo (Fig. 4) 345,944 hyb. 388 114.5

bimba (Fig. 1) 1,005,382 PIEM 1,568 313.5

bimba (Fig. 1) 1,005,382 hyb. 983 314.4

gargoyle (Fig. 8) 1,726,420 hyb. 1,643 586.7

Table 1: Statistical summary. From left to right: the number

of faces of an input mesh, the type of management schemes

for error metrics, a memory space the algorithm used, and

the computation time. PIEM, otf. and hyb. denote the approx-

imation by PIEMS, on-the-fly approximation, and a hybrid

approach respectively.

ple is spent to solve linear equations by SVD. Our approach

is fast compared to the approach in [SOS04]. Moreover, we

can obtain a hierarchy of implicit surfaces including all res-

olutions in an execution of our algorithm, whereas the al-

gorithm in [SOS04] creates a single resolution of implicit

surfaces by a fixed error parameter.

Limitations. Since our algorithm requires considerable

memory space, it cannot be applied to a large mesh with

more than millions of faces. This is partially due to our im-

plementation: Most of the memory space is spent for the

storage of created SLIM nodes. If we improve this part by

using approaches such as an out-of-core strategy, the re-

quired memory space can be reduced.

In implicit surface fitting, unexpected surfaces, e.g. a hy-

perboloid, may be generated especially just before the end of

the approximation algorithm. It tends to give rise to visually

undesirable results. This is because a part of the polygonal

mesh to be fitted has a rather complicated shape and so it is

unreasonable to fit it to a quadratic polynomial implicit sur-

face. Several improved approaches need to be considered for

this problem.

5. Conclusion and Future Work

In this paper, we have provided an effective method to con-

vert a polygonal mesh to a set of implicit surfaces. A hier-

archy of a SLIM surface can be obtained by just one exe-

cution of our algorithm. Thus, the resolution control can be

achieved by only traversing a hierarchy of a SLIM surface,

without re-calculating the algorithm. Our novel error metric

can be defined as the quadric form. This provides compact

storage and allows several efficient approximation schemes.

Our algorithm can preserve sharp features such as creases or

corners. Moreover, our approach can be applied for polygon

soups and can act as a simple method for mesh repair.

A SLIM surface obtained from our method seems to be

useful for alternative surface representation from a polygo-

nal mesh. In future work, we will try to develop modeling

methods for such SLIM surfaces as well as to use them for

CG/CAD applications.
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Appendix. Error Function as Quadric Form

Both a quadratic implicit function f (x) and its gradient

∇ f (x) = ( fx(x), fy(x), fz(x)) are represented by an inner

product of two 10-dimensional vectors:

f (x) = f p
T , (14)

fx(x) = fx p
T , fy(x) = fy p

T , fz(x) = fz p
T , (15)

p ≡ (a1,a2,a3,a4,a5,a6,a7,a8,a9,a10),

f ≡ (x2,y
2, z

2,xy,yz, zx,x,y, z,1),

fx ≡ (2x,0,0,y,0, z,1,0,0,0),

fy ≡ (0,2y,0,x, z,0,0,1,0,0),

fz ≡ (0,0,2z,0,y,x,0,0,1,0).

From (14), a distance error function εdis is written by:

ε
dis(T ) = A

Z 1

0

Z 1−t

0
(f p

T )2
dtds

= A

Z 1

0

Z 1−t

0
(f p

T )T
f p

T
dtds

= p

(

A

Z 1

0

Z 1−t

0
f
T

fdtds

)

p
T

= p A
dis

p
T . (16)

Note that Adis can be evaluated directly using a closed form

since it is possible to integrate the polynomial fT f in analyt-

ical way.

From (15), a part of a gradient error function εnrm|x for x

component of a gradient fx is also represented by:

ε
nrm|x(T ) = A

Z 1

0

Z 1−t

0

(

fx p
T − nx

)2

dtds

= A

Z 1

0

Z 1−t

0

(

(fx p
T )T

fx p
T

−2nxfx p
T +(nx)

2
)

dtds

= p

(

A

Z 1

0

Z 1−t

0
f
T
x fxdtds

)

p
T

−2

(

A

Z 1

0

Z 1−t

0
nxfxdtds

)

p
T +A(nx)

2

= p A
nrm|x p

T − 2b
nrm|x + c

nrm|x.
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εnrm|y,εnrm|z are also represented in the same manner. Con-

sequently, we can put them together into the following

quadric form:

ε
nrm(T ) = p A

nrm
p

T − 2b
nrm

p
T + c

nrm. (17)
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