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Abstract
The physically based simulation of clothes in virtual environments is a highly demanding problem. It involves both
modeling the internal material properties of the textile and the interaction with the surrounding scene. We present
a parallel cloth simulation approach designed for distributed memory parallel architectures, in particular clusters
built of commodity components. In this paper, we focus on the parallelization of the collision handling phase. In
order to cope with the high irregularity of this problem we employ a task parallel approach with fully dynamic
problem decomposition. This leads to a robust algorithm, regardless of the complexity of the scene. We report on
initial performance measurements indicating the usefulness of our approach.

Categories and Subject Descriptors(according to ACM CCS):
C.1.4 [Processor Architectures]: Parallel Architectures, G.1.3 [Numerical Analysis]: Numerical Linear Alge-
bra, G.4.5 [Mathematical Software]: Parallel and Vector Implementations, I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

1. Introduction

In the last years, considerable research has been carried
out in the field of cloth simulation. Major advances have
been achieved on understanding the physical behavior of tex-
tiles and on deriving appropriate mathematical models along
with sophisticated simulation methods. However, as a re-
sult of this development, we face enormous computational
demands, especially for high quality animations which are
based on high resolution models. We propose to employ par-
allelism to meet these computational requirements.

In the process of simulation, we can generally distinguish
between two different stages within one time step:

• Physical Modeling
Internal forces resulting from deformation and external
forces due to effects like gravity or wind are determined.
Then, updates for nodal velocities and positions are com-
puted according to Newton’s law of motion.

• Collision Handling
Detection and handling of interactions of the garment with
other objects in the scene, as well as self-interference. De-

pending on the actual method used, this results in motion
constraints, repulsion forces or position and/or velocity
updates for individual nodes.

One difficulty of parallel cloth simulation on distributed
memory architectures originates from the very fine granular-
ity of the physical modeling stage. In [KB04] we presented
a data-parallel method for the modeling part, especially de-
signed for minimizing inter-processor communication. This
was achieved with a data decomposition approach using ad-
vanced graph-partitioning methods. In this paper, we deal
with the parallelization and integration of the collision han-
dling phase. In all, our work results in a comprehensive par-
allel textile simulation method which is capable to cope with
complex scenes.

In the context of textile simulation, several intrinsic prop-
erties of collision handling make its parallelization most
challenging. Basically, collision handling is a global prob-
lem, because any pair of processors can own interfering el-
ements. Thus, communication cannot be limited to proces-
sors owning neighboring elements as within the modeling
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phase. During the course of simulation, the geometry of the
considered object can change significantly. This means that
also communication partners are changing in a highly dy-
namic manner. Moreover, these interaction patterns cannot
be predicted and are extremely unstructured. Together, these
properties lead to a high degree of irregularity.

To the best of our knowledge, our work represents the first
research effort on parallel collision handling for textile sim-
ulation on distributed memory architectures. The main con-
tribution of this work is a task-parallel method for the colli-
sion handling process. We employ a fully dynamic problem
decomposition to cope with the inherent irregularity.

The rest of our paper is organized as follows: In Section
2 we report on related work. Section3 gives a brief account
of state-of-the-art cloth simulation methods. In Section4 we
discuss our approach to parallel cloth simulation, focussing
on parallel collision handling. We report on performance
measurements in Section5.

2. Related Work

2.1. Cloth Simulation

Physically based simulation is a widely adopted paradigm
for reproducing the dynamic behavior of deformable sur-
faces like cloth. The research literature on cloth modeling
is abundant and we refer the interested reader to the text-
books [VMT00] and [HB00]. The seminal work of Baraff
and Witkin [BW98] laid the ground for fast and stable cloth
simulation using implicit time stepping to solve the aris-
ing ordinary differential equations. Later extensions and de-
velopments addressed further physical as well as numeri-
cal aspects [EEH00,VMT01,CK02,EKS03,HE01]. Despite
these advances, even on recent workstations the simulation
of cloth with high resolution meshes (beyond 10000 ver-
tices) is still very time consuming.

2.2. Parallel Cloth Simulation

Gutierréz et al. [GRR∗05] report on a cloth simulation
method for NUMA parallel architectures which employs an
implicit integration method for the modeling phase. Larioet
al. [LGPT01] describe a rapid parallelization approach of a
multilevel cloth simulator on shared-memory architectures
using OpenMP. Zaraet al. [ZFV04] deal with parallel cloth
simulation on (distributed-memory) PC clusters employing
both, explicit and implicit integration techniques.

The work of Zaraet al. is the most related to the research
presented in this paper both in terms of the employed nu-
merical algorithms and in terms of the target parallel ar-
chitecture. The other two approaches are based on shared
address space parallel computers which are certainly more
easy to program but do not scale well and/or have a worse
price/performance ratio compared to distributed-memory ar-
chitectures, like clusters built from commodity components.

A difference between our work and the work of Zaraet al. is
the way problem decomposition and task mapping for the
modeling phase is carried out. While we perform a com-
pletely static approach based on data partitioning which min-
imizes inter-processor interaction, the work of Zaraet al.
is based on partitioning dynamically generated task depen-
dency graphs.

In contrast to our work, all other approaches to parallel
cloth simulation do not explicitly address collision handling.
This limits their usefulness to simple scenes.

2.3. Parallel Contact Detection

Parallel contact detection has previously been studied in the
context of various applications from the engineering domain,
e.g. simulation of projectile penetration [Kar03] or simula-
tion of foam compression [BASH00]. The basic principle of
these approaches is to identify a subset of elements which
can potentially get in contact. These elements are called
surface elements and typically constitute only a small frac-
tion of the total elements of the simulation. In [BASH00]
a separate partitioning is used during the collision handling
phase which exclusively considers surface elements. Alter-
natively multi-constraint, multi-objective graph partitioning
algorithms are employed to avoid expensive relocation ac-
tions between the two phases [Kar03]. In cloth simulation,
every element is a surface element and it is not possible to
predict the set of elements which actually interfere. Thus,
approaches based on static partitioning are not suitable for
collision handling in parallel cloth simulation.

3. Physically Based Cloth Simulation

3.1. Physical Model

For the physical model we rely on an approach based on con-
tinuum mechanics. The basic quantities arestrain which is
a dimensionless deformation andstresswhich is a force per
area or length. The two are connected via a constitutive rela-
tion, i.e. a material law which in our case is linear. The result
of this approach is a partial differential equation which has
to be discretized in space using numerical methods. To this
end, we use a linear finite element approach as described
in [EKS03]. This yields a system (or stiffness) matrix re-
lating nodal displacements of the mesh to forces acting on
the nodes. Because only local neighbors have influence on
the force on one node, this matrix is sparse. The system is
extended to account for dynamic motion according to New-
ton’s second law, leaving the following system of coupled
ODEs

ẋ(t) = v(t)

v̇(t) = M−1 f (x(t),v(t)) .

To obtain the dynamic evolution of the system these equa-
tion have to be stepped forward in time. In the case of cloth
simulation the system equations are inherently stiff and are
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thus susceptible to instabilities when using explicit integra-
tion schemes. Since the work of Baraff et al. [BW98] the
computer graphics community has settled on using implicit
integration schemes for cloth simulation. The heart of this
method is the solution of a sparse LES which can be carried
out in a convenient way using the conjugate gradient (cg)
method [She94].

3.2. Collision Handling

Besides the simulation of the intrinsic properties of cloth the
interaction with its environment has to be modeled. This in-
volves the detection of any collisions and an adequate re-
sponse to prevent the clothes from intersections. The proper
treatment of these two components (to which we refer as
collision handling in the remainder) is a very complex task
[THM∗05]. While the physical simulation engine computes
new states at distinct intervals only, collisions can occur at
any instant in between such intervals. Algorithms that han-
dle these cases in a robust way are often very complex and
time consuming such that the collision handling step soon
becomes a bottleneck in the simulation pipeline.

Basically, detecting interference between two arbitrarily
shaped objects breaks down to determining the interference
between all of the primitives (i.e. faces, edges, and vertices)
of one mesh with every primitive of the mesh representing
the other objects. With complex objects comprising thou-
sands of faces, this approach soon becomes very expensive.

A common way to accelerate the interference tests is to
structure the objects under consideration hierarchically with
bounding volumes. Usually, a bounding volume hierarchy
(BVH) is constructed for each object in the scene (including
deformable as well as rigid objects) in a preprocessing step
in the following way (see Fig.1 and2 ): a bounding volume
enclosing the entire object is set as the root node of the tree
representing the hierarchy. This node is then subdivided re-
cursively until a leaf criterion is reached. Usually, the leaves
contain one single primitive.

Figure 1: Interfering objects.Left: Different levels of the
BVH.Right: Overlapping Faces.

For our implementation we use the approach described
in [MKE03] which is based on a BVH with discrete oriented
polytopes (k-Dops) as bounding volumes. More specifically,
we use binary trees with 18-Dops, i.e. the bounding vol-
umes are enclosed by 18 planes with predefined (discrete)

Figure 2: BVH structure for the two objects in Fig.1. Over-
lapping leaf nodes are marked.

Figure 3: Test tree for the colliding objects shown in Fig.1.

orientation. With a BVH constructed, the test for intersec-
tion between two objects now proceeds as follows: first, the
bounding volumes corresponding to the root nodes of the
two hierarchies are tested for intersection. Only if these two
overlap are the corresponding children bounding volumes re-
cursively tested for intersections (see Fig.3). Besides the de-
tection of interference with other objects the cloth can also
intersect with itself. Basically, the same algorithms can be
used to find these self collisions but here, an efficient strat-
egy is even more important. Usually, criterions based on sur-
face curvature are used to rule out non-intersecting parts of
the cloth quickly (cf. [VT95]). Finally, the interference test
delivers primitives that are close to each other or intersect.

A robust method to prevent the imminent intersection was
presented by Bridson et al. [BFA02]. We use a simpler ap-
proach based on constraints which allows for an efficient
implementation in our context. If the distance of a feature
of one object to a primitive of another object is inferior to
a certain threshold we constrain the movement of the corre-
sponding vertices such that further approaching is prevented.
The resulting constraints can be enforced with a filter proce-
dure inside the cg-method (cf. [BW98] and [AB03]) which
is used to solve the LES arising in the context of the implicit
Euler integration scheme. Once the collision is resolved (i.e.
the features are no longer approaching) the constraints can
be released. Self collisions are more complicated to treat and
it is difficult to obtain good results with constraints in this
case. We therefore chose to employ an impulse-based treat-
ment for the case of self collisions. Instead of constraining
the movement of the involved vertices we apply an impulse
(i.e. adjust the velocity) to them in order to prevent intersec-
tions.

4. Parallel Cloth Simulation

In this section, we describe our parallel cloth simulation ap-
proach, focusing on the collision handling phase. In order
to provide an appropriate context, we first give a very brief
account of our previous work on the parallelization of the
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Figure 4: Partitions of a mesh shown in different colors for
12 processors.

physical modeling phase. A more detailed treatment of this
topic can be found in [KB04].

4.1. Parallel Physical Modeling

In order to parallelize the physical modeling phase, we apply
a data decomposition scheme. The basic idea is to partition
the vertices of the input mesh into regions with roughly the
same amount of vertices and assign the regions to the pro-
cessors. The position of neighboring vertices which belong
to different processors have to be communicated in every it-
eration of the cg procedure at the core of the LES solver. It
is therefore crucial that the partitioning also minimizes com-
munication overhead since otherwise this soon becomes a
bottleneck. To this end, we use graph partitioning techniques
which minimize the number of edge cuts and thus communi-
cation among the processors. Figure4 shows an exemplary
partitioning of a shirt.

After the initial decomposition stage, every processor
holds its own parts of the global position, vertex and nor-
mal vectors. Each processor then sets up its local system
matrix and right hand side vector corresponding to its at-
tributed vertices. Subsequently, the LES is solved in parallel
in an SPMD style.

4.2. Parallel Collision Handling

The specific challenge of parallelizing the collision handling
process originates from its high irregularity as explained in
Section1. Facing this situation, employing static partition-
ing (like in the modeling phase) is not sufficient. Depend-
ing on the actual locations of the collisions, the amount of
time spent in collision handling would differ considerably
among the processors. The resulting high degree of proces-
sor idling during collision handling ultimately limits the par-
allel efficiency of the whole execution process. Moreover,
the location of collisions can change considerably during the
course of the simulation and cannot be predicted. Thus, in or-
der to keep all processor busy during the collision handling
phase a more dynamic approach to problem decomposition
is needed.

Generally, we can distinguish between two different types
of collisions: external collisions and self collisions. To detect
the first type we have to test our deformable object against
every other (rigid or deformable) object in the scene. For
the latter case, the deformable object has to be tested against
itself. Next, we show how this basic collision handling algo-
rithm can be integrated into the SPMD framework of our
cloth simulator. Later we describe how we deal with the
irregularity of collision handling using a task parallel ap-
proach which is based on fully dynamic problem decompo-
sition.

4.2.1. Parallel Collision Handling Framework

As already pointed out, we use a bounding volume hierar-
chy to speed up the collision detection stage. For parallel
execution, this hierarchy is built as follows: The problem
decomposition stage supplies us with a number of disjoint
partitions of the vertices of the input mesh. For each proces-
sor we now proceed in the following way: a local mesh is
constructed corresponding to the attributed vertices. Then, a
BVH hierarchy is set up on this mesh using a top-down ap-
proach. Once this is done, we combine the root nodes of the
different processors to form a global hierarchy of the mesh.
Testing a textile for interference with other objects is now
carried out in the standard manner. First, the root node of
the garment’s BVH is tested against the other object’s root
node. If they overlap, the trees of the processors are recur-
sively tested. This approach works well for standard colli-
sions but for self collisions a different strategy has to be
taken. In our specific context we can again distinguish be-
tween two different types of self collisions: namely colli-
sions between sub-meshes of different processors and those
that are real self collisions on the processor-local mesh. For
the latter case we can use existing techniques since this cor-
responds to the usual self collision problem. For the case
of inter-processor self collisions we test the corresponding
BVHs against each other similar to the way standard col-
lisions are treated. All described BVH tests form a set of
top-level tasks for collision handling. In the following, we
discuss a task-parallel approach which dynamically decom-
poses top-level tasks into smaller sub-tasks.

4.2.2. Dynamic Problem Decomposition Procedure

Our method for dynamic problem decomposition is based
on a modification of the BVH testing procedure. For dynam-
ically generating tasks, we introduce a stack data structure
which records untried alternatives of the BVH testing tree.
In the BVH testing procedure, expansion of a tree node re-
sults in two additional tree nodes each representing a test.
As in the sequential procedure, the first test is carried out by
starting a new recursion level. However, before entering the
recursion, the second test is pushed on the stack. Figure5
shows a snapshot of a BVH testing process along with the
corresponding state of the stack.
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Figure 5: Dynamic problem decomposition. The arrow indicates the current state of the BVH testing procedure. The stack on
the right stores the current untried alternatives.

Tests which are recorded on the stack can be executed in
one of the following ways:

• A test can be removed from the top of the stack and ex-
ecuted sequentially when the recursion gets back to the
current level. This corresponds to the procedure of the
original algorithm.

• A test can be removed from the bottom of the stack and
assigned to a newly generated task. This task executes a
BVH testing procedure for which the assigned test repre-
sents the root of the BVH testing tree.

The rational behind taking nodes from the bottom of the
stack for creating new tasks is that such nodes have a higher
potential of representing a large testing tree since they are
closer to the root. This heuristics helps to prevent that tasks
with too fine a granularity are generated. For highly irregular
problems, initially several tests can be removed at once from
the stack and assigned to one task. The described method
for dynamic problem decomposition is triggered by the load
balancing procedure as discussed in the next section.

4.2.3. Dynamic Load Balancing

For controlling the overall amount of generated parallelism,
we use a self-adapting approach where the dynamic problem
decomposition and the load balancing process are tightly
coupled. Specifically, our method is based on the distributed
task pool model, i.e. every processor maintains a local task
pool. Upon creation, a task is first placed in the local task
pool. Subsequently, it can be instantiated and executed lo-
cally, when the processor gets idle. It also might first be
transferred to a remote task pool for load balancing pur-
poses.

Tasks are dynamically generated using the decomposition
procedure discussed previously. A decomposition operation
is initiated when the size of the local pool falls below a given
threshold. In order to prevent that too much parallelism is
generated, a consecutive task decomposition can only take
place when a given time interval (e.g. 10ms) has elapsed. For
transferring threads between task pools we employ a receiver
initiated scheme. When a processor runs idle and the local
task pool is empty, it tries to steal tasks from remote pools.
The victim node is chosen randomly. If the request is not
satisfied within a given period of time another victim node
is chosen and a corresponding request is issued.

In the context of our application this approach establishes
self-adapting parallelism. For regular scenes where colli-
sions are evenly distributed on the processors, no further task
decomposition and load balancing is carried out. In contrast,
if processors run idle due to an uneven distribution of the col-
lisions, additional parallelism is dynamically generated and
balanced over the processors.

4.2.4. Implementation

The implementation of the previously described methods is
based on the parallel system platform DOTS [BKLwW99].
DOTS provides extensive support for the multithreading
parallel programming model (not to be confused with the
shared-memory model) which is particularly suited for task-
parallel applications that employ fully dynamic problem de-
composition.

DOTS Programming Model The key concept of theDOTS
programming model arethread groupobjects which serve as
links between different primitives of the API. Upon creation,
a thread is eitherexplicitly or implicitly placed to a thread
group, callingdots_fork or dots_hyperfork, respectively. In
the former case, the thread group object has to be supplied as
argument todots_fork. In the latter case, the thread is placed
implicitly in the same thread group as its parent thread. In
both cases, a procedure to be executed by the child thread
and an argument-object has to be supplied. For all subse-
quently applied primitives it is not relevant whether a thread
has been placed explicitly or implicitly into a thread group.
Threads return result objects employingdots_return. The
dots_join primitive is used to retrieve results of threads from
a given thread group applyingjoin-anysemantics: The first
result which becomes available from any thread in the group
is delivered. If no results are available, the calling thread
is blocked until a thread of the group delivers a result. If
a thread has finished execution and all result objects of the
thread have been joined, it is removed from the thread group.
By checking the return value ofdots_join, termination of a
computation can be determined.

Parallel Collision Handling Using DOTS For starting the
task-parallel execution process, we create on every proces-
sor threads which execute the top-level tasks for collision
handling as described in Section4.2.1. Threads that execute
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Figure 6: Results of performance measurements for scene 1.
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Figure 7: Results of performance measurements for scene 2.

top-level tasks are created using thedots_fork primitive. All
threads are placed into the same thread group. Upon comple-
tion, each thread delivers a set of constraints which represent
an appropriated collision response for the corresponding top-
level collision handling task.

Tasks resulting from dynamic problem decomposition (cf.
Section4.2.2) are modeled by DOTS threads that are cre-
ated with thedots_hyperfork primitive. This approach makes
it possible to easily synchronize with the completion of the
collision handling phase regardless how many decomposi-
tion operations took place. We simply applydots_join oper-
ations on the thread group until termination of the execution
is indicated. (Note that the actual number of generated tasks
largely depends on the considered scene and cannot be stati-
cally determined.) Every time a thread is joined, the resulting
set of constraints is stored and applied in the next modeling
phase.

Using the extension framework of DOTS we integrated
the load balancing scheme described in Section4.2.3.

5. Performance Measurements

5.1. Test Scenarios

We evaluate the performance of our approach using two test
scenarios. To demonstrate the robustness of our method we
focused on problems with a high degree of irregularity.

The first scene consists of a square cloth comprising
10000 vertices which drapes over a sphere lying on the floor
(see Figure8). The cloth is offset from the center of the
sphere such that initially, collisions only occur in a locally

restricted region. Only when the cloth reaches the floor, col-
lision occur (almost) everywhere in the mesh and the setting
becomes more regular. In this scenario rigid collisions are
predominant while self collisions appear only marginally.

For the second test scene we let the same piece of cloth
drape over a slightly smaller sphere (see Figure9). (We
could as well use any other polygonal mesh as a collision
object but the sphere is sufficient for our interests.) In this
case however, the movement of the cloth is not vertically
constrained by a floor such that inter-processor self colli-
sions occur at the tips of the cloth. Additionally, normal self
collision appear more accentuated.

5.2. Results

For carrying out performance measurements we used a
Linux based cluster. All compute nodes are equipped with
Intel Xeon processors running at 2.667 GHz and with 2 GB
of main memory. The nodes are connected by a Myrinet-
2000 high-speed network.

All subsequently presented performance results are based
on the arithmetic mean of the wall-clock times of three in-
dividual parallel runs for each investigated setting. The time
values given for one processor are based on a sequential ver-
sion of our application that employs sequential data struc-
tures and sequential arithmetic operations.

Figure6 and Figure7 show the results of the performance
measurements for the previously described scenes. Despite
the high degree of irregularity, for both scenes the compu-
tation time can be substantially decreased using parallelism.
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For computations on 2 processors super-linear speedups can
be observed. In data parallel applications the main source of
super-linear speedups are cache effects. With an increasing
number of processors the data working-set of each individual
processor becomes smaller, resulting in an improved cache
performance.

6. Conclusion

In this paper, we presented a parallel approach for the col-
lision handling phase of cloth simulation. Our approach
employs task-parallelism with fully dynamic problem de-
composition to cope with the high irregularity of the col-
lision handling problem. We integrated our method into an
SPMD based parallel cloth simulator. The conducted per-
formance measurements delivered substantial speedups for
scenes with a high degree of irregularity. A future direction
could be to extend our work to an hierarchical approach,
where shared-memory and distributed-memory parallelism
is combined.
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Figure 8: Test Scene 1 (shown from two different view angles)

Figure 9: Test Scene 2 (shown from two different view angles)
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