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ABSTRACT 
Contemporary graphics architectures are based on a hardware-:-supported geometric 
pipeline, a rasterizer, a z-buffer and two frame buffers. Additional pixel memory is 
used for alpha blending and for storing logical information. Although their function­
ality is growing it is still limited because of the fixed use of pixel memory and the 
restricted set of operations provided by these architectures. A new class of graph­
ics algorithms that considerably extends the current technology is based on a more 
flexible use of pixel memory, not supported by current architectures. 
The M-Buffer architecture described here divides pixel memory into general-purpose 
buffers, each associated with one processor. Pixel data is broadcast to all buffers 
simultaneously. Logical and numeric tests are performed by each processor and the 
results are broadcast and used by all buffers in parallel to evaluate logical expressions 
for the pixel update condition. 
The architecture is scalable by addition of buffer-processors, suitable for pixel paral­
lelization, and permits the use of buffers for different purposes. The architecture, its 
functional description, and a powerful programming interface are described. 
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1.1 Introduction 

1.1.1 Advanced Pixel Rendering 

An increasing number of graphics algorithms require deep frame buffers, i. e. a large num­
ber of bits per pixel [5]. For example, a technique that uses two z-buffers (Zl, Z2), two 
frame buffers (Fl, F2), one alpha buffer (A) and a bit plane (V) for correctly displaying 
scenes with several layers of transparent objects is described in [7]. The technique uses 
several passes to sort transparent objects in order to determine the correct aggregate 
transparency of all visible transparent objects. The two z-buffers are used to sort incom­
ing surface points by depth in order to find the furthest visible transparent object. The 
following statements describe the operations that are performed at each pixel during the 
scan-conversion in order to determine the next surface. 

ALGORITHM 1 

if (Zl < z < Z2) 
{ V = 1 ; Z2 = z ; F2 = c ; A = a ; } 

where c, a, and z are the color, the alpha value, and the depth for the scan-converted 
object at a given pixel. 

Other examples of the power of multiple depth buffers are found in [6, 8]. The first 
requires, for each pixel, two z-buffers, two frame buffers, two bit-planes and a counter. 
The other requires three z-buffers, one frame buffer and one bit-plane. The following two 
code fragments are extracted from the inner loops of the latter algorithm. They compute 
in Z3 the front-most surface points behind points in Z2. Later, points in Z3 belonging to 
front-facing surfaces are copied to Z2. 

ALGORITHM 2 

if (Z2 < Z-E; < Z3) Z3 = z ; 
if (Z2 < Z-E;) pixeLfiag = ! pixeLfiag ; 

For each pixel, the algorithm finds the nearest surface points behind those already in 
Z2. The parity of the number of surfaces found behind Z2, computed in the pixeUiag, 
determines whether the surface in Z3 is front-facing or back-facing. 

ALGORITHM 3 

if (pixeLfiag && (Z2 1= Z3)) Z2 = Z3 ; 

This statement copies new pixel information from Z3 to Z2 if the point in Z3 belongs 
to a front-facing surface (see ALGORITHM 2). 

These techniques require the following capabilities: 

• Simultaneous update of several pixel buffers . 

• Conditional buffer update based on tests performed on the contents of several 
buffers. 

II Different update conditions per buiferinvolving either values from the scan-conversion 
or from other buffers. 

,. Programmable update functions and conditions. 

This functionalit.y is a special case of what can be formulated by the following instructions 
executed at ea.ch pixel processed by the rasterizer. . 

( 1.1) 
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where hI ... bn are the values stored in the respective buffers at that pixel, and Fl ... Fn 
are buffer specific update functions. The surface data s are generated by the rasterizer for 
that pixel and include several data fields, e. g. color sc, depth 5z, or alpha value so:. 

For example, the function F3 of ALGORITHM 2 could be written as: 

if bz < 5 z - £ < b3 

otherwise 

One can argue that the anticipated applications of this technology do not require the 
full generality of the functions Fi. Indeed, in this paper we restrict Fo to a specific subset, 
which subsumes existing and emerging techniques and is amenable to an efficient hardware 
implementation. 

1.1.2 Existing Buffer Architectures 

In a typical graphics system the application generates graphics primitives (for example 
triangles) in world coordinates and sends them to the geometry sub-system, which trans­
':orms theIn to screen coordinates and clips them against the boundaries of the viewing 
volume. The rasterizer discretizes the primitives into pixels values, such as color and 
depth, which it sends sequentially to a buffer sub-system from which the final image is 
displayed on the monitor. 

The buller sub-system contains buffers for storing and processing pixel information. It 
supports a set of pixel-level algorithms, such as z-buffering or alpha-·blending. This paper 
focuses on practical extensions of the buffer sub-system to support advanced rendering 
algorithms. Full hardware support for these algorithms is currently not available in com­
mercial systems .. The architectures of the Silicon Graphics GTX and VGX [2, 1] provide 
some flexibility in how the buffers can be used. For example, the color of rendered pixels 
may be compared with the color of the pixels already in the frame buffer. In addition to 
the z-test, the stencil bit-planes in the VGX architecture provide a second test. However, 
efficient use of the stencil planes is hampered by a non-general programming interface 
that seems to result from hardware limitations. 

In [3], pixel maps are stored in main memory, allowing applications to allocate the 
needed graphics buffer with virtually arbitrary size and depth. The main CPU accesses 
and manipulates the contents of these virtual pixel maps, Since the CPU performs those 
operations sequentially, the performance of pixel operations drops when numerous buffers 
have to be managed and/or when the operations involve many steps. 

1.2 Parallel Buffer Operations 

Image space partitioning is currently the prevalent technique used to achieve high buffer 
update rates. In these SIMD architectures each processor handles a subset of the pixels on 
the screen and manages all buffers for those pixels (figure l.la). Image space partitioning 
architectures are balanced for simple buffer update opera.tions, i. e. the memory bandwidth 
is ma.tched by the pixel generation rate of the rasterizer. Since rasterizers generate pixels 
much faster than a single memory chip can store them, several banks of memory are 
interleaved to obtained the necessary memory bandwidth, The following pseudo-code 
characterizes this solution: 
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FIGURE 1.1. a) Image Space Partitioning. b) Buffer Space Partitioning. c) Mixed Partitioning. 

ALGORITH1f 4 

1. Rasterize1': 
Generate pixel value at (x, y) 
and send to appropriate buffer. 

2.BujJer Sub-System: 
forall buffers i = 1 ... n do_sequential 

bi = Fi(b1 ••• bn,s) ; 

The number of steps performed by this algorithm is linear in n, the number of buffers 
to be updated for each pixel. If 11, increases the buffer sub-system saturates, causing 
the rasterizer to stop and the memory access rate to become smaller than the memory 
bandwidth. A n-fold speed-up is achieved if the buffer operations (step 2 in ALGORITHM 4) 
are performed in parallel, because the update time for each pixel is then independent of 
the number of buffers to be updated. Figure l.lb depicts the corresponding partitioning. 
Each processor manages only one buffer and computes the respective update functions 
and update conditions. However, at a given time all processor are working on the same 
pixel, thus forming a MISD parallel processor, described by the following pseudo-code: 

ALGORITHM 5 

1. RasteTizer: 
Generate pixel value at (x, y). 

2. BujJer Sub-System: 
forall buffers i = 1 ... n do_parallel 

bi = :F; (b i ... bn , s) ; 

The two strategies for parallelizing the operation of the buffer sub-system are orthog­
onal. They can be combined to form a mixed multiprocessor system (figure l.lc). This 
arrangement has two degrees of freedom: the number of partitions in screen space and in 
buffer space. These to variables can be exploited to optimize performance across a family 
of applications. Since image space partitioning has been addressed elsewhere [4], we focus 
here on the buffer space MISD aspect. 
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1.3 Advanced Update Functions 

Formulation (1.1) defines a class of algorithms requiring that, for updating a given buffer 
at a given pixel, the values of all buffers at that pixel are accessible. Providing all buffers 
with simultaneous access to the values stored in all other buffers, requires n pixel busses 
or n 2 point-to-point connections. Since the cost of the processing elements (each takes n 
inputs) and the communication requirements are prohibitive, we will restrict the class of 
update functions as follows: 

In the first phase of the buffer update operations, each processor i has access to the 
contents of its buffer and to the surface data broadcast by the rasterizer. The processor 
performs a test Ti that usually compares the surface data to data previously stored in the 
associated buffer. The tests Ti may differ for different processors. The test results ri are 
broadcast to every processor. All processors perform these steps in parallel, receiving the 
same surface data on a data bus and writing the value ri on a subset of the result bus. 
(Each processor has exclusive write access to one or more bits of the result bus.) 

In the second phase, each processor i evaluates its update condition Ci based on the 
value on the entire result bus. If Ci is True, the content of buffer i is updated according 
to an update function Ui associated with that buffer. 

These restrictions yield algorithms that include all algorithms mentioned earlier. For 
example, for a standard z-buffer algorithm Ti, C;) Ui are chosen as follows: 

~ Sz < b1 

C1 ,C2 rl 

U1 SZ 

U2 Sc 

where buffer 1 is the depth buffer and buffer 2 stores the pixel colors, and Sc and Sz are 
the color and the depth of the scan-converted surface. 

For ALGORITHM 2 the buffer processors may be programmed as follows: 

Tz b2 < Sz - c 

'h b3 > Sz - C 

C1 r2 

93 r2 && r3 

U1 = !h 
U3 Sz 

where buffer 1 stores the pixel flag and the buffers 2 and 3 are the depth buffers Z2 and 
Z3 respectively. 

104 The I\/l-Buffer Architecture 

The M-Buffer Architecture developed here to support the operations defined above is a 
regular multi-processor buffer sub-system that uses buffer space partitioning. It includes 
severa] buffer modules each of which contains a buffer memory and a buffer processor 
(figure 1.2). The number of buffers may vary, providing the possibility of scalable systems. 

A host computer programs the buffer processors by setting the processors' internal 
registers for operations and data, thus selecting each buffer's Ui , Ti and Ci . All buffer 
modules are connected to a common pixel bus that broadcasts the pixel ,-;dues generated 
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FIGURE 1.2. M-Buffer System Block Diagram. 
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by the rasterizer. The pixel bus has several sub-busses: The pixel address bus, PAddr, 
broadcasts the pixel address (x,y). There are Ie pixel data busses, PData, for the surface 
data s. (For example, PData may carry 32 bits for the intensity and 32 bits for the depth.) 
Each buffer processor broadcasts test results Ii to the other buffers using the pixel result 
bus, PResult. This unique feature provides each buffer with access to the test results of 
all other buffers simultaneously, thus providing the arguments for the complex update 
conditions Ci . 

For every pixel, each buffer module cycles through the following sequence of steps: 

GA: Generate a pixel address and write it to the pixel address bus. 

MA: Address the buffer memory. Each active buffer module applies this address to its 
buffer memory. 

RD: Read the buffer memory. The active buffers simultaneously read a pixel value from 
the buffer memory. The rasterizer places data on the pixel bus. 

TU: Compute the tests and update functions. The active buffers compute the functions 
T and U. The test result r is placed on the pixel result bus. 

CD: Evaluate the condition function. The active buffers compute the condition C using 
the information on the pixel result bus. 

VVR: \Vrite the buffer memory. Depending on the result of C, the buffer memory may be 
updated with the result of U. 

Pipelining the pixel processors allows to process up to three pixels at the same time and 
reduces the effective processing time for each pixel from six to two steps. The following 
table shows how the steps of consecutive pixels overlap while processed in a pixel processor. 
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Step Sequences 
1 GA 
2 MA 
3 RD GA 
4 TU MA 
5 CD RD GA 
6 \VR TU MA 
7 CD RD 
8 WR TU 
9 CD 
10 WR 

For clarity, the rasterizer was described as the only pixel source in the M-Buffer. In 
fact, every buffer module can act as a pixel source by taking the role of the rasterizer. 
The buffer processors can generate pixel addresses for a screen region and place these 
addresses on the pixel address bus (step GA). In step RD up to k buffers can write pixel 
vaJues to the pixel data busses. (k is the number of pixel data busses.) The host processor, 
L e. the application, controls which buffer is providing the pixel address and which buffers 
communicate their pixel value across the pixel data busses. The ability to use buffer 
modules as pixel sources is very useful for inter-buffer pixel transfer, e. g. conditional 
BitBlts (see ALGORITHM 3). 

In step RD, the value read from buffer memory is written to a pixel data bus. Instead, 
this value can be written to the pixel address bus, thus interpreting pixel data as addresses. 
This capability gives the architecture the flexibility of indirectly addressing pixels, as 
required for texture mapping and other look-up tables. Indirect addressing schemes are 
implemented by adding to the basic sequence, shown above, extra RD-MA steps for each 
level of indirection. The :r-,,1-Buffer architecture provides the possibility to implement up 
to 16 levels of indirection. 

1.5 The Buffer T'v:Iodules 

There are three types of buffer modules. SU1face Buffe1's store pixel data associated with 
surfaces to be displayed, e. g. depth values, colors, texture maps, normals etc. Control 
Buffers maintain information used to further differentiate the operation of other buffers, 
e. g. pixel counters, pixel flags, screen masks. Virtual Buffers form a unified and general 
mechanism for interfacing the M-Buffer to other components of a graphics system, such 
as the rasterizer. The following sections describe in detail the internal structure of the 
buffer modules. 

1.5.1 Surface Buffers 

Figure 1.3 shows a block diagram of a surface buffer module. Each surface buffer module 
contains five major blocks all of which are controlled by a central controller. These blocks 
are connected to the pixel bus via the bus interface. Each of the blocks can be programmed 
by loading internal registers. A host processor has access to these registers via the host 
interface, which also provides read access to some internal registers of the buffer controller, 
thus allowing the host to query the current status of a buffer module. 
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FIGURE 1.3. Surface Buffer. 

Address Manager 

BitBlts and window motions require that pixel address of the source pixel and the destina­
tion pixel differ. A programmable offset (displacement) can be added to each pixel address 
read from the pixel bus. For pixel transfers within one buffer, pixels must be generated in 
the right order to properly process overlapping source and destination regions. The host 
defines this order by specifying the starting pixel of the rectangular screen region being 
transferred. 

The pixel address is then applied to the buffer memory together with the necessary 
signals for controlling DRAM memory. For write cycles (step vVR) , the state of the update 
signal provided by the condition block determines whether the write operation is actually 
performed. 

For many applications it is advantageous to process only those pixels further that are 
contained within a screen region including pixels that were processed during previous 
steps. To support this facility, the address manager can automatically update a bounding 
box around all pixels that were either visited or actually changed. 

Since usually only parts of the screen need to be transferred, buffers can be programmed 
to broadcast pixel data only within a rectangular sub-screen. The extent of that sub-screen 
can either be set by the host or be the bounding box containing the visited or changed 
pixels. 

Buffer 11emory 

The surface data is stored in the central buffer memory, which provides 32 bits for each 
pixel. Standard DRAM memory is used in most of the buffer modules. Only buffers whose 
contents must be displayed are equipped with more expensive VRAMs. 

Datapaths 

The Test and Update blocks provide a large set of arithmetic and logical functions for 
implementing the T; and Ui . They take their arguments from the output of the pixel 
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memory, the values read from the pixel data busses, and an internal operand register. 
The operand register holds a reference value or a constant used in the functions Ti and 
Uj. For example, the operand register in the datapath may store a value for initializing 
the buffer memory. The host can program these blocks by writing an op-code into their 
internal command registers and by setting the operand registers. 

Each buffer controls one or more lines of the pixel result bus. The output of the test 
block is connected to these lines. 

Condition 

The entirety of the test results of all buffer modules forms the content of the pixel result 
bus. This information is used by the condition block to evaluate the update conditions, Cj • 

This block is implemented as a look-up table built with static RAM. The address of this 
table is formed by the pixel result bus. Its output is a single bit, the result of the update 
condition, that signals whether the buffer memory should be updated. For example, if 
buffer i must be updated only if the test performed by buffer 0 has passed, i. e. if ro = 1, 
the look-up table contains a 1 in memory locations with an odd address and a 0 in those 
with an even address.·' 

1.5.2 Control Buffers 

Typically, advanced pixel-level rendering algorithms require some control information per 
pixel (flags [7], counters [6] or masks [8]) which does not require the number of bits 
typically needed for surface data, is not compared to surface data, and is manipulated 
through bit-oriented operations. Also, some algorithms must be able to select the update 
function Uj depending on the results of all tests Ti, 

(1.2) 

Control buffers are specialized to support these operations by differing from the basic 
architecture of surface buffers (figure 1.3) in the following aspects: The buffer memory is 
only 8 bits deep. There is no connection to the pixel data busses. The test and update 
blocks support a different set of operations. For control buffers, the function table internal 
to the condition block has additional bits which store an op-code in each word according 
to equation (1.2). These extra bits are connected to the update block and convey an 
op-code that is selected dynamically depending on the value of the pixel result bus. For 
example, a counter in control buffer i should be incremented whenever the test performed 
by buffer 0 passes, i. e. ro = 1, and should be decremented if that test fails. Then the 
look-up table in the condition block contains an increment command in all words with an 
odd address and a decrement command in the even addresses. 

1.5.3 Virtual Buffers 

Various components need to be interfaced to the buffer sub-system, e. g. rasterizer, display 
sub-system, video input, procedural texture generators, input devices etc. The virtual 
buffer concept provides a unified view of these components for the M-Buffer. Although 
their internal structure may be very different, virtual buffers exhibit the same behavior 
towards the pixel bus as actual buffers by mimicking some or all of the following aspects: 

• Placing pixel addresses on the pixel address bus. 

• Reading addresses from the pixel address bus. 
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• Writing pixel data to the pixel data busses . 

• Controlling line(s) of the pixel result bus. 

For example, the rasterizer is implemented as a virtual buffer. It places pixel addresses 
and pixel values onto the pixel address bus. For scan-conversion, one line of the pixel result 
bus may signal whether the scan-converted pixel belongs to a front-facing or a back-facing 
surface. 

The advantage of the virtual buffer concept is that very different devices can be con­
nected to the M-Buffer as long as they show the required behavior on the pixel bus. Since 
the buffer modules are working synchronously, the speed of a buffer module does not affect 
the functionality of the entire M-Buffer. However, it does affect its performance. 

1.5.4 Software Buffers 

The M-Buffer architecture does not require the presence of all buffer modules. As in 
other buffer systems, some buffers will always be implemented in hardware. However, 
other buffers can also be implemented in software and be interfaced to the hardware as 
virtual buffers. Although software buffers will slow down the buffer system, they open 
an avenue for a wide range of cost-performance tradeoffs. Entry-level systems are still 
able to support rendering algorithms using many buffers without physically providing 
these buffers. Instead, the host CPU and system memory take the role of the extra buffer 
modules. Software buffers resemble the virtual pixel maps described in [3]. 

For example, a basic M-Buffer system may be constructed from only three surface 
buffers, one depth buffer and two color buffers for double buffering. In order to use that 
system for (ALGORITHM 1), two software buffers are allocated to accommodate the extra 
depth buffer Z2 and the pixel mask V. 

1.6 Programming Interface 

We have developed a programming interface for configuring, programming, managing, 
and interacting with the M-Buffer system. 

Configuration Commands 

determine the overall behavior of the M-Buffer system by defining which buffers are read­
ing and which buffers are writing the pixel bus. 

Programming Commands 

provide access to the internal registers of each buffer module's functional blocks. They 
let the application define the test function T and the update operation U by storing 
op-codes into the update and test datapaths. The programming interface also allows the 
application to download tables constituting the update condition C. The operation of the 
address manager is defined by specifying the offset and the operation mode of the address 
generator. 

Management Commands 

save and restore the entire status of a selected buffer module on a stack maintained by the 
programming interface. The state of a buffer module can also be read and written directly 
by the application. These commands serve two purposes: They give system software a fast 
and convenient means to change the buffer configuration if a context switch occurs. These 
commands allow the application to define the necessary buffer configurations outside the 
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main loop and quickly invoke the active configuration by, for instance, popping it from 
the stack. 

Interaction Commands 

enable the application to query the status of a buffer module, e. g. whether it has com­
pleted its operation and whether it has updated any pixels since the last query for update. 

Programming the M-Buffer is done in two steps. First, the overall system is configured and 
the individual buffers are programmed. Then, a start command is issued to the rasterizer 
or to the buffer controlling the pixel address bus, thus initiating the actual M-Buffer 
operation. At any time, the host can query the status of the running operation. After the 
operation finished, the host may query status information, e. g. whether any pixels were 
changed, and/or reconfigure the M-Buffer for the next operation. 

1.7 Conclusion 

The M-Buffer graphics architecture supports a new class of graphics algorithms. Its orga­
nizationhas several conceptual and practical benefits. 

The buffer modules are universal. The buffer processors are not tailored to specific 
tasks, but provide the elementary operations necessary for implementing a large family 
of advanced pixel rendering algorithms. 

M-Buffer systems are scalable: They can be easily extended by adding more buffer 
modules, thus facilitating the task of configuring graphics systems to meet different cost­
performance requirements. 

Buffer modules can be implemented in software, thus enabling low-cost, high-functionality 
graphics systems. 

The M-Buffer architecture is orthogonal to and thus complements existing graphics 
buffer architectures that subdivide the screen into sets of pixels that are assigned to one 
processing element. 

The fact that the performance of a M-Buffer system is independent of the complexity 
of the update condition and the number of buffers to be updated makes this architecture 
especially suited for advanced pixel-level rendering algorithms. 
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Appendix: A \Vorldng Exarnple 

The following example will show the practical use of the concepts presented in the main 
part of the paper. It implements the multipass transparency algorithm presented in [7]. 
The algorithm uses two z-buffers (Zl, Z2), two frame buffers (Fl, F2), and one bit-plane 
for a visit flag (V). The algorithm proceeds in two steps: (l) All opaque objects are scan­
converted into the first z-buffer and the first frame buffer. (2) The transparent objects are 
scan-converted into the second z-buffer/frame-buffer pair. The pixel information is only 
written if the depth of the scan-converted pixel is between the depths of the first and 
the second z-buffer. Every pixel updated in this way is marked by setting the visit flag. 
After all transparent objects have been processed, the colors of the two frame buffers are 
merged using alpha-blending and the depth in z-buffer 2 is copied into z-buffer 1. Step 2 
is repeated until no pixel is changed, i. e. all pixel flags are Zero. 

The following pseudo-code describes how this algorithm is implemented using pre­
defined configurations of the M-Buffer: 
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MULTIPASS TRANSPARENCY 

/* 
* Step 1: Scan-convert opaque objects 
*j 

use..:.config (depth_buffer) ; 
init (Zl, 00) ; init (PI, background) i 
for (all opaque objects 0) 

scan_convert (0) ; 

1* 
* Step 2: Iterate scan-converting the transparent 
* objects until no pixels are changed 
*j 

repeat 
{ use_config (depth_intervaLbuffer) ; 

init (Z2, 0) ; init (V, 0) i reseLbbx (V) ; 
for (all transparent objects t) 

scan_convert (t) ; 
box = geLbbx (V) ; 
done = (box.l > box.r) && (box. t < box. b) ; 
if (!done) 
{ use_config (buffeLtransfer) ; 

scan_bbx (V) ; 
} 

} until (done) ; 

After the required buffer configuration has been retrieved by using the use_config 
commands, one buffer is started to generate pixels with the commands. The command 
scan_conveTt generates all pixels covered by the specified object. The command scan_bbx 
produces pixel addresses for all pixels inside a screen region. The extent of a buffer's 
bounding box is obtained by geLbbx. The init command saves the contents of the spec­
ified buffer onto the stack, configures it to write the specified value into all its pixel 
locations, starts the buffer, and finally restores the original buffer contents. 

Below, we show (simplified) pseudo-code segments defining various buffer configura­
tions. Typically, they would be available as a library of pre-defined buffer configurations. 
The enable and disable commands do the obvious for the specified buffers. Commands 
starting with load_. program the respective block in the buffer module defined by the first 
argument. The read_ and write_ commands define which sub-bus of the pixel bus, is read 
or written by the specified buffer. The contents of a M-Buffer configuration is defined 
using a make_config ... close_config pair and is activated with the use_config command. 
The command tmck_changes programs the address generator of the specified buffer to 
construct a bounding box around updated pixels. 

The following pseudo-code uses several global symbols, e. g. ZI has been defined as 
the address of a particular surface buffer and R is the address of the rasterizer's virtual 
buffer. The symbols PDATAI and PDATA2 stand for the values on the respective pixel 
data busses. I\IE:t'vl stands for the value read from the internal memory. The values T[ 1 
are the result bits returned by the indicated buffers. The scan-conversion routine places 
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the depth-value Sz on the first and the color value Sc on the second pixel data bus. 

DEPTH BUFFER 

make_config (depth_buffer) ; 
disable (Z2) ; disable (F2) ; 
enable (Zl) ; enable (Fl) ; 
disable (V); enable (R) ; 
read_addr (Zl) ; read_datal (Zl) ; 
read_addr (F1) ; read_data2 (F1) ; 
write.-addr (R) ; write_datal (R) ; write_data2 (R) ; 
load_test (Zl, PDATA1 < MEM) ; 
load_update (Zl, PDATA1) ; 
load_update (Zl, PDATAl) ; 
load_condition (Zl, r[Zl)) ; 
close_configO ; 

DEPTH-INTERVAL BUFFER 

make_config (depthjntervaLbuffer) ; 
enable (Z2) ; enable (F2) ; 
enable (Zl) ; disable (F1) ; 
enable (V); enable (R) ; 
read_addr (Zl) ; read_datal (Zl) ; 
read_addr (Z2) ; read_datal (Z2) ; 
read_addr (F2) ; read_data2 (F2) ; 
read_addr (V) ; 
load_test (Zl, PDATA1 < MEM) ; 
load_test (Z2, PDATA1 > MEM) ; 
load_update (Z2, PDATA1) ; 
load_update (F2, PDATA2) ; 
load_update (V, 1) ; 
load_condition (Zl, never) ; 
load_condition (Z2, r[Zl] && r[Z2]) ; 
load_condition (F2, r[Zl] && T[Z2]) ; 
load_condition (V, 1'[Zl] && r[Z2]) ; 
track_changes (V) ; 
write_addr (R) ; write_datal (R) ; write_data2 (R) ; 
close_configO ; 
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BUFFER TRANSFER 

1* Configuration for conditional buffer transfer: 
if (V) then Zl,Il = Z2,I2 * / 

make_config (buffer-transfer) j 

enable (Z2) ; enable (F2) ; 
enable (Zl) ; enable (Fl) ; 
enable (V); disable (R) ; 
read..a.ddr (Zl) ; read_datal (Zl) ; 
read..a.ddr (Fl) ; read_data2 (Fl) ; 
read..a.ddr (Z2) ; write_datal (Z2) ; 
read..a.ddr (F2) ; write_data2 (F2) ; 
write..a.ddr (V) ; 
load_test (V, MEM == 1) ; 
load_update (Zl, PDATAl) ; 
load_update (Fl, blend(MEM,PDATA2) ) ; 
load_condition (Zl, r[V]) ; 
load_condition (Fl, r[V]) ; 
load_condition (Z2, never) ; 
load_condition (F2, never) ; 
load_condition (V, never) ; 
close_configO ; 
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