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We provide a detailed derivation of both the Euler equation and the Navier-Stokes equation for the case of a three-
dimensional, multi-component, lattice-Boltzmann model, wherein the components may have non-trivial interaction.
The model is derived from the multi-component, lattice-Boltzmann model due to Shan and Doolen (J. Stat. Physics,
81(1/2), 1995, and Phys. Rev. E 54(4), 1996) and Shan’s simulation of Rayléigdrd@convection (Phys. Rev. E
55(3), 1997).

1. Definitions.

The key quantity of interest will be the per-componeineéctional density f,, ;(, t), which is the density of component
o arriving at lattice site” € 3 at timet in direction¢;. The directionss;, i = 0,1,...,18, are all the non-corner lattice
points of a cube of unit radiug,—1,0,1}3. We takecy = (0,0,0), and¢c; - ¢ to be the axis directions. Note that
these directions are really projections from 4D space of 24 lattice points that are equidistant from the 4D origin,

(+£1,0,0,+1) (0,+£1,41,0)

(0,4£1,0,41) (£1,0,=+1,0)

(0,0,+1,41) (£1,%1,0,0)

where the projection is truncation of the fourth component. Thus the flow will be isotropic, but the axial directions
will carry double weight in the discussions below.

Some additional definitions:

* fo =[50, fo1: [5,18)

e )\ is the lattice spacing

T is the time step
e v=\/T

e v; =vc;i=0,1,...18

component density per siteig (7, ) = 3.1° fo.i(7,t)

total density per site ig(7,t) = > po (7, 1)

component velocity per site i, (7, 1) = (3.,°, fo.i (7, 1)01)/ po (7, 1)

The entire lattice Boltzmann computation is then just an iterated, synchronous update of the directional densities
according to:

Joi(FH MG t+7T) = foi(7 1) = [Q(f5)]i 1)



whereQ, : R — R is a collision operator. Many collision operators have been proposed. (See Rasche et
al., Lattice-Boltzmann Lighting, Proc. Eurographics Rendering Symp., 2004, for an operator appropriate for photon
scattering.) Any operator must satisfy two equations:

18

Z Qs (fs)]; =0 conservation of mass )
i=0
and
Z Z [, (f,)];% =0  conservation of total momentum (3)

o 1=0

If external forceF,, (7, t) is applied to componemt, then instead of (3) we must have:

SN Q0 (f)) 5 =7 Y F, (7 t) @)

o =0
Nevertheless, if there is no net momentum flux at the boundaries (e.g. for periodic boundaries), then momentum of
the entire system is still conserved.

Many collision operators satisfy these constraints. When we need little direct control over individual collision events,
a convenient operator is the LBGK operator (Lattice - Bhatnager, Gross, Krook) given by:

% ()]s =~ [foaFt) = 10 (1) 5)

€o

where¢, is therelaxation timeof the s component (a parameter), and

po(d = [ 2 (6'1)]2/( 20%)) =0
D F ) =4 200 ( TR DAL TR DAS DAL IR ﬁ[u}(eq)F) =1,..,6 (6)
Po (1274‘1 4 Wg; i+ Wﬁﬁ iz, (€@ g (eq) Tb[u—(;(eq)P) =7..18

Hered € [0, 1] is a parameter (fraction of density with zero speed at equilibrium)taﬁ‘if) is defined so that (3) or
(4) holds. Specifically, if we use these identities:

. Zz IZUW—FZZ 2Via =0 a€{x,y,z}

. Zl 1271201—1—227 LV, =120 a € {z,y,z}

. Z?:l 2050058 + Zi:7 ViaVig =0 o,f€{z,y,2}, a#p

o Y1 20005+ X vhvis =0 B € {2y, 2}

. Zz 12v2avzﬁ+21 7 Vi Zﬁ*4v a,fe{ry 2z}, a#p

i Z’L 121}2044_22 7 1a_12v4 Ofe{l‘a%z}

then it is easy to verify that

SR =0, @

%

Z 0 £y = poiiy ! ®)

and



regardless of the definition af,*? . To enforce constraint (3) we would then need

ML
ZZ—* (i = 1357
L Poly otV
R TR P

In the absence of external forces, we choose to make,&if's equal, i.e., independent ef Thus we are led to the

definition:
(eq) ., (eq) _ ( paua> (Z p0'> (9)

In the presence of (possibly unequal) external forces, we instead define

0

u—(;(@(l) = qled) ¢ &’Jfa (10)
Po
which guarantees that constraint (4) holds.

The principal reasons for the choice (5) are that it is computationally fast, and it will lead to the Navier-Stokes equations
at the macroscopig( i) level.

We have yet to define an overall, component-independent, fluid velacifyhis is again a matter of choice (within
reason), since there is no apriori-correct weighting for the components. We observe that total momentum at a site

before a collision i$ " p,u, and total momentum after the collision}s_ p,ts+7> ", F,. Ifwe wantpu to match
the cross-collisional average, we must have

i = (Zpgu}Jr;ZFl) /p (11)

All that remains is to derive the macroscopic behavior.

2. The Continuity Equation.

We will use the so-calle€hapman-Enskog expansiagtandard in lattice-Boltzmann modeling. (See, e.g., Chopard
and Droz, Cellular Automata Modeling of Physical Systems, Cambridge Univ. Press, 1998.) We assyingdaat

be written as a small perturbation about some local equilibriféﬁ};
Joi = fol +efs) (12)
wheree is theKnudsen numbemvhich represents the mean free path between successive collisions.
The choice off(®) is not necessarily unique. The constraints are that it carries the density and the momentum,

specifically:
ST = b, (13)

and

S w s = pot (14)

From (7) and (8), it is easy to find a suitable choicej(f)?ﬁ: use (6), and replace every instanceipf*? with .



We want to consider system behavior at multiple time scales as both lattice spacing and time step approach 0. We
partition the time scale as

t t
t=K=+(1-K)3 (15)
€ €
wherety = o(e), t1 = o(e?), andK € [0, 1]. Similarly, we write distance
=20 (16)

€

whererj = o(e). A variety of different behaviors in the limit(— 0) can then be achieved. K = 0, we would

obtain the diffusion equation of Rasche et al., but we do not make that assumption here.
Note that the relationship among the partials is given by:
0 0 5 0

a ‘o o (17)
% = eaf for «ae€{zx,y,z2}
a Oa
Now let
vA = (9/0t,V)
= (e@/(’)to + 628/8t1, €V0)
= (e0/0to + €20/0t1,€0 /0oy, €0 /0oy, €d/Oros)
and expand the left side of (1) in a Taylor series:
AG) - VA2
(7 - VA art) + LAV N iy 1 — 0, ) 18)

2!

If we sum overi, the right side vanishes due to conservation of mass (2). If we then divide dybstitute (12) and
(17), and equate coefficients df, we obtain

f<o> .
0.1 +Z Vofl) =0 (19)
that is P
Pa
_ 20
Bty + Vo - (poti) =0 (20)

the continuity equatiorat time scale,.

3. The Euler Equation.

The continuity equation arises from the conservation of mass (2). Next we want to use the conservation of total
momentum (4), so we will multiply both sides of (18) b}, sum overi, sum overo, divide by, and then equate
coefficients ofe'. The external forces lend a bit of a wrinkle here. After multiplying (18)hysumming oves and

o, and dividing byr, we obtain an equation whose right-hand sid§F:,, and we need to identify the coefficient

of ¢! therein. Fortunately, this is straightforward. From (11) we have:

Y Foo= (2/7) pa—Zpou;
o

= (2/7) Zme
= (2/7)( ZZ (1)

Zmevz

(21)



fwelet B = (2/7)(— Y, 3, /1)) then we have H = 3 F,,, and our resultis:

ZZ 8f[(”)/8t0+22{ Vf“”}qr:ﬁ (22)

which can be simplified to:
O(pu
Otg

I > Vo) =H (23)

wherel1" denotes thenomentum tensdrased ory'”, i.e.,

(0)

Zi (Oz) ’L2£E Z fs—oz Uzzvzy Z fg' i VizgViz
P = | ¥, [y 3, f;? D f;?vwvw (24)
Zi ffs,oi)vmviz Zz foyz vlyviz Zi fo’,z 1z
We can use the identities on thgs to write this as:
v* (454) po + pouil Potzty Potipti;
H((J'O) = Po Uz Uy v’ (1 d) Po + Potl Pollylz (25)
Poizti Doty v* (13%) po + poui?
and then substitute into (23) to obtain:
o(pu 1—-d o .,
éﬁo) + Vo - [ (2) pl + puu} =H (26)

All that remains is to give an appropriate definitionppéssureor this system. Assume that, for those external forces,
F,, that contribute to pressure (typically, all component interactions but not gravity), we cangdotéraial i.e., a
functionV with the property thal’V' = — >~ _ F,,. We then define pressure as

1-d
p=v < 5 >p+V 27)
so that L4
I s
Vp=u (2) Vp— XU:F(, (28)
and, in particular,
1—-d -
Vop = v* (2> Vop— H (29)
We can then write (26) in the form
O pil
(pi) + Vo - [pit] = —Vop (30)
dto
It turns out that we can now facterfrom the left hand side. If we proceed with the differentiation:
0 ou
ap i+ at“ (Vo - pil) i@ + (pil) - Voii = —Viop (31)

and apply the continuity equation at timescij€20), we see the first and third summands on the left cancel, and we

have:
ot R
—— 41 Vil = — (1/p) Vop (32)
Oto

This is theEuler equation of hydrodynamigat scalety), which is just the Navier-Stokes equation without the dissi-
pative effects of viscosity.



4. Timescalet;.

Now we need to repeat the procedures above forttterms. If we sum both sides of (18) overdivide by 7, and
equate coefficients ef, we get

0 (1) 2o, O (0) 0] -9 N o O 0 ) _
87150 zi:fa,i +Xi:vl'v0fa,i +87151 Zi:fa,i +(T/2)VO' [Vo 'HU } +7%¥U1'V0fg’i —‘,—(7/2)87% zi:fa,i =0
(33)
Using (13), (14), and the (related) fact thal; fé,li) = 0, we can simplify this to

sz Vofl +—+( /2)¥0 - Vo - T | ”a% (Vo - (poi)) + (7/2 )8t0 {Zﬁj —0  (34)

Now the fourth and fifth terms on the left can be combined by the continuity equation at timgscale result can
then be combined with the third term:

> v vof(”+a—+( /2)Vo {83 (po >+vo~H§P>} =0 (35)

The term in square brackets can be rewritten in termg, @f,, andp. If we multiply both sides of (32) by, and
reverse the steps of (30) - (32) we obtain

0(pot .
(gt ) + Vo - [potitd] = =(ps/p)Vop (36)
0
Thus, from (25) we have
2 9(pst0) 1—d -
(0) — -
&OWHU+VOH Oty + Vo - 5 pol + potitdl
,(1-d
= ~(pa/P)Vop + 07 | —5= ) Vors (37)

We still need to relate th¢g(™) term of (35) top, p,, p, andi, and this is trickier. We return to (18), multiply hy,
divide by 7, and sum ovei. This yields

o o)+ Vo 9 = 3 2 1, (1) (39

%

If we were also to sum over, we would be repeating the derivation of the Euler equation. We cannot use conservation
of momentum here, since that does not apply on a per-component basis, but we can use the explicit form of the collision

operator (5) to obtain _ .
V4 _ Vi T, e
27 Qolholl = =30 [fou = 2 (39)

%

Thus from (37), (38), and (39) we have
—(po/p)Vop + 02 1-4d v - _ Z
Po/P)VoOP TV B 0Ps =

1 o . -
i [””(“ —d ) ey &

Foi = 150

6755

f(0)+ f f(GQ}

ETEU

%

where the last equality uses (8) and (10).



Now we solve for thef(") term:

B (T — @led) TE, 1—d
Yool =P ( ) & Te —T7éy [—(pa/p)voerv2 <2> Vopa} (40)

- €
i

We still need to eliminate th&(©?), but here we can just use (21) and sum (40) evé obtain

_ e ) —
_l F M ZfUF + Tvop ZEO’ Po — (12d> TZEO'VOpU (41)

2e
So
o (i — (9 TV 1—-d
% (ps/p) l ZF + - Z&F TALL ng po — (2> 7Y &Vops|  (42)
and
oTF, 1-d
Z f(l) = & Z —7& [—(Po/l-))vop+v2 (2 ) Vopa}
TVop 1—-d
— (pa/p) ZF + - ngF + Zfa Po =V 5 TZfoVOPo (43)
If we now return to (35) and substitute expressions obtained in (37) and (43), we get
Opo - 1—-d
87/2:1 = —g—Vo F, + (1€ —7/2)V - [—(PJ/P)VOP+ v? <2 ) VOPU}
bV I R I e S e (2 1S e v (44)
0 P % . o c — ol'o P - oPo 2 — o VopPo
5. Timescalet. We can now recover behavior at timescalédd e x (20) + €2 x (44). We get
Opo - 1—d
% +V-(pol) = —&7V-Fo+ (16 —T/2)V - {—(pg/p)Vp + v? <2> Vp(,}
+ 12ﬁ+25F+—Z§p _2 (14 > & Vp (45)
2 ~ g ~ g oMo 2 ~ ag g
It is worth noting that if we sum (45) over, we obtain
Op
V- (pi)) =0 (46)

ot
the ordinary continuity equation at timescalé'hus the interesting, per-component behavior is contained in (45).

6. Forces.

We assume the interaction potentil, is of the form:

= (1/2) Z Z Go1,05 %Yo, (P51 ) Vo, (Poy) (47)
a1 g2
whereG,, », = Go, .o, iS @ symmetricstrength of interactiomnd ¥, is aneffective densitySince

VvV = ZZGal,Uz \I](J'l (pol)\IIIO-Q (pgg)Vpgz (48)

o1 02



we can take

F(_;l = _\I’Ul (po'l) ZGUl,Uij:fz (poz)vpaz (49)

o2

so thatVV = — 3" _ F,, as required.

To include external forces that are not interactions, e.g., gravity and buoyancy, we write instead

—

FUi = _‘Ilo"i(po'i) ZGU’i7UjW/O'j (po'j)vpo'j + po'ig;i (50)

whereg,;, carries the non-interactive external force on compoagnNow VV = — 3" FT, + >, Pode, and so we
need to correct (28) and all subsequent expressions invoWjngn particular, (32) and (45), by replacingp with
Vp — >, Poge Wherever it occurs.

7. Thermal Energy.

In his simulation of Rayleigh-Bnard convection (Physical Review E 55(3), March 1997), Shan argues that when
viscous and compressive heating effects can be neglected, temperature can be modeled as a separate component
whose molecular mass is (relatively) 0. Assume we have only two components where the second is thermal energy.
To simplify notation, assumg = & = £. Then from (45) and (28) we have

) —d o =
% + V- (pat)) =7V - [(5 —1/2)v* <l2> {pplvpz - ppgvpl} +¢ {’D;Fl - p;FQH (1)

If we now use (49) and assume tlfat; = 0 for ¢ # j, we can collect coefficients of density gradients to obtain

) . 1—d 1—d
%—Q—V-(pgu) =7V {”pl ((5 —1/2)? + gmgagzm;) Vs — %2 ((g —1/2)? + 5@1G11@3> Vpl}
(52)
If the relative densities now approach limits,/p — 1 andps/p — 0 we get
0 . 1-d
% + V- (pt6) =7V - K(f —1/2)v* <2 ) +€\I’2G22‘I’/2> Vﬂz] (53)
If we also haveiss = 0, we get
)
% + V- (p2ti) = DV?p, (54)

whereD = 7(¢ — 1/2)v? (15¢). Thus thermal energy is advected and diffused.

8. Phase Transition.

Again suppose we have two components where the second is thermal energy. Assume= 0, except forGy4, so
V = G1192(p,). From (27) we have

p =10 (1;d> (p1+ p2) + G11 %3 (p1) (55)

If G11 is negative and’; is increasing and bounded, there can be a range javer whichdp/dp, is negative, which
signals a phase transition.



9. The Navier-Stokes Equation.

The remaining step is to derive the Navier-Stokes equation. The procedure here is similar to what we have already
done. In particular, we need to multiply both sides of (18yhysum over, sum overlo, divide byr, and then equate
coefficients of?.

We obtain:
o(ptd o
gt)l) *ZU:VO G + (7/2) a(tz 7o (ZU: Vo ~H5,°)> + (7/2)202% (Vo8 =0 (56)

whereII$" is the momentum tensor of (24) wif®) replaced byf(), andS‘" is a third-order tensor:

SO, ) agy = Y viatigvin foi (71)  wherea, 8,5 €{xy,z} (57)

We can combine the third and fourth summands on the left of equation (56) by using the preliminary form of the Euler
equation (23). This gives us:

8((%1 +ZV I+ (/)5 <H+ZV0 H“))+(T/2)ZU:VO-(V0-S§,°>)=0 (58)

We now obtain the preliminary form of the Navier-Stokes equationd83) + €2 x (58):

l (ZF +ZV H<0>+;V.<v.g§0))] :zg:ﬁ” (59)

Reducing this equation to its conventional form will require considerable effort.

3(

First, we can use (28) to replace the right side, and we can use the identitiesugg tiheeduce the third-order tensor,
SV (VS0 = (2/3)0 [V(V - (o) + (1/2)V%(p)] (60)

Making these substitutions, we have

+ ;[&0 (;F +ZV I ) {V(V(M)H;W(pﬁ)ﬂ

(61)

The term)__V - II,, on the left-hand side of (61) contaips_V - 1Y as a summand. We have already seen (25)
that we can write this summand as

ZVH

The first term of (62) will cancel the corresponding term on the right-hand side of (61). The second term of (62) can
be combined with the first term on the left-hand side of (61), using the argument of (31), tofadterare left with

ou Te O - Tv? 1
g (O 1100 7 A pil V2 (pii
(atJru Vu) + e% V-5 + 3 Do <§U F, + EU AVRRIS >+ 3 {V(V (pu))+2v (pt)

= —Vp+ D peds (63)

- (piuid) (62)



For differentiation with respect t, we will use an order 1 approximation jnand. Thus

Te O TE 0
©Y .11 - tv. |2 (0)
o (Zvw) = (g sn)

_TE 0 ,1—-d
= 2V <8t0 5 pI) (order 1)

- _#V(V-(;}ﬁ)l) (continuity equation)
2(1 _
- _WV(V-W)) (64)

Making this substitution into (63), we have

ou TE 6 1—-d T2
bl (1) - - . e > 'Y o2
(3 + - Vu)—i—e g V11, + g Fo4710? 1 )V (V- (pt)) = —Vp+ % Prdo = ¢ V(pid)
(65)

All that remains is to reduce the second and third terms on the left-hand side of (65). For the second term, observe that

(eHgl)) 5 Zeftg’li)vmvw for o, B €{X,y,z} (66)

K2

and so we need an expression igfﬁll) in terms ofp and 4. If we insert the definition of2, (5) into the Taylor
expansion (18) and simply equate coefficients'gfve obtain

G+ 5 Vol = = (1) 4 et~ £50) (67)
and so

et = —erty (Gt Vo) = (180 - 1550 ©8)
and

("—‘H((Tl))aﬂ = —€7s ( ' (ftof((,?i)viai)w) —€e7é, (Z Ui - Vofﬁ?m&w) - Z (f(o) f(eQ)) ViaVig  (69)

We will now reduce each of the three principal summands on the right-hand side of (69). We again resort to an order
1 approximation, i.e.,

pod i=0
fé?i) (7 1) =4 2ps (%jd + 520; 1) i=1,..,6 (70)
po (52 + @i @) i=7,..1

(eq)

with a like expression foy, ", obtained by replacing with (<),

The rightmost term of (69) vanishes. The difference #iaas a factor, and it is easy to verify that, viavigvi, = 0
foranya, 3, .

To the leftmost term on the right-hand side of (69) we apply the chain rule:

af(O) _ af(O) apo Z afé?z) a(paﬁ)’y
ato apg 8150 (f?(pg’lv_l:),Y ato

(71)

ve{X,y,z}
The first term on the right-hand side of (71) is now easily reduced. From the order 1 approximation we have:
PYLO) d i=0
8f‘” = 11;;1 i=1,..,6 (72)
po 4 i=7,.,18



and by the continuity equation
Ips _ .
57t0 = —Vo - (poii) (73)

The remaining terms on the right-hand side of (71) contribute nothing. To see this, observe that

o) 0, =0
s i !fl,...,G (74)
Pty e =7,..,18
and by (36)
(9(6,0;)u) = —Vo - [potit] — (po/p)Vop (75)

and so each summand will have a single as a factor. Again we rely on the identity;, viovigvi, = 0. Thus the
total contribution to (69) is

0 . (1—d
—erlo | D g faiviavis | = 76 [V (pe®)] { =5 ) v*0ap (76)
— Oto 2
whered, s denotes Kronecker delta.

Finally, the middle term on the right-hand side of (69) can be handled similarly. We observe that, to order 1,

dv; - Vopa i=0
Uj - Vof(o) 2( Ty 4 - Vope + 12 —=—=U; - Vol(pst; - u)) i=1,..,6 77
(1 U; - Vope + 1211;2”2 Vo(po; - u)) i=7,..,18
Then again we can use the identi}y, v, v;svi, = 0, to obtain
. (0) _ T 9(pou~)
—€e7éy (Z Ui - Vof,, Um%ﬂ) = 192 Z vavwviwia 2% =
i v.5e{x,y,z} ?
v? a(paua) a(pouﬁ)
= — _— o . 0’“ 7
¢y 3 K 95 + o >—|—5 sV - (p u)] (78)
Collecting (76) and (78), we have reduced the second term of (65):
2 1—-d 1
IO — 2 c_ -4 . —» 1o, = v
ONREEES gga[(g ) VI (] + V)] 79

Thus (65) can be written

(G V>+T€aZfa = G- - 26V (V- (o)

2 i 3 4 &
- Tv? 2 -
- VP + Z Po9o — ? (1 - 2§U)V (pgu) (80)

The final term, % a; Yoo F.,, would be troublesome in the general case, but here we can take advantage of its explicit
form. In particular, ifw «: (po;) 1s the effective density, then to order 1 we can assume it is the identity function. Thus

we have
6t0 Z Z [pa (Z Gaa’v Pa’“)]) -V (po’ﬁ) <§U - Z GO’O',VpO'l>‘| (81)

If we insert (81) mto (80) and move to the incompressible limit, (p,%) — 0, we recover the conventional Navier-
Stokes equation:
ol 7'1}2

5 i Vi=—(1/p)Vp+ Z Po/P)Gs 6 (1= 2¢,)V*(po D) (82)

11



