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Abstract

The realistic generation of virtual doubles of real-world actors has been the focus
of computer graphics research for many years. However, some problems still re-
main unsolved: it is still time-consuming to generate character animations using
the traditional skeleton-based pipeline, passive performance capture of human ac-
tors wearing arbitrary everyday apparel is still challenging, and until now, there is
only a limited amount of techniques for processing and modifying mesh anima-
tions, in contrast to the huge amount of skeleton-based techniques.

In this thesis, we propose algorithmic solutions to each of these problems. First,
two efficient mesh-based alternatives to simplify the overall character animation
process are proposed. Although abandoning the concept of a kinematic skele-
ton, both techniques can be directly integrated in the traditional pipeline, gener-
ating animations with realistic body deformations. Thereafter, three passive per-
formance capture methods are presented which employ a deformable model as
underlying scene representation. The techniques are able to jointly reconstruct
spatio-temporally coherent time-varying geometry, motion, and textural surface
appearance of subjects wearing loose and everyday apparel. Moreover, the ac-
quired high-quality reconstructions enable us to render realistic 3D Videos. At the
end, two novel algorithms for processing mesh animations are described. The first
one enables the fully-automatic conversion of a mesh animation into a skeleton-
based animation and the second one automatically converts a mesh animation into
an animation collage, a new artistic style for rendering animations.

The methods described in the thesis can be regarded as solutions to specific prob-
lems or important building blocks for a larger application. As a whole, they form

a powerful system to accurately capture, manipulate and realistically render real-
world human performances, exceeding the capabilities of many related capture
techniques. By this means, we are able to correctly capture the motion, the time-
varying details and the texture information of a real human performing, and trans-
form it into a fully-rigged character animation, that can be directly used by an
animator, or use it to realistically display the actor from arbitrary viewpoints.



Kurzfassung

Seit vielen Jahren ist die realistische Erzeugung von virtuellen Charakteren ein
zentraler Teil der Computergraphikforschung. Dennoch blieben bisher einige Pro-
bleme ungeist. Dazu ahlt unter anderem die Erzeugung von Charakteranimatio-
nen, welche unter der Benutzung der traditionellen, skelettbasierteitzenisn-

mer noch zeitauf@ndig sind. Eine weitere Herausforderung stellt auch die pas-
sive Erfassung von Schauspielern in adlicher Kleidung dar. Da@iber hinaus
existieren im Gegensatz zu den zahlreichen skelettbasiertexizemsnur wenige
Methoden zur Verarbeitung und \darderung von Netzanimationen.

In dieser Arbeit pasentieren wir Algorithmen zurdsung jeder dieser Aufga-
ben. Unser erster Ansatz besteht aus zwei Netz-basierten Verfahren zur Ver-
einfachung von Charakteranimationen. Obwohl das kinematische Skelett beisei-
te gelegt wird, Bnnen beide Verfahren direkt in die traditionelle Pipeline inte-
griert werden, wobei die Erstellung von Animationen mit wirklichkeitsgetreu-
en Korperverformungen eraglicht wird. Im Anschluss g@sentieren wir drei
passive AufnahmemethodeiarfKorperbewegung und Schauspiel, die ein defor-
mierbares 3D-Modell zur Reasentation der Szene benutzen. Diese Methoden
konnen zur gemeinsamen Rekonstruktion von zeit- und raassig kolrenter
Geometrie, Bewegung und Obé&dhentexturen benutzt werden, die auch zeit-
lich veranderlich sein drfen. Aufnahmen von lockerer und @lglicher Klei-

dung sind dabei problemlosaglich. Dafiber hinaus eriglichen die qualita-

tiv hochwertigen Rekonstruktionen die realistische Darstellung von 3D Video-
Sequenzen. Schlie3lich werden zwei neuartige Algorithmen zur Verarbeitung
von Netz-Animationen beschrieben.aWend der erste Algorithmus die voll-
automatische Umwandlung von Netz-Animationen in skelettbasierte Animatio-
nen ernbglicht, erlaubt der zweite die automatische Konvertierung von Netz-
Animationen in so genannt&nimations-Collagen, einem neuen Kunst-Stil zur
Animationsdarstellung.

Die in dieser Dissertation beschriebenen Methodénnlen als bBsungen spe-
zieller Probleme, aber auch als wichtige Bausteiri@3grer Anwendungen be-
trachtet werden. Zusammengenommen bilden sie ein leistimngss System

zur akkuraten Erfassung, zur Manipulation und zum realistischen Rendern von
kuinstlerischen Aufihrungen, desseréhigkeiteriiber diejenigen vieler verwand-

ter Capture-Techniken hinausgehen. Auf diese Weisen&n wir die Bewe-
gung, die im Zeitverlauf variierenden Details und die Textur-Informationen ei-
nes Schauspielers erfassen und sie in eine mit @olBger Information verse-
hene Charakter-Animation umwandeln, die unmittelbar weiterverwendet werden
kann, sich aber auch zur realistischen Darstellung des Schauspielers aus beliebi-
gen Blickrichtungen eignet.



Summary

In computer graphics, it is still challenging to authentically create virtual doubles
of real-world actors. Although the interplay of all steps required by the traditional
skeleton-based animation pipeline delivers realistic animations, the whole process
is still very time-consuming. Current motion capture methods are not able to
capture the time-varying dynamic geometry of the moving actors and need to be
integrated with other special acquisition techniques. Furthermore, dealing with
subjects wearing arbitrary apparel is still not possible. Another problem is that,
even if it was possible to capture mesh animations, it would still be difficult to
post-process or modify them. Not many papers in the literature have looked into
this problem so far.

In this thesis, we propose algorithms to solve these problems: first, we describe
two efficient techniques to simplify the overall animation process. Afterwards,
we detail three algorithmic solutions to capture a spatio-temporally coherent dy-
namic scene representation even from subjects wearing loose and arbitrary every-
day apparel. At the end, we also propose two novel algorithms to process mesh
animations. By this means, real-world sequences can be accurately captured and
transformed into fully-rigged virtual characters and become amenable to higher-
level animation creation, e.g. by applying non-photorealistic rendering styles.

This thesis consists of four parts:

Part | begins with the description of some general theoretical background informa-
tion and elementary techniques shared by many projects in this thesis. Thereatfter,
the studio used to acquire the input data for the projects described in this thesis is
presented.

Part 1l reviews the steps involved in the traditional skeleton-based character ani-
mation paradigm and proposes two mesh-based alternatives to simplify the over-
head of the conventional process. Both techniques can be directly integrated in
the traditional pipeline and are able to generate character animations with realistic
body deformations, as well as transfer motions between different subjects.

Part 11l describes three algorithmic variants to passively capture the performance
of human actors using a deformable model as underlying scene representation
from multiple video streams. The algorithms jointly reconstruct spatio-temporally
coherent time-varying geometry, motion, and textural surface appearance even
from subjects wearing everyday apparel, which is still challenging for related
marker-based or marker-free systems. By using the acquired high-quality scene
representations, we also developed a system to generate realistic 3D Videos.



Vi

Part IV proposes two novel techniques to simplify the proogssf mesh anima-

tions. First, an automatic method to bridge the gap between the mesh-based and
the skeletal paradigms is presented. Thereafter, a method to automatically trans-
form mesh animations into animation collages, a new non-photorealistic rendering
style for animations, is proposed.

Although the methods described in this thesis are usually tailored to deal with
human actors, their fundamental principles can also be applied to a larger class
of subjects. Each method described here can be regarded as a solution to a par-
ticular problem or used as a building block for a larger application. All together,
they exceed the capabilities of many related capture techniques and form a pow-
erful system to accurately capture, manipulate, and realistically render real-world
human performances.
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Zusammenfassung

Die Erstellung authentischer virtueller Doubles ist eine défRggn Herausforde-
rungen in der Computergrafikforschung. Obwohl das Zusammenspiel aller Schrit-
te, die fir traditionelle Skelett-basierte Animationen notwendig sind, das Erzeu-
gen realistischer Animationen erlaubt, ist der komplette Prozess immer noch sehr
zeitaufwandig. Moderne Motion-Capture Techniken sind nicht in der Lage die
zeitvenderliche, dynamische Geometrie sich bewegender Darsteller aufzuneh-
men, und nissen mit speziellen Erfassungstechniken kombiniert werden, um dies
zu erndglichen. Weiterhin ist es nichtdglich, Darsteller aufzunehmen, die be-
liebige Kleidung tragen. Auch wenn esglich ware, Netz-Animationen aufzu-
nehmen, eire es immer noch eine Herausforderung diese weiterzubearbeiten oder
nachtaglich zu veandern. Bisher wurde diese Problematik in der Literatur kaum
beachtet.

In dieser Doktorarbeit stellen wir Algorithmen vor, die diese Problaiser: Zu-

erst beschreiben wir zwei effiziente Methoden, um den gesamten Animationspro-
zess zu vereinfachen. Danach gehen vainer auf drei Algorithmen ein, die es

uns erndglichen, raum-zeit-karente dynamische Szenen von Darstellern, wel-
che beliebige Kleider tragen, zu erfassen. Anschliel3end zeigen wir zwei neue Al-
gorithmen, um Netz-Animationen zu verarbeiten. Dadurch sind wir in der Lage,
beliebig komplexe Sequenzen akkurat zu erfassen und in virtuelle Charaktere um-
zuwandeln, welche mit abstrakteren Animationstechniken einfach bearbeitet wer-
den lonnen.

Diese Arbeit besteht aus vier Teilen:

Teil | liefert einige generelle theoretischer Hintergrundinformationen und be-
schreibt Basismethoden, welche von vielen Projekten dieser Arbeit genutzt wer-
den. Danach g@sentieren wir das Studio, in dem die Eingabedaiedit Projekte
aufgenommen wurden.

Teil 1l erlautert die Techniken, mit denen in der traditionellen Skelett-basierten
Animation gearbeitet wird und scgt zwei Netz-basierte Alternativen vor, die
den Overhead des konventionellen Prozesses reduzieren. Beide Metboden k
direkt in den traditionellen Arbeitsverlauf integriert werden und @ghichen das
Erstellen von Animationen mit realistischerdioerbewegungen, und ebenso das
Ubertragen von Bewegungen zwischen verschiedenen Darstellern.

Teil Il beschreibt drei Techniken, die es erlauben, Auftritte menschlicher Darstel-
ler basierend auf deformierbaren Modellen passiv aus mehreren Vidieestizu
erfassen. Die Algorithmen rekonstruieren raum-zeitédente zeit-veinderliche
Geometrie, Bewegung und Obé&dhenbeschaffenheit von Darstellern, sogar
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wenn diese beliebig weite Kleidung tragen, was auch heute eime grol3e Her-
ausforderungifr verwandte Marker-basierte oder Marker-lose Systeme darstellt.
Zudem stellen wir ein System vor, welches die erfassten hoch-qualitativen Daten
verwendet, um realistische 3D Videos zu erstellen.

Teil IV schlagt zwei neue Methoden zur vereinfachten Bearbeitung von Netz-
Animationen vor. Zuerst beschreiben wir einen automatischen Algorithmus um
die Lucke zwischen Netz-basierten und Skelett-basierten Techniken zu schliel3en.
Anschlie3end @sentieren wir eine Methode um aus Netz-Animationen automa-
tisiert Animations-Collagen, einen neuen nicht-photorealistische Rendering-Stil
fur Animationen, zu erstellen.

Obwohl die in dieser Arbeit beschriebenen Technikbhcherweise auf das Ar-
beiten mit menschlichen Darstellern optimiert sind, erlauben die zugrundeliegen-
den Prinzipien auch ihre Verwendungrfeine breitere Klasse von Darstellern.
Jeder der hier vorgestellten Algorithmen kann absling tir ein spezifisches Pro-
blem betrachtet werden oder als Baustéindine gbl3ere Anwendung verwendet
werden. Zusammengenomm@hersteigen sie diedhigkeit vieler anderer Ver-
wandter Methoden und stellen ein leistungsstarkes Systeakkurate Erfassung,
Manipulation und realistischem Rendering von komplexen Darbietungen mensch-
licher Darsteller dar.



Acknowledgements

This thesis would not have been possible without the help and support of many
people. First of all, | would like to thank my supervisors Prof. Dr. Hans-Peter
Seidel and Prof. Dr. Christian Theobalt. Prof. Seidel gave me the opportunity
to work in an excellent and inspiring environment as the Max-Planck-Institut f
Informatik (MP1) and supported me pursuing my own research interests.

| am also grateful to Prof. Theobalt, who always had time to discuss ongoing

and future projects. | also thank him for the invaluable scientific guidance in my

research. He has been working with me since the beginning of my PhD and we
worked together on all projects described in this thesis. | also thank him for being
a reviewer of this dissertation.

Furthermore, | would like to thank Prof. Dr. Marcus Magnor for being my senior
supervisor during the beginning of my PhD, Prof. Dr. Sebastian Thrun for host-
ing me in Stanford during my exchange research visit, and Prof. Dr. Jessica K.
Hodgins who have agreed to be part of my graduation committee.

Special thanks go to all my former and present colleagues in the Computer Graph-
ics Group at the MPI. Their cooperation, competence, creativity, and steady moti-
vation makes the MPI the special place itis. In particular, | owe thanks to Naveed
Ahmed, Christian RBssl, Carsten Stoll and Rhaleb Zayer, who were co-authors on
some of my papers, Hitoshi Yamauchi for the support with the geometric model-
ing library, and Andreas Pomi for helping with the studio.

| also thank the people who kindly allowed me to record and scan them for my
research: Yvonne Flory, Samir Hammann, Maria Jacob, Natascha Sauber and
Akiko Yoshida. Thanks to many colleagues at the MPI for proofreading parts of
my thesis, including Boris Ajdin, Martin Fuchgji@en Gall, Nils Hasler, Torsten
Langer, Bodo Rosenhahn, Oliver Schall, Art Tevs and Gernot Ziegler. | am also
grateful to the secretaries, Sabine Budde, Conny Liegl and Sonja Lienard, the
non-scientific employees of the institute, Michael Laise and Ax@pel, and the
helpdesk team.

| also acknowledge the Max-Planck Center for Visual Computing and Communi-
cation, the International Max-Planck Research School for Computer Science, and
the EU-Project 3DTV within FP6 under Grant 511568 for their partial financial
support during my PhD studies.

Finally, I would like to thank my whole family and in particular my parents, Apari-
cio de Aguiar and Maria Auxiliadora de Aguiar, who always encouraged and sup-
ported me.






Contents

1 Introduction 1
1.1 Main Contributions and Organization of the Thesis . . . . .. .. 3
1.1.1 Partl- Background and Basic Definitions . . . . . .. .. 3
1.1.2 Part Il - Natural Animation of Digitized Models . . . . . . 4
1.1.3 Partlll - Towards Performance Capture using Deformable
Mesh Tracking . . . ... ... .. ... .. ....... 4
1.1.4 PartlV - Processing Mesh Animations . . . . . ... ... 5
| Background and Basic Definitions 7
2 Preliminary Techniques 9
2.1 TheCameraModel . ... ... ... ... .. .. ........ 10
2.1.1 MathematicalModel . . ... ... ............ 10
2.1.2 CameraCalibration . . . .. ... ... .......... 11
2.1.3 Geometryof StereoCameras . . . . . .. ... ...... 11
2.2 ModelingHumans . . . ... ... ... .. .. 12
2.2.1 ModelingtheShape . .. ... ... ... ... ..... 13
2.2.2 Modeling the Appearance . . .. ... ... ....... 13
2.2.3 Modelingthe Kinematics . . . . ... ... ........ 14
2.3 Computer Vision Algorithms . . . . . . .. ... ... ... ... 14
2.3.1 Background Subtraction . . .. ... ... ........ 14
2.3.2 OpticalFlow . . ... ... ... ... ... ... ... 15
233 SceneFlow . ... ... ... ... . ... .. .. ... 17
234 ImageFeatures . .. ... ... ... ... . ... ... 18
3 Interactive Shape Deformation and Editing Methods 19
3.1 RelatedWork . . ... .. .. ... .. .. ... ... 20
3.2 Mesh Editing Techniques . . . . . ... ... ... .. ...... 22
3.2.1 Guided Poisson-Based Method . . . . . . ... ... ... 22

3.2.2 Guided Laplacian-Based Method . . . .. .. ... ... 24



Xii

CONTENTS

3.3 lIterative Volumetric Laplacian Approach . . . . . .. ... ...

4 Recording Studio: Data Acquisition and Data Processing

4.1 Introduction . . . . . . . . ...
4.2 Related Acquisition Facilities . . . . . ... ... ... .....
4.3 RecordingStudio . . . ... ...
431 StudioRoom . .. ... ... ... .. ... ...
432 CameraSystem . . .. .. ... .. ... ... ...
4.3.3 LightingSystem . ... .................
4.3.4 FullBodylLaserScanner . . . ... ...........
4.4 DataAcquisition . . . .. ... ..
441 Pre-Recording . .. .. ... ... ...
442 Recording . . . . . . ...

[l Natural Animation of Digitized Models

5 Problem Statement and Preliminaries
5.1 RelatedWork . . . . . . . . . . . .o

6 Poisson-based Skeleton-less Character Animation
6.1 OVErview . . . . . . . o o i e
6.2 Prototypelinterface . . ... ... ... ... ... ...,
6.3 Animating Human Scans using Motion Capture Data . . . . .
6.3.1 Mesh-Based Character Animation . . . ... ... ..
6.3.2 Video-driven Animation . . . . ... ... .......
6.4 ResultsandDiscussion . . . . . ... ... .. ........

7 Laplacian-based Skeleton-less Character Animation
7.1 OVEIVIEW . . . v o o o e e e e e e e e e
7.2 Animating Human Scans with Motion Capture Data . . . . . .
7.2.1 Mesh-Based Character Animation . . . .. ... ...
7.2.2 Video-driven Animation . . . ... ... ... .....
7.3 Resultsand Discussion . . . . .. ... .. ... ... ...,

Il Towards Performance Capture using Deformable Mesh
Tracking

8 Problem Statement and Preliminaries
8.1 RelatedWork . . . . . . . . . . . ..
8.1.1 Human Motion Capture . . . .. ... ... ......

57



CONTENTS Xiii

8.1.2 Dynamic Scene Reconstruction . . .. .. ... .. ... 62
813 3DVideo . .. ... .. ... 64
9 Video-Based Tracking of Scanned Humans 65
9.1 Framework . . . . . . . ... 66
9.1.1 Acquisition and Initial Alignment . . . . .. ... .. .. 66
9.1.2 Step A: Purely Flow-driven Tracking . . .. .. .. ... 67
9.1.3 Automatic Marker Selection . . . . ... ... ... ... 69
9.1.4 Step B: Flow-driven Laplacian Tracking . . . . . ... .. 70
9.2 ResultsandDiscussion . . . . .. ... ... ... ..., 72
10 Feature Tracking for Mesh-based Performance Capture 79
10.1 Overview . . . . . . . . e e 80
10.2 Hybrid 3D Point Tracking . . . . ... ... .. ... ...... 81
10.3 Feature-based Laplacian Mesh Tracking . . . . . ... .. .. .. 84
10.4 Resultsand Discussion . . . . . . . .. .. ... ... 86
11 Video-Based Performance Capture 93
11.1 OVeIVIEW . . . . . o e e 94
11.2 Capturing the Global ModelPose . . . . . ... ... ... .... 96
11.2.1 Pose Initialization from Image Features . . . . .. .. .. 97
11.2.2 Refining the Pose using Silhouette Rims . . . . . . .. .. 99
11.2.3 Optimizing Key Handle Positions . . . . . ... .. ... 100
11.2.4 Practical Considerations . . . .. .. ... ........ 101
11.3 Capturing Surface Detail . . . . .. ... ... ... ... .... 102
11.3.1 Adaptation along Silhouette Contours . . . . . ... ... 102
11.3.2 Model-guided Multi-view Stereo . . . . . . .. ... ... 103
11.4 ResultsandDiscussion . . . . . .. .. . ... .. ... ... 104
11.4.1 Validation and Discussion . . . . . ... ... .. .... 106
12 High-Quality 3D Videos 111
12.1 Creating3D Videos . . . . . . . . . . . 112
12.2 Resultsand Discussion . . . . . . . . ... ... oL, 114
IV Processing Mesh Animations 117
13 Problem Statement and Preliminaries 119
13.1 RelatedWork . . . . .. ... ... ... 120
13.1.1 Motion-Driven Mesh Segmentation . . . ... ... ... 120
13.1.2 Skeleton Reconstruction . . . .. ... ... ....... 121

13.1.3 Character Skinning . . . . . . . . ... ... .. 121



Xiv

CONTENTS

13.1.4 Editing Mesh Animations . . . .. ...
13.1.5 Shape Matching . .. ... .......

14 Reconstructing Fully-Rigged Characters

14.1 Overview . . . . . . o v i e e e e
14.2 Motion-driven Segmentation . . . . . . ... ..
14.3 Automatic Skeleton Extraction . . . . . ... ..
14.4 Motion Parameters Estimation . . . . ... ...
14.5 Skinning Weight Computation . . . . .. .. ..
14.6 Resultsand Discussion . . . .. ... ... ..

15 Designing Non-Photorealistic Animation Collages

15.1 Overview . . . . . . . . e
15.2 Rigid Body Segmentation. . . . .. .. .. ...
15.3 Building AnimationCells . . . . . .. ... ...
15.4 AssemblingtheCollage . . . . . ... ... ...
15.4.1 Shape Similarity Measure . . .. .. ..
15.4.2 Spatio-temporal Shape Fitting . . . . . .
15.5 Animatingthe3Dcollage . . . . . . . ... ...
15.6 Results and Discussion . . . . ... ... ...

16 Conclusions
Bibliography
A List of Publications

B Curriculum Vitae — Lebenslauf

183

185



Chapter 1

Introduction

While the technology to render and model scene environments with landscapes
and buildings, natural phenomena like water and fire, and plants has reached a
high level of maturity in computer graphics, it is still hard to authentically create
virtual doubles of real-world actors. One recent example illustrating this fact is
the photo-realistic CGI movie Beowulf [Paramount07]. Only by capitalizing on
recent advances in shape acquisition, marker-based motion capture, and by draw-
ing from the talent of a large team of animators, it became possible to finish the
movie within an allowable time frame. Nonetheless, the high production costs
illustrate that the price to be paid are millions of man hours of tedious manual
editing and post-processing.

In order to obtain a realistic virtual actor, it is important that he/she mimics as
closely as possible the motion of his/her real-world counterpart. It is thus no
wonder that the number of working hours that animators spend in order to live
up to these high requirements in visual quality is considerable. For generating
virtual people, animators commonly use the traditional skeleton-based anima-
tion pipeline: first, a kinematic skeleton model is implanted into the geometry
of the human model [Herda00]. Thereafter, the skeleton is attached to the sur-
face [Lewis00]. Finally, a description of the motion in terms of joint parameters
of the skeleton is required. It can either be manually designed or learned from a
real person by means of motion capture [Bodenheimer97, Poppe07].

Although the interplay of all these steps delivers realistic animations, the whole
process is still very expensive and tedious. In this thesis, we first describe two
versatile, fast and simple alternatives to attack this problem that aim at simplifying
the overall animation process. Our methods streamline the whole pipeline from
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laser-scanning to animation from motion capture, and canreetly integrated
into the traditional animation workflow.

Another complex problem in computer graphics is to capture the time-varying dy-
namic geometry of actors in the real world. Currently, marker-based and marker-
free motion capture systems only measure the subject’s motion in terms of a
kinematic skeleton. If a dynamic representation is required, motion capture ap-
proaches need to be combined with other special techniques [Allen02, Sand03,
Park06]. However, as these methods demand the actors to wear skin-tight body
suits, it remains impossible to record performances under natural conditions, such
as in normal clothing.

To bridge this gap, we also present in this thesis three algorithmic alternatives
to capture the motion and the time-varying shape deformations of people wear-
ing even wide everyday apparel and performing fast and complex motions. This
is achieved by combining an efficient mesh-deformation method and a tracking
framework based on image cues in multi-view video sequences. The proposed
methods achieve a high level of flexibility and versatility by explicitly abandon-
ing any traditional skeletal parametrization and by pogiegormance capturas
deformation capture. Moreover, they enable us to record the subject’s appearance,
which can be used to display the recorded actor from arbitrary viewpoints, and to
produce a spatio-temporally coherence dynamic representation that can be easily
made available to animators.

By using our novel performance capture techniques, we offer a great level of flex-
ibility during animation creation. However, currently there is only a limited num-
ber of techniques that are able to post-process and modify the generated mesh
animations. To overcome this limitation, in this thesis we also propose two novel
algorithms for processing mesh animations. The first approach enables the fully-
automatic conversion of a mesh animation into a skeleton-based animation that
can be easily edited by animators. The second one automatically converts a mesh
animation into an animation collage, i.e. a moving assembly of 3D shape primi-
tives from a database. Together, they are important contributions to the animator
toolbox with a variety of applications in visual arts, movie and game productions.

Each method described here can be regarded as a solution to a particular problem
or as a building block that enables the development of novel interesting applica-
tions. All together, they also create a powerful system to accurately capture, ma-
nipulate and realistically render real-world human performances, going beyond
the limits of related capture techniques. The methods described in this thesis are
usually tailored to deal with human actors. However, the fundamental principles
can also be applied to a larger class of scenes, as described in the respective chap-
ters.
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1.1 Main Contributions and Organization of
the Thesis

This thesis contains 16 chapters and it is divided into four parts, each of which
focuses on one major algorithmic subproblem. In the first part (Chapters 2, 3
and 4) some technical and theoretical background information needed to under-
stand the following projects is provided. After that, we begin describing the main
contributions of this work in the second part (Chapters 5, 6 and 7), where two
efficient and easy-to-use solutions to directly animate a laser-scanned model from
marker-based or marker-less motion capture data are presented. These methods
can be considered alternatives to the complex traditional skeleton-based character
animation pipeline.

Thereafter, the third part of the thesis (Chapters 8, 9, 10, 11 and 12) describes
three alternative solutions to directly and realistically create a virtual double of a
moving real-world actor, by capturing its time-varying geometry using a mesh-
deformation method from unaltered video footage. By using this high-quality
captured performance, we are also able to display the recorded actor from arbitrary
viewpoints. In the last part of the thesis (Chapters 13, 14 and 15), we propose two
novel approaches for processing mesh animations acquired by our performance
captured methods or generated by animators.

We conclude in Chapter 16 with a description of possible future work. The meth-
ods and algorithms described in this thesis have been published before in a variety
of peer-reviewed conference and journal articles (please see Appendix A for the
list of publications). The main scientific contributions as well as the appropriate
references are briefly summarized in the following sections.

1.1.1 Part | - Background and Basic Definitions

We begin in Chapter 2 by describing how a real-world camera, and the kinemat-
ics, the shape and the appearance of a real-world subject can be modelled in a
computer. Afterwards, important computer vision algorithms that are employed
by several projects in the thesis are described.

Chapter 3 details the interactive shape deformation and editing techniques that
are also employed by several projects in the thesis. These methods are able to
efficiently manipulate the input scanned model as naturally as possible, generating
physically plausible and aesthetically pleasing deformation results.

Finally, Chapter 4 presents our recording setup that provides high quality data for
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the different projects proposed in the thesis. The detaite@inain components
of our studio and all necessary recording steps to generate the multi-view video
data are described.

1.1.2 Part Il - Natural Animation of Digitized Models

Animators are able to generate photo-realistic animations using their well-

established but often inflexible set of tools. However, the skeleton-based paradigm
still requires a high amount of manual interaction. In Chapter 5, we first describe

the drawbacks of the traditional skeleton-based character animation pipeline.
Thereafter, we review the most important related work on character animation,

as well as possible solutions to simplify the overall animation process.

Chapter 6 and 7 present two versatile, fast and simple methods that streamline
the whole pipeline from laser-scanning to character animation [de AguiarQ7b,
de Aguiar07d, de AguiarO7e]. Although the algorithms abandon the concept of
a kinematic skeleton, they integrate into the traditional animation workflow and
enable animators to quickly produce convincing animation results with minimal
manual effort.

1.1.3 Part Ill - Towards Performance Capture using De-
formable Mesh Tracking

Stepping directly from a captured real-world sequence to the corresponding realis-
tic moving character is still a challenging task. In chapter 8, we first introduce our
three solutions to attack this problem. Thereafter, we review the closely related
work in human motion capture, dynamic scene reconstruction, and 3D video.

Chapter 9 presents the first alternative to accurately and automatically track the
motion and time-varying non-rigid surface deformations of people wearing ev-
eryday apparel from a handful of multi-view video streams. This is achieved by
combining an optical flow-based 3D correspondence estimation technique with a
fast Laplacian-based tracking scheme [de AguiarO7a].

Chapter 10 presents a second alternative that combines a flow-based and an image-
feature based tracking method. Furthermore, we divide the problem into two
steps: first, a simple and robust method is proposed to automatically identify and
track features on arbitrary subjects. Thereafter, using the 3D trajectories of the
features, an efficient Laplacian-based tracking scheme is used to realistically ani-
mate a static human body scan over time [de AguiarO7c].
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Chapter 11 presents our more advanced video-based perfaroapitire system

that passively reconstructs spatio-temporally coherent shape, motion, and texture
of actors at an unprecedented quality [de Aguiar08a]. The approach combines a
new skeleton-less shape deformation method, a new marker-less analysis-through-
synthesis framework for pose recovery, and a new model-guided multi-view stereo
approach for shape refinement, thereby exceeding the capabilities of many related
capturing approaches.

Finally, in Chapter 12, we present a system to render high-quality 3D Videos
that enables convincing display of human subjects from arbitrary synthetic view-
points. Our approach combines our detailed dynamic scene representation with a
projective texture method [de AguiarO8a] and leads to a better visual quality as
compared with previous approaches.

1.1.4 Part IV - Processing Mesh Animations

Animators are used to a large repertoire of tools for editing and rendering tra-
ditional skeletal animations, but yet lack the same set of tools for working with
mesh animations, i.e. our mesh-based dynamic scene representations. In Chap-
ter 13, we first introduce two novel approaches for processing mesh animations.
Afterwards, we review the closely related work in mesh segmentation, skeleton
reconstruction, character skinning, mesh animation editing, and shape matching.

Chapter 14 presents our first algorithm to process mesh animations. We de-
scribe an algorithm to fully-automatically extract a skeleton structure, skeletal
motion parameters, and surface skinning weights from arbitrary deforming mesh
sequences, thereby enabling easy post-processing and fast rendering of mesh ani-
mations with standard skeleton-based tools [de Aguiar08Db].

The second method for post-processing mesh animations is presented in Chap-
ter 15. Our system is able to automatically transform mesh animations into an-
imation collages, i.e. a complete reassembly of the original animation in a new
abstract visual style that imitates the spatio-temporal shape and deformation of
the input [Theobalt07b].
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Chapter 2

Preliminary Techniques

In this chapter, first some general theoretical background information
about camera and human models are given. Thereafter, elementary
computer vision techniques that many of the projects in this thesis
capitalize on are described.

Several projects described in this thesis have synchronized multiple video streams
as input, Chapter 4. Therefore, in order to correctly simulate the imaging process
of the cameras in a computer, a mathematical camera model is required. Such for-
mulation is detailed in Sect. 2.1, where the correspondence between a real camera
and its computational equivalent is presented. After that, we briefly describe the
process of camera calibration and the imaging geometry of stereo cameras.

The description of how we model the shape, kinematics and appearance of a real-
world subject in a computer is detailed in Sect. 2.2. Although the projects in this
thesis are usually tailored to human actors, the fundamental principles described
here can also be applied to a larger class of real-world subjects, like animals.

This chapter concludes in Sect. 2.3 with a description of important computer vi-
sion algorithms employed by several projects proposed in this thesis. In particular,
we briefly describe how to perform background subtraction, and how to calculate
optical flow, scene flow and SIFT features.
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2.1 The Camera Model

The information contained in a 3D scene can be captured to a 2D image plane by
a camera as follows: first, a lens collects the incident illumination. Afterwards,
the light rays are deflected towards a focal point, and at the end, the deflected rays
create an image of the observed scene. In the following sections, we will describe
the mathematical framework for mapping the 3D world space to the 2D image
plane, the process of camera calibration and the geometry of stereo cameras.

2.1.1 Mathematical Model

A pinhole camera model describes the image formation process of a camera by a
projective linear transformation [Hartley00]. L&f, = (p.,py, -, 1)* be a point
specified in the world coordinate frame, Fig. 2.1. Its projected location in the
image plang,,, of the camera evaluates to:

a, 0 =z {R _Rcl— e

Z_?im = KOZ_)wo = 0 Qy Yo 0 1
0 0 1

In Eq. 2.1, R is a3 x 3 rotation matrix that represents the orientation of the
camera’s local coordinate frame with respect to the world coordinate frame and
c € R?is the Euclidean world coordinate of the camera’s center of projection. The
parameters? andc are called the external or extrinsic parameters of the camera.
The matrixK can be referred to as the calibration matrix and its entries are called
the intrinsic parameters of the camera. The principal point in the image plane is at
position (zy, o), at the intersection of the optical axis with the image plane. The
coefficientsa, = fm, andeo,, = fm, represent the focal length of the camera in
terms of pixel dimensions im andy directions, respectively. The focal length

of the camera, angh, andm, represent the number of pixels per unit distance in
image coordinates im andy respectively. Therefore, a real-world camera can be
represented by 10 parameters.

However, unfortunately the physical properties of lenses make the previous image
formation process geometrically deviate from the ideal pinhole model. Geometric
deviations are typically caused by radial or tangential distortion artifacts [Jain95].
Radial distortion happens since a real lens bents light rays towards the optical
center by more or less than the ideal amount. Tangential distortion are caused by
the bad alignment of the individual lenses in an optical system with respect to the
overall optical axis [Weng90].
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Figure 2.1: The imaging process of a real-world camera is simaked by the
mathematical camera model.

2.1.2 Camera Calibration

Camera calibration is the process of determining the parameters of the mathemati-
cal model that optimally reflect the geometric and photometric imaging properties
of the real camera. The most important calibration step is the geometric calibra-
tion, where the parameters of the imaging model detailed in Sect. 2.1.1 are esti-
mated. The majority of the calibration algorithms [Tsai86, Jain95, Heikkila96]
take into account radial and tangential lens distortions and derive these parame-
ters from images of a calibration object with known physical dimensions, such as

a checkerboard pattern, Sect. 4.4.1. The parameters are estimated by means of
an optimization procedure that modifies the model parameters until the predicted
appearance of the calibration object optimally aligns with the captured images.

Additionally, color calibration can be applied to ensure correct color reproduction
under a given illumination setup. White balancing is the simplest color calibration
procedure that computes multiplicative scaling factors from an image of a purely
white or gray object. In our projects, we also developed a more sophisticated
relative calibration procedure that assure color-consistency across the cameras,
Sect. 4.4.1.

2.1.3 Geometry of Stereo Cameras

A stereo camera comprises of a pair of cameras whose viewing directions con-
verge, and it can be used to derive 3D structural information about the scene.
If both cameras are fully-calibrated (intrinsic and extrinsic parameters), the 3D
position of a point visible in both cameras can be calculated via triangulation,
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ol
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Figure 2.2: (a) Triangulation: the 3D position of a point p is calculated by
the intersection of the two rays,r, and rg, through the respective cameras’
centers of projection, ¢4, and cg, and the respective projected image plane
positions,p4 and pg. (b) Epipolar geometry: The point p4 in camera A cor-
responds to the pointpg in camera B that lies in the epipolar lineep.

Fig. 2.2(a). The positiop is estimated by computing the intersection point of two
rays,r4 andrg. The rayr4 originates in the center of projection of cameracA,

and passes the image plane in the positignThe same construction is valid for
rayrp from camera B. However, due to measurement noise, the rays will not inter-
sect exactly at a single point. In this case, we can compute a pseudo-intersection
point that minimizes the sum of squared distance to each pointing ray.

The epipolar geometry describes the image formation process in a stereo pair
of cameras, Fig. 2.2(b). It describes the fact that an image pqim camera

view A has a corresponding poipg in the camera view B, which lies on a line

ep in image B, the so-called epipolar line. The epipolar geometry of a stereo
pair is fully-specified by its fundamental matrix. The fundamental matrix can be
inferred from 8 point correspondences between two uncalibrated cameras, and it
is directly available for fully-calibrated camera pairs [Faugeras93, HartleyOOQ]. By
using the fundamental matrix and the epipolar line, image correspondences can
be computed using simple matrix multiplications, which reduces the problem to
an one-dimensional search space along a line.

2.2 Modeling Humans

The appearance, and the physical and kinematic properties of a real-world human
body are the result of the interplay of many complex physiological components.

For example, the appearance of the skin is the result of structural pigmentation,
light interaction on the body surface, and the deformation of muscles and connec-
tive tissues. The kinematic properties of the human body are mainly determined
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by its skeleton structure, i.e. bones and interconnectiimggo The kinematics

also influences the physical shape of the person. Therefore, an authentic com-
putational human model has to realistically represent the shape, kinematics and
appearance of the real human. Such representations are described in the following
sections.

2.2.1 Modeling the Shape

The surface geometry of the human body is typically modelled by means of a
triangle mesh. A mesh is a collection of vertices, edges and faces that defines the
shape of an object in computer graphics. The faces usually consist of triangles,
which are connected by their common edges.

In our projects, we acquired the geometric details of the human body by using
a full body laser scanner, Sect. 4.3.4. Our computational model of the shape is
obtained by transforming the raw scans, i.e. triangulated depth maps, into a high-
guality surface mesh employing a Poisson reconstruction method [Kazhdan06].
By using such scanning device, we are able to capture not only the coarse shape
of the actor, but also fine details in the body shape and in the apparel. Moreover,
such acquisition technology enables us to easily model different subjects.

In most projects in this thesis, we abandon the concept of a kinematic skeleton
to represent the motion and deformations of the virtual actor. By doing this, our
novel algorithms rely mostly on the high-quality model of the actor’'s shape to
simultaneously capture rigid and non-rigidly deforming surfaces from multiple
synchronized video streams.

2.2.2 Modeling the Appearance

Another important component contributing to a realistic look of a virtual human

is the surface texture. A possible way to reproduce the appearance of a real-
world actor is to reconstruct a consistent surface texture from images showing
the subject. However, a static texture cannot reproduce dynamic details, such as
wrinkles in the apparel.

In our projects, we use dynamic surface textures that incorporate such time-
varying details. The multiple video streams are recorded in our studio by cameras
providing high frame-rates, high resolution and precise color reproduction, Chap-
ter 4. Therefore, realistic virtual actors are generated by combining the multiple
synchronized footage with the model’s pose at each particular frame, Chapter 12.
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2.2.3 Modeling the Kinematics

The computational equivalent of the human skeleton is a kinematic skeleton, that
mathematically models a hierarchical arrangement of joints and interconnecting
bones [Murray94]. The human skeleton is usually approximated by a collection of
kinematic sub-chains, where the relative orientation between one segment and the
subsequent one in the hierarchy is controlled via a rigid body transformation. It
jointly describes a rotational and a translational transformation between the local
coordinate frames of adjacent rigid bodies.

The translational components of the rigid body transformations are implicitly rep-
resented by the bone lengths and the joints model the rotational components.
Since the bone lengths are constant, the pose of the skeleton is fully-specified
by the rotation parameters for each joint and an additional translational parame-
ter for the root. Such kinematic models are automatically learned from arbitrary
mesh animations in Chapter 14.

2.3 Computer Vision Algorithms

2.3.1 Background Subtraction

In the projects described in this thesis, a method to robustly segment a person in
the foreground of a scene from the background is necessary. Due to its robustness,
we decided to use the color-based method originally proposed in [Cheung00],
which incorporates an additional criterion to prevent shadows from being erro-
neously classified as part of the scene foreground. The technique employs per-
pixel color statistics for each background pixel that is represented by a mean im-
agell = {u(z,y) | 0 < x < width,0 < y < height and a standard-deviation
imageY = {o(z,y) | 0 < x < width,0 < y < height, with each pixel value
being a 3-vector comprising all three color channels. The statistics is generated
from consecutive input image frames of the background scene without an object
in the foreground, in order to incorporate the pixel intensity variations due to noise
and natural illumination changes.

The background subtraction method classifies an image pixel p,) as fore-
ground if the color op(p,, p,) differs in at least one RGB channel by more than
an upper threshold, from the background distribution

‘ p(pxapy>c - ,U(pxapy)c ‘> Tu : U(pxapy)c ; CE {r,g, b} (22)



2.3 Computer Vision Algorithms 15

(b)

Figure 2.3: Input image frame (a) and the corresponding silhouette mask
(b). Our background subtraction method correctly segments the foreground
subject from the background.

If this difference is smaller than the lower thresh@ldn all channels, it is clas-

sified as a background pixel. All pixels which fall in between these thresholds
are possibly in shadow areas and can be classified depending on the amount of
variation in the hue value. The difference in hue can be calculated as

A — —1 p(pwapy> ' ,u(pxypy) ) 213
(Hp(px,py)HHu(pmpy)H (@3)

If A > 1T,,,, the pixel is classified as foreground, otherwise as background. Atthe
end, a 0/1-silhouette mask image for each input video frame is computed, Fig. 2.3.

2.3.2 Optical Flow

Optical flow is the projection of the 3D motion field of a real-world dynamic scene
into the 2D image plane of a recording camera. Algorithms used to calculate
optical flow attempt to find correlations between adjacent frames, generating a
vector field showing where each pixel or region in one frame moved to in the next
frame.

In computer vision, a number of simplifying assumptions are usually made to
compute the optical flow from the pixel intensities of two consecutive images. The
basic assumption is that the pixel intensity does not significantly change between
two subsequent frames, the so-called intensity constancy constraint:

I(u,t) = I(u — ot,0), (2.4)

whered = (p,q)? is the optical flow at image point = (u,v)?, and/(u,t) is
the image intensity at coordinatés v) and timet. As a pixel at locatiorfu, v)”
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with intensity 7 (u, t) moves byd, between two frames, the intensity constraint
equation can be formulated as follows:

I(u,t) = I(u+ 0y, t + 6). (2.5)
From the Taylor series approximations, Eq. 2.5 leads to:

Vi(u,t) -0+ Ii(u,t) =0, (2.6)

where I,(u,t) is the temporal derivative of the image intensity. In order to
make the problem well-posed, additional assumptions need to be made about the
smoothness of the optical flow field in a local spatial neighborhood.

In the differential optical flow approach by Lucas and Kanade [Lucas81], the flow
is assumed to be constant in a small neighborhood. The solution is achieved by
minimizing the following functional

> WAw)[VI(u,t) -6+ I(u,t)]?, (2.7)
ueW

whereW (u) defines a Gaussian neighborhood around the current position in the
image plane for which the optical flow is computed. Alternatively, a hierarchical
variant can be employed that incorporates flow estimates from multiple levels of
an image pyramid into its final result.

Using the same basic formulation, a large number of algorithms have been
proposed in the literature. In general, they are based on the Horn-Schunck
model [Horn81], that additionally uses a global smoothness constraint to regu-
larize the optical flow computation. An example is the dense optical flow method
by Black et al. [Black93]. The approach is based on a statistical framework that
enables the robust estimation of flow fields addressing violations of the intensity
constancy and spatial smoothness assumptions. As a result, the method is able to
deal with discontinuities in the flow field.

Recently, Brox et al. [Brox04] proposed a multiresolution warping-based method
for dense optical flow that uses a continuous, rotationally invariant energy func-
tional. The energy functiondl(u, v) is composed by a weighted sum between a
data term&p(u, v) and a smoothing termis (u, v) as follows:

E(u,v) = Ep(u,v) + aEs(u,v).

The data term contains the intensity constancy assumption, as in Eq. 2.4, and a gra-
dient constancy assumption describedb¥(u, t) = VI(u — ot, 0), which makes
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the framework susceptible to slight changes in brightnesshiByneans, the over-

all energy functional becomes more robust against intensity value changes. The
smoothness term’s(u, v) takes into account neighboring information to improve
the calculation of the flow field by penalizing its total variation.

The global minimum solution is found via a multiscale approach. One starts by
solving a coarse, smoothed version of the problem. Thereafter, the coarse solution
is used as initialization for solving a refined version of the problem until step by
step the original problem is solved. Additionally, the energy functidn@l, v)

is designed using the non-linearized data terms and linearizations are computed
during the numerical scheme used to solve it. By this means, the overall method
improves the convergence of the solution to the global minimum, generating more
accurate results.

2.3.3 Scene Flow

The scene flow is a three-dimensional flow field describing the motion of every
3D point in the scene. Following [Vedula05], we considet z(t) the 3D path

of a point in the world, andfﬁ its instantaneous scene flow. If the image of this
point in cameraC; is u; = w;(t), the optical flowo = dgl;i is the projection of the
scene flow into the image plane:

duy;  Ou; dx
d = ord’ (2:8)

Where% is the2 x 3 Jacobian matrix that represents the differential relationship
betweenr andu;. The Eq. 2.8 expresses the fact that any optical f’rgwis the
projection of the scene f|0\%f. Therefore, assuming that the optical flow has been
computed for a particular point in the scene for two or more cameras views, the
scene flow can be recovered.

If N > 2 cameras see a particular point, the solution that minimizes the sum of
least squares of the error can be obtained by reprojecting the scene flow onto each
of the optical flows. Therefore, the valuesfi§t¥ can be calculated by solving the

daj _

system of equation8 > = U via singular value decomposition, where
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2.3.4 Image Features

A feature is an interesting part of an image that is commonly used to guide many
computer vision algorithms. Once a feature is detected, a local image patch around
it can be extracted and a feature descriptor or feature vector can be computed. An
important algorithm to detect and describe local features in images is the Scale-
invariant feature transform (or SIFT) [Lowe99, Lowe04]. The SIFT features are
local, and invariant to image scale and rotation. They are also robust to changes
in illumination, noise, occlusion, and viewpoint.

The method begins by detecting interest points, also called keypoints. For this,
the image is convolved with Gaussian filters at different scales, and the differ-
ence of successive Gaussian-blurred images are considered. Keypoints are chosen
as maxima/minima of the Difference of Gaussians (DoG) that occur at multiple
scales. Specifically, a DoG imad#&c) is given by

D(o) = L(k;o) — L(k;0), (2.9)

whereL(ko) = G(ko) = I is the original imagd convolved with the Gaussian
blur G(ko) at scaléko.

Unfortunately, the previous step produces too many keypoint candidates, some
of which are unstable. Therefore, the algorithm discards low contrast keypoints
and filters out those located on edges. Afterwards, each remaining keypoint is
assigned one or more orientations based on local image gradient directions. This
enables invariance to rotation as a keypoint descriptor can be represented relative
to this orientation.

At the end, descriptor vectors are computed for these keypoints such that they
are highly distinctive and partially invariant to illumination and viewpoint. The
feature descriptor is computed as a set of orientation histogramsg ondapixel
neighborhood, yielding a feature vector with 128 elements.
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Interactive Shape Deformation
and Editing Methods

This chapter reviews the most relevant work on interactive shape
deformation and editing techniques, and describes the three main
deformation approaches used in this thesis.

In recent years, interactive shape deformation and editing techniques have become
an active field of research in computer graphics, Sect. 3.1. Commonly, the input to
such techniques is a triangle mesh to be deformed, denotéd,by= (V.;, 7).

which consists of: verticesV,,; = {v; - - - v,,} andm trianglesT;,; = {t; - - t;, }-

The goal is the development of algorithms to efficiently edit and manipiéte

as naturally as possible under the influence of a set of constraints specified by the
usetr.

Physical simulation [Mueller02] and non-linear deformation methods [Sheffer04,

BotschO6a] are able to deliver accurate and physically-correct deformation re-
sults. However, unfortunately these methods require the minimization of complex
non-linear energies, which often makes them difficult to implement and compu-
tationally too expensive to be used in an interactive environment, where different
constraints are used to update and correct the shape of a model on-the-fly.

In general, in order to be interactive, editing methods need to be based on easy-
to-compute linear deformations that still generate physically plausible and aes-
thetically pleasing deformation results, i.e. deformations should be smooth or
piecewise smooth and the result should preserve the local appearance of the sur-
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face under deformation. Recently, linear deformation methmased on differ-

ential representations have gained more popularity because they are fast to com-
pute, robust, and easy to implement, as the associated linear system is sparse.
Instead of directly modify the spatial location of each vertex in the model, they
use a local differential representation of the shape, which encodes information
about its local shape and the size and orientation of the local details, to obtain a
detail-preserving deformation result. Deformation is performed by constructing
a differential representation of the shape, manipulating it according to the given
constraints, and finally reconstructing the shape from the modified differential
representation. While sharing the same general framework, the two main cate-
gories of differential techniques differ by the particular representation they use:
deformation gradients, Sect. 3.2.1, or Laplacian coordinates, Sect. 3.2.2.

In general, when applying these methods, the resulting deformation is dependent
on the particular embedding of the surface in space. During model manipulation,
its local representation is not updated, which may lead to unnatural deformations.
This happens since the surface deformation problem is inherently non-linear, as
it requires the estimation of local rotations to be applied to the local differential
representations. To correct this limitation in the linearization process, many ap-
proaches were developed in the last years attacking this problem from different
directions, Sect. 3.1. After reviewing the most relevant related work on interac-
tive shape deformation techniques in the next section, we first present two surface-
based techniques used later in this thesis: the guided Poisson-based approach and
the guided Laplacian-based technique, Sect. 3.2.1 and Sect. 3.2.2 respectively.
Thereafter, an iterative volumetric approach is described, Sect 3.3. As can be seen
later, the mesh deformation techniques presented in this chapter are key compo-
nents for the advanced methods proposed in this thesis.

3.1 Related Work

Interactive shape editing is an important field of research in computer graph-
ics, and consequently a variety of different solutions were proposed to solve this
problem [Botsch08]. Early methods like free-form deformation [Sederberg86] or
space deformations [Bechmann94, Milliron02] enable high-quality shape model-
ing by directly manipulating the 3D space where the object is embedded. How-
ever, they typically fail to reproduce correct deformation results if only a small
number of constraints is used.

Some approaches propose to solve the computationally expensive non-linear sur-
face deformation problem directly. [Sheffer04, KraevoyO6] propose a non-linear
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differential coordinate setup, while [BotschO6a] minimizesnding and stretch-

ing energies using a coupled shell of prisms. [Huang06] employs a non-linear
version of the volumetric graph Laplacian and [Xu07a] presents an extension of
the non-linear Poisson-based deformation approach applied to mesh sequences.
Alternatively, [Au07] proposes a non-linear handle-aware isoline technique and
[Shi0O7] combines Laplacian-based deformation with skeleton-based inverse kine-
matics. In general, the main limitation of these non-linear methods is often that
interactive deformation is only feasible on models of reduced complexity.

Interactive performance for more complex objects can be achieved by simplify-
ing the inherent non-linear problem. One way to preserve geometric details under
global deformations is to use multi-resolution techniques [Zorin97, Kobbelt98,
Guskov99, Lee00, Botsch04]. While these approaches are an effective tool for
enhancing fine-scale detail preservation, the generation of the hierarchy can be
expensive for complex models. Moreover, it is hard to deal with large deforma-
tions in a single step. These limitations are the main reason for differential-based
deformation approaches, which represent the model using its local differential co-
ordinates instead of using its spatial coordinates.

Typically, two differential representations can be used: deformation gradients or
Laplacian coordinates. Poisson-based methods use the input transformation con-
straints given by the user to modify the surface gradients of the model. [Yu04]
presents a Poisson-based mesh editing method where the local transformations
are propagated based on the geodesic distances. [Zayer05] replaces the geodesic
propagation scheme by harmonic field interpolation and shows that this leads
to a better estimation of the local transformations. [Popa0O6] extends the har-
monic field interpolation scheme to deal with different materials. Unfortunately,
although these methods work well for rotations, since they are handled explicitly,
they are insensitive to translations.

Laplacian-based methods represent vertex coordinates relative to their neighbors
in the model [Alexa01]. Although the original framework can not correctly deal
with rotations, recent improvements allow the methods to work similarly well for
translations and rotations. [Lipman04] describes how local rotations can be esti-
mated and incorporated to the original framework. [Sorkine04] proposes to use
the Laplacian representation combined with implicit transformation optimization.
[FuO7] presents a hybrid scheme combining implicit optimization with a two-step
local transformation estimation. In general, although these methods are able to es-
timate local rotations, the required linearization yields artifacts for large rotations.

Generally, most of these methods suffer from linearization problems: methods
which use translational constraints are insensitive to rotations, whereas methods
relying on rotational constraints exhibit insensitivity to translations. To solve this
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problem, recent methods use skeleton-based techniquebif#os03], multi-
step approaches [Botsch06b], or iterative approaches [SorkineQ7].

Most linear deformation methods rely on a triangle mesh representation. How-
ever, deforming a surface model may cause local self intersections and shrinking
effects. To prevent such artifacts, some methods use a volumetric structure as
basis for the linear deformation [Zhou05, Stoll07].

Another class of approaches is able to manipulate an object while guar-
anteeing volume preservation by defining deformations based on vector
fields [von FunckO06]. Although it enables the definition of advanced implicit de-

formation tools, it is still hard to construct vector fields that satisfy the user-defined
constraints.

3.2 Mesh Editing Techniques

In this section, we review the two surface-based deformation techniques based on
differential representations and describe the respective steps needed to reconstruct
the deformed surfaces.

3.2.1 Guided Poisson-Based Method

Inputs to this method are a static triangle mégh,; and affine transformations
(rotation and scale/shear componer®s) j € {1,...,n.}, to be applied to.
selected triangles of the input model. The Poisson-based editing scheme manipu-
lates the mesh gradient field instead of directly deforming the spatial coordinates
of a triangle mesh. By expressing the mesh in terms of the gradient opetgtors

for each trianglé;, Poisson-based methods are able to derive a novel surface mesh
My, that matches the deformed gradient field subject to the user’s constraints.

Gradient operatoré:; contain the gradients of the triangle’s shape functions
and can be expressed by

G; = (V1. Vo2, V3)

1

(pl — pg)T B 1 0 —1
= (p2 — ps)” 01 -1
nt 00 O

Herep; are the three vertices of the trianglgandn is its unit normal. The
matricesG; can be combined into a larger x n gradient operator matri&, and
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the gradients of the entire input triangle mesh then can bresepted by
Gp* = g, .. (3.1)

The same holds true for the other two coordinate functionsugglg.). By multi-
plying with GT M an both sides, we can rewrite Eq. 3.1 as follows

GTMGp™ =G" My, , (3.2)

where the3m x 3m weight matrix M contains the areas of the triangles. The
matrix GT MG is the cotangent discretization of the Laplace-Beltrami operator
L, [Botsch06b, Meyer03] andl:= G M g, represents the differential coordinates
of My,..

This construction allows us to manipulate,,.; by applying the user constraints
as separate transformatiofs to eachd;, which yieldss; = §; ;. At the end,

we can reconstructM’,,; in its new target configuration by computing the new
vertex positiongy’ such that the resulting mesh complies with the new, rotated
gradients. This can be computed by solving the Poisson systgim= ¢, which

is formulated as a least-squares system for eaghandz-coordinate separately.

Unfortunately, this formulation is only able to correctly reconstitt,,; if con-
straints are given for all triangles, i.e. such that we can transform all gradi-
ents. Alternatively, if only a sparse set of constraints is giving, the idea proposed
in [Zayer05, de AguiarO7e] can be used to propagate the rotations over the whole
model based on harmonic field interpolation.

After converting the input transformatior; to unit quaternions, we regard each
component of the quaternian= g, g, ¢-, ¢,] as a scalar field defined over the
entire mesh. A smooth interpolation is generated by regarding these scalar fields
as harmonic fields defined ovét,,.;, and can be computed efficiently by solving

the Laplace equation (f = 0) with constraints at the selected vertices. Once
the rotational components,{(qq,, ¢. andg,) are computed for all vertices, we
average the quaternion rotations of the vertices to obtain a quaternion rotation
for each triangle. This way, we establish a geometric transformdtjdior each
trianglet; of M,,;.

After estimating the rotations for all triangles, we perform the procedure described
above to transform all gradients and obtain a realistic reconstruction of the model
in a new pose. During the interactive editing process, the differential operator
matrix L, does not change. Furthermore, since it is symmetric positive definite,
we can perform a sparse Cholesky decomposition as a preprocessing step and use
back-substitution for each new set of input constraiits
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3.2.2 Guided Laplacian-Based Method

The input to this approach is a static triangle mg4k.; and positional constraints
v; ~ pc;, j € {1,...,n.} for selectedh, vertices ofM,,;. The Laplacian-based
editing scheme represents the surface by the differential coordinaiédee goal

is to reconstruct the vertex positions.®t’;,; such that the mesh approximates the
initial differential coordinates, and the positional constraints given by the user.

Differential coordinates for M,,; are computed by solving a linear system of
the formo = L,V,.;, whereL, is the discrete Laplace operator based on the
cotangent-weights [Meyer03]. Thereafter, the mabi¢l,; can be reconstructed
in a new pose subject to the positional constraprtdy solving the following
least-squares system:

argmin{ | ,V;,, — d|/* + || AV;,, — pel}, (3.3)

tri

which can be transformed into a linear system
(LTLy+ AT AW/ = LT6 + ATpe. (3.4)

In Eq. 3.4,pc is the vector of positional constraints specified by the user and the
matrix A is a diagonal matrix containing non-zero weights = w; for con-
strained vertices,. The weightsw; indicate the influence of the corresponding
positional constraintc; on the final deformation result.

Unfortunately, if the mesh undergoes large rotations, this scheme will reconstruct
the mesh with an unnatural look, since most of the triangles will be oriented ac-
cording to the original differential coordinates.®,,; [Sorkine04]. However, the
guality of the deformation result can be improved by carefully handling the local
transformations of the differential coordinates [Stoll06, de Aguiar07b].

As in Sect. 3.2.1, after converting the input rotatidgh$o quaternions, we inter-
polate the transformationsover M,,;. Each component of the quaternigns
regarded as a scalar field defined on the entire mesh. A smooth interpolation is
guaranteed by regarding these scalar fields as harmonic fields. The interpolation
is performed efficiently by solving the Laplace equatiayg = 0 over the entire
mesh with constraints at the selected vertices.

Thereafter, we use the interpolated local transformations to rotate the differential
coordinatesy’ = ¢- ¢ - g. At the end, the vertex positions',,; of M’,,; are recon-
structed such that the mesh approximates the rotated differential coordihates
as well as the positional constrainis Rewriting Eq. 3.4, we have the following
linear system

(LTLy+ ATAW' i = L6 + ATpe. (3.5)
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During the mesh editing process, the Laplacian mditigoes not change. There-
fore, we are able to perform a sparse matrix decomposition and execute only back-
substitution for each new set of input constraints.

3.3 lterative Volumetric Laplacian Approach

In contrast to the two previous methods, the iterative volumetric Laplacian
method works on a tetrahedral mesh, = (Vier, Thet), With n, verticesV,., =

{vt ---vt,, } andm, tetrahedrdl}.; = {tt,---tt,,}. A tetrahedral mesh can,
for instance, be created from a triangle megh,; by performing a quadric error
decimation onM,,; [Garland97] and then building a face-constrained Delaunay
tetrahedralization [Si05].

The input to this approach [Stoll07] i&.; and positional constraintge;, j €
{1,...,n.} for n, selected vertices. This method infers rotational constraints
from the given positional constraints and also improves the overall deformation
performance by implicitly encoding stronger prior on the shape properties that
should be preserved after the deformation, such as local cross-sectional areas.

It is our goal to deform the tetrahedral me&h, as naturally as possible under

the influence of a set of positional constraints ~ pc;, j € {1,...,n.}. To

this end, we iterate a linear Laplacian deformation step and a subsequent update
step, which compensates the (mainly rotational) errors introduced by the nature
of the linear deformation. This algorithm is related to [Sorkine07]. However,
here a tetrahedral construction is used rather than a triangle mesh, as this enables
the implicit preservation of certain shape properties, such as cross-sectional areas,
after deformation.

The approach starts by constructing the tetrahedral Laplacian systém = o
with
L,=G'D@G, (3.6)

and
§=G"Dg, (3.7)

where( is the discrete gradient operator matrix for the volumetric moDeis
adm; x 4m; diagonal matrix containing the tetrahedra’s volumeis the set of
tetrahedron gradients, each being calculategl as G;p; [Botsch06b], ang; is

a matrix containing the vertex coordinates of tetrahedtpnThe constraintgc;
can be factorized into the matrik, by eliminating the corresponding rows and
columns in the matrix and incorporating the values into the right-handjside
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By solving the previous tetrahedral Laplacian system, weiolataet of new ver-

tex positionsV,,, = {vt;...vt, }. After calculating a transformation matri
which bringstt; into configurationtt’;, the matrixT; is split into a rigid part?; and

a non-rigid partS; using an iterative polar decomposition method [Shoemake92].
Thereatfter, only the rigid transformations are applied to the gradients of all respec-
tive tetrahedra in Eq. 3.7 and we rebuild the right-hand side of the linear system
using these rotated gradients= ¢ - R. Itis possible to pre-calculate a factoriza-
tion of the left-hand side matrix once (since it never changes) and only perform
an efficient back-substitution in each iteration.

During the iteration process we search for a new configuration of the input shape
that minimizes the amount of non-rigid deformatiSnremaining in each tetra-
hedron. We refer to this deformation energyfas = > .., Si. In comparison

with simulation methods such as [Mueller02, Botsch07], this technique has the
advantages of being extremely fast, of being very easy to implement, and of pro-
ducing plausible results even if material properties are unknown.

Propagating the deformation from 7., to M,,;. After deformingZ,., we
can transfer the pose froffy,, to the input triangle mesh. Initially, we represent
the vertices ofM,,; as linear combinations of tetrahedra in the local neighbor-
hood. To this end, for each vertex in M,,;, we find the subset, (v;) of all
tetrahedra fron¥,; that lie within a local spherical neighborhood of radiusnd
contain a boundary face with a face normal similar to that; oSubsequently, we
calculate the barycentric coordinate coefficiefitg) of the vertex with respect to
all t¢; € T,.(v;) and compute the combined coefficient veatoas

o= ZttjeTr(’Ui) ci(7)p(vi, tt;)
Z ZttjeTr(’Ui) ¢ (vi, tt;)

o(v;, tt;) is a compactly supported radial basis function with respect to the dis-
tance ofy; to the barycenter of tetrahedraot):

0 ifd>r
o(vi, tt;) = { (1-H1 (1)  ifd<r

with d = ||v; — center(tt;)|| .

The coefficients for all vertices o¥1,,; are combined into a matri®. Thanks to

the smooth partition of unity definition and the local support of our parameteriza-
tion, we can quickly compute a smooth and natural looking deformed . fp@se

by calculating the new vertex positions@s,; = V', B .



Chapter 4

Recording Studio: Data
Acquisition and Data Processing

This chapter describes our recording studio. First, the physical
studio, the camera system, and the full body laser scanner are
presented. Thereafter, the acquisition pipeline is detailed, with all
necessary steps to generate the input data for the projects described
in this thesis.

4.1 Introduction

Itis a new trend in computer graphics to employ data acquired from the real world
into the animation or rendering pipeline. For instance, the new research directions
of performance capture and 3D Video investigate the possibility of generating
realistic moving human models of real subjects from a set of images or video
streams of the subject performing.

In this chapter, we extend the studio described in [Theobalt03], which was origi-
nally designed for different surround vision applications. We present our new ac-
quisition setup that provides high quality data for the different projects involving
arbitrary subjects, motions, and clothing styles. Although our focus is different
from previous work, the old functionality should be preserved, and augmented to
meet the new requirements: high frame rates, high image resolution, better light-
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ing conditions, and a device to reconstruct high-qualityfasi@ models for the
subjects being recorded.

This chapter is structured as follows: Sect. 4.2 presents related acquisition systems
for capturing multi-view video data. Thereafter, the details of the main compo-
nents of our studio are presented, Sect. 4.3. At the end, in Sect. 4.4, all necessary
recording steps to generate the data used in our projects are described, including
camera calibration, recording session and data processing.

4.2 Related Acquisition Facilities

For video-based human motion capture, researchers use multiple video streams
showing a moving person from different viewing directions to acquire the mo-
tion parameters. Commercial motion capture systems exist that use optical
markers on the body in connection with several high-resolution special pur-
pose cameras [Menache95]. Examples of such commercial systems are provided
by [Ari, Mot, PhaseSpace, Qua, Sim, Vic].

In contrast, marker-free motion capture systems do not require any intrusion into
the scene. Examples of early motion capture acquisition systems are presented
by [Gavrila96, Kanade98, Horprasert98] and [Cheung00, Luck02] using recon-
structed volumes. Most recently, a system using a database of human shapes
and fast high-resolution cameras was presented by [Corazza06]. A commercial
marker-less motion capture system developed by Organic MdtiojStage] is

also available. Please refer to [Poppe07] for an extensive review of video-based
motion capture systems.

Multi-view video streams can also be used for scene reconstruction. In this case,
the viewer has the possibility to interactively choose the viewpoint of the dynamic
3D scene, while it is rendered [Narayanan98]. A system for recording and editing
3D videos is described in [Wuermlin03] and further extended in [Wai$sti05].
Examples of other 3D Video systems are presented by [Matusik04, Starck07].

Alternatively, for reflectance acquisition systems, different acquisition setups
consisting of high-quality cameras and a set of light sources have been pro-
posed [Ward92, Goesele00]. [Debevec00] presentedighe stageand most
recently successively extended it, being able to acquire simple motion and dy-
namic reflectance fields of humans [Chabert06].

Most of the previous setups can acquire data for different and challenging tasks as
motion capture, scene reconstruction and reflectance estimation. However, there
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Figure 4.1: Our recording studio includes (a) the recording area, (b) the con-
trol room, and (c) the laser scanner.

is no system described in the literature yet that is able to provide high-resolution
temporally-coherent virtual actors for arbitrary real-world subjects.

4.3 Recording Studio

Our studio is designed to acquire high-quality surface models of human subjects as
well as image footage for measuring human motion, dynamic shape deformations,
and appearance. In the following sections, we describe in details the requirements
and solutions for each component of our studio: the studio room, the camera and
lighting system, and the full body laser scanner.

4.3.1 Studio Room

The studio is installed in a room of approximatély 4.8 meters in size. Its spatial
dimensions are large enough to allow the scanning of subjects as well as recording
of dynamic scenes from a large number of viewpoints. The ceiling has a height
of approximately 4m. Along one of the shorter walls, an area®i 4.8 meters

is separated as a control room of the studio and for our full body laser scanner,
Sect. 4.3.4. The walls and the floor can be covered with opaque black curtains
and a carpet, respectively, which enables us to minimize the effects of indirect
illumination in a scene. The recording area, the control room of our studio, and
the laser scanner are shown in Fig. 4.1.
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4.3.2 Camera System

The cameras used in the studio need to provide high frame-rates, high resolu-
tion, precise color reproduction, lossless data capture, and external synchroniza-
tion, which ensures that the multiple streams are correctly registered in time.
Our camera system was ordered out-of-the box according to these specifications.
The manufacturer [COS] also provided us with a custom-made control software,
Streams [STR].

The system is composed of eight ImpEfxMDC1004 single chip CCD cam-

eras that feature a 1004x1004 CCD sensor with linear 12 bits-per-pixel resolution,
Fig. 4.2(a). The CCD uses a Bayer mosaic to record red, green, and blue channel
information. The CCD sensor is connected to two controller chips. With both
controllers activated, the camera provides a sustained frame rate of 48 fps at full
resolution. However, in dual-mode the photometric responses of the sensors do
not comply and an intra-frame color adjustment step is necessary. With only one
chip activated, 25 fps at full resolution are feasible and no color balancing in the
images is required.

The cameras are linked to a control PC equipped with 8 high-speed frame grabber
boards. Each frame grabber is connected to a camera through a Camétaihink
terface. For maximal performance, each capture card is equipped with an on board
SCSil interface enabling direct streaming of image data to a RAID system. Eight
RAID systems are employed in parallel to enable real-time storage of the video
streams. The synchronization is performed via a trigger pulse that is broadcasted
to each capture card.

The cameras can be installed at arbitrary locations in the studio. For positioning
them, telescope poles (Manfrottb Autopole [MANFROTTO]) with 3-degree-
of-freedom mounting brackets (ManfrottbGear Head Junior MANFROTTO])

are used that can be jammed between the floor and the ceiling. In general, the
cameras are placed in an circular arrangement around the center of the scene and
enable us to capture a volume of approximatelyx 3.5 x 3 meters.

4.3.3 Lighting System

The illumination of the studio is a fundamental issue for generating quality image
footage. In our studio, the lighting conditions are fully controllable. For exam-
ple, no exterior light can enter the recording area and the influence of indirect
illumination is minimized by the black curtains and the carpet. Robust separation
between foreground and background is also essential, i.e. the amount of shadows



4.3 Recording Studio 31

(b)

Figure 4.2: (a) Camera and (b) softlight used in the studio.

cast on the floor has to be minimized. Furthermore, the lighting system should
produce a very uniform lighting, giving the scene a natural appearance.

In our studio, we employ a generic lighting configuration using 8 NesyFlex 440
DI ™ compact softlights [Nesys] that are optimized for universal use in TV and
video studios, Fig. 4.2(b). Each light component contains 8 fluorescent day light
tubes that radiate even light at an wide angle. They illuminate objects in the center
of the scene from the top of the recording area and spread the light homogeneously
downwards. The system can be controlled as a single unit using the TYNEN-

trols. Additionally, each light can be rotated to fulfil specific requirements. By
this end, the lighting system prevents direct illumination into the camera lenses,
which could lead to glares. The illumination system produces a uniform diffuse
lighting in the scene, which avoids sharp shadows and unwanted highlights on the
recorded subjects.

4.3.4 Full Body Laser Scanner

The geometric detail of the body of each recorded subject is captured by our Vitus
SmartM full body laser scanner [Vitronic], Fig. 4.1(c). The device is compact,
measuring2.1 x 1.9 x 2.8 meters, and could be easily integrated in our studio.
The scanner uses four columns which are mounted at an angle of approximately
90 degrees in relation with the subject to be scanned. Each column hosts an eye-
safe laser scanner and two cameras that sit on a vertically moving gantry. The
device employs a light-stripe method to collect high-speed 3D measurements. The
final scan comprises of a 3D point cloud measured at an accuracykdf x 4
millimeters.

With a person standing on the scanner’s platform, the scanning instruments start
at the person’s head and move down to scan the entire body. The scanning device
is designed to handle different subjects and many different poses for a wide range
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of applications. It is able to scan a cylindrical volume of apg@mately2.1 x 0.9
meters.

The whole scanning process takes approximately 11s and is controlled by a
software running on a computer. This software, provided by Human Solu-

tions [Solutions], also gives the operator the possibility to perform some simple

editing operations on the captured data.

4.4 Data Acquisition

Our recording studio efficiently acquires scanned models, camera attributes, and
multi-view image footage to be used by the projects described in this thesis. Our
acquisition pipeline can be divided into two stages: pre-recording and recording.
In the first stage, all necessary information needed to calibrate the cameras and
post-process the image data is captured. Afterwards, the actual recording session
takes place, where the laser-scanned model and the multi-view image footage are
acquired.

4.4.1 Pre-Recording

In this stage, all necessary data required to post-process the multi-view video
footage and to calibrate the cameras is collected. The following steps are per-
formed:

e Camera calibration
e Color calibration

e Background subtraction

Camera Calibration

For our applications, the internal and external parameters of each of the 8 cameras
have to be determined, Sect. 2.1. To this end, we first record two known objects to
be used by our calibration algorithms: a smaller calibration pattern positioned in
front of the camera, Fig. 4.3(a), and a large checkerboard positioned on the floor,
Fig. 4.3(b).

We start by using the Heikkila’s method [Heikkila96] to calculate the intrinsic pa-
rameters and undistort the calibration images accordingly. This algorithm jointly
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estimates intrinsic and extrinsic parameters from the imafeur small calibra-

tion pattern and models the lens aberrations more accurately by considering radial
and tangential lens distortions up to second order [Jain95]. Afterwards, we also
apply this information to correct and undistort each recorded camera stream.

Thereafter, using the undistorted images, we estimate the external parameters by
means of the Tsai algorithm [Tsai86]. The corners of the checkerboard are auto-
matically detected [Intel02] and an optimization procedure determines the extrin-
sic parameters that minimize the reprojection error between the camera model’s
prediction of the pattern appearance and the actual images.

Color Calibration

Faithful color reproduction is ensured by white-balancing all cameras before the
recording session. However, even after this step the color response of the cam-
eras can be different, for example due to noise and slight physical differences in
the built-in camera components. In order to assure color-consistency across the
cameras, we record a large diffuse calibration pattern which consists of an array
of 237 uniformly colored squares with purely lambertian reflectance, Fig. 4.3(c).

We use the recorded images of this color pattern to estimate for each camera a
trilinear transformation of the RGB color values in a least-squares sense. We typ-
ically perform relative photometric calibration. We define one camera to be the
reference camera and for each remaining one, a color transformation is computed
such that the color values of the pattern in the reference view are reproduced. At
the end, color-consistency across the cameras is assured by applying this transfor-
mation to each recorded camera stream.

Background Subtraction

For the projects described in this thesis, the separation of the foreground subject
from the background is essential. Our studio design already simplifies this process
since the effects of external light on the scene and shadows cast on the walls
are minimized. In order to segment the multi-view image data, we employ the
algorithm described in Sect. 2.3.1 that robustly separates the moving human actor
from the background. This algorithm computes mean color and standard deviation
for each background pixel from a sequence of images without a foreground object,
which is recorded prior to each human performance. By this means, foreground
pixels can be identified by a large deviation of their color from the background
statistics.
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(@) (b)

Figure 4.3: Information acquired during the pre-recording session: (a)
smaller calibration pattern used for intrinsic parameter estimation; (b) large
checkerboard on the floor used for extrinsic parameter estimation; (c) color
calibration pattern used for color adjustment.

4.4.2 Recording

Our recording session consists of three steps. Before recording a set of perfor-
mances, the data needed for camera calibration and post-processing is acquired:
small and large checkerboard images, color pattern and background images. Then,
for each subject, we acquire a triangle mesh model with our Vitus Sthéurt

body laser scanner. Thereafter, the subject immediately moves to the nearby area
where his/her performance is recorded by our eight synchronized video cameras.

In general, before recording each sequence, we ask the person to initially strike
the same pose that he/she was scanned in. This simplifies the alignment process
between scanned model and recorded images.
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Chapter 5

Problem Statement and
Preliminaries

This part reviews the steps involved in the traditional skeleton-based
character animation paradigm, and proposes two mesh-based alter-
natives that simplify the conventional process.

In recent years, photo-realistic computer-generated animations of humans have
become the most important visual effect in motion pictures and computer games.
In order to obtain an authentic virtual actor, it is of great importance that he/she
mimics as closely as possible the motion of his/her real-world counterpart. Even
the slightest unnaturalness would be instantaneously unmasked by the unforgiving
eye of the viewer and the illusion of seeing a real person would be compromised.

In order to generate virtual people, animators make use of a well-established but
often inflexible set of tools (see Sect. 5.1) that makes a high amount of man-
ual interaction unavoidable. First, the geometry of the human body is hand-
crafted in a modeling software or obtained from a laser scan of a real individ-
ual [Allen03]. In a second step, a kinematic skeleton model is implanted into the
body by means of, at best, a semi-automatic procedure [Herda00]. In order to
couple the skeleton with the surface mesh, an appropriate representation of pose-
dependent skin deformation has to be found [Lewis00]. Finally, a description of
body motion in terms of joint parameters of the skeleton is required. It can either
be designed in a computer or learned from a real actor by means of motion cap-
ture [Bodenheimer97, Poppe07]. Although the interplay of all these steps delivers
animations of stunning naturalness, the whole process is very labor-intensive and
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does not easily allow for the interchange of animation dpsons between dif-
ferent virtual subjects.

In this part of the thesis, we present two versatile, fast and simple alternatives that
streamline the whole pipeline from laser-scanning to animation. Although our
approaches abandon the concept of a kinematic skeleton, they integrate into the
traditional animation workflow and enable animators to quickly produce convinc-
ing animation results with minimal manual labor, while still allowing for control
over the production process.

The first approach, Chapter 6, is based on the Guided Poisson-based Deformation
Method (Sect. 3.2.1) and the second one, Chapter 7, extends the first animation
scheme by using the Guided Laplacian-based Deformation Method (Sect. 3.2.2).
In general, both algorithms expect as input a geometric model (scanned or hand-
crafted) in the form of a triangle mesh, and a description of the motion that the
model should perform. As a result, they animate the input model generating con-
vincing skinned body surfaces and also enabling simple motion retargeting, i.e.
they enable the animator to interchange motions between persons of even widely
different body proportions with no additional effort. Moreover, animations can be
generated at interactive frame rates and the animators have instantaneous feedback
when designing or modifying the animations. We demonstrate the performance
of the proposed methods by using marker-based and marker-less motion capture
data.

The main contributions of this part of the thesis is the

e integration of a Poisson-based and a Laplacian-based mesh deformation
technique with a motion capture system to create an efficient and easy-
to-use alternative to the traditional skeleton-based character animation
pipeline [de AguiarO7b, de AguiarO7d, de AguiarO7e],

e and the development of an intuitive animation tool providing full control
over motion characteristics and deformation properties.

This chapter proceeds with a review of closely related work in Sect. 5.1. After-
wards, in Chapter 6 and 7, we describe the details of both mesh-based character
animation methods.

5.1 Related Work

The first step in human character animation is the acquisition of a human
body model comprising of a surface mesh and an underlying animation skele-
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ton [Badler99]. Surface geometry can either be hand-craftet@anned from a
real person [Allen03].

The skeleton model can be either manually designed, inferred from marker
trajectories [Kirk05, de Aguiar06] or inferred from shape-from-silhouette vol-
umes [de Aguiar04]. Similarly, kinematic skeletons can be reconstructed from
a set of range scans of humans [Anguelov04] or by fitting a template to body
scans [Anguelov05]. Recently, new methods are also able to extract plausible hu-
man animation skeletons from a static surface mesh of a character by using prior
knowledge [Aujay07, SchaeferQ7].

Geometry and skeleton need to be connected such that the surface deforms real-
istically with the body motion. A popular method serving this purpose is vertex
skinning [Lewis00] (see also Sect. 13.1). It represents position changes of individ-
ual vertices as a weighted set of transformations associated with adjacent joints.
Deformation models can also be created by interpolating a set of scans [Allen02],
by combining a marker-based motion capture system with a shape-from silhou-
ette method [Sand03] or by capturing and animating surface deformations using a
commercial motion capture system and approximately 350 markers [Park06].

The virtual human is animated by assigning motion parameters to the joints in
the skeleton. Common methods to generate such motion descriptions are key-
framing [Davis03], physics-based animation [Faloutsos01] or optimization-based
creation of physically plausible movements [Fang03]. However, the most au-
thentic motion representation is acquired through marker-based [Bodenheimer97,
Herda00] or marker-less motion capture systems [Poppe07]. Unfortunately,
reusing motion capture data for subjects of different body proportions is not triv-
ial, and requires computationally expensive motion editing [Gleicher97, Lee99]
and motion retargeting techniques [Gleicher98, Tak05].

In general, most current work on character animation is focused on improving
particular steps of the traditional pipeline such that animators can create realistic
results efficiently. Only a small number of people has been working on methods
to make the overall production process easier [Baran07] and less dependent on the
use of an underlying skeleton [IgarashiO5].

On the other hand, as highly detailed 3D triangle meshes become more and more
accessible, there has been an increasing interest in devising techniques which can
work directly on these geometric representations without requiring the overhead
of intermediate pipelines such as the one mentioned above. The potential of mesh-
based deformation techniques for character animation has already been stated in
the literature. Using a complete set of correspondences between different syn-
thetic models, [Sumner04] can transfer the motion of one model to the other one.
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Following a similar line of thinking, [Sumner05, Der06] prage a mesh-based
inverse kinematics framework based on pose examples. [Shi06] presents a multi-
grid technique for efficient deformation of large meshes and [Huang06] presents a
framework for performing constrained mesh deformation using gradient domain
techniques. Most recently, [XuO7a] proposes a set of mesh-based operations to
post-process mesh animations that unfortunately requires a fundamental redesign
of existing animation tools.

In the following chapters, we present two methods that are able to simplify the
traditional animation process [de AguiarO7b, de AguiarO7d, de AguiarO7e]. Al-
though they abandon the concept of a kinematic skeleton, the approaches integrate
into the traditional animation workflow and enable animators to quickly produce
convincing animation results. In contrast to related methods, they provide a com-
plete integration with a motion acquisition system and provide an intuitive an-
imation tool that gives full control over motion characteristics and deformation
properties.



Chapter 6

Poisson-based Skeleton-less
Character Animation

This chapter presents an approach to efficiently generate high-quality
animations of human characters from input motion data. Using a
Poisson-based deformation method, as described in Sect. 3.2.1, the
proposed approach outputs character animations with realistic body
deformations, only requiring a minimum of manual interaction.

In order to generate photo-realistic animations of humans, animators make use of
a well-established but often inflexible set of tools that makes a high amount of
manual interaction unavoidable, Sect. 5.1. In this chapter, we describe a versatile,
fast and simple mesh-based alternative to animate human models that completely
integrates into the traditional animation workflow.

Our approach can be used to realistically animate models of humans without rely-
ing on kinematic skeletons, which reduces the animator’s effort to a great extent.
Furthermore, it produces realistic pose-dependent body deformations and it solves
the motion transfer problem, i.e. it enables the animator to interchange motions
between persons of even widely different body proportions with no additional ef-
fort.

The main contributions of this chapter are

e the integration of a Poisson-based mesh deformation technique with a mo-
tion capture system to create an efficient and simple alternative to the con-
ventional character animation pipeline [de Aguiar07d, de AguiarO7e], and
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Actor performing marker-less animation Male farget mesh
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MOCAP data

marker-based animation Female farget mesh

Figure 6.1: lllustration of the workflow of our system.

¢ the development of an intuitive animation tool providing full control over
motion characteristics and deformation properties.

This chapter proceeds with an overview of our algorithm in Sect. 6.1, and the
description of our simple interface prototype in Sect. 6.2. Thereafter, we demon-
strate that we can realistically animate human models using marker-based and
marker-less motion capture data, Sect. 6.3. Finally, results and conclusions are
presented in Sect. 6.4.

6.1 Overview

Our goal is to provide animators with a simple and fast method to directly ap-
ply captured motion to human models, e. g. scanned models. The input to our
method is a human body sca#,,; and motion data generated from real individ-
uals using optical motion estimation methods, Fig. 6.1. The first processing step
normalizes these sequences of key body poses by transforming them into a se-
guence of postures of a simple triangle mesh model, henceforth teemgiiate

mesh. In Sect. 6.3.1 and 6.3.2 we exemplify that it is straightforward to generate
such templates from motion capture data.

By regarding motion transfer as a pure deformation problem, we can put aside
all difficulties related to the dissimilarities between the template and the input
model, as anatomical disparities or body proportions, and take advantage of their
semantic similarities, e.g. the fact that both mesh representations have knees and
elbows. To this end, we ask the user to specify a sebakespondence triangles
between the template and,, ;.



6.2 Prototype Interface 43

g

(@ (b) () (d)

Figure 6.2: A template model (a) and a high-resolution body scan (b) in their
respective reference poses. The template in a pose obtained via motion cap-
ture (c) and its pose transferred to the human scan (d).

The motion of the template mesh from a reference pose, as shown in Fig 6.2(a),
into another pose (Fig 6.2(c)) is captured by the deformation of a small set of tri-
angles marked under the guidance of the user. Applying these deformations to the
corresponding triangles d¥1,,; brings it from its own reference pose, as shown in
Fig 6.2(b), into the deformed template’s pose, Fig 6.2(d). For this purpose, we first
align template and input models in a given reference pose. By subsequently apply-
ing the motion transfer procedure to all input frames, the motion from the moving
template mesh is correctly transfered to the input high-quality body model.

6.2 Prototype Interface

Our method does not require skeleton information or full correspondence between
the template and the input model. The motion transfer process is controlled by the
set of markers chosen by the user. We decided to resort to this interactive step
since there is no viable automatic approach that can identify body segments on
meshes standing in general poses.

Our easy and intuitive prototype interface allows access to both models at their
reference poses simultaneously, Fig. 6.3. An automatic alignment of the mod-
els is performed upon loading the mesh files. When a triangle is selected on
one model, a corresponding triangle on the other one is highlighted. The artist
can decide to keep this correspondence or improve it manually. For cylindrically
shaped body parts, we require the user to specify a single correspondence triangle
and we mark additional triangles automatically by taking additional directions in
the cross-sectional plane and intersecting them with the mesh. For geometrically
more complex body parts, such as the lap or the shoulders, correspondences need
to be specified by the user.
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Figure 6.3: Prototype interface used in our system, featurig easy selection
of correspondences and instantaneous feedback.

Using our prototype interface, the user can verify instantaneously how the cor-
respondences will influence the deformation transfer process. By loading a tem-
plate mesh in a deformed pose, the input moblg}; can be deformed using the
actual selected correspondences. This enables the artist to decide on-the-fly if the
correspondences Yyield satisfactory results. Note that except from setting the cor-
respondences, our whole framework is fully automatic. The number of triangle
correspondences used in our animations ranges from 140 to 220, half of which is
automatically generated.

As the placement of the markers directly affects the pose-dependent surface de-
formation of the scanned mesh, the user does not have to tweak any weights as in
the commonly used skinning methods. The principle here is simple: for having

a sharp bend in the surface, the correspondences should be placed close to either
side of the joint, Fig. 6.4 (left). Increasing the distance of the markers from the
joint allows for a softer bending, Fig. 6.4 (right).

6.3 Animating Human Scans using Motion
Capture Data

Using motion capture data as the front-end to our framework, we create two in-
triguing applications: mesh-based character animation and video-driven anima-
tion.
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Figure 6.4: Influence of the markers’ placement on the deformation quality:
marking correspondence triangles (red dots) close to an (anatomical) joint
creates a sharp bend in the skin (left), while increasing the distance to the
joint enables smoother bending (right).

6.3.1 Mesh-Based Character Animation

Marker-based tracking systems [Bodenheimer97] provide the animator with mo-
tion descriptions of unequaled accuracy and naturalness. Even subtle details in
motion patterns are faithfully captured. However, the high quality of the cap-
tured motion data comes at the expense of many inflexibilities in their applica-
tion. Firstly, motion parameters cannot easily be reused with virtual persons that
differ in skeletal proportions from the captured individual. To make this pos-
sible, computationally expensive motion retargeting algorithms have to be ap-
plied [Gleicher98]. Secondly, motion capture systems only deliver a description
of human motion in terms of interconnected rigid bodies. The non-rigid defor-
mations of the skin and the soft-tissue surrounding the bones usually have to be
manually modeled, e.g. by means of vertex skinning [Lewis00].

Our approach is able to simplify this process by directly animating human body
scans with motion capture data. Paradoxically, despite discarding the use of a
kinematic skeleton, it allows us to generate high-quality animations. The steps
that have to be taken to animate the input scan are very simple: first, using any
standard animation software, like 3D Studio M¥xthe input motion data, as
shown in Fig. 6.5(a), is transformed into a surface model in which the bones of
the biped are represented as triangle meshes, Fig. 6.5(b). Consequently, using
our prototype interface, static per-triangle correspondences between the triangu-
lated biped and the input scanned mesh are defined. Finally, the Guided Poisson-
based mesh deformation approach, as described in 3.2.1, realistically deforms the
scanned modeM,,.;, mimicking the motion of the animated template, Fig. 6.5(c).
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Figure 6.5: The set of input markers (a) are used to generate an intermedi-
ate biped model using any standard animation software (b). By applying the
Guided Poisson-based deformation technique, the acquired motion is realis-
tically transferred to the input human body scan (c).

In order to use the deformation approach, the local transformations to be applied
to the selected triangles @#1,,; need to be estimated. This is done by calculating
the transformation matri®; that brings the triangle/*“" at the reference frame

into the configuratiort! at framet, i.e. using the Jacobian. Using as inpt;,;

and the estimated transformatioRs the deformation method is able to transfer
the pose of the template to the scanned model. At the end, since the deformation
approach is insensitive to translation, we also apply a global translatian;tp

to bring it to the same location as the template model at the current frame.

We have applied our method to animate a male and a female scanned model.
Input motion capture data are taken from a database of motion files provided by
Eyes, Japan Co. Ltd. Fig. 6.6 shows several frames of an animation in which
we made the female model perform a soccer kick. The input is a motion capture
file comprising of 90 key body poses. The actress realistically blocks the ball,
kicks it and scores. Note that the animation nicely displays even subtle details
like the protrusion of the chest during blocking. The skin deformation around the
knees and the elbows is also authentically reproduced. Fig. 6.7 shows the male
model performing boxing punches and jumping. Note that despite the fact that
the input motions stem from persons with totally different anatomical dimensions,
very natural animations are generated.

6.3.2 Video-driven Animation

For non-intrusively estimating motion parameters, the passive optical motion cap-
ture approach proposed in [Carranza0O3] is used. To this end, a moving subject
is recorded by eight static video cameras in our studio, Chapter 4. From the
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Figure 6.6: Subsequent frames generated by our system showjrthe female
scan authentically performing a soccer kick. Note the realistic protrusion of
the chest when she blocks the ball, as well as the original head motion.

frame-synchronized multi-view video (MVV) streams, the shape and the motion
parameters of the human are estimated. To achieve this purpose, the template
model shown in Fig. 6.2(a), comprising of a kinematic skeleton and sixteen sep-
arate closed surface segments, is fitted to each time step of video by means of
silhouette-matching. The output of the method conveniently represents the cap-
tured motion as a sequence in which the template model subsequently strikes the
estimated body poses.

This output format can be directly used as input to our pipeline. First, the an-
imator specifies triangle correspondences between the template and the scanned
model M,,; at their reference poses. Thereafter, the mesh deformation scheme
(Sect. 3.2.1) makes the human scan mimic the motion that we have captured in
video. As in Sect. 6.3.1, local transformatioRsare calculated based on the de-
formation of the selected triangles of the template model between the reference
and the current frame. The deformation method transfers the pose of the tem-
plate to the scanned mesh, and at the end, a global translation is apphé(,to
bringing it to the same position as the template model at the current frame.

We demonstrate the performance of our video-driven animation system by ani-
mating a female and a male scan with two different captured motion sequences.
The first sequence contains 156 frames and shows a female subject performing
a capoeira move. The second sequence is 330 frames long and shows a dancing
male subject. Fig. 6.8 shows a comparison between actual input video frames
and human scans striking similar poses. It illustrates that body poses recorded on
video can be faithfully transferred to models of arbitrary human subjects. Dif-
ferences in body shape and skeletal proportions can be neglected. These results
also demonstrate that our method provides animators with a tool to conveniently
transfer motion extracted from normal video streams onto human scans.
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Figure 6.7: Male model boxing (left) and jumping (right). Note the realistic
skin deformation of the animated scanned model.

6.4 Results and Discussion

To demonstrate the potential of our framework, we conducted several experiments
with both marker-based and marker-less motion acquisition techniques. Since
for this project we did not have access to a full body laser scanner, we used the
Cyberware models provided with their original surface colors in most of our ex-
periments: a female model (264KA) and a male model (294KA). As shown in
Fig. 6.6 and Fig. 6.7, the models faithfully reproduce the acquired performances
of professional athletes. Marker-less motion acquisition enables us to perform
video-driven animation. Both of our models in Fig. 6.8 authentically mimic the
human performances captured on video.

The results confirm that our method is capable of delivering visually convincing
character animation at a low interaction cost. The method is able to process large
data sets in the order of 200 to 300 Kr\just seconds. For smaller models of 30

to 50 KA, the results are generated at 2-5 frames per second. All the experiments
were conducted on a single 3.2GHz notebook.

Our method can be seen as an enhancement to the artist’'s traditional animation
workflow. In order to evaluate its performance, we conducted several experi-
ments asking unexperienced users to animate a character using both our animation
framework and a traditional animation software. A comparison of the resulting
animations is shown in Fig. 6.9. This further confirms that our system is able to
generate results comparable to professional animation packages, like Character
Studio ™, without requiring much effort. In the traditional animation pipeline,

an unexperienced user needs many hours to correctly adjust the skinning weights.
However, in our system, he/she is able to specify the correspondences quickly
thanks to our prototype interface. After less than one hour, the animations shown
in Fig. 6.9(b) can be produced. In fact, specifying correspondences is more intu-
itive to the user than working on building envelopes during the skinning process.
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Figure 6.8: Video-driven animation. Motion parameters are exracted from
raw video footage of human performances (top row). By this means, body
poses of a video-taped individual can easily be mapped to body scans of other
human subjects (bottom rows).

In addition, correspondences can be tested instantaneously on our system, giving
the user an adequate feedback.

As for any novel technique, our method still has some limitations. While our cur-
rent system can handle different motion capture data as input, it does not provide
intuitive key-framing capabilities. For extreme deformations, we also note that
there is generally some loss in volume due to the nature of our mesh deforma-
tion technique, Sect. 3.2.1. Another limitation is that our system can not enforce
positional constraints. Although it is not possible to explicitly enforce positional
constraints, they can be implicitly specified by increasing the number of corre-
spondences associated with a triangle or a region. For instance, we can ensure
stable feet placement simply by marking a sufficient number of constraints on the
feet. While allowing for an easy and intuitive control over the animation result, a
wrong placement of correspondences can lead to unsatisfactory animation results,
in the same way as bad skinning weights do in the classical animation pipeline.
However, during our experiments, we could verify that bad correspondences can
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Figure 6.9: Direct comparison between a character animation generated by
an animation software package (a) and our system (b). Our method is able
to provide the same visual quality, while requiring less effort and time from
unexperienced users.

easily be detected and corrected using the instantaneous feedback provided by
our prototype interface. On the other hand, correcting problems in the traditional
animation pipeline needs a big amount of time and experience.

Most recently, a variety of mesh deformation techniques have been described in
the literature, Sect. 3.1. The majority of these methods are conceptually related
to our algorithm and could also be used to enhance the animation quality and
the speed of our system. In the next chapter, we improve the performance of
our animation framework by using a Laplacian-based mesh deformation scheme
(Sect. 3.2.2) instead of a Poisson-based technique. This solves the translation in-
sensibility problem of the current system, enabling the specification of positional
constraints. Moreover, it allows the user to generate animations using a smaller
number of correspondences, thus reducing the animator’s effort.

Nonetheless, the proposed method is a step towards simplifying the traditional,
not so straightforward acquisition-to-animation pipeline. It is easy and intuitive
to use, and does not require any training. By means of the same efficient method-
ology, it simultaneously solves the animation, the surface deformation, and the
motion retargeting problem.



Chapter 7

Laplacian-based Skeleton-less
Character Animation

This chapter extends the original mesh-based animation framework
described in the previous chapter. By using a Laplacian-based
scheme to guide the mesh deformation process, the improved system
described here allows for more accurate control producing anima-
tions from motion capture data.

In the previous chapter, we introduced a versatile, fast and simple approach to an-
imate characters from motion capture data. It uses a purely mesh-based animation
paradigm that realistically animates static meshes of arbitrary humans without re-
lying on kinematic skeletons. However, the previous approach does not allow the
animator to specify positional constraints. Although they can be implicitly en-
forced by increasing the number of correspondences associated with a triangle,
the lack of positional constraints makes it hard to produce an animation, as the
user needs to specify more correspondences.

In this chapter, we extend the previous approach by employing a Laplacian-based
technique, as described in Sect. 3.2.2, to guide the motion transfer process. As a
result, our system is able to animate the human character taking into account rota-
tional and positional constraints set by the user. This enhances the performance of
the method, and makes it more robust against retargeting artifacts, e.g. feet sliding
on the floor.

The main contribution of this chapter is the
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e integration of a Laplacian-based mesh deformation technique with a motion
capture system to create a simpler alternative to the traditional character
animation pipeline [de Aguiar07b].

The remainder of this chapter is structured as follows: Sect. 7.1 presents an
overview of our improved animation framework. Applications of our method us-
ing both marker-based and marker-less motion capture data are shown in Sect. 7.2.
Finally, results and conclusions are presented in Sect. 7.3.

7.1 Overview

As in Chapter 6, inputs to this method are a scanned mMéghand a description

of the motion that the model should perform. To apply our framework, an in-
put motion description has to be converted into a moving template model, which
can either be a template triangle mesh or a template point cloud. After roughly
aligning template and scanned models at their reference poses, a small set of cor-
responding vertices between the template Amg; are specified. Thereafter, our
Laplacian-based mesh deformation technique is used to efficiently transfer the
motion of the template model td1,,;. The deformation method generates anima-
tions at interactive frame rates, creates convincingly skinned body surfaces, and
allows for simple motion retargeting.

Through placement of markers, the characteristics of the motion, the surface skin-
ning, and the retargeting constraints are defined. Our graphical user interface,
adapted from Sect. 6.2, assists the animator in controlling marker placement. A
typical session consists of the following steps: first the user selects a vertex in the
template model. Since template and input model have been roughly aligned, the
system proposes a corresponding closest target vertex. Fortunately, we can com-
pute deformed mesh poses at interactive rates, and thus a newfjpse shown
instantaneously after setting each pairwise correspondence. Due to the immediate
visual feedback, it is easy for the user to interactively modify correspondences.

As the corresponding vertices will drive the Laplacian-based deformation method,
it is important that their choice captures as much as possible of the geometric
deformation. The principle to place the markers is simple: they should be spec-
ified in areas where deformations are expected to happen, e.g. near anatomical
joints. In addition, they can be specified in regions where the animator wants to
enforce detailed deformation, for example in the torso, or explicit positional con-
straints. With the assistance of our interactive application, even unexperienced
users quickly get a feeling of how to place markers. Each of the animations pre-
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Figure 7.1: (a) Template (used for marker-less data) and human models at
their reference poses. Colored spheres represent corresponding selected ver-
tices. (b-c) Models in different poses. Note how the human model is accu-
rately deformed, mimicking the template model’'s pose.

sented in Sect. 7.3 were generated in less than 15 minutes. Typically, between 35
to 65 markers are sufficient to create realistic animations.

7.2 Animating Human Scans with Motion
Capture Data

7.2.1 Mesh-Based Character Animation

Nowadays, skeletal motion data acquired with a marker-based optical system is
widely-used in animation production. It is thus one of our main motivations to
develop a method to easily apply these data to high-quality surface models, while
bypassing the drawbacks of the traditional skeletal animation. Nearly all motion
capture systems output a kinematic skeleton and a sequence of joint parameters.
As stated in Sect. 6.3.1, we first automatically transform this kinematic represen-
tation into a moving template model using a standard animation software, like
3D Studio MAX™. Note that we do not generate another surface model, and that
there are no requirements at all concerning shape and connectivity of the template,
apart from it containing moving vertices.

Once the mesh template has been generated, local transformAtamscalcu-

lated from the rotation of the selected vertices of the template between its ref-
erence pose and its pose at timédy means of a graph-based method. To this
end, the selected vertices on the template are considered nodes in a graph, and
edges between them are determined by constructing the extended minimal span-
ning tree [Kruskal56]. For each selected vertex, a local frame is generated by
looking at its neighboring edges. A local rotation for each vertex is estimated
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Figure 7.2: Several frames showing the input human model pedrming soc-
cer moves. The input motion was captured by means of a marker-based op-
tical motion capture system. Note the lifelike non-rigid surface deformations
automatically generated.

from the change of the local frame between reference time andttinmee using

the Jacobian. These rotations are then assigned to the corresponding vertices of
M,.;. Positional constraintsc are derived from the positions of the selected ver-
tices of the template mesh at timeand assigned to the corresponding vertices of
M. Using as inputs\,,;, R andpc, the Guided Laplacian-based approach is
applied to animate the scanned human model over time.

We can even use the raw marker-trajectories output by the motion capture system
as input to our method, as opposed to in Chapter 6. However, please note that
the best positions of markers on the body for our purpose are different from the
best marker positions for skeletal motion estimation. Obviously, most publicly
available sequences have been captured with the latter application in mind, which
makes it necessary to build a template prior to feeding them to our algorithm.

We have animated several laser-scanned subjects with motion files provided by
Eyes Japan Co. Ltd. We generated convincingly moving characters, examples
of which are shown in Fig. 7.2. Motion retargeting is achieved by appropriately
placing constraints. With synthetic data, we could also verify that raw marker
trajectories are a feasible input motion description.
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Figure 7.3: Video-driven animation. Two comparisons betwee an input
video frame and two models striking the same pose. Although the models
have different body dimension with respect to the real human subject, the
poses are reconstructed accurately.

7.2.2 Video-driven Animation

Instead of explicitly-placed markings on the body, marker-less systems employ
image features to estimate motion parameters from video. Similar to Sect. 6.3.2,
using a silhouette-based marker-less motion capture system [Carranza03], the ac-
tor's motion parameters are measured, using a template body model comprising a
segmented surface mesh and an underlying skeleton, from 8 MVV streams.

Since a mesh template is already used for tracking, we can employ the deformation
scheme to straightforwardly map the captured motion to scans of other persons.
As in Sect. 7.2.1, positional constraints are assigned to vertices 8#1,,; from

the corresponding vertices of the template mesh at tinkotational constraints

R are derived from the movement of the selected markers of the template from
the reference frame to the current frame. By applying these constraints to the
Guided Laplacian-based approach, the scanned human model is animated over
time. Fig. 7.3 shows screenshots of animations that are obtained by mapping non-
intrusively captured human performances to laser-scans of different subjects.

7.3 Results and Discussion

The animated body meshes of male and female subjects, captured with a
CyberwaréV full-body scanner, exemplify the performance of our improved
method. In the marker-based setting, we generated results from 10 different mo-
tion sequences, showing a variety of motions ranging from simple walking to
soccer moves. The sequences were typically between 100 and 300 frames long.
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Figure 7.4: Example of a simple virtual environment using the nale model.
Some frames of the animated dancing sequence, captured from the perfor-
mance of a real actor, are shown.

Fig. 7.2 shows several frames of different animations where the male model per-
forms soccer moves. The human model realistically performs the motion, while
exhibiting lifelike non-rigid surface deformations. Note that the fact that the
scanned model has different dimensions compared with the recorded human sub-
ject is not a problem for our algorithm.

Marker-less animation examples are shown in Fig. 7.3 and Fig. 7.4. Fig. 7.3 shows
a comparison between actual input video frames and two models striking similar
poses. It illustrates that our method can accurately transfer poses captured on
video to virtual characters. Fig. 7.4 shows some frames of a captured dancing
sequence (330 frames) being mapped into a male model.

The quality of the results confirms that our animation framework is able to
simplify the traditional, not so straightforward skeletal acquisition-to-animation
pipeline. The framework described in this chapter is simple, versatile and en-
ables us to compute target poses.fdr,; at an interactive frame rate of 5 fps for
models comprising of 10K40 30KA. As in Chapter 6, this approach also re-
quires manual interaction. However, the main advantage over the previous one is
the addition of positional constraints. This allows the user to animate a character
using less correspondences and makes the system more robust against retarget-
ing artifacts. Moreover, the improved framework does not require a sequence of
template models and it is able to create character animations using only the raw
marker positions. By this means, animation production is simplified even further,
as animations can be generated interactively during the motion capture process.

Our current method still presents some limitations regarding loss in volume during
extreme deformations. However, this can be corrected by using advanced surface
or volumetric mesh deformation methods as shown in [Shi06, Sorkine07, Stoll07].
Nonetheless, in this part of the thesis we describe an efficient methodology to di-
rectly animate characters from motion data, simultaneously solving the animation,
the surface deformation, and the motion retargeting problem.
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Chapter 8

Problem Statement and
Preliminaries

This part of the thesis first reviews the most relevant work on motion
capture, scene reconstruction, and 3D Video. Thereafter, it describes
three algorithms to passively capture the performance of human
actors, and presents a system to generate high-quality 3D Videos.

Nowadays, stepping directly from a captured real-world sequence to the corre-
sponding realistic moving character is still challenging. Since marker-based and
marker-free motion capture systems measure the motion in terms of a kinematic
skeleton, they have to be combined with other scanning technologies to capture
the time-varying shape of the human body surface [Allen02, Sand03, Park06].
However, dealing with people wearing arbitrary clothing from only video streams
is still not possible.

In this part of the thesis, we propose three solutions to bridge this gap, enabling the
direct animation of a high-quality static human scan from unaltered video footage.
The algorithms presented in this part of the thesis jointly capture motion and time-
varying shape detail even of people wearing wide apparel, while preserving a
spatio-temporally coherent geometry over time. By being completely passive,
they also enable us to record the subject’s appearance, which can then be used to
display the recorded actor from arbitrary viewpoints.

The proposed methods achieve a high level of flexibility and versatility by explic-
itly abandoning any traditional skeletal motion parameterization, and by posing
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performance captures deformation capture. As a result, they produce a rich dy-
namic scene representation that can be easily made available to and modified by
animators, which enables new applications in motion capture, computer animation
and 3D Video.

To summarize, this part of the thesis presents the following contributions:

e a method to fully-automatically capture motion and time-varying deforma-
tion of people by combining optical flow and a fast Laplacian-based tracking
scheme [de AguiarQ7a];

e a simple and robust method to automatically identify and track features on
a moving arbitrary subject over time [de AguiarO7c];

¢ an efficient approach to directly and realistically animate a static body scan
from sparse marker trajectories [de AguiarQO7c];

e a dense performance capture technique that reconstructs motion, time-
varying geometry, and texture of actors performing fast and complex mo-
tions [de AguiarO8a];

e a system to render high-quality 3D Videos of captured human perfor-
mances [de Aguiar08a].

This chapter proceeds with a review of closely related work in Sect. 8.1. There-
after, in Chapters 9, 10, and 11, we describe the details of three performance
capture methods. Finally, Chapter 12 presents a system to generate high-quality
3D Videos.

8.1 Related Work

We defineperformance capturas the full process of passively recording motion,
dynamic geometry, and dynamic surface appearance of actors from multi-view
video. Therefore, the work presented in this part of the thesis jointly solves a
variety of algorithmic subproblems, and extends previous work in the fields of
human motion capture, dynamic scene reconstruction, and 3D Video.

8.1.1 Human Motion Capture

Optical motion capture systems are the workhorses in many game and movie pro-
duction companies for measuring motion of real performers [Bodenheimer97].
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Optical markings, which are either made of a retroreflectisemal or LEDs

are placed on the body of a tracked subject and several high-frame-rate cam-
eras are used to record the moving person. The locations of the markers in the
video streams are tracked and their 3D trajectories over time are reconstructed by
means of optical triangulation [Vic]. Thereafter, a kinematic skeleton is matched
to the marker trajectories to parameterize the captured motion in terms of joint an-
gles [Herda00]. Although many commercial marker-based capturing systems are
available, e.g. [Ari, Mot, PhaseSpace, Qua, Sim, Vic], that deliver highly accu-
rate motion data, the application of marker-based systems is still time-consuming,
see Chapter 5. Furthermore, the captured individuals typically have to wear spe-
cial body suits, and the use of markers does not allow the video streams to be
employed for further processing, e.g. texture reconstruction.

Marker-less motion capture approaches are designed to overcome some re-
strictions of marker-based technigques and enable performance recording with-
out optical scene modification [Moeslund01, Moeslund06, Poppe07]. A kine-
matic body model, typically consisting of a linked kinematic chain of bones
and interconnecting joints, can be combined with a simple geometric prim-
itive to model the physical outline of the human subject, enabling its mo-
tion estimation. Primitives like cylinders [SidenbladhQ0], stick figures [Lee85],
patches [Kameda93], cones [Goncalves95], boxes [Meyer97], scaled prismat-
ics [Cham99], ellipsoids [Cheung00, M@d1] and superquadrics [Gavrila96,
Kakadiaris96, Sminchisescu03] can be used. Implicit surface models based on
metaballs are also feasible #inkers03]. Recently, more realistic models based on
polygon meshes [Carranza03, Starck03a, B8] and high-resolution scanned
models [Corazza06, Balan07a, Gall08] have also been employed.

In [O’Rourke80], an analysis-by-synthesis framework has been proposed that
searches the space of possible body configurations, synthesizes model poses,
and compares them to features in the image plane. By this means, the mis-
alignment between these features, such as silhouettéskigs03, Carranza03,

de Aguiar05], and the corresponding features of the projected model, drives a
pose estimation and refinement process [Koch93, Martinez95, GrammalidisO1].
Another category of approaches uses optical flow constraints [Bregler98,
Brox06], appearance models [VacchettiO4, Balan06], edges [Sminchisescu03,
Deutscher05], textured-models [Gall06], depth constraints [Covelle00Q], inverse
kinematics [YonemotoOO] and conformal geometric algebra [Rosenhahn06a] to
drive the pose estimation procedure. Alternatively, divide and conquer meth-
ods using silhouettes [Mittal03], constraint propagation methods [Chen92], and
physics-based approaches [Kakadiaris95, Delamarre99] have also been devel-
oped.
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In contrast to the methods based on local [Carranza03, ChepRg886nhahn06b,
MundermannQ7] or global [Corazza06] optimization, recently, the application of
filtering approaches in the context of human motion capture has become very
popular. If the model dynamics can be described by a linear model, a Kalman
Filter can be used for tracking [Pentland91, Bregler97, BOR]. Assuming

a non-linear dynamic model and Gaussian noise, particle filter approaches can
be also employed [Deutscher00, Sidenbladh00, MacCormick00, Drummond01,
Sidenbladh02, Wang06, Xu07b]. Moreover, the combination of optimization
and filtering techniques for tracking sophisticated 3D body models has also been
demonstrated in several other publications [Sminchisescu03, Bray07].

Recent systems are also based on learning approaches, where additional prior
knowledge is taken into account during human motion estimation. This in-
cludes the use of prior poses or patterns from a motion database [Sidenbladh00,
Urtasun04, Rosenhahn07], tracking-by-detection approaches [Shakhnarovich03,
LoyO4, Mori06], or approaches that learn a map between image and pose
spaces [Grauman03, Agarwal06, Lee07, Sminchisescu07].

Alternatively, instead of working with image features, kinematic body models
can be fitted to dynamic 3D scene models that are reconstructed from multiple
silhouette views [Theobalt02, Cheung03, de Aguiar04].

8.1.2 Dynamic Scene Reconstruction

Motion capture systems [Bodenheimer97, HerdaOO0] take into account the sub-
ject’s underlying kinematic structure to simplify the motion estimation pro-
cess. However, the use of a skeleton structure restricts such methods to cap-
ture only articulated rigid body motions. Non-rigid surface deformations due
to apparel or skin are not captured. Some approaches have been described in
the literature aiming at solving this problem by using hundreds of optical mark-
ings [Park06], by jointly using a motion capture system and laser range scans of
humans [Allen02, Anguelov05] or by jointly employing a marker-based motion
capture method and multi-view silhouette matching [Sand03]. Although these
approaches produce highly detailed deformable bodies, their commitment to a
marker-based motion capture system makes it hard to use them for applications
where interference in the scene is not allowed, e.g. 3D Video. Another limitation
is the use of a priori knowledge about the subject, which makes generalization to
animals or other objects difficult.

Marker-less motion capture approaches [Poppe0Q7] are more flexible than intrusive
methods. However, it is still difficult for them to achieve the same level of accu-
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racy and the same application range. Furthermore, sinceappsbaches employ
kinematic body models, they cannot capture the motion and detailed shape of peo-
ple in loose everyday apparel. Some methods try to capture more detailed body
deformations, in addition to skeletal joint parameters, by adapting the models
closer to the observed silhouettes [Sand03, Balan07a] or by jointly using silhou-
ettes and cast shadows [Balan07b]. However, these algorithms require the subjects
to wear tight clothes. Only few approaches, such as the work by [Rosenhahn06b],
aim at capturing humans wearing more general attire, e.g. by jointly relying on
kinematic body and cloth models.

Alternatively, shape-from-silhouette algorithms [Goldluecke04], multi-view
stereo approaches [ZitnickO4], methods combining silhouette and stereo con-
straints [Esteban04, FurukawaO6], and data-driven techniques [WilburnO5,
Einarsson06] can be used to reconstruct dynamic scene geometry. To obtain good
quality results, however, many cameras are needed and it is hard for these algo-
rithms to generate connectivity-preserving dynamic mesh models [Starck05].

Some passive deformable model tracking methods extract 3D correspondences
from images to track simple deformable objects [Decarlo00], cloth [Pritchard03],
and surface deformations of tightly dressed humananjdrs03, de Aguiar05].
Statistical models have also shown their potential to track confined deformable
surface patches [TorresaniO4] and moving hands [Heap96]. Researchers have also
used physics-based shape models to track garment [Salzmann05] or simple articu-
lated humans [Pentland91, Metaxas93, Brubaker07]. Unfortunately, none of these
methods is able to track arbitrarily dressed people completely passively. It may
also be difficult to apply them for tracking a human wearing different garments,
since the specification of material parameters is non-trivial.

Recently, new animation design [Botsch08], animation editing [XuO7a], anima-
tion capture methods [Bickel07], and approaches to deform mesh-models into
active scanner data [Stoll06] or visual hulls [Shinya04] have been developed. In
another line of research, methods that jointly perform model generation and de-
formation capture from scanner data [Wand07] have also been proposed. All these
methods are no longer based on skeletal shape and motion parameterizations, but
rely on surface models and general shape deformation approaches. Similar to
these previous approaches, the performance capture methods proposed in this the-
sis follow this research direction. Although the explicit abandonment of kinematic
parameterizations makes performance capture a harder problem, it bears the strik-
ing advantage that it enables capturing both rigidly and non-rigidly deforming
surfaces with the same underlying technology.
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8.1.3 3D Video

Research in 3D Video, or free-viewpoint video, aims at developing methods for
photo-realistic, real-time rendering of previously captured real-world scenes. The
goal is to give the user the freedom to interactively reconstruct real-world scenes
from new synthetic camera views never seen by any real camera.

Early research that paved the way for free-viewpoint video was presented in the
field of image-based rendering [Shum07]. Shape-from-silhouette methods recon-
struct rather coarse approximate 3D video geometry by intersecting multi-view

silhouette cones. Examples are image-based [Matusik00, Wuermlin02] or polyhe-
dral visual hull methods [Matsuyama02], as well as approaches performing point-
based reconstruction [Gross03].

Despite their computational efficiency, the moderate quality of the textured
coarse scene reconstructions often falls short of production standards in the
movie and game industry. To boost 3D video quality, researchers ex-
perimented with multi-view stereo [ZitnickO4], multi-view stereo with ac-
tive illumination [WaschiischO5], combinations of stereo and shape-from-
silhouette [Starck07], or model-based free-viewpoint video capture [Carranza03,
de Aguiar05]. However, the first three categories of approaches do not deliver
spatio-temporally coherent geometry or 360 degree shape models, which are both
essential prerequisites for animation post-processing. At the same time, it is ex-
tremely challenging for previous kinematic model-based techniques to capture
performers in general clothing.

In contrast, by combining the captured detailed dynamic scene representations
with a projective texture method, a system to render high-quality 3D Videos is
designed, Chapter 12, enabling convincing renditions of human subjects from ar-
bitrary synthetic viewpoints.



Chapter 9

Video-Based Tracking of
Scanned Humans

In this chapter, we propose our first performance capture algorithm.
By combining an image-based 3D correspondence estimation al-
gorithm and a Guided Laplacian-based mesh deformation scheme
(Sect. 3.2.2), our system captures the performance of a moving
subject from multiple video streams, while preserving the connectivity
of the underlying mesh structure over time.

Nowadays, reconstructing time-varying models of real-world human actors from
multi-view video is still challenging. As presented in Sect. 8.1, optical marker-
based motion capture systems are inappropriate for applications where interfer-
ence with the scene is not allowed, such as 3D Video. Moreover, since most
marker-less motion capture methods proposed so far are based on a kinematic
skeleton structure, capturing people wearing anything more general then skin-
tight clothing is difficult.

In contrast, in this chapter, we propose a flexible performance capture algorithm
to reconstruct the motion and the deforming geometry of a recorded subject, even
when he/she is wearing arbitrary clothing, including a wide t-shirt, a skirt, and a
kimono. In addition, our algorithm delivers a triangle mesh representation that
maintains its connectivity over time. Our method employs a high-quality laser-
scan of the tracked subject as underlying scene representation, and uses an optical
flow-based 3D correspondence estimation method to guide the deformations of
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the model over time, such that it follows the motion of the aoidhe input multi-
view video streams.

The main contribution of this chapter is

e a complete framework to accurately and automatically track the motion and
the time-varying non-rigid surface deformation of people wearing everyday
apparel from a handful of multi-view video streams [de Aguiar07a].

The remainder of this chapter is structured as follows: Sect. 9.1 describes the
details of our performance capture technique. Afterwards, experiments and results
with both synthetic and captured real-world data are presented in Sect. 9.2.

9.1 Framework

An overview of our performance capture technique is shown in Fig. 9.1. The in-
put comprises of a static laser-scanned triangle mieésh of the moving subject,

and a multi-view video (MVV) sequence that shows the person moving arbitrar-
ily. After data acquisition, we first align the laser scan to the pose of the person in
the first time step of video, Sect. 9.1.1. Our framework comprises of two different
tracking procedures, step A and step B, that are subsequently applied. In step A,
we apply an iterative 3D flow-based deformation scheme to extract the motion
information of each vertex over time from the images, Sect. 9.1.2. The results of
step A quickly deteriorate due to accumulation of correspondence estimation er-
rors. Nonetheless, they give us the possibility to automatically identifgarker
vertices that can be tracked reliably, Sect. 9.1.3. Tracking step B, Sect. 9.1.4,
is more robust against flow errors since it implicitly enforces structural integrity
of the underlying mesh. It uses the moving marker vertices as deformation con-
straints to drive a Laplacian-based deformation scheme that makes all vertices
correctly follow the motion of the actor in all video frames.

9.1.1 Acquisition and Initial Alignment

For each subject, we acquire the model and several MVV sequences in our studio,

Chapter 4. After capturing the triangle mesfy,.;, the subject immediately moves

to the nearby area where he/she is recorded with our synchronized video cameras.
After acquiring the sequence, silhouette images are calculated via color-based

background subtraction, Sect. 2.3.1.
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INPUT MARKER TRACKING
ALIGNMENT STEPA SELECTION STEPB RESULT

Figure 9.1: Overview of our first performance capture framewak. Given a
laser-scan of a person and a multi-view video sequence showing her motion,
the method deforms the scan in the same way as its real-world counterpart
in the video streams.

In an initial alignment, we register the scanned mesh with the pose of the per-
son in the first time step of video. To this end, he/she initially strikes the same
pose that he/she was scanned in. By means of an ICP-like registration the mesh
is first coarsely aligned to a shape-from-silhouette reconstruction of the person.
Thereafter, we run our flow-based Laplacian deformation scheme (Sect. 3.2.2) to
correct for subtle non-rigid pose differences.

9.1.2 Step A: Purely Flow-driven Tracking

After initial alignment, we iteratively deform each individual vertex of the mesh
M,,; based on 3D flow fields that have been reconstructed from the multi-view
images. As none structural information about the underlying shape of the model
is considered, each vertex moves individually without considering the motion of
its neighbors. This makes this simple procedure not robust against errors in the
3D flow field and leads to accumulation of correspondence estimation errors over
time. However, this simple step still allows us to deduce valuable motion infor-
mation about certain vertices on the surface which we can capitalize on in step B,
where structural information about the underlying model is used to improve the
tracking. Using subsequent time steé@sdt + 1, our purely flow-driven tracking
approach consists of the following steps (see Fig. 9.2):

1. Projectively texture the model using the imagdgs- - I* ! recorded with
the K cameras at time steépand blend them according to the weights de-
scribed in Sect. 12.1. From now on, for all deformation iterations between
t andt + 1, the texture coordinates are fixed.

2. GenerateK temporary imaged?---T/~! by projecting the textured
model back into all’ camera views.
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Figure 9.2: The workflows of tracking steps A and B are very simiar: Ara-

bic numerals indicate the workflow specific to step A as it is described in
Sect. 9.1.2, whereas Roman numerals denote step B which is detailed in
Sect. 9.1.4.

3. CalculateX 2D optical flow fieldso*(TF, It ) between imagé&} andIf
with & = {0--- K — 1}.

4. Given the model, calibrated cameras, and the optical flow fields for all
camera views, we can compute the 3D motion field, also known as the
scene flow, by solving a linear system for each verntgxhat is visible
from at least two camera views, Sect. 2.3.3. The generated 3D flow field

f(vi) = (x4, 2:) is parameterized over the mesh’s surface, and it de-
scribes the displacement by whichshould move from its current position.

5. Filter the 3D motion fieldf(-) to remove noise and outliers. During the
filtering process, the 3D flow vectors for all vertices are first classified as
valid or invalid according to a silhouette-consistency criteriﬁ@:) is valid
if the position ofv; after displacement projects inside the silhouette images
for all camera views and it is invalid otherwise. Thereafter, a Gaussian low-
pass kernel is applied over the entire flow field. All invalid displacements
f(-) are set to zero.

6. Using the filtered version of(- ), update the model by moving its ver-
tices according to the computed displacements. Add the displacements
f(- ) to the accumulated displacement figk&CUM(- ) according to the rule:
JACCUM (Uz) = JACCUM (Uz) + f(vl) CZACCUM(' ) describes the Complete dis-
placement of all vertices from captured time stép the current intermedi-
ate position.
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7. Iterate from step 2 until the overlap ertBy, (¢ + 1) between the rendered
model silhouettes (see Fig. 9.2) and the video-image silhouettes attiine
in all camera views is below TR. E,,(t + 1) is efficiently implemented
on the GPU as a pixel-wise XOR [Carranza03].

8. Update the complete motion fieﬁjt, v;), which describes the displacement

of each vertex; from time step to ¢, according tai(¢, v;) = d(t — 1, v;) +

JACCUM (Uz)

The meshM,,; is tracked over the whole sequence by applying the previously
described steps to all pairs of consequent time steps. As a result, a complete

motion fieldd(¢, v;) is generated for each vertexthat describes its displacement
over time.

Since our scheme calculate® displacements without taking into account a priori
information about the shape of the model, deformation errors accumulate over
time. Step B solves this problem by explicitly enforcing structural properties of
M,,; during tracking. To this end, the model is deformed based on constraints
derived from reliably tracked marker vertices. These vertices are automatically
selected from the results of step A based on the method described in the following
section.

9.1.3 Automatic Marker Selection

Based on the deformation results of step A, our approach seleatsirker ver-

tices of the model that were accurately tracked over time. To this end, we first
choosel candidate vertices for markers that are regularly distributed over the
model’s surface, Fig. 9.3(a). To find these candidates, we segment the surface of
the mesh by means of a curvature-based segmentation approach [YamauchiO5].
This algorithm creates surface patches with similar numbers of vertices whose
boundaries do not cross important shape features. In each region, the vertex lo-
cated nearest to the center of gravity is selected as a candidate.

A candidatey; is considered a marker vertex if it has a low error according to the
two spatio-temporal selection critettise(- ) andmouv(- ). tse(- ) penalizes marker
candidates that do not project into the silhouettes in all camera views and at all
time steps.mov(-) penalizes candidates whose motions are not consistent with
the average motion of all vertices in the model. This way, we can prevent the
placement of constraints in surface areas for which the flow estimates might be
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inaccurate. The two functions are defined as follows:

Np K
1 -
tsc(v;) = 1 — PROJE (p; +d(t,v;),t 9.1
()= e 2 2 (pi+dt o)) @)
1 Np 1 Ny
mov(v;) = — d(t,v;) — — d(t,v; 9.2
(0 = 57 20t ) = 57 3t ) 9.2)

Ny is the number of frames in the sequendg, is the number of vertices in the
model, ang; is the position ofy; at the first time stepPROJfﬂ(a:, t) is a function
that evaluates to 1 if a 3D poiatprojects inside the silhouette image of camera
view k at time step, and it is O otherwise. A candidateis accepted as a marker
vertex iftsc(v;) < TRrsc andmov(v;) < TRyoy. Appropriate thresholds Hgc
and TRyov are found through experiments. The indeof each marker; is then

stored in the se®.

9.1.4 Step B: Flow-driven Laplacian Tracking

In step B, we extract rotation and translation constraints from the motion of the
N marker vertices to drive a Guided Laplacian deformation approach, Sect. 3.2.2.
By this means we can extract novel motion fields v;) for each vertex that make

the model correctly move and deform like the recorded individual. The individual
steps of the Laplacian tracking scheme are very similar to step A (Fig. 9.2), but
differ in the details of the deformation procedure. For two subsequent time steps
t andt + 1, tracking works as follows:

I-V are identical to steps 1-5 in Sect. 9.1.2.

VI From the motion of each marker vertex,=v;, with : €¢ Q, relative to the
default position, a set of rotation and translation constraints is computed.
Local coordinate frames for each; are derived from a graph connecting
the markers. Each marker corresponds to a node in the graph. Edges are
constructed by building an extended minimal spanning tree between them
using geodesics as distance measure [Kruskal56], Fig. 9.3(b).

VIl For each markemn;, a local rotationR; is estimated from the change of
its local frame between its reference orientatiort at 0 and its current
orientation, Fig. 9.3(c).

VIII Thereafter, the modelM., . in its new target pose is reconstructed by ap-

tri

plying the deformation method described in Sect. 3.2.2, subject to position
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Figure 9.3: (a) Segmented mestM,,; and marker candidates (Sect. 9.1.3);
(b) Graph connecting marker vertices; (c) Rotation for eachm; calculated
according to the change in its local frame from time0 to ¢; (d-e) Model is
reconstructed subject to constraints derived from the motion of the markers.

constraintsgc, derived from the position of the markers, and the calcu-

lated rotation constraint8 = ¢ - m;, Fig. 9.3(d-e).

IX Update the accumulated displacement field for all vertia?,ggfcw(-) ac-
cording to the ruledaccum(v;) = pREC — p; — d(t — 1, m;), wherep/tEC is
the reconstructed vertex position far

X lterate from step Il until the overlap errdt,,(t + 1) between rendered

model silhouettes and video-image silhouettes in all camerastat is

below a threshold TR,.
1l 1l = _zt — 1,?]1') +

X| Update the complete motion field(¢, v;) by d(t,v;)

jACCUM (Uz)
By applying this algorithm to all subsequent time steps we can track the model
M.,,.; over the whole video sequence. The Laplacian scheme reconstructs the mesh
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Figure 9.4: Three different optical flow methods have been testd with our
framework. The average vertex position errors for each frame relative to the
ground truth are plotted in this figure. The method by Brox et al. (Sect. 2.3.2)
(red line) shows the best performance.

in its new pose in a way that it preserves the differential surface properties of the
original scan. Due to this implicit shape regularization, our tracking approach in
step B is robust against inaccurate flow estimates and deforms the mesh in ac-
cordance to its real-world counterpart in the video streams. Thanks to the guided
Laplacian-based scheme, details and features of the mesh are preserved. The re-
sulting scanned model is correctly reconstructed at all frames of the input video
sequence and rigid and non-rigid surface deformations are captured, Sect. 9.2.

9.2 Results and Discussion

Our framework has been tested on several synthetic and captured real-world data
sets. Synthetic sequences enable us to compare our results against the ground
truth. They were generated by animating a textured scan of a woma&n/{26
provided by Cyberward! (Fig. 9.1) with publically available motion capture files
showing soccer moves and a simple walk. Output streams were rendered into eight
virtual cameras (1004x1004 pixels, 25 fps) that were placed in a circular arrange-
ment like in our real studio, Chapter 4. Gaussian noise was purposefully added
to the images to mimic the characteristics of our real cameras. We ran a series of
experiments to evaluate the performance of different algorithmic alternatives and
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Figure 9.5: Average tracking error for all time steps of the synthetic walking
sequence obtained with different mesh tracking alternatives. The pipeline we
propose (ST-AB) clearly produces the best results.

to decide on the best optical flow estimation scheme for our purpose.

The latter question was answered by our first experiment. To test a representa-
tive set of alternative flow algorithms, we compared the results obtained by using
our complete tracking framework (steps A and B) in conjunction with the local
Lukas Kanade method [Lucas81] (),Khe dense optical flow method by Black et

al. [Black93] (BA), and the warping-based method for dense optical flow by Brox
et al. [Brox04] (BR), Sect. 2.3.2. The plot in Fig. 9.4 shows the average position
errors between ground truth and tracking results for each frame of a walking se-
guence. By using the local Lukas Kanade method, we are unable to track the mesh
and the error constantly increases over time. The error pl@&Ads much better,

but it is clearly outperformed bBR. The positional inaccuracy obtained waR

never exceeds 4 cm and even decreases after a peak in the middle. Note that the
synthetic model (Fig. 9.1) is textured with very uniform colors which makes op-
tical flow computation extremely hard. Even on such difficult dBRfracks the

mesh reliably, and thus the method by Brox et al. is our method of choice for flow
estimation.

In a second experiment, we compared the different deformation alternatives,
namely deformation along the unfiltered flow (RAWFRleformation according to
step A only (ST-A), and deformation with our complete pipeline (ST-AB). Fig. 9.5
plots the average vertex position error against the frame number. B&WJ-L,

the measurement error grows almost exponentially. Tracking with a filtered flow
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[METHOD | TIME | VOLCHG | MQLT | ERROR |

RAWFL 109s | 17.65% | 0.46 | 98.66mm
ST-A 111s | 4.97% 0.30 | 49.39mm
BR/ST-AB| 111s 2.79% | 0.035 | 26.45mm
BA 426s 2.77% | 0.029 | 35.28mm
LK 89s 10.73% | 1.72 | 76.24mm

Table 9.1: Different algorithmic alternatives are comparedin terms of run
time, volume change (VOLCHG), mesh quality (MQLT, and position error
(ERROR). Our proposed pipeline with the dense optical flow method by Brox
et al. (ST-AB/BR) leads to the best results.

field leads to significantly better results, but the absolute inaccuracy is still com-
parably high. In contrast, our complete pipeline leads to a very low peak position
error of 3.5 cm that even decreases over time.

Table 9.1 summarizes the results that we obtained by assessing different combina-
tions of mesh tracking and flow computation methods. The colltE contains

the time needed on a Pentium IV with 3GHz to compute the deformation from
one video time stepto the next one + 1. We also analyzed the average volume
change over the whole sequend@LCHG, in order to get a numerical indicator

for unreasonable deformations. The preservation of mesh quality is analyzed by
looking at the average distortion of the triangleQLT. It is computed by averag-

ing the per-triangle Frobenius norm over the mesh and over time [Pebay01]. This
norm isO for an equilateral triangle and approaches infinity with increasing de-
generacy. Finally, the column labelE(RRORcontains the average of the position
error over all vertices and time steps.

The run times of the first three alternatives are almost identical sibiee have

to be spent on the calculation of the eight megapixel optical flow fields. Even in
our complete pipeline, the deformation itself runs at almost interactive frame rates
since the involved linear systems can be solved quickly. As expected, the tracking
error is highest if one deformé1,,; using the unfiltered flowRAWFL. Further-
more, the mesh distortion is fairly high and the volume change rises to implausi-
ble values. The best overall performance is achieved when we use our complete
pipelineST-AB/BR. Here, the position error is lowest, the volume change is in the
range of normal non-rigid body deformations, and the triangles remain in nice
shape. Although the alternativBA produces a fairly low triangle distortion, its

run time is four times slower than the best alternative and the resulting positional
accuracy is almost 1 cm loweLK is fastest, but leads to bad results according
to all other criteria. Our tests thus confirm that the complete tracking pipeline
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Figure 9.6: Side-by-side comparisons between an input viddoame and the
pose of the laser scan that our approach reconstructed. The poses of the
persons and even the deformations of complex apparel, like the kimono, are
faithfully reproduced.

in combination with a high-quality dense flow method can reliably track human
motion from raw unmodified video streams.

For our tests with real data we captured video footage and body models for dif-
ferent male and female test subjects using the setup described in Chapter. 4. The
captured video sequences are between 300 and 600 frames long and show a variety
of different clothing styles, including normal everyday apparel and a traditional
Japanese kimono. Many different motions have been captured ranging from sim-
ple walking to gymnastic moves.

Fig. 9.6 shows several side-by-side comparisons between input video frames and
recovered mesh poses. The algorithm reliably recovers the pose and surface de-
formation for the male subject who wears comparably wide apparel. This is also
confirmed by the very precise overlap between the reprojected model and the in-
put image silhouettes. Our algorithm can even capture the motion and the cloth
deformation for a woman wearing a kimono, Fig. 9.6 and Fig. 9.7. Since the limbs
are completely occluded, this would not have been possible with a normal motion
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Figure 9.7: Our method realistically captures the motion andthe dynamic
shape of a woman wearing a Japanese kimono from only eight video streams.

capture approach.

The results show that our purely passive performance capture approach can auto-
matically capture both pose and surface deformation of human actors. Itillustrates
that a skeleton-less algorithm is capable of tracking even complex deformations
of different materials by means of the same framework. Our system neither re-
quires any segmentation of the model into parts, e.g. clothing and body, nor does
it expect the specification of explicit material parameters as they are often used in
garment motion tracking. Both of this would be very difficult for a human wearing
different kinds of fabrics. The combination of an a priori model, a fast Laplacian
deformation scheme, and a 3D flow-based correspondence estimation method en-
ables us to capture complex shape deformations from only a few cameras. As an
additional benefit, our method preserves the mesh’s connectivity which is partic-
ularly important for model-based 3D Video applications, Chapter 12.

Nonetheless, our algorithm is subject to a few limitations. Currently, our Guided
Laplacian-based scheme cannot handle volume constraints. In some situations
such a constraint may prevent incorrect mesh deformations and thus compensate
the effect of incorrect flow estimates. However, for some types of apparel, such as
a long skirt or our kimono, a volume constraint may even prevent correct tracking.
From this point of view our system is more flexible. Another limitation arises if
the subject in the scene moves very quickly, since in these situations optical flow
tracking may fail, Fig. 9.8. One way to attack this problem is to use a high-speed
camera for capturing fast scenes. However, they are more expensive and would
require more computation power. Another option is to combine our Laplacian-
tracking scheme with a marker-less 3D feature tracking algorithm that jointly uses
image features and optical flow to handle faster scenes, Chapter 10.

Finally, our algorithm cannot capture the true shape variation of low-frequency
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Figure 9.8: Analysis of a fast capoeira turn kick sequence. Thé&eft column
shows frames for timet, the middle column shows frames for timet + 1, and
the right column shows the frames from¢ morphed onto timet + 1 using the
dense optical flow method by Brox et al. Top row: For motion at normal
speed, the flow field produces good results, and therefore the extracted 3D
deformation constraints enables our framework to correctly track the motion

of the subject. Bottom row: If the motion is very fast, however, the optical
flow is not able to compute reliable correspondences anymore, as seen by the
erroneous warp.

surface details, such as wrinkles in clothing. While they globally deform with the
model, they seem to be “baked in” to the surface. In Chapter 11, we show that
more fine details can be captured by employing a silhouette rim-based method and
a multi-view stereo algorithm.

Despite these limitations, our method is a flexible and reliable purely passive
method to capture the motion and time-varying shape of moving subjects from
a handful of video streams. Our algorithm can handle a large range of human
motions and clothing styles, making a laser scan of a subject move and deform in
the same way as its real-world counterpart in video.
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Chapter 10

Feature Tracking for Mesh-based
Performance Capture

In this chapter, we propose our second performance capture frame-
work. First, a robust method to track 3D trajectories of features
on a moving subject recorded with multiple cameras is described.
Thereafter, by combining the 3D trajectories with a mesh deformation
scheme, the performance of a moving actor is captured and the
high-quality scanned model can be directly animated such that it
mimics the subject’s motion.

As described in Chapter 8, the generation of realistic and lifelike animated charac-
ters from captured real-world motion sequences is still a hard and time-consuming
task. In the previous chapter, we presented our first performance capture system,
that uses an optical flow-based 3D correspondence estimation method to capture
the motion and dynamic shape of the moving actor. Although achieving good
results, as mentioned in Sect. 9.2, one of the main limitations of the previous
approach is its lack of robustness when the motion sequence is fast or complex.

In this chapter, we present an alternative solution, that improves the performance
of the previous technique, by combining a flow-based and an image-feature based
method. Furthermore, we divide the problem into two steps: first, image fea-
tures in 3D space are robustly identified and tracked. Afterwards, using the 3D
trajectories of the features as constraints in a Laplacian-based tracking scheme,
Sect. 3.2.2, the scanned model is realistically animated over time. The simple
and robust algorithm proposed here creates shape deformations for the scanned
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model without specification of explicit material parametersd it works even for
arbitrary moving subjects or people wearing wide and loose apparel.

The main contributions of this chapter is

e a simple and robust method to automatically identify important features
and track their 3D trajectories on arbitrary subjects from multi-view
video [de AguiarQ7c],

e and an efficient Laplacian-based tracking scheme that uses only a handful of
feature trajectories to realistically animate a scanned model of the recorded
subject [de Aguiar07c].

The remainder of this chapter is structured as follows: Sect. 10.1 briefly describes
our second performance capture framework. Thereafter, Sect. 10.2 details the au-
tomatic approach to identify features and track their 3D trajectories over time.
Sect. 10.3 describes the Laplacian-based tracking scheme used to animate the
scanned model according to the constraints derived from the estimated 3D point
trajectories. Results with several captured real-world sequences and discussion
are presented in Sect. 10.4.

10.1 Overview

An overview of our second performance capture approach is shown in Fig. 10.1.
Our system expects a multi-view video (MVV) sequence as input that shows the
subject moving arbitrarily. After acquiring the sequence in our studio, Chap-
ter 4, silhouette images are calculated via color-based background subtraction
(Sect. 2.3.1), and we use the synchronized video streams to extract and track im-
portant features in 3D space over time, Sect. 10.2.

Our hybrid 3D point tracking framework jointly uses two techniques to estimate
the 3D trajectories of the features from unmodified multi-view video streams.
First, features in the images are identified using the Scale Invariant Feature Trans-
form (SIFT), Sect. 2.3.4. Furthermore, SIFT is able to match a feature to its
corresponding one from a different camera viewpoint. This allows us to generate
a set of pairwise pixel correspondences between different camera views for each
time step of input video. Unfortunately, tracking the features over time using only
local descriptors is not robust if the human subject is wearing sparsely textured
clothing. Therefore, we use a robust dense optical flow method as an additional
step to track the features for each camera view separately in order to fill the gaps
in the SIFT tracking. By merging both sources of information, we are able to



10.2 Hybrid 3D Point Tracking 81

SIFT Pixel correspondences

Feature-based
Mesh Tracking

3D markers
over time

MVV sequence

4y

 —
o—o
o——0
o—0
o——o

Silhouette Optical flow

Scan moving

Hybrid 3D Point Tracking

Human Scan

Figure 10.1: Overview of our second performance capture frarawork: given

a multi-view video sequence showing a moving subject, our method automat-
ically identifies features and tracks their 3D trajectories. By applying the
captured trajectories to a static laser-scan of the subject, we are able to re-
alistically animate the scanned model making it move the same way as its
real-world counterpart in the video streams.

reconstruct the 3D trajectories for many features over the whole sequence.

Our hybrid technique is able to correctly identify and track many 3D points. In
addition to the estimation of 3D point positions, our approach also calculates a
confidence value for each estimation, which indicates how reliable a particular
feature has been located. Using confidence-weighted feature trajectories as defor-
mation constraints in the guided Laplacian-based method described in Sect. 3.2.2,
our system robustly brings a static laser-scanned mdsh of the subject into

life, by making it follow the motion of the recorded actor.

10.2 Hybrid 3D Point Tracking

Our hybrid framework jointly employs local descriptors and dense optical flow
to identify features and estimate their 3D positions over time from multiple cal-
ibrated camera views. In contrast to many other approaches [Balan06, Brox06,
Kehl06], we developed an automatic tracking algorithm that works directly on the
images and does not require any a priori knowledge about the moving subject.
It is our goal to create a simple and generic algorithm that can be used to track
features on rigid bodies, articulated objects, and non-rigidly deforming subjects
in the same way. Therefore, at this point, we do not use shape information about
the subject.
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The input to our algorithm is comprised of synchronized vidgeams recorded
by K cameras, each containing video frames, Fig. 10.2(a). In the first step,
we automatically identifyl. important features, also called keypoints, for each
camera viewk and time steg, and generate a set of local descriptéis =
{f2y -, f&,} using SIFT [Lowe04] (see also Sect. 2.3.4).

Since the SIFT descriptors are robust against image scale, rotation, change in
viewpoints, and change in illumination, they can be used to find corresponding
features across different camera views. Given an infagerom camera views

and time ste, and the respective set of SIFT descriptéjs, we try to match

each element of ; with the set of keypoints from all other camera views. We
use a matching function similar to [Lowe04], which assigns a match betyﬁggen

and a keypoint int; , if the Euclidean distance between their invariant descriptor
vectors is minimum. In order to discard false correspondences, nearest neighbor
distance ratio matching is used with a thresHblgyrcy [Mikolajczyk03].

After matching the keypoints across &ll camera views at individual time steps,

we gather allR correct pairwise matches into a list of pixel correspondences
C; = {?,...,cF}, by using all reliable matches found for each time step
Fig. 10.2(c). Each elemenf = ((camy, P}), (cam,, P/)) stores the informa-

tion about a correspondence between two different camera views, i.e. that pixel
P! in cameracam,, corresponds to pidetj in camera viewam,, at timet.

Unfortunately, tracking the features over time using only the list of correspon-
denceg” and connecting their elements at different time steps is not robust, be-
cause it is very unlikely that the same feature will be found at all time instants.
This is specially true if the captured images show subjects performing fast move-
ments, where features can be occluded for a long period of time, or when the
subject wears everyday apparel with sparse texture. In the latter case, SIFT only
detects a small number of keypoints per time step, which is usually not enough
for tracking articulated objects. Therefore, in order to robustly reconstruct the 3D
trajectories for the features, we decided to use optical flow to track both elements
of all ¢/ for each camera view separately, i.e. the piRgls tracked using camera
view cam, and the pixelP! using camera viewam,,.

The 2D flow-based tracking method works as follows: for each camerakyiews
track all pixels over time using the warping-based method for dense optical flow
proposed by Brox et al. [Brox04]. After calculating the optical fleWIy ¢, Iy ++1)

between time stepandt+1 for camera:, we use, to warp the imagé;, ; and we
verify for each pixel in the warped image if it matches the corresponding pixel in
I, .+1. We eliminate the pixels that do not have a partnerim, and the pixels that
belong to the background by comparing the warped pixels with the pre-computed
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(A)

(C)

Figure 10.2: Using the synchronized video streams as input Jaour hybrid
approach first identifies features in the images using SIFT (b), and then
matches these features between different pairs of camera views based on
their descriptors (c). In addition, we track these features for each camera
view separately using optical flow (d). At the end, reliable 3D trajectories for
the features are reconstructed by merging both information (e).

silhouetteSIL; ;. This process is repeated for all consecutive time steps and
for all camera views. As a result, we construct a trackingllist= {E°, ..., E9}

with G pixel trajectories for each camera view Fig. 10.2(d). Each element
Et={Pi, ..., Py} contains the positions of the pix&}f for all time stepg.

The last step of our hybrid tracking scheme merges the optical flow tracking in-
formation with the list of correspondences to reconstruct the 3D trajectories for
all features. We take pixel correspondences from all time steps into account. For
instance, if a matching is detected by SIFT only at the end of the sequence, we
are still able to recover the anterior positions of the feature by using the optical
flow information.

For each entry] = ((cam.,, P}), (cam,, P?)), we verify if the pixel P} is found in
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D.om, and if the pierPtj is found inD.,,,. In case both elements are found, we
estimate the position of the respective 3D pointy,(t), for the whole sequence,

as shown in Fig. 10.2(e), otherwiggis discarded. The 3D positions are estimated

by triangulating the viewing rays that start at the camera views, andcam,,

and pass through the respective image plane pixgJ and P/. However, due to
inaccuracies, these rays will not intersect exactly at a single point. In this case,
we compute a pseudo-intersection pgint] = {z,y, z} that minimizes the sum

of squared distance to each pointing ray. We also use the inverse of this distance,
s, as a confidence measure indicating how reliable a particular feature has been
located. Ifs, is below a threshold@'-onF We discard it, since it indicates thgt
assigns a wrong pixel correspondence between two different camera views.

We also discard a trajectorngm,. if it does not project into the silhouettes in all
camera views and at all time steps. This way, we can prevent the use of 3D points
whose trajectories degenerate over time as deformation constraints. We assess
silhouette-consistency using the following measure:

N K
TSI1L(mm,) Z Z PROJE (pos;, t), (10.1)
t=0 k=0
wherePROJE, (posy, t) is a function that evaluates to Lifm,(¢) projects inside
the silhouette image of camera viévat time steg, and it is O otherwise. We only
considermm,. a reliable 3D trajectory ifl’'STL(mm,) > T Rgs;;. Appropriate
values for the thresholds are found through experiments.

After processing all elements @f for all time steps, we generate a list with
reliable 3D trajectories for the features. The listy = {mmy,...,mm;} =

{(LPy, LEy),...,(LPy,LEy)} assigns to each trajectoryam;, a tuple

(LP;, LE;) containing the 3D point positiond, P, = {pos},...,pos%}, and

the respective list of confidence values for each estimated 3D posiiion,=
{si,...,s%}. As shown in Sect. 10.4, our hybrid approach is able to identify and
accurately track many 3D points for sequences where the human subject is per-
forming reasonably fast motion, even when he/she is dressed in everyday apparel.

10.3 Feature-based Laplacian Mesh Tracking

Using the reconstructed 3D point trajectories, the performance of the moving sub-
ject can be captured using a scanned model of the real-world actor. For this pur-
pose, we first roughly align the scavl,,; with the 3D point positions at the first
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Figure 10.3: After aligning the 3D point positions (a) with the scanned model
at the reference time step (b), our method reconstructs a novel pose fov1,,;
by jointly using rotational and positional constraints on the marked vertices,
derived from the 3D feature trajectories (c).

time step of video (our reference), Fig. 10.3(a). This is automatically done by ap-
plying a PCA-based alignment scheme to a reconstructed volumetric shape-from-
silhouette model of the moving subject. Afterwards, we seleéaharked vertices

Vr = {vrp|h € {0--- H}} in M,,; by choosing vertices that are closest to the
3D point positions at the reference time step, Fig. 10.3(b). These marked vertices
Vr are used to guide the Laplacian-based deformation technique (Sect. 3.2.2) that
deforms the static scanned model over time mimicking its real-world counterpart
in the input video.

In summary, the following procedure is performed for each time stefirst,

we calculate the local rotation? that should be applied to the marked vertices

of M,,;. The local rotation for each marked vertey;, is calculated from the
rotation of the corresponding 3D poimtm,, (t) between reference time and time

by means of a graph-based method, Sect. 9.1.4. Since we want the marked vertices
Vr to perform the same rotations as the 3D points, wefset = Rim, ) for

all H 3D points. Thereafter, we apply the Laplacian-based deformation method
described in Sect. 3.2.2 to reconstruct the vertex position$1Hf, such that it

best approximates the rotated differential coordin&teas well as the positional
constraintc, with pc = pos, for all marked vertices at time

In Eq. 3.5, the matrix4 is a diagonal matrix containing non-zero weightts =

¢ * s, c being a constant, only for constrained verticesWe weight the marked
vertex positiorpos? for vr; attimet proportionally with respect to its correspond-
ing confidence value, since small values fdrindicate inaccuracies in the es-
timated 3D position. This weighting scheme leads to a better visual animation
quality for the animated human scans, Sect.10.4.
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After applying this procedure to the whole sequence, theda@gh-based tracking
scheme is able to animate the scanned model making it correctly follow the motion
of the actor recorded in all video frames. As shown in Sect. 10.4, our approach
preserves the details and features of the mesh, and is able to generate plausible and
realistic surface deformations for subjects wearing even loose everyday apparel.

10.4 Results and Discussion

We tested our framework on several real-world sequences with different male and
female test subjects recorded in our studio, Chapter 4. Our acquisition procedure
is similar to the one described in Sect. 9.2. The captured video sequences are
between 150 and 400 frames long, and show a variety of different clothing styles
and motions, ranging from simple walking to yoga and capoeira moves.

As shown in the second and third columns of Table 10.1, our hybrid 3D point
tracking approach is able to identify and track many features in 3D space accu-
rately. The average confidence value (S) for the 3D point positions are large, i.e.
corresponding to position errors of around — 2.2¢m, which indicates that cor-

rect correspondences between different camera views are found over the whole
sequence. Three different frames for the yoga (YOGA) and walking (WALK) se-
guences, with selected features shown as dots, can be seen in the upper row of
Fig. 10.4. Looking at the temporal evolution, one can see that the features are re-
liably tracked over time. The lower images of Fig. 10.4 also show three closeups
of the legs in the walking sequence. Features were accurately tracked, despite the
appearance ambiguities caused by the trousers with homogeneous color. If we had
used only SIFT descriptors to track these features, it would have been impossible
to track them in these homogeneous areas. In this case, the pixel correspondences
would be removed due t,, 4rcx, Or the features would be matched in a wrong
way, i.e. features from one side of the trousers would have been matched against
the ones in the other side.

High tracking accuracy and reliability even in such difficult situations is upheld
by additionally taking into account optical flow information. Even if a correspon-
dence was only found for one time step, we can reconstruct the complete trajectory
for this feature by looking at the optical flow information. This second source of
information also enables us to apply a very high thresti@ld ¢y which elim-

inates unreliable 3D feature matches already at an early stage. Using only the
reliable ones, optical flow robustly tracks the features separately in each camera
view, and at the end, we merge both results to reconstruct the 3D point trajectories.
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[SEQ |[FEAT|[S[m ][ OVLP | VOL [ QLT |
CAPO | 1207 | 65.18 | 95.4%] 3.2%] 0.03
DANC | 1232 | 58.30 | 95.6%| 1.8% | 0.01
YOGA | 1457 | 112.23 | 93.7%| 3.6%| 0.10
WALK | 2920 | 71.78 | 95.5%| 1.5% | 0.01
DRSS | 3132 | 45.72 | 94.4%| 2.0% | 0.01

Table 10.1: For each captured real-world sequence, the numbef identified
features (FEAT) and the average confidence value (S) are shown. We also
employ accuracy and quality measures for the animated scan, i.e. changes
in volume (VOL), distortion of triangles (QLT), and multi-view silhouette
overlap (OVL), to demonstrate the performance of our performance capture
framework.

Before using the 3D point trajectories to guide the deformation of the scanned
model M,,; we first choose a subset 6fy; points from the initial set of 3D tra-
jectoriesLsp at the reference time step. This subset of points should be distributed
evenly on the model surface. This is done by ramdonly choosing an element in
Lsp and all adjacent points next to it at the reference time step by using a distance
thresholdT’p;s7. We compare the confidence values for this group of elements
and choose the point with the maximum confidence value. We continue the same
procedure choosing another pointig, until all selected points are separated

by a distancép;sr, and consequently distributed over the model’s surface. We
conducted several experiments with different valuegigfs, and found out that

in general, values betweéncm and20cm produce best results. For a typical se-
guence, this leads to aroud— 50 selected points. Note that although our hybrid
3D tracking approach is able to correctly track many more points over time, even
a subset of points is sufficient to track body poses reliably. Our selection criteria
also enable us to eliminate multiple trajectories of the same feature (stemming for
different camera pairs), which bears no useful information.

Fig. 10.5 show several side-by-side comparisons between input video frames and
tracked poses of the human scan. Our algorithm reliably recovers the poses and
creates plausible and realistic surface deformations for the male actor performing
a capoeira move, and even for the female subject wearing a long dress. Due to the
occlusion of the limbs or the wide and loose apparel, tracking the motion of these
subjects over time would have been hard with a normal motion capture system.

Due to the lack of ground truth for our experiments, we evaluate our results by
overlapping the reprojected model with the input images as shown in Fig. 10.6.
We also calculate a multi-view overlap measure by counting the average number
of pixels that do not match between the reprojected model and the input image sil-
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Figure 10.4: (upper row) Selected features tracked in three ifferent frames
for the yoga and walking sequences and (lower row) three frames of the walk-
ing sequence in detail. Our hybrid framework correctly identifies and tracks
3D trajectories of features even in the presence of occlusions or appearance
ambiguities.

houettes for all camera views and all time steps. As shown in the plot in Fig. 10.7,
our system automatically animates the human scan making it follow the motion
of the real-world actor with a consistent silhouette-accuracy of moredfan

We also performed experiments to evaluate the performance of our framework in
animating the human scan. Table 10.1 summarizes the results we have obtained
employing quality and accuracy measures for several sequences. The &imn
shows the average volume change in the animated scan over the whole sequence
relative to the initial scanned model. This measure is a numerical indicator for
implausible deformations. The preservation of mesh quality is analyzed by look-
ing at the average distortion of the triangl€4,T. It is computed by averaging the
per-triangle Frobenius norm over the mesh and over time [Pebay01]. This norm
is 0 for an equilateral triangle and approaches infinity with increasing degener-
acy. Finally, the column labele@VLP contains the average multi-view overlap
between the reprojected model and the input image silhouettes over time.

Table 10.1 shows that the volume change in the animated human scan is in the
range of normal non-rigid body deformations, and that triangles remain in nice
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Figure 10.5: Side-by-side comparisons between input videsadmes and re-
constructed poses for the human scan. By combining the 3D point trajecto-
ries tracked with the Laplacian-based deformation scheme, our algorithm is
able to directly animate a human body scan.

Figure 10.6: Overlap between reprojected model (red) and inpt image for
the female and male subjects. Our framework is able to correctly reconstruct
their pose even when they are wearing wide and loose apparel.

shape. It also shows that the Laplacian-based deformation approach reconstructs
the poses of the scan with high accuracy, even if the subjects wear wide and loose
everyday apparel.

We performed experiments to demonstrate the importance of the confidence value
as a weight in Eqg. 3.5 as well, Sect. 10.3. Our experiments show that when using
the confidence value in the Laplacian-based scheme, surface deformations are
generated in a more reasonable and lifelike way, which leads to a better visual
reconstruction quality. On the other hand, when not using it, changes in volume
and triangle distortions increase, which reduce the surface deformation quality
and the multi-view silhouette-accuracy.

Our results show that our purely passive hybrid tracking method can automatically
identify and track the 3D trajectories of features on a moving subject without
the need of any a priori information or optical markers. By combining it with
an efficient deformation technique, it also enables us to directly and realistically
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Figure 10.7: Multi-view silhouette overlap for several captued sequences.
Our system accurately makes the static human scan follow the motion of the
captured real-world actor.

animate a static human scan making it follow the same motion as its real-world
counterpart.

Nonetheless, our algorithm is subject to a few limitations. For the hybrid 3D point
tracking approach, the time needed to identify and track the features per multi-
view frame on a Pentium IV with 3GHz is aroursds minutes. Furthermore,

it is hard to recover complete feature trajectories in scenes that show very rapid
motion, complex occlusion situations, or many rotations that make across-camera
correspondence finding difficult, see Fig. 10.8. A possible alternative to partly
solve these limitations is to use a high-speed camera for capturing fast scenes.
However, this may increase the run time of the system even further. For the
feature-based Laplacian mesh tracking technique, although it correctly captures
the body deformations at a coarse scale, depending on the number of tracked fea-
tures used in the reconstruction process, the deformations of subtle details, such
as small wrinkles, are not captured.

In Chapter 11, we present an improved performance capture framework that ex-
tends the capabilities of the current system, being able to reconstruct an unprece-
dented range of real-world scenes at a high level of detail. As shown in the
side-by-side comparison in Fig. 10.8, the current method is not able to recover
complete trajectories for some features in the hands and feet of the subject. As
a result, it generates a slightly wrong pose for this complex sequence. In con-
trast, the analysis-through-synthesis framework presented in Chapter 11 faithfully



10.4 Results and Discussion 91

Figure 10.8: Female jazz dance sequence: the left column shewhe cor-
rect input pose, the middle column shows the slightly wrong pose captured
if we apply the current performance capture method, and the right column
shows the better result if we apply the improved method described in Chap-
ter 11. While at some point in this complex sequence the feature trajectories
at the hand and feet are lost with the current method, the analysis-through-
synthesis framework, described in the next chapter, is able to accurately cap-
ture the female pose.

reconstructs the pose. Furthermore, the proposed silhouette rim-based technique
and the model-guided multi-view stereo approach are able to capture the dynamic
subtle details more accurately.

Despite these limitations, the hybrid approach still has the advantage of being ap-
plicable in other problem settings where no geometry is available. Moreover, the
current performance capture framework is able to move and deform a high-quality
scanned model in the same way as its real-world counterpart, while preserving its
connectivity over time. Our flexible algorithm does not require optical markings,
and behaves robustly even for humans wearing sparsely textured and wide apparel.
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Chapter 11

Video-Based Performance
Capture

In this chapter, by combining the power of surface- and volume-
based shape deformation techniques with a novel mesh-based
analysis-through-synthesis framework, a new marker-less ap-
proach to capture human performances from multi-view video is
described. Furthermore, a silhouette rim-based technique and a
model-guided multi-view stereo approach are also presented, which
enables the acquisition of fine dynamic subtle details more accurately.

In the previous chapters (Chapter 8, 9 and 10), the difficulties of human per-
formance capture have been presented. In general, current methods do not allow
for what both actors and directors would prefer: to capture human performances
densely in space and time, i.e. to be able to jointly capture accurate dynamic
shape, motion and textural appearance of actors in arbitrary everyday apparel.

To bridge this gap, in this chapter, we describe a new marker-less dense perfor-
mance capture technique that is able to reconstruct motion and spatio-temporally
coherent time-varying geometry of a performer moving in his/her normal and
even loose or wavy clothing from multiple video streams. Our algorithm jointly
delivers time-varying scene geometry with coherent connectivity, accurate time-
varying shape detail even of people wearing wide apparel such as skirts, and,
being completely passive, enables us to record time-varying surface appearance
as well. It thus produces a rich dynamic scene representation which, in particular
due to the coherent geometry discretization, can be easily made available to and
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modified by animators. The method described in this chaptprawes over the
previous approaches (Chapter 9 and 10) since it allows the acquisition of faster
and more complex human performances. Furthermore, fine dynamic subtle details
are captured more accurately by combining a silhouette rim-based technique and
a model-guided multi-view stereo approach.

The main contribution of the chapter is a new video-based performance capture
method [de Aguiar08a], which

e passively reconstructs spatio-temporally coherent shape, motion and texture
of actors at high quality;

e draws its strength from an effective combination of a new skeleton-less
shape deformation method, a new analysis-through-synthesis framework
for pose recovery, and a new model-guided multi-view stereo approach for
shape refinement;

e and exceeds capabilities of many previous capture techniques, by allowing
the user to record people wearing loose apparel and people performing fast
and complex motion.

The remainder of this chapter is structured as follows: Sect. 11.1 briefly describes
our efficient performance capture framework. Performances are captured by first
employing a new analysis-through-synthesis procedure for global pose alignment
in each frame (Sect. 11.2), and thereafter, a model-guided multi-view stereo and
a contour alignment method recovers small-scale surface detail, Sect. 11.3. At
the end, we present the results, showing that our approach can reliably recon-
struct very complex motion, which would even challenge the limits of traditional
skeleton-based optical capturing approaches, Sect. 11.4.

11.1 Overview

Prior to capturing human performances, we take a full-body laser scan of the
subject in its current apparel by means of a Vitus SHfartaser scanner. Af-

ter scanning, the subject immediately moves to the adjacent multi-view recording
area, Chapter 4. For each subject and each type of apparel, we record a multitude
of different performances. As a pre-processing step, color-based background sub-
traction is applied to all video footage, yielding silhouette images of the captured
performers, Sect. 2.3.1.

Once all of the data has been captured, our automatic performance reconstruction
pipeline begins. Our computational model of shape and motion is obtained by first
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Figure 11.1: A surface scanM,,; of an actress (I) and the corresponding
tetrahedral meshT;.; in an exploded view (r).

transforming the raw scan into a high-quality surface mésh; = (Vi.i, Ti)

(with n, verticesV,; = {v; ... v, } andm, trianglesT;,; = {t .. .t,,.}) employ-

ing the method of [Kazhdan06], see Fig. 11.1(l). Additionally, we create a coarser
tetrahedral version of the surface scBn = (Vie, Tyr) (cOmprising ofn, ver-
ticesV,., andm; tetrahedrond’.;) by applying a quadric error decimation and a
subsequent constrained Delaunay tetrahedralization, Fig. 11.1(r). Typically,
contains between 30000 and 40000 triangles, and the corresponding tet-version
between 5000 and 6000 tetrahedrons. Both models are automatically registered to
the first pose of the actor in the input footage by means of a procedure based on
iterative closest points (ICP).

Our capturing framework is designed to meet the difficult challenges imposed
by our goal: to capture from sparse multi-view video a spatio-temporally coher-
ent shape, motion, subtlest surface deformation and textural appearance of actors
performing fast and complex motion in general apparel. Our method explicitly
abandons a skeletal motion parametrization and resorts to deformable models as
scene representation. Thereby, we are facing a harder tracking problem, but gain
an intriguing advantage: we are now able to track non-rigidly deforming surfaces
(like wide clothing) in the same way as rigidly deforming models, and do not
require prior assumptions about material distributions or the segmentation of the
model.

The first core algorithmic ingredient of our performance capture framework is a
fast and reliable shape deformation framework, that expresses the deformation of
the whole model based on a few point handles, Sect. 3.3. The second ingredient
is a robust way to infer the motion of the deformation handles from the multi-
view video data, Sect. 11.2 and Sect. 11.3. We capture performances in a multi-
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resolution way to increase reliability. First, an analytsissugh-synthesis method
based on image and silhouette cues estimates the global pose of an actor at each
frame on the basis of the lower-detail tetrahedral input model, Sect. 11.2. Once
global poses were found, the low-frequency aspect of the performances, i.e. small-
scale time-varying shape details on the surface, are captured. To this end, the
global poses are transferred to the high-detail surface scan, and surface shape
is refined by enforcing contour alignment and performing model-guided stereo,
Sect. 11.3.

The output of our method is a dense representation of the performance in both
space and time. It comprises of accurately deformed spatio-temporally coherent
geometry that nicely captures the liveliness, motion and shape detail of the original
input.

11.2 Capturing the Global Model Pose

Our first step aims at recovering, for each time step of the video, a global pose
of the tetrahedral input model that matches the pose of the real actor. Decoupling
global pose computation from the estimation of small surfaces makes performance
capture a more stable procedure. Consequently, our model representation at this
point is the coarse tetrahedral megh. To modify its pose, we employ the volu-
metric deformation method, Chapter 3, with its noted advantageous shape preser-
vation properties that facilitate tracking. In a nutshell, our global pose extraction
method computes deformation constraints from each pair of subsequent multi-
view input video frames at timgsandt + 1. It then applies the volumetric shape
deformation procedure to modify the poselof; at timet (that was found pre-
viously) until it aligns with the input data at time+ 1. In order to converge

to a plausible pose under this highly multi-modal goodness-of-fit criterion, it is
essential that we extract the right types of features from the images in the right
sequence and apply the resulting deformation constraints in the correct order.

To serve this purpose, our pose recovery process begins with the extraction of 3D
vertex displacements from reliable image features, which brings our model close
to its final pose even if scene motion is rapid, Sect. 11.2.1. The distribution of
3D features on the model surface depends on the scene structure, e.g. texture, and
can, in general, be non-uniform or sparse. Therefore, the resulting pose may not
be entirely correct. Furthermore, potential outliers in the correspondences make
additional pose update steps unavoidable. We therefore subsequently resort to two
additional steps that exploit silhouette data to fully recover the global pose. The
first step refines the shape of the outer model contours until they match the multi-
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Figure 11.2: 3D correspondences are extracted from correspaling SIFT fea-
tures in respective input camera views at and ¢ + 1. These 3D correspon-
dences, two of them illustrated by lines, are used to deform the model into a
first pose estimate fort + 1.

view input silhouette boundaries, Sect. 11.2.2. The second step optimizes 3D
displacements of key vertex handles until optimal multi-view silhouette overlap
is reached, Sect. 11.2.3. Conveniently, the multi-view silhouette ov8lapcan

be quickly computed as an XOR operation on the GPU [Carranza03].

We gain further tracking robustness by subdividing the surface of the volume
model into a sef? of approximately 100-200 regions of similar size during pre-
processing [YamauchiO5]. Rather than inferring displacements for each vertex,
we determine representative displacements for each region as explained in the
following sections.

11.2.1 Pose Initialization from Image Features

Given two sets of multi-view video framed(t),...,Ix(t) and I(t +
1),...,I(t + 1) from subsequent time steps, our first processing step extracts
SIFT features in each frame [Lowe99] (see Fig. 11.2). This yields, for each cam-
era viewk and either time step, a list ¢fk) = 1,..., L, 2D feature locations

u,'y) along with their SIFT feature descriptats;';’ — henceforth we refer to each
such list asLDy ;. SIFT features are our descriptors of choice, as they are ro-
bust against illumination changes and out-of-plane rotation, and enable reliable
correspondence finding even if the scene motion is fast.

Let 7;:(t) be the pose of;., at timet. To transform feature data into deformation
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constraints for vertices df;.(t), we first need to pair image features from time

t with vertices in the model. We therefore first associate eacbf 7;.,(¢) with

that descriptorid;, , from eachl,(t) that is located closest to the projected loca-
tion of vt; in this respective camera. We perform this computation for all camera
views and discard a feature associationtif is not visible from#k or if the dis-
tance between the projected positiornvefand the image position ozfdgt is too
large. This way, we obtain a set of associatiaitst;,t) = {dd1’,, - , dd’,} for

a subset of vertices that contains at most one feature from each camera. Lastly,
we check the consistency of eadliwt,, t) by comparing the pseudo-intersection
point p! ¥ of the reprojected rays passing througfy, .. ., v}, to the 3D posi-

tion of vt; in model poseT;.(t). If the distance|vt; — p/N7| is greater than a
threshold ;s 7, the original feature association is considered implausible/and

is removed from the candidate list for deformation handles.

The next step is to establish temporal correspondences, i.e. to find for each vertex
vt; with feature associatiod (vt;, t) the corresponding associatiof{vt;, t + 1)

with features from the next time step. To this end, we preliminarily find for each
dd{%’t € A(vt;,t) a descriptoraldiﬂf+1 € LDy 1 by means of nearest neighbor

distance matching in the descriptor values, and Miqﬂ to A(vt;,t +1). In
practice, this initial assignment is likely to contain outliers, and therefore we
compute the final set of temporal correspondences by means of robust spectral
matching [Leordeanu05]. This method efficiently bypasses the combinatorial
complexity of the correspondence problem by formulating it in closed form as
a spectral analysis problem on a graph adjacency matrix. Incorrect matches are
eliminated by searching for an assignment in which both the feature descriptor
values across time are consistent, and pairwise feature distances across time are
preserved. Fig. 11.2 illustrates a subset of associations found for two camera
views. From the final set of associatioAévt;, t + 1), we compute the predicted

3D target positionp?°T of vertexvt; again as the virtual intersection point of

)

reprojected image rays through the 2D feature positions.

Each vertexvt; for which a new estimated position was found is a candidate for
a deformation handle. However, we do not straightforwardly apply all handles
to move7,; directly to the new target pose. We rather propose the following
step-wise procedure which, in practice, is less likely to converge to implausible
model configurations: We resort to the set of regidgh®n the surface of the
tet-mesh (as described above) and find for each regiah R one best handle
from all candidate handles that lie in. The best handle vertex; is the one
whose local normal is most collinear with the difference vegtbt” — v,. If no
handle is found for a region, we constrain the center of that region to its original
3D position in7;..(t) which prevents unconstrained surface areas from arbitrary
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Figure 11.3: (a) Color-coded distance field from the image silhouette contour
shown for one camera view. (b) Rim vertices with respect to one camera view
marked in red on the tetrahedral model.

drifting. For each region handle, we define a new intermediate target position
EST . . - .
' Typically, we obtain position constraings for around

asq, = vt; + W

70% to 90% of the surface region& that are then used to change the pose of
the model. This step-wise deformation is repeated until the multi-view silhouette
overlap errorS1L(7;.,t + 1) cannot be further improved.

vt;

In contrast to the method proposed in Chapter 10, we do not require tracking of
features across the entire sequence, which greatly contributes to the reliability of
this method. The output of this step is a feature-based pose esfifhéter- 1).

11.2.2 Refining the Pose using Silhouette Rims

In image regions with sparse or low-frequency textures, only few SIFT features
may have been found, which may cause a starkly uneven distribution of deforma-
tion handles, or may generate areas with no handles at all. In consequence, the
pose ofZ,% (¢t + 1) may not be correct in all parts. We therefore resort to another
constraint that is independent of image texture and has the potential to correct
such misalignments. To this end, we derive additional deformation constraints
for a subset of vertices oR’, (¢ + 1) that we callrim verticesVzr(t + 1), see

Fig. 11.3(b). Rim vertices are vertices whose projections lie on the silhouette con-
tour of the performer in at least odg(t+ 1), and whose normals are perpendicular

to its viewing direction. By displacing them along their normals until alignment
with the respective silhouette boundaries in 2D is reached, we are able to improve
the pose accuracy for the modelat 1.
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In order to find the elements &fz;5, (¢ + 1), we first calculate contour images
C.++1 Using the rendered volumetric model silhouettes. A vertels considered

a rim vertex if it projects into close vicinity of the silhouette contour in (at least)
one of theC};, ,11, and if the normal ofi¢; is perpendicular to the viewing direction
of the camera.

For each elementt; € Vg (t + 1) a 3D displacement is computed by analyz-
ing the projected locatiom;,.; of the vertex into the camerathat originally
defined its rim status. The value of the distance field from the contour at the pro-
jected location defines the total displacement length in vertex normal direction,
Fig. 11.3(a). This way, we obtain deformation constraints for rim vertices which
we apply in the same step-wise deformation procedure that was already used in
Sect. 11.2.1. The result is a new model configurafigh(t + 1) in which the
projections of the outer model contours more closely match the input silhouette
boundaries.

11.2.3 Optimizing Key Handle Positions

In the majority of cases, the pose of the modeTjfi(¢ + 1) is already close to

a good match. However, in particular if the scene motion was fast or the initial
pose estimate from SIFT was not entirely correct, residual pose errors remain. We
therefore perform an additional optimization step that corrects such residual errors
by globally optimizing the positions of a subset of deformation handles until good
silhouette overlap is reached. Note that for the success of this step, a good pose
initialization from the preceding steps is indispensable. Only in their combination
all pose update strategies make up a robust analysis-through-synthesis framework.

Instead of optimizing the position of alb00 — 2000 vertices of the volumetric
model, we only optimize the position of typically 15-25 key vertiégsC V;.;

until the tetrahedral deformation scheme produces optimal silhouette overlap. We
ask the user to specify key vertices manually, a procedure that has to be done
only once for every model. Typically, key vertices are marked close to anatomical
joints, and in case of model parts representing loose clothing, a simple uniform
handle distribution produces good results. Tracking robustness is increased by
designing our energy function such that surface distances between key handles are
preserved, and pose configurations with low distortion enéigyare preferred,

Sect. 3.3.

Given all key vertex positionst; € V; in the current model posg’ (¢ + 1), we
optimize for their new positiong; by minimizing the following energy functional:

E(V;g) = Wg S[L(Ttet(Vk),t -+ 1) + Wp - ED + We - EC . (111)
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Figure 11.4: Model (a) and silhouette overlap (b) after the rim step; slight
pose inaccuracies in the leg and the arms appear black in the silhouette over-
lap image. (c),(d) After key vertex optimization, these pose inaccuracies are
removed and the model strikes a correct pose.

Here,SIL(T:(Vk),t + 1) denotes the multi-view silhouette overlap error of the
tet-mesh in its current deformed pdsg;(V}), which is defined by the new posi-

tions of theV.. £, is the deformation energy as defined in Sect. 3.3. Implicitly we
reason that low energy configurations are more plausitdepenalizes changes in
distance between neighboring key vertices. All three terms are normalized and the
weightswg, wp, andwe are chosen such th&t L(T,.,(V}), t+1) is the dominant

term. In our solutionf'p, and E- are used to regularize the solution avoiding that

the distance between neighboring key vertices increases or decreases too much,
which creates bad deformations. We use a Quasi-Newton LBFGS-B method to
minimize Eq. 11.1 [Byrd95].

Fig. 11.4 illustrates the improvements in the new output (3$& + 1) achieved
through key handle optimization. The output of this step is a new configuration of
the tetrahedral moddl% (¢ + 1) that captures the overall stance of the model and
serves as the starting point for the subsequent surface detail capture.

11.2.4 Practical Considerations

The above sequence of steps is performed for each pair of subsequent time in-
stants. Surface detail capture, Sect. 11.3, commences after the global poses were
found for all frames.

Typically, the rim step described in Sect. 11.2.2 is performed once more after
the last silhouette optimization step, which in some cases leads to a better model
alignment. We also perform a consistency check on the output of our low fre-
guency pose capture approach to correct potential self-intersections. To this end,
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(b) (©)

Figure 11.5: Capturing small-scale surface detail: (a) first, deformation con-
straints from silhouette contours, shown as red arrows, are estimated. (b)
Additional deformation handles are extracted from a 3D point cloud that
was computed via model-guided multi-view stereo. (c) Together, both sets of
constraints deform the surface scan to a highly accurate pose.

for every vertex lying inside another tetrahedron, we use the volumetric deforma-
tion method to displace this vertex in outward direction along its normal until the
intersection is resolved.

11.3 Capturing Surface Detall

Once global pose has been recovered for each frame, the pose sequépcis of
mapped toM,,;, Sect. 3.3. In the following section, the process of shape detall
capture at a single time step is explained.

11.3.1 Adaptation along Silhouette Contours

In a first step, we adapt the silhouette rims of our fine mesh to better match the
input silhouette contours. As we are now working on a surface mesh which is

already very close to the correct configuration, we can allow a much broader and
less smooth range of deformations than in the volumetric case, and thereby bring
the model to much closer alignment with the input data. At the same time, we

have to be more careful in selecting our constraints, since noise in the data now
has more deteriorating influence. This also means that our deformation is less
robust against errors and we have to carefully select the constraints.

We calculate rim vertices for the high-resolution surface mesh similarly to
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Sect. 11.2.2, Fig. 11.5(a). For each rim vertex, the closBspd@nt on the sil-
houette boundary is found in the camera view that defines its rim status, and we
check if the image gradient at the input silhouette point has a similar orientation
to the image gradient in the reprojected model contour image. If this is the case,
the back-projected input contour point defines the target position for the rim ver-
tex. If the distance between back-projection and original position is smaller than
threshold€x;,,, we add it as a constraint to Eq. 3.5. We also check if the vertex
v; and the 2D contour point have a similar orientation by comparing their image
projected gradients.

We use a low weightv; for the rim constraint points in Eq. 3.5. This has a regu-
larizing and damping effect on the deformation that minimizes implausible shape
adaptation in the presence of noise. After processing all vertices, we solve for the
new surfaceM’(t),,;. This procedure is iterated up 20 times or until silhouette
overlap cannot be further improved.

11.3.2 Model-guided Multi-view Stereo

Although the silhouette rims only provide reliable constraints on outer boundaries,
they are usually evenly distributed on the surface. Hence, the Laplacian-based
deformation method in general nicely adapts the shape of the whole model also
in areas which do not project on image contours. Unless the surface of the actor
has a complicated shape with many concavities, the result of the rim adaptation is
already a realistic representation of the correct shape.

However, in order to recover shape details in regions that do not project to sil-
houette boundaries, such as folds and concavities in a skirt, we resort to photo-
consistency information. To serve this purpose, we derive additional deformation
constraints by applying the multi-view stereo method proposed by [Goesele06].
Since our model is already close to the correct surface, we can initialize the stereo
optimization from the current surface estimate and constrain the correlation search
to 3D points that are at most2 cm away fromM (t),,.;.

As we have far less viewpoints of our subject than Goesele et al. and our actors
can wear apparel with little texture, the resulting depth maps (one for each input
view) are often sparse and noisy. Nonetheless, they provide important additional
cues about the object’'s shape. We merge the depth maps produced by the stereo
approach into a single point cloud, Fig. 11.5(b), and thereafter project points
from V;,; onto P using a method similar to [Stoll06]. These projected points
provide additional position constraints that we can use in conjunction with the
rim vertices in the Laplacian-based deformation framework, Eq.B15.give us



104

Chapter 11: Video-Based Performance Capture

Figure 11.6: A sequence of poses captured from eight video rexalings of a
capoeiraturn kick. Our algorithm delivers spatio-temporally coherent geom-
etry of the moving performer, capturing both the time-varying surface detail
as well as details in his motion faithfully.

additional positional constraints to add to the energy minimization from Eg. 3.5
in addition to the rim constraint8V;. Given the uncertainty in the data, we solve
the Laplace system with lower weights for the stereo constraints, Sect. 3.2.2.

11.4 Results and Discussion

Our test data were recorded in our acquisition setup described in Chapter 4. It
comprises of 2 sequences showing four different actors, and feature bet®en
and600 frames each. To show the large application range of our performance cap-
ture algorithm, the subjects wore a wide range of different apparel, ranging from
tight to loose, and made of fabrics with prominent texture as well as plain colors
only. Also, the recovered set of motions ranges from simple walks, over different
dance styles, to fast capoeira sequences. As shown in Figs. 11.6, 11.7 and 11.9,
our algorithm faithfully reconstructs this wide spectrum of scenes. We would also
like to note that, although we focused on human performers, our algorithm would
work equally well for animals provided that a laser scan can be acquired.

Fig. 11.6 shows several captured poses of a very rapid capoeira sequence in which
the actor performs a series of turn kicks. Despite the fact that in2éoups
recordings the actor rotates by more tRRardegrees in-between some subsequent
frames, both shape and motion are reconstructed with high fidelity. The result-
ing animation even shows small deformation details such as the waving of the
trouser legs. Furthermore, even with the plain white clothing that the actor wears
in the input, which exhibits only few traceable SIFT features, our method per-
forms reliably as it can capitalize on rims and silhouettes as additional sources of
information. Comparing a single moment from the kick to an input frame con-
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Figure 11.7: (left) One moment from a very fast capoeira turn kck. (middle)
Jazz dance posture with reliably captured inter-twisted arm motion. (right)
Reconstructed details in the dancing sequence showing a girl wearing a skirt.
(Input and virtual viewpoints differ minimally).

firms the high quality of our reconstruction, Fig. 11.7(left) (Note that input and
virtual camera views differ slightly). Furthermore, Fig. 11.7(middle) shows that
our method is able to capture a fast and fluent jazz dance performance with com-
plicated self-occlusions, such as the inter-twisted arm-motion in front of the torso.

Fig. 11.7(right) and Fig. 11.9 show one of the main strengths of our method,
namely its ability to capture the full time-varying shape of a dancing girl wearing

a skirt. Even though the skirt is of largely uniform color, our method captures
the natural waving and lifelike dynamics of the fabric (see also the video). The
overall body posture and the folds of the skirt were recovered nicely without the
user specifying a segmentation of the model beforehand. A visual comparison to
the input shows that the captured skirt geometry exhibits the same motion detail
and lifelike dynamics as the real skirt, and at the same time, the rest of the body
is faithfully captured too. Up to now, other passive methods from the literature
have not been able to capture both spatio-temporally coherent shape and motion
of such kind of performances. We would also like to note that in these sequences
the benefits of the stereo step in recovering concavities are most apparent. In the
other test scenes, the effects are less pronounced and we therefore deactivated the
stereo step (Sect. 11.3.2) there to reduce computation time. In general, we also
smooth the final sequence of vertex positions to remove any remaining temporal
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Step Time
SIFT step (Sect. 11.2.1) ~5s
Global rim step (Sect. 11.2.2) ~4s

Key handle optimization (Sect. 11.2.3) | ~40s
Contour-based refinement (Sect. 11.3.1) ~4s
Stereo340 x 340 depth maps (Sect. 11.3.2)~30s

Table 11.1: Average run times per frame for individual steps.

noise.

11.4.1 Validation and Discussion

Table 11.1 gives detailed average timings for each individual step in our algorithm.
These timings were obtained with an unoptimized single-threaded code running
on a Quad Core Intel Xeon Processor E5410 workstation with 2.33 GHz. We see
plenty of room for implementation improvement, and anticipate that paralleliza-
tion can lead to a significant run time reduction.

So far, we have visually shown the high capture quality, as well as the large appli-
cation range and versatility of our approach. To formally validate the accuracy of
our method, we have compared the silhouette overlap of our tracked output models
with the segmented input frames. We use this criterion since, to our knowledge,
there is no gold-standard alternative capturing approach that would provide us
with accurate time-varying 3D data. The re-projections of our final results typ-
ically overlap with over’5% of the input silhouette pixels, already after global
pose capture only (blue curve in Fig. 11.8(a)). Surface detail capture further im-
proves this overlap to more th&0% as shown by the green curve. Please note
that this measure is slightly negatively biased by errors in foreground segmenta-
tion in some frames that appear as erroneous silhouette pixels. Visual inspection
of the silhouette overlap therefore confirms the almost perfect alignment of model
and actual person silhouette. Fig. 11.8(b) shows a blended overlay between the
rendered model and an input frame which proves this point.

Our algorithm robustly handles even noisy input, e.g. due to typically observed
segmentation errors in our color-based segmentation. In particular, if foreground
colors resemble the background (e.g. black hair in front of a black background
in some of our data), color-based segmentation may produce erroneous silhou-
ettes. Nonetheless, our method delivers reliable reconstructions under typically
observed segmentation errors. Afl input sequences were reconstructed fully-
automatically after only minimal initial user input. As a pre-processing step, the
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Figure 11.8: Evaluation: (a) per-frame silhouette overlap in per cent after

global pose estimation (blue) and after surface detail reconstruction (green).
(b) Blended overlay between an input image and the reconstructed model
showing the almost perfect alignment of our performance capture approach.

user marks the head and foot regions of each model to exclude them from sur-
face detail capture. Even slightest silhouette errors in these regions (in particular
due to shadows on the floor and black hair color) would otherwise cause unnat-
ural deformations. Furthermore, for each model the user once marks agfost
deformation handles needed for the key handle optimization step, Sect. 11.2.3.

In individual frames of two out of three capoeira turn kick sequence®(t iof
around1000 frames), as well as in one frame of each of the skirt sequences (2
frames from850 frames), the output of global pose recovery showed slight mis-
alignments in one of the limbs. Please note that, despite these isolated pose errors,
the method always recovers immediately and tracks the whole sequence without
drifting — this means the algorithm can run without supervision and the results can
be checked afterwards. All observed pose misalignments were exclusively due to
oversized silhouette areas because of either motion blur or strong shadows on the
floor. Both of this could have been prevented by better adjustment of lighting and
shutter speed, and by using more advanced segmentation schemes. In either case
of global pose misalignment, at most two deformation handle positions had to be
slightly adjusted by the user. In none of the 08800 input frames we processed

in total, it was necessary to manually correct the output of surface detail capture
(Sect. 11.3).

Despite our method’s large application range, there are a few limitations to be
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Figure 11.9: Side-by-side comparison of the input image anche reconstruc-
tion of a dancing girl wearing a skirt (input and virtual viewpoints differ
minimally). Body pose and detailed geometry of the waving skirt, including
lifelike folds and wrinkles visible in the input, have been recovered.

considered. Our current silhouette rim matching may produce erroneous defor-
mations if the topological structure of the input silhouette is too different from the
reprojected model silhouette. As our low-frequency adaptation generates a good
initialization, which is already close to the actual silhouette, this effect can be
overcome by careful selection of parameters. However, in none of our test scenes
this turned out to be an issue. Currently, we are recording in a controlled studio
environment to obtain good segmentations, but are confident that a more advanced
background segmentation will enable us to handle outdoor scenes.

Moreover, there is a resolution limit to our deformation capture. Some of the high-
frequency detail in our final result, such as fine wrinkles in clothing or details of
the face, has been part of the laser-scan in the first place. The deformation on
this level of detail is not actually captured, but it is "baked in” to the deforming
surface. To illustrate the level of detail that we are actually able to reconstruct,
we generated a result with a coarse scan that lacks fine surface detail. Fig. 11.10
shows an input frame (I), as well as the reconstructions using the detailed scan (m)
and the coarse model (r). While, as noted before, finest detail in Fig. 11.10(m) is
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Figure 11.10: Input frame (l) and reconstructions using a dediled (m) and a
coarse model (r). Although the fine details on the skirt are due to the input
laser scan (m), even with a coarse template, our method captures the folds
and the overall lifelike motion of the cloth (r).

due to the high-resolution laser scan, even with a coarse scan, our method still
captures the important lifelike motion and the deformation details, Fig. 11.10(r).

Also, in our system the topology of the input scanned model is preserved over
the whole sequence. For this reason, we are not able to track surfaces which
arbitrarily change apparent topology over time (e.g. the movement of hair or deep
folds with self-collisions). Further on, although we prevent self-occlusions during
global pose capture, we currently do not correct them in the output of surface
detail capture. However, their occurrence is rather seldom. Manual or automatic
correction by collision detection would also be feasible.

Our volume-based deformation technique essentially mimics elastic deformation,
thus the geometry generated by the low-frequency tracking may in some cases
have a rubbery look. For instance, an arm may not only bend at the elbow, but
rather bend along its entire length. Surface detail capture eliminates such artifacts
in general, and a more sophisticated yet slower finite element deformation could
reduce this problem already at the global pose capture stage.

Despite these limitations, we have presented a new video-based performance cap-
ture approach that produces a novel dense and feature-rich output format com-
prising of spatio-temporally coherent high-quality geometry, lifelike motion data,
and optionally the surface texture of recorded actors. By combining an efficient
volume- and surface-based deformation schemes, a multi-view analysis-through-
synthesis procedure, and a multi-view stereo approach, our method is able to re-
construct an unprecedented range of real-world scenes at a high level of detail.
The proposed method supplements and exceeds the capabilities of optical captur-



110 Chapter 11: Video-Based Performance Capture

ing systems that are widely used in the industry, and will @lewanimators and
CG artists with a new level of flexibility in acquiring and modifying real-world
content.



Chapter 12
High-Quality 3D Videos

In this chapter, we describe a method to render realistic 3D Videos by
applying a clever dynamic 3D texturing scheme to the moving geom-
etry representation captured by the methods proposed in the previous
chapters. By displaying high-quality renderings of the recorded actor
from any viewpoint, our system enables new interesting applications
for 3D Television.

In recent years, an increasing research interest in the field of 3D Video processing
has been observed. The goal is to render a real-world scene from arbitrary novel
viewpoints photo-realistically. Since the human actor is presumably the most im-
portant element of many real-world scenes, the analysis of motion and shape of
humans from video, as well as their convincing graphical rendition is required,
which is still a challenging task.

In the traditional model-based approach to 3D Video, the motion of a sim-
plified body model is first estimated from multiple video streams [Starck03Db,
Carranza03], and during rendering, it is textured using the input footage. Al-
though these methods deliver realistic free-viewpoint renderings of virtual actors,
we expect that a more accurate underlying geometry increases realism even fur-
ther.

By combining the detailed captured human performances, using any of the meth-
ods presented in Chapters 9, 10, or 11, with the multi-view projective texture
method proposed in [Carranza03], convincing renditions of human actors from
arbitrary synthetic viewpoints can be generated in real-time. Due to the highly-
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detailed underlying scene geometry, the visual results aighrbetter than previ-

ous model-based or shape from silhouette-based 3D Video methods, Sect. 8.1.3.
In addition, since our performance capture methods generate a natural and time-
consistent geometry, 3D Video applications that until now would require a lot of
effort are simplified, e.g. 3D Video editing and 3D Video compositing. For ex-
ample, one can generate multiple single 3D Video scenes, which afterwards could
easily be edited and composed together in order to create new sequences.

The main contribution of this chapter is a

e system combining a detailed dynamic scene representation with a projec-
tive texture method, enabling realistic renditions of human subjects from
arbitrary synthetic viewpoints [de Aguiar08a].

In this chapter, we first describe a dynamic multi-view texturing method,
Sect. 12.1. Thereafter, Sect. 12.2 presents the results obtained with our 3D Video
system, showing the captured real world scenes from novel synthetic camera per-
spectives.

12.1 Creating 3D Videos

By combining any of the three previous performance capture methods described
in this thesis, the motion, dynamic shape, and texture information from mov-
ing subjects is acquired. This data can be used to create and render convincing
free-viewpoint videos that reproduce the omni-directional appearance of the ac-
tor. Since no markers are needed to capture the scene, time-varying video footage
is available and lifelike surface appearance can be generated using the projective
texturing technique described in [Carranza03].

In order to display the model, the color of each rendered pi¥glis determined
by blending allk input multi-view video imageg; according to

k
i) = > vilhwi()L() (12.1)
=1
wherew;(j) denotes the blending weight of cameérandv;(j) = {0,1} is the
local visibility. During texture pre-processing, the weights are calculated and the
producty;(j)w;(j) is normalized to ensure energy conservation.

Technically, Eq. 12.1 can be evaluated for each fragment on the GPU, and the
rasterization engine interpolates the blending values from the triangle vertices. By
this means, time-varying cloth folds and creases, shadows, and facial expressions
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are faithfully reproduced, leading to a very natural, dyraappearance of the
rendered object.

Blending Weights.  The blending weights determine the contribution of each
input camera image to the final color of a surface point. If surface reflectance can
be assumed to be approximately Lambertian, view-dependent reflection effects
play no significant role, and high-quality renditions can be obtained by blending
the video images intelligently. Lét denote the angle between a vertex normal
and the optical axis of cametaBy emphasizing the camera view with the small-
est anglg); for each vertex, i.e. the camera that views the vertex most head-on, a
consistent, detail-preserving texture is obtained.

Following [Carranza03], a visually convincing weight assignment has been found
to be

1
U= U max(1/6) — 1/6,) (122)

The parametes determines the influence of a vertex orientation with respect to
the camera viewing directions and consequently the impact of the most head-on
camera view per vertex. Singularities are avoided by clamping the valu@pf

to a maximal value. Additionally, the weights are normalized to sum up to one.

Visibility.  Unfortunately, in projective texturing, occlusions are not taken into
account and hidden surfaces can be erroneous textured. However, the z-buffer test
can be used to determine for every time step which regions are visible from each
camera view. Due to inaccuracies in the geometry model, it can happen that the
silhouette outlines in the images do not correspond exactly to the outline of the
model. As a result, when projecting video images onto the model, a texture seam
belonging to some frontal body part may fall into another body part farther back,
Fig. 12.1(a).

To avoid such artifacts, extended soft shadowing is applied. For each camera
view, all object regions of zero visibility are determined not only from the actual
position of the camera, but also from several slightly displaced virtual camera po-
sitions. Each vertex is tested whether it is visible from all camera positions. A
triangle is textured by a camera image only if all of its three vertices are com-
pletely visible from that camera, Fig. 12.1(b).

Furthermore, to reduce rendering artefacts caused by small segmented silhouette
outlines, all image silhouettes are expanded by a couple of pixels prior to ren-
dering. Using a morphological filter operation, the subject’s outline in all video
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(b)

Figure 12.1: Small differences between object silhouette and model outline
causes erroneous texture projections (a) that can be corrected by applying
an extended soft shadowing method (b). Morphologically dilated segmented
input video frames can be used to improve projective texturing (c).

images is dilated by copying the silhouette boundary pixel values to adjacent back-
ground pixel positions, Fig. 12.1(c).

12.2 Results and Discussion

By coupling our performance capture methods with the texturing approach de-
scribed in this chapter, realistic 3D Videos can be displayed in real-time. Fig. 12.2
shows two free-viewpoint renditions of a dynamically textured animated model in
comparison to the original images of the subject. The free-viewpoint renditions
reflect the true appearance of the actor, confirming that the virtual viewpoint ren-
ditions look very lifelike. Since we are given a better surface geometry, texture
blending artifacts are hardly observed. Furthermore, we can even reproduce the
true shape of the sweater which would not have been possible with a coarse tem-
plate model [Carranza03].

We have created 3D Videos from a variety of scenes ranging from simple walking
sequences over dancing moves to complex and expressive capoeira turn kicks.
Fig. 12.3 displays renditions showing the female dancer wearing a skirt and the
male actor performing a fast and complex turn kick. These sequences are ideal test
cases to validate the high-quality of the generated 3D Videos as they exhibit rapid
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Tl

Figure 12.2: Free-viewpoint renditions with high-quality geometry models.
Due to the accurate geometry, the rendered appearance of the actor (left sub-
images) nicely corresponds to his true appearance in the real world (right
sub-images).

and complex rigid and non-rigid motions. Another advantage of our scheme is
that it allows a contiguous surface parameterization of the model, which facilitates
higher-level processing operations, as they are needed for 3D Video editing or in
reflectance estimation techniques [Theobalt05, Theobalt07a]

Although clever texture blending can mask most geometry inaccuracies if a coarse
geometry is used, combining a dynamically refined shape representation, acquired
by our previous performance capture approaches, leads to an even better visual
guality. Improvements in the renderings are due to the improved geometry and,

consequently, less surface blending errors during projective texturing are gener-

ated. This combination enables high-quality reconstruction of human actors com-

pletely passively, and opens the door for attacking new challenging reconstruction

problems that were hard due to the lack of a decent dynamic scene capture tech-
nology.
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Figure 12.3: (top-middle) High-quality renditions showing a female dancer
wearing a skirt and (bottom) renditions of a male actor performing a fast and
complex capoeira turn kick. The time-varying refined geometry acquired by
our previous performance capture approaches leads to a better visual quality.
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Chapter 13

Problem Statement and
Preliminaries

In this part of the thesis, we propose two novel techniques to simplify
the process of mesh animations. First, an automatic method to
extract a plausible kinematic skeleton, skeletal motion parameters,
and surface skinning weights from arbitrary mesh animations is

presented. Thereafter, a method to automatically transform mesh
animations into animation collages, i.e. moving assemblies of shape
primitives from a database, is described.

It has become increasingly popular to create, edit and represent animations not
by means of a classical skeleton-based model, but in the form of deforming mesh
sequences. The reason for this new trend is that novel mesh deformation methods,
as the ones presented in Chapter 3, as well as new surface based scene capture
techniques, like the methods presented in the third part of the thesis, offer a great
level of flexibility during animation creation. However, unfortunately the resulting
scene representation is less compact than skeletal ones and there is not yet a rich
toolbox available which enables easy post-processing and modification of mesh
animations.

Animators are used to a large repertoire of tools for editing and rendering tra-
ditional skeletal animations, but yet lack the same set of tools for working with
mesh-based dynamic scene representations. The method proposed in Chapter 14
bridges this gap, enabling the fully-automatic conversion of a mesh animation into

a skeleton-based animation, that can be edited with off-the-shelf tools.
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A second novel application is described in Chapter 15. Fretylersearchers

in computer graphics aim at developing algorithms that enable the computer and
even unexperienced users to reproduce the look of certain styles of visual arts.
The proposed system brings together the traditional art form of a collage with the
most prominent art form in computer graphics, namely 3D animation, allowing
the computer artist to automatically convert her favorite mesh animation into a
moving assembly of 3D shape primitives from a database.

In summary, the main contributions of this part of the thesis are
e a motion-driven mesh segmentation method [de Aguiar08b];

e an algorithm to fully-automatic extract a skeleton structure, skeletal motion
parameters, and surface skinning weights from arbitrary deforming mesh
sequences [de Aguiar08b];

e a system to create animation collages from mesh animations, generating
a complete reassembly of the original animation in a new abstract visual
style that imitates the spatio-temporal shape and deformation of the in-
put [Theobalt07b].

This chapter proceeds with a review of closely related work in Sect. 13.1. There-
after, in the following chapters, our two novel approaches to process mesh ani-
mations are described in Chapter 14 and Chapter 15. We believe that our new
methods are important contributions to the animator’s toolbox with a variety of
applications in visual arts, animated movie production, and game productions.

13.1 Related Work

In our projects, we jointly solve a variety of algorithmic subproblems by extend-
ing ideas from different research areas. In the following sections, we highlight
selected related papers from these research categories.

13.1.1 Motion-Driven Mesh Segmentation

Segmenting a static mesh in meaningful parts is an active field of re-
search [Shamir08]. However, recently researchers started to also exploit temporal
information in mesh animations to create level of detail [ShamirQ1], to improve
compression [Lengyel99, Lee05, Sattler05], to motion-decompose mesh anima-
tions for fast ray-tracing [@nther06], and to cluster triangles in mesh animations
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for fast rendering [James05]. Unfortunately, these methodg generate seg-
ments that are not spatially and temporally consistent, i.e. they do not correspond
to underlying kinematic hierarchies and are not guaranteed to be spatially con-
nected.

Most recently, [Schaefer07] proposed a method for extracting a hierarchical, rigid

skeleton from a set of example poses, that can also be used for motion-driven
segmentation. The main difference to a segmentation method that we propose
in the next chapter is the fact that we robustly segment the model by means of
spectral clustering. This gives us much greater flexibility, as we can produce

segmentations at different user-controlled levels of detail, or automatically detect

the optimal number of clusters.

13.1.2 Skeleton Reconstruction

Different ways for performing skeleton extraction, each of them tailored to a spe-
cific data type and application, have been proposed in the literature. Some ap-
proaches extract skeletons from static meshes to hierarchically decompose the
shape [Lien06], to segment the mesh in meaningful regions [Katz03], to gain in-
formation on the model’s topology [Sharf07], and to perform simple mesh editing
operations [Liu03, Wu06, Tierny06]. Thus, extraction of an animation skeleton is
not the goal.

The accurate extraction of kinematically and biologically plausible animation

skeletons is of great importance in optical motion capture, where the skeletal
structure needs to be inferred from marker trajectories [Kirk05, de Aguiar06] or

shape-from-silhouette volumes [de AguiarO4]. Similarly, kinematic skeletons can
be reconstructed from a set of range scans of humans [Anguelov04], from CT
scans of the human hand [Kurihara04], from a static surface mesh of a known
character [Aujay07], or from pose examples [Schaefer07].

In contrast, the approach proposed in Chapter 14 makes use of entire motion se-
guences to extract kinematic hierarchies more robustly. It creates a plausible an-
imation skeleton that best explains the data and that closely resembles a skeleton
designed by an animator, in case such a skeleton exists for the data set.

13.1.3 Character Skinning

Skinning (also called enveloping) maps the articulated motion of the skeleton to
deformations of the character’s surface. Due to its efficiency, ease of implemen-
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tation, and support in many commercial packages, the mostiyigsed method

is linear blend skinning [Lewis00], where vertex transformations are expressed as
weighted linear combinations of bone transformations. Unfortunately, standard
linear blending has limited modeling power and cannot reliably reproduce certain
effects, such as muscle bulging. Recent blending schemes look at several example
poses and suggest methods to overcome the limitations inherent to linear blending
by using multi-linear blending weights [Wang02], additional bones to increase
reconstruction faithfulness [Mohr03], or affine transformations to calculate the
deformations [James05]. More recently, an improved example-based method has
been proposed by [Kurihara04] and augmented with a GPU approach [Rhee06].

In general, the former approaches offer a great level of realism, but are limited
by the number of input examples. Alternatively, advanced skinning techniques
can also be used to remove some artifacts of the traditional linear method, such
as direct quaternion blending [Hejl04], spherical blending [Kavan05], log-matrix
blending [Cordier05], or dual quaternion skinning [KavanQ7].

In a different line of thinking, researchers recently suggested to use the motion of
a kinematic skeleton to express constraints for a surface deformation method like
a Laplacian deformation [YoshizawaO7] or a Poisson deformation [Wang07]. By
this means, convincing animations can be obtained as one can capitalize on the
full modeling flexibility of a more complex mesh deformation approach.

The skinning method that we detail in the next chapter is closely related to the one
proposed in [Baran07], where the skeleton fitted to a static model is used to auto-
matically compute the skinning weights. However, in contrast to their method, the
proposed approach uses an entire sequence of mesh poses and extracted skeletons
to improve the estimation of the skinning weights.

13.1.4 Editing Mesh Animations

Similar in spirit to our algorithm are methods that manipulate a mesh animation
directly based on the spatio-temporal mesh editing operators [XuO7a, KircherQ6].
While the flexibility of these methods is very high and the resulting edited ani-
mations are of high visual quality, they require a fundamental redesign of existing
animation tools and do not allow data compression. In particular, when the mesh
animation can be explained by a skeleton, transforming a mesh animation into a
skeletal one is advantageous, as it enables fast and easy post-processing using the
full spectrum of already existing software.

A first step in this direction was taken in [Schaefer07] where a skeleton and its
skinning weights are estimated from a set of example poses. The main differences
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to the method described in Chapter 14 is that we exploit therfation informa-

tion in the input to robustly learn a skeleton by means of spectral clustering, that
we get a full range of skeletal motion parameters for the input animation which
gives us greater flexibility during post-processing, and that we fit our skinning
weights to the entire range of animation frames leading to more reliable estimates.

13.1.5 Shape Matching

The fitting of static shapes to generic primitives, like ellipsoids or general
quadrics, has been widely used in geometry processing for efficient data trans-
mission [Bischoff02], medical visualization [Bagas01], or segmentation and
piecewise shape approximation [Wu05] in reverse engineering. Alternatively, if
the application is bound to work with given primitives, 3D shape matching tech-
niques can also be employed [VeltkampO1, Tangelder04].

Global shape matching approaches compare different shapes based on numerical
descriptors such as shape distributions [Osada01], Fourier descriptors [Vranic01],
moment invariants [Elad02, Novotni0O3], or spherical harmonics [Kazhdan03].
Local shape matching can also be used to identify correspondences between sub-
parts of shapes using artificial surface features [Gal06] or topology graph-based
alignment [Hilaga01].

In our work on animation collages, Chapter 15, we have developed a
novel spatio-temporal matching approach based on spherical harmonic descrip-
tors [Kazhdan03], which is more robust and provides a more compact representa-
tion to describe the shapes in our time-dependent matching problem.
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Chapter 14

Reconstructing Fully-Rigged
Characters

In this chapter, we propose a method to automatically extract a
plausible kinematic skeleton, skeletal motion parameters, and surface
skinning weights from arbitrary mesh animations, bridging the gap
between the mesh-based and the skeletal paradigms. By this means,
sequences captured in the previous chapters can be automatically
transformed into fully-rigged virtual characters.

As mentioned in Chapter 13, a great level of flexibility during animation creation
can be achieved by representing animations not by means of a classical skeleton-
based model, but in the form of deforming mesh sequences. This is demonstrated
in the part 1ll of the thesis, where we described algorithms to perform mesh-
based performance capture. However, until now there is not yet a large amount of
methods available which enables easy post-processing and compression of mesh
animations.

Xu et al. [XuO7a] propose to close this gap by introducing a set of mesh-based
operations to post-process surface animations in a similar manner as kinematic
representations. Although their method allows for flexible post-processing of
time-varying surfaces, it requires a fundamental redesign of existing animation
tools and also does not explore data compression possibilities. The latter was the
focus of the work by James et al. [James05] who aim at extracting a skinning
representation from mesh sequences that is well-suited for rendering on graphics
hardware but not meant to be used for editing.
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Figure 14.1: From left to right: Input animation, color-coded distribution
of blending weights, and two poses of the input re-generated based on our
skeleton-based version.

In contrast, in this chapter, we propose a method that enables the fully-automatic
conversion of an arbitrary mesh animation into a skeleton-based animation. By
this means, deforming mesh sequences are transformed into fully-rigged virtual
subjects. The original input can then be quickly rendered based on the new com-
pact bone and skin representation or modified using the full repertoire of already
existing animation tools.

Given as input a deforming mesh sequence with constant surface connectivity
(e.g. captured by the methods described in part 1), our algorithm first extracts a
plausible kinematic bone hierarchy that closely resembles a skeleton hand-crafted
by an animator, Sect. 14.2. Thereafter, our algorithm automatically infers joint
motion parameters, Sect. 14.3 and Sect. 14.4, and estimates appropriate surface
skinning weights to attach the skeleton to the surface, Sect. 14.5. The output
of our algorithm is a fully-rigged skeletal version of the original surface-based
input. We exemplify the performance of our algorithm by applying it to a variety

of hand-crafted and captured sequences, and also prove the faithfulness of the
reconstructed skeletal representations to the ground truth input in Sect. 14.6.

In summary, the main contributions of this chapter is an algorithm [de Aguiar08b]
that

e enables fully-automatic extraction of skeleton structure, skeletal motion pa-
rameters and surface skinning weights from arbitrary deforming mesh se-
guences, and

¢ thereby enables easy post-processing and fast rendering of mesh animations
with standard skeleton-based tools without having to modify them.

As opposed to related methods, Sect 13.1, our approach jointly produces a com-
pact and easily modifiable skeletal version (Fig. 14.1), enables fast and accurate
rendering of the original input, enables easy generation of new pose sequences
for the input subject, and achieves all this without requiring any modification to
already existing animation tools.



14.1 Overview 127

Figure 14.2: Overview of our algorithm: using an animated meh as input,
our approach segments the model into plausible approximately rigid surface
patches (shown in different colors), estimates the kinematic skeleton (joints
shown in red) and its motion parameters, and calculates the skinning weights
connecting the skeleton to the mesh. The output is a skeleton-based version
of the input mesh animation.

14.1 Overview

An overview of our approach is shown in Fig. 14.2. The input to our algorithm is
an animated mesh sequence comprising of N frames. We represent an animated
mesh sequence by a mesh modé|,; = (V,,,;, T};) and position data,(v;) =

(z;,y;, ;). for each vertex, € V;,; at all time steps.

In the first step of our algorithm, we employ spectral clustering to group seed ver-
tices on the mesh into approximately rigid segments. By using the clustered seed
vertices we are able to segment the moving mesh into kinematically meaningful
approximately rigid patches, Sect. 14.2. Thereafter, adjacent body parts are deter-
mined and the topology of the kinematic structure of the mesh is found, Sect. 14.3.
Using the estimated topology, joint positions between interconnecting segments
are calculated over time. In order to eliminate temporal bone length variations due
to per-time step fitting inaccuracies, joint positions are updated at all time steps
and an inverse kinematics approach is applied to determine the subject’s joint pa-
rameters over time, Sect. 14.4. In a last step, we calculate appropriate skinning
weights to attach the learned skeleton to the surface, Sect. 14.5. This way, we
produce a complete skeleton-based new version of the original input.
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14.2 Motion-driven Segmentation

The first step of our algorithm segments the animated input mesh (givan;ky

and FP,) into spatially coherent patches that undergo approximately the same rigid
transformations over time. We initialize our approach by selecting a subset of
vertices that are distributed evenly over the mesh, Fig. 14.3(left). For the selection
of the seeds we only consider a reference posétypically ¢ = 0), and employ

a curvature-based segmentation method [YamauchiO5] to decompose the model
into [ surface patches. The seed vertices are chosen as the vertices closest to the
centers of the patches. We typically chodse be in the range di.3 — 1.0% of

the total vertex count of the model, which enables reasonably fast decomposition
of even large meshes.

Similar to [KirkO5, de Aguiar06] in the context of optical motion capture, the
motion trajectories of the seed vertices throughout the whole sequence form the
input to a spectral clustering approach [Ng02] which automatically groups the
seeds intd: approximately rigidly moving groups. We capitalize on the invariant
that mutual distances between points on the same rigid part should only exhibit a
small variance while the mesh is moving. After clustering the vertices with similar
motion, we transform them into rigidly moving coherent triangle patches.

In order to use spectral clustering, we first construct a spatial affinity matne
developed an affinity criterion specifically for our setting that defines the entries
of A as follows:
aq, +ﬁ

Ayj=e 58, (14.1)
wherep;; = 7 >_,0(v;, vj,t) is the mutual Euclidean distandg;, between
seed vertex); and seed vertex; over time ando; ; is its standard deviation.
S = ﬁ Zm. (0:; + /pi;) is a scaling term controlling the convergence behav-
ior. We construct the entries of such that the affinity values of vertex pairs
with large average mutual distance is reduced, which forces our spectral cluster-
ing algorithm to put spatially far apart groups of vertices with similar motion into
separate clusters.

Spectral clustering is our method of choice as it can robustly infer complex clus-
ter topologies as they are typical for our motion segmentation problem. Instead
of grouping the vertices directly based on the individual valdgs spectral clus-
tering proceeds by rearranging thiemput samples it well-separated clusters on

the surface of &-dimensional hypersphere. It achieves this by building a diago-
nal matrix D whose(i, i)-element is the sum of’s i-th row. Now the Laplacian
matrix L = D~Y2A D~/? is built, its k largest eigenvalues, . . ., e, are com-
puted and stacked into columns to form the maf¥ixx R>*. The rows ofX are
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Figure 14.3: (left) Subset of vertices distributed evenly osr the mesh and
(right) resulting approximately rigid surface patches.

normalized and considered as pointsRifi Then thel row vectors are split into

k clusters using standardmeans clustering. Every original sample vertexs
assigned to a clusterif and only if row : of X was assigned to clustgr We
remind thatk-means clustering is effective here because in the transformed data
X clusters are well-separated.

Spectral clustering makes the clustering more robust against outliers and leads to a
more robust and kinematically more meaningful segmentation than, for instance,
standard k-means [DudaO1]. As an additional benefit, the optimal number of clus-
tersk can be automatically calculated based on the data set’s eigen-gap. In our
system, we automatically cluster the seeds ingroups such that aroursd.0%

of the total variation of the data is explained. However, for some applications, as
the system in Chapter 15, the automatic optimal segmentation is not always the
best one. In this case, spectral clustering also allows the specification of a num-
ber of rigid surface patches to be used to segment the model. Fig. 14.4 shows
the segmentation of the camel’s mesh for two different valuds @t a smaller
k-value, the lower legs and the hoofs form one cluster since the relative motion
between these two was less significant than the relative motion between other seg-
ments. For a largek-value, they have been split in two, which shows that with
increasing levek of detail, our segmentation intuitively produces plausible and
more detailed segmentations.

Using thek optimal vertex clusters, we create triangle clustgys.. 7,1 = T},

by assigning each triangl& = (wg,w;,wy) € T}, to the closest seed vertex
class considering the average Euclidean distance from a seed vgttex, w,

andw,. The resulting clusters divide the mesh irkt@pproximately rigid sur-

face patches, Fig 14.3(right). Note that although a structurally motivated distance
measure like the geodesic distance could also be used for clustering the triangles
and to determine affinities in Eq. 14.1, our experiments show that similar results
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Figure 14.4: While with £ = 13 patches (left) merely the larger rigid segments
are identified, but the feet are merged with the lower legs, ak = 31 the full
kinematic detail has been discovered (each color used several times, adjacent
segments colored differently).

can be achieved using simple Euclidean distance which reduces the algorithm’s
computation time considerably. As seen in Sect. 14.6, our segmentation approach
is able to create triangle patches that divide the mesh into plausible approximately
rigid body parts.

14.3 Automatic Skeleton Extraction

Given the list of body segments, their associated seed vertices and triangle patches,
we extract the kinematic skeleton structure of the animated mesh by first finding
its kinematic topology (i.e. find which body parts are adjacent) and, thereafter, by
estimating the positions of the interconnecting joints for the whole sequence.

To determine which body segments are adjacent, we analyze the triangles at the
boundaries of the triangle patches. Body pattand B are adjacent if they have
mutually adjacent triangles in their respective patch boundaries. Unfortunately,
in practice a patch may be adjacent to more than one other patch. If more than
two patches are directly connected (e.g. head, torso and arm), we need to decide
which segments are truly kinematically connected and which are not. Here we
take a heuristic approach and consider only those patches to be adjacent that share
the longest common boundary (in terms of the number of adjacent boundary trian-
gles). For instance, if head, arm and torso are connected, we calculate the number
of neighboring triangles for all combinations of patch pairings (e.g. head-torso,
head-arm and torso-arm) and do not assign the pair head-arm as an adjacent seg-
ment since it has less neighbors in comparison with the other two options. For
any adjacent pair of patches, a joint has to be found later. Note that in our system
we assume that the body part in the center of gravity of the mesh at the reference
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time step is the root of the hierarchy.

In order to estimate the joint positions between two adjacent body segrants

B quickly, we only consider the information from the sets of seed veriigeand

Vg located on these segments, and not the information from all verticé$,0f
Instead of solving for the complete sequence of joint positions, we significantly
reduce the problem’s complexity by first aligning the segment poses to a reference
time stepir (usuallytr = 0), then solving for a single optimal joint position@t

in the reference pose, and finally retransformigginto the original poses oft

andB.

To serve this purpose, for each time stewe first compute two rigid body trans-
formsTy, . andTp, ,. that align the positions of the seed vertices in both sets
with the positions of the seed verticEs at the reference time step [Horn87].

For finding¢,,., we follow an idea proposed in [KirkO5] and assume that a good
estimate for the correct sequence of joint positions is the sequence of locations
that minimizes the variance in joint-to-vertex distance for all seed vertices of the
adjacent parts at all frames. Using this assumption, [de Aguiar06] solves for the
joint location at the reference timg,. by using a distance penalty based on the
average Euclidean distance to regularize the solution. Alternatively, we use the
regularization term proposed by [Anguelov04], which makes the estimated joint
position come closer to the centroid positianof the boundary curve between

the two adjacent body parts at all time stépsTherefore, we solve for;, by
minimizing:

1

J(Ctr) =35

1
9 * Z Ua(ctr> + 5 * Z Ub(ctr) +ax d<ctr7 btr)> (142)

Ve €V v EVRB

whereo,(c;,.) and oy () corresponds to the Euclidean distance variance over
time between the joint position, and the vertex, and betweenm;, andwv,, re-
spectively.d(c,,, by, ) is the Euclidean distance betwegnandb,, at the reference

time step. The coefficient is used to regularize the solution, making the joint
position be located as closed as possible to the interior of the mesh. The results
in Sect. 14.6 were generated using a valuerof 0.05 (which we found to be
satisfactory in our experiments).

After solving Eq. 14.2 and finding the optimal joint locatiap, the joint positions

at all other frames can be easily computed-by- Tgtitr * ¢ By applying the
above procedure to all adjacent body parts, we reconstruct all joint positions for
the whole sequence (see Fig. 14.5).
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14.4 Motion Parameters Estimation

A consistent parameterization of the skeletal motion in terms of rotational joint
parameters is only feasible in case the skeleton structure preserves constant di-
mensions over time. However, due to possible errors generated by aligning the
body parts in the reference frame (mostly caused by subtle (non-rigid) relative
motion between vertices on the same segment), the lengths of the bones in the
skeleton may slightly vary over time. We enforce the bone lengths to be constant
by stepping through the hierarchy of the estimated skeleton from the root down to
the leaves and correcting the joint positions for each pair of subsequent joints in
the kinematic chain separately such that the bone length constraint is satisfied.

Let ¢! be the position of a jointandc ' the position of its parent joint at time

We are able to calculate the optimal value for the length of the bone connecting
jointi — 1 ands, ;_;, over time and the new positions for the joirfs:ci, by
minimizing the following energy:

S(ne' lio14) ZHCt—”CtHz + (Incy = &7 =l )? (14.3)

The first term in Eq. 14.3 keeps the new joint positiaf as close as possible to
the old position, while the second term constrains the bone length to be the same
in all frames.

After solving this equation for each pair of subsequent joints in the hierarchy, we
obtain a consistent kinematic structure of the m@adh.;. To infer joint motion
parameters, i.e. a rotational transformatigjrfor all joints: at all timest, we first
specify the skeletal pose at the first time step as reference pose (this is the best
we can do given no explicit reference). Thereafter, we apply a Cyclic-Coordinate-
Descent (CCD) like algorithm [Luenberger73, Badler87] to inferilirelative

to the reference using Euler angle parameterization. To this end, we optimize
one joint variable at a time by calculating the positional error with respect to the
estimated joint positions found for that time step. Since we have all in-between
joint positions of each kinematic sub-chain, our method converges quickly and
reliably. Finally, the translation of the root is stored as additional parameter for
each frame.
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Figure 14.5: (top) Visual comparison between the reconstrued joint posi-

tions and the true positions (shown as white spheres) at four different frames.

(bottom) Plot of the low difference in z-coordinate between the reconstructed

left elbow joint position and the ground truth position over time (biped walk-

ing sequence).

14.5 Skinning Weight Computation

Skinning is the process of attaching the skeleton to the surface in such a way
that changes in skeletal pose lead to plausible surface deformations. Although
more advanced deformation schemes exist (see Sect. 13.1), we decided to use the
standard linear blend skinning method [Lewis00], also called skeletal subspace
deformation method - SSD, since it is widely supported in games and animation
packages.

Let py(v;) be the position of the vertex, of M,,; in the reference pose (or rest
pose), letRkR’ be the transformation of the boriefrom the reference to time
t, and letw®(v;) be the weight of the bong for the vertexv;. Note that the
bone transformatiorR? equals the transformatioR; of the preceding jointj
from the hierarchy. SSD expresses the new position of verieat timet as
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pi(vi) = >, w? RYpo(v;). Therefore, in order to use the SSD method to re-animate
the sequences using a more compact representation, we need to determine the
bone weightau? for each vertex;, i.e. we need to know how much each bone
influences each vertex.

We employ the method proposed in [Baran07] to determine the skinning weight
distribution for each bone. This method computes the distribution based on the
results of a heat diffusion process rather than based on simple vertex proximity
to the bone, which makes the estimation process more robust. In contrast to their
work, however, we consider the entire sequence of mesh and skeleton poses from
the input when finding optimal weights. In particular, we first solve for the weight
distributionSwil of each framef separately, and thereafter average them to obtain
the final distributiongu®.

When computing the weight distribution? we regard the volume of the model
M,,; as an insulated heat-conducting body and force the temperature of the bone
b to be1 and the temperature of all others to tie The weightw}(v;) equals

the equilibrium temperature af. For computational simplicity, the equilibrium

wb
equation is only _solved on the mesh’s surface ylelcﬁggg = Aw? + Hf(pl} —
w?) = 0. In our discrete case this can be reformulated as

(—Ay + Hy)wl = Hppl . (14.4)

In this equationA; is the discrete Laplacian operator at frafigésee Sect 3)p‘}

is a vector wherg',(v;) equals 1 in casg s the nearest bone to vertexand0
otherwise. H, is a diagonal matrix with entrie;;, = 1/dist(v;)? representing
the heat contribution weight of the nearest bone to verieat framef. Here,
dist(v;) is the Euclidean distance between verteand the nearest bone in case it
is contained in the model’s volume afdtherwise. The final weight distributions
w? for each bone is the average of the Weigh}sfor all frames.

The heat diffusion solution provides smooth and realistic blending weight dis-

tributions since it respects geodesic surface proximity during weight assignment
rather than error-prone Euclidean proximity [Baran07]. Furthermore, our experi-

ments show that by computing the optimal weights from all available poses, our
resulting skeletal animation reproduces the entire original mesh animation more
faithfully, Sect. 14.6.
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14.6 Results and Discussion

To demonstrate and validate our algorithm, we applied it to a set of mesh ani-
mations generated in a variety of different ways, see Tab. 14.1 for a list. Some
synthetic sequences, such as the horse sequence (Fig. 14.1), were generated
with a mesh deformation method [Sumner04]. Other synthetic sequences like
the bird and the walking biped were originally created with a skeleton-based
method which conveniently gives us ground truth data. We also have captured
performances of humans at our disposition. The dancing and capoeira sequences,
Fig. 14.7 and Fig. 14.9, were reconstructed by the performance capture approach
described in Chapter 11. The cartwheel and posing sequences (Fig. 14.9) were
obtained by using raw motion capture marker trajectories as constraints in our
mesh-based animation framework described in Chapter 7.

Fig. 14.9 shows one original input mesh, the color-coded skinning weight distri-
butions, and some poses of the original animation re-rendered using our skeleton-
based reparametrization. A visual comparison between our result and the input,
Fig. 14.7, shows that our result is visually almost indistinguishable from the orig-
inal mesh animation and exhibits very natural surface deformations. Further-
more, visual inspection already suggests that the estimated kinematic structures
are nicely embedded into the subjects at all frames and possess biologically plau-
sible dimensions and hierarchies. Here, we would like to note again that all these
results were obtained fully-automatically. Our new representation is very com-
pact. For the horse animation, for instance, we only need to store geometry and
skinning weights once, and for each time step only store 60 motion parameters
(3-DOF per joint) rather than approximately000 coordinate values.

Figure 14.6: Visual comparison between pre-defined skeletoembedded to
the mesh (left sub-images) and the skeleton extracted by our approach (right
sub-images). Despite slight differences in the torso area, our estimated skele-
ton closely resembles the fitted template.
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Figure 14.7: (top) Two pairs of images comparing the input (I& sub-images)
to our skeleton-based result (right sub-images). In either case the renderings
are visually almost indistinguishable. (bottom) Plot showing the low average
Euclidean distance error between input and reconstructed vertex positions
for the human-sized model.

To get a quantitative impression of the faithfulness and quality of our results, we
analyze individual aspects of our method more closely.

Skeleton Reconstruction Since for most synthetic data we know the true
sequence of joint positions, we are able to provide a quantitative estimate of the
accuracy of our skeleton extraction and motion capture approach. Fig. 14.5(top)
shows a visual comparison between the joint positions estimated by our approach
and the true joint positions, shown as white spheres, for the walking biped se-
guence. Fig. 14.5(bottom) illustrates the accuracy of the reconstructed motion
parameters over time. The plot shows a comparison between the z-coordinate of
the true and estimated positions of the left elbow joint for the same walking se-
qguence. The difference between true and estimated joint positions is very small
and consistent over time, which illustrates the robustness of our method. Similar
low errors could be observed in all our sequences with available ground truth. The
column JACC in Tab. 14.1 shows the average Euclidean distance error between es-
timated joint position and true joint position for all joints over time. Due to the
lack of absolute coordinates, the error is given in percent of the longest bounding
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Figure 14.8: New poses for the input mesh can be easily geneeatby simply
changing the joint parameters of the extracted skeleton.

box dimension of the model. In all our examples, major misalignments between
the original and the reconstructed skeleton could only be found if the part of the
input corresponding to that joint was not prominently articulated.

Our automatically computed bone hierarchies closely match the skeletons that
would typically be created by animators. This is demonstrated in Fig. 14.6, where
we show a side-by-side comparison between our result and the skeleton fitted by
the method of Baran et al. [Baran07]. Although the topology of the root/spine
area slightly differs, our calculated skeleton closely resembles the a priori fitted
template.

Accuracy of reparameterized animation Fig. 14.7(top) shows a compar-

ison between two frames of the input dancing sequence (left sub-images) and
the generated skeleton-based animation (right sub-images). Visually, almost no
difference can be seen. Fig. 14.7(bottom) plots the consistently low average dif-
ference between the vertex positions of the input and the reparameterized output
over time for the dancing sequence. For the human-sized figure, the error is mostly
below one centimeter which shows the high reconstruction quality also quantita-
tively. Column ACCU of Tab. 14.1 shows that similarly low errors are observed

in the other test sequences.

Pose and animation editing Using our system, we are able not only to recre-
ate the original input based on a more compact representation, but can straight-
forwardly produce novel postures of the input mesh, Fig. 14.8. To this end, we
only need to modify the joint parameters which can easily be done in any standard
animation package. Since we have a complete set of motion parameters for the
input, we can also easily modify aspects of the original animation by altering the
joint parameter curves of selected joints.



138 Chapter 14: Reconstructing Fully-Rigged Characters

SEQUENCE| FR | A | SEGM| SKEL | SKIN JACC | ACCU
Horse 47 | 17K 4s 17s | 7s/frame | N/A | 0.56%
Bird 60 | 55K 5s 49s | 10s/frame| 2.9% | 0.42%
Biped 80 | 32K 5s 36s | l4s/frame| 1.7% | 0.52%

Cartwheel | 120| 7K 4s 63s | 3s/frame| N/A | 0.81%
Posing 280 7K 9s 261s | 4s/frame | N/A | 0.43%

Capoeira | 150| 106K | 44s 244s | 28s/frame| N/A | 0.47%
Dancing | 220| 106K | 37s | 312s | 28s/frame| N/A | 0.37%

Table 14.1: Given an animated mesh sequence withh' triangles (A) and
N frames (FR), the processing times for segmenting the mesh into triangle
patches (SEGM), to extract its kinematic structure and reconstruct its mo-
tion parameters (SKEL), and to calculate the skinning weights based on the
input data (SKIN) are shown. Also, the low average difference between es-
timated joint positions and true joint locations (JACC) - in percent of the
maximal side length of the overall bounding box - and the average difference
between original and reconstructed vertex positions (ACCU) are indicated.

Computation time  Tab. 14.1 lists the run times of each processing step in our
algorithm. The second and third columns show the number of frames in each se-
guence (FR) and the number of triangles in each model (A). The column SEGM
lists the time needed for clustering and mesh segmentation. Column SKEL lists
the time needed to build the skeleton and estimate all motion parameters, and col-
umn SKIN lists the time needed to find the blending weights. With the exception
of SKIN which shows per-frame times, all times given are for processing entire
sequences. All run times were measured on an unoptimized single-threaded code
running at a Laptop featuring an Intel Core Duo CPU with 1.7 GHz.

Discussion  Our approach is subject to a few limitations. During skeleton ex-
traction, it is impossible to locate a joint if there is no relative motion between ad-
jacent body parts. Therefore, in some of our sequences hands and feet are missed
due to insignificant relative motion. However, we consider this to be a principal
problem of any data-driven skeleton extraction method, and user interaction is
feasible in this case.

Most remaining reconstruction inaccuracies are due to non-rigid deformation
components in the input that are not well explainable by a rigid skeleton and linear
skinning weights. However, alternative skinning methods can be applied to even
further reduce the residual errors, e.g. [Merry06, Kavan07, Angelidis07, Wang07].
Furthermore, skeletal reparametrization works very well for subjects whose mo-
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tion is largely due to a skeleton such as humans and most aninallargely
non-rigidly moving animations, such as a deforming piece of cloth, our algo-
rithm would still determine a skeleton, but it is not physically plausible. There-
fore, mesh-based editing approaches might be preferred in this case [Kircher06,
Xu07a].

Despite these limitations, in this chapter we have presented a fully-automatic
method to extract a kinematic skeleton, joint motion parameters, and surface skin-
ning weights from arbitrary mesh animations. The result is a compact represen-
tation of the original input that can be easily rendered and modified in standard

skeleton-based animation tools without having to modify them. This way, we are

able to preserve the great modeling flexibility of purely mesh-based approaches
while making the resulting skeleton-less animations straightforwardly available to

the animator’s repertoire of processing tools.

Our results show that the efficient combination of skeleton learning and
temporally-coherent blending weight computation enables us to effectively bridge
the gap between the mesh-based and the skeleton-based animation paradigms.



140 Chapter 14: Reconstructing Fully-Rigged Characters

Figure 14.9: Results obtained with different captured perfemances (left to
right in each row): One frame of the input sequence, color-coded blending
weight distribution, and two poses of the input recreated with our skeleton-
based representation. Our method efficiently and fully-automatically con-
verts mesh animations, created by animators or captured from moving sub-
jects, into skeleton-based animations.



Chapter 15

Designing Non-Photorealistic
Animation Collages

In this chapter, we present a method to automatically transform mesh
animations into animation collages, i.e. a new non-photorealistic

rendering style for animations. By automatically decomposing

input animations and fitting a shape from the database into each
segment, our algorithm creates a new rendering style. It has many
applications in arts, non-photorealistic rendering, and animated

movie productions.

An animation collage is a complete reassembly of the original animation in a
new abstract visual style that imitates the spatio-temporal shape and deforma-
tion of the input. Many researchers in computer graphics have been inspired
by the idea to develop algorithms that enable the computer and even unexperi-
enced users to reproduce the look of certain styles of visual arts, such as collages.
Kim et al. [Kim02] develop a system that can automatically turn arbitrary pho-
tographs into collage mosaics that comprise of an arrangement of elementary im-
age tiles. Rother et al. [Rother06] automatically arrange and blend photographs
from a database into a perceptually pleasing way. Gal et al. [Gal07] show results
of a method to approximate static 3D shapes with other meshes, but they do not
handle the general case of mesh animations.

In contrast, this chapter presents a method allowing a computer artist to auto-
matically convert his/her favorite mesh animation into a moving assembly of 3D
shape primitives in a database. This so-called animation collage is glued together
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in such a way that it approximates the sequence of shapesi@original mesh
animation, while deforming in the same spatio-temporally consistent way as the
original. While our method can fully-automatically build moving collages, it also
purposefully gives the artist the possibility to post-process and fine-tune the results
according to his/her imagination.

An overview of our system is presented in Sect. 15.1. It first automatically de-
composes the input mesh animation into moving approximately rigid volume seg-
ments, henceforth callezhimation cells, Sect. 15.2 and Sect. 15.3. This decom-
position is learned from the moving input meshes by means of a spectral clus-
tering approach, Sect 14.2. Thereafter, it employs a spatio-temporal matching
criterion that analyzes the motion and deformation of each animation cell and
finds a shape primitive in the database that best approximates its time-varying
geometry, Sect. 15.4. Shape primitives and cells are spatio-temporally aligned,
and the fitted shapes are moved and deformed according to the deformation of the
cells, Sect 15.5. Since it is also our goal to develop new algorithmic recipes for
a novel artistic tool, an animator can influence the final result at all stages of the
processing pipeline, Sect 15.6.

The main contribution of this chapter is a system [TheobaltO7b] to

e automatically transform mesh animations, which are created directly by an-
imators or captured using our previous performance capture methods, into
animation collages.

Our software prototype is easy to use and allows even untrained users to create
very aesthetic collages. Therefore, our system is an interesting add-on to the
graphics artist’s toolbox, with many applications in visual arts, non-photorealistic
rendering, and productions of games and cartoons.

15.1 Overview

As in Chapter 14, the input to our algorithm is an animated mesh sequence com-
prising of N frames, represented by a mesh motiel.; = (V,,;, T}.;) and position
datap,(v;) = (z;,y;, 2;): for each vertew; € V,,; at all time steps. The coordi-

nate sets’, = {p.(v;)} together withM,,; describe a time-varying surface. The
second input element is a databaséso$tatic shapes, each being represented as
a textured triangle mesh.

The first step in our pipeline is the motion-decomposition of the mesh. To this
end, we employ the method described in Sect. 14.2 that analyzes the motion



15.2 Rigid Body Segmentation 143

4 f ‘
x / /,

(d)

(b)

Figure 15.1: Important steps in our pipeline: the mesh is decomposed into
rigidly moving surface patches (a), skeletons are extracted (b), and anima-
tion cells assembled (c), here only some cells are shown. Shapes are spatio-
temporally fitted to the cells and deformed over time to build the animation
collage (d).

of the mesh and delivers contingent triangle patches representing approximately
rigid elements, as shown in Fig. 15.1(a). To enable the fitting of shape primi-
tives, we transform the rigid surface elements into approximately rigid volume
cells, so-callecanimation cells. To this end, a sequence of medial axis meshes
is computed from the animation which, in conjunction with the previously identi-
fied rigid surface segments, is used to create these closed volume cells, Sect. 15.3
and Figs. 15.1(b),(c). Once the animation cells have been identified, we automati-
cally fit to each of them a shape primitive from the database, Sect. 15.4. The final
moving collages are generated by deforming the fitted shapes according to the
transformation of their respective animation cells, Fig. 15.1(d). To achieve this,
we generate spatio-temporally consistent offset meshes from the animation cells
that drive the shape primitives’ deformations, Sect. 15.5.

15.2 Rigid Body Segmentation

The first step in our pipeline segments the input animation givery, and

P, into spatially coherent triangle patches that undergo approximately the same
rigid transformations over time. Our motivation for decomposing the mesh into
approximately rigid patches is that this seems intuitive and plausible to the viewer.
Many characters in cartoons and animation films, for instance the main actors in
20-th century Fox’s “Robots” [Robots05], were rendered in this particular style.

The deformations of general mesh animations can not be described by rigid trans-
formations alone. Animators often purposefully combine rigid transformations
with non-rigid ones in order to create a lifelike look. In contrast to motion seg-
mentation approaches that generate merely a statistically plausible segmentation,
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we intend to isolate the underlying rigid deformations frdra hon-rigid ones in

a kinematically plausible way. By this, we mean that in case there exists a true
kinematic segment hierarchy, our method approximates it as good as possible. For
us, it is also important that regions on the surface are spatially connected. Only
if this is assured, a faithful decomposition into volume cells becomes feasible,
Sect. 15.3.

We apply the motion-driven segmentation method described in Sect. 14.2 to divide
the input animation into rigidly moving coherent triangle patches as shown in
Fig. 14.4. The approach s initialized by first selectimgmple vertices distributed
evenly on the model. The motion trajectories of these vertices throughout the
whole animation form the input to our spectral clustering approach which groups
them intok approximately rigidly moving groups. From this, we associate triangle
clustersTy ... T, = T}; by assigning each triangl® = (wg, w1, ws) € Ty, tO

the marker vertex,; whose average distance 4@, w;, andw, is minimal. The
resulting clusters divide the meshkirsegments.

As mentioned in Sect. 14.2, our method is able to automatic infer the optimal
number of clusters from the dataset’s eigen-gap. However, the optimal number of
segments is not always the one favored by an artist. Therefore, we also allow the
user to specify the number of rigid surface patchasad perform the segmentation
accordingly. Fig. 14.4 shows two segmentations for the camel’s model. Using a
smallerk-value, the lower legs and the hoofs form one cluster. For a larger
value, they are split in two, showing that with increasing levalf detail, our
method produces plausible and more detailed segmentations.

15.3 Building Animation Cells

Approximately rigid surface patches are not the appropriate shape representation
for building animation collages. Although each patch is the outer boundary of a
volumetric subsegment that moves approximately rigidly, it does not describe the
spatial extent of this subsegment in the interior of the original mesh. To approxi-
mate these volumetric subsegments, we extend each surface patch into a so-called
animation cell, i.e. a closed watertight triangle mesh that bounds an approximately
rigidly moving slice of the original mesh’s volume, Fig. 15.1(c). This volumetric
decomposition of input animations has a couple of advantages. First, volumetric
animation cells define 3D placeholders to which approximating shapes are to be
fitted in order to generate visually pleasing collages with decent shape and defor-
mation approximation. Thus, volumetric decomposition is a clever way to break
down the fitting problem for the whole mesh into a set of fitting problems for
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Figure 15.2: An animation cell for the center segment of the hse (left), the
strawberry fitted to it (middle), and the offset cell for the center segment
(right), all shown for the same time step.

individual cells. Furthermore, by deforming approximating shapes like their en-
compassing rigid cells, the deformation of the shapes remains in visually pleasing
bounds.

The input for building animation cells is the set of rigid surface patches
Ty, ..., Ty_1 that was computed in the previous section. It is our goal to extend
each surface patch into a closed and watertight animation cell mesh. Looking only
at the graph structure of each patch, this is easily achieved by inserting a new ver-
tex for every boundary loop, triangulating the arising fan, and thereby removing
the boundary loop. Although the principal idea is fairly easy, a proper way to
insert the additional vertex for the boundary loop is crucial.

We firstly compute a sequence of medial axis meshes. ., Sy_; from the in-

put animation, Fig. 15.1(b). The number of vertices and the connectivity of each
S; matches the properties of the respectivg,, that it was computed from: for
computing the skeletal mesh, we employ the Voronoi-based two-sided approx-
imation of the medial axis that has originally been proposed in [Hisada02]. Every
vertex of M! . is associated with a Voronoi cell. One-to-one correspondences

tre

between the vertices o¥1,, and the vertices of; are established by using the
\Voronoi poles as skeletal mesh vertices [Amenta98]. The connectivity of
copied fromM: .. In order to remove undesired spikes in the skeletal mesh, we

tri*

employ tangential Laplacian smoothing.

As the skeletons share the graph structure of the animation meshes, they can be
partitioned into the same patches. In the following, we describe how to build
animation cells for all patches at a single time steBy applying the same pro-
cedure to all time steps, we generate the appropriately deformed versions of each
cell. Consider a patch;, and its associated vertex positions taken frigmFor all
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boundary loops of’}, at a time step, we compute the center of gravity of asso-
ciated vertex positions in the skeletSn The new vertex for fan-triangulation of
the boundary loop is positioned at this center. Fig. 15.2 (left) illustrates this using
a center segment of the horse animation as an example.

Note that a simple strategy like choosing the center of gravity of the boundary
loop’s vertices for fan-triangulation would not have fulfilled our requirements.
Our experiments showed that, in this case, very flat animation cells may occur for
extreme geometric configurations which would lead to inappropriate volumes for
the subsequent steps of our method. Depending on the geometric setting, similar
problems may occur if one tries to directly triangulate a hole without inserting a
vertex. Although our cell decomposition does not strictly partition the volume, it
generates volume slices that are tailored to our purpose.

15.4 Assembling the Collage

As already outlined in the previous section, the sequence of moving animation
cells can be regarded as a sequence of volumetric placeholders to which approx-
imating shapes from the database are fitted. While, by this means, it may not be
possible to exactly reproduce the true shape of each cell, in particular its outer sur-
face, the overall appearance of the mesh animation is still faithfully approximated.
The decomposition of the animation into cells also bears many further algorithmic
advantages since the overall fitting problem simplifies to a fitting problem between
individual shapes and segments. Furthermore, it becomes easier to assure that the
shapes to fit not only match the outlines of their respective animation cells at a
single time step. Since the animation cells undergo mainly rigid deformations, the
slight non-rigid deformations of the approximate shapes that may be necessary
to assure good approximation over the whole sequence can be kept in reasonable
bounds, Sect. 15.5.

To put this into practice, a shape similarity measure is needed (Sect. 15.4.1) that is
applied in our spatio-temporal matching and alignment approach to fit a database
shape to a deforming animation cell, as described in Sect. 15.4.2.

15.4.1 Shape Similarity Measure

Due to the diversity of database shapes, and potential differences in orientation
and uniform scaling, we require a similarity measure that is rotation-, pose- and
scale-independent. Spherical harmonic descriptors fulfill all these requirements



15.4 Assembling the Collage 147

and have proven to be superior to many other global descsipkazhdan03].
Given a meshk, we compute its spherical harmonic descriptor as follows: first,
the spatial occupancy functiof(z,y, z) is sampled on a regular grid within
the mesh’s bounding box by rasterizing the mesh into a voxel volume of di-
mension/; x ¢, x {3 [Nooruddin03, Min03]. The voxel volume is intersected
with ¢ equidistant spheréd’, ..., W,_; that are concentrically arranged around
the center of gravity of the voxel set. The discretized occupancy function is
resampled on the surface of each spherical shell, yielgiagherical functions
00(0,9),...,04-1(0,¢). Each of thesg spherical functions is decomposed into
its harmonic frequency components as

where/ is the frequency bandy,, is them-th coefficient on a band, andY,”
is them-th spherical harmonic basis function for a bahf@sreen03]. For each
spherical function, the norms of its frequency components are computed as

SH (o) = {l[fo(0, D), 1/1(0, D), - - -, [ fe—1 (0, D) ||} -

The complete shape descriptb( K) is the two-dimensiona} x h-array that is
indexed by the sphere radius and the frequency band. For our purpose, we found
that descriptors witth = 20 and? = 10 are sufficient.

The differencei(D;, D) between two descriptor®; and D, is obtained by in-
terpreting each of them &g - h)-dimensional vectors and computing the angle
that they span.

15.4.2 Spatio-temporal Shape Fitting

Using the above shape descriptor and the associated distance measure, we find a
shape from the database that best matches the time-varying shape of each anima-
tion cell throughout the whole sequence. To keep processing times and memory
consumption in reasonable bounds while sampling the range of deformations suf-
ficiently densely, we propose the following approach to fit a shape to one anima-
tion cell Z;: atfirst, a set of representative time stéps ¢, ..., ¢, < N is chosen

in which the whole mesh undergoes a characteristic range of deformations. Let the
vertex positions of; at ther time steps bé’;, (Z;), ..., P (Z;). For each of the

cell poses, a descriptor is computed, yielding alset {D;,(Z;), ..., D, (Z;)}.

For each of the shapes in the database and their associated deséijptogiobal
distance to all descriptors i is computed as
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Figure 15.3: Effect of spatio-temporal fitting for the tail of the camel (left).
One frame of the result animation is shown with a single (center) or three
representative time steps (right) used during spatio-temporal fitting.

dgoo(Di,U) = Y d(D;, Di(Z;)) for 0<i< K.

tety, .. tr

The above distance assesses the spatio-temporal goodness of fit between a
database shape and a cell over time. Accordingly, the irdaefkthe database
shape that matches the shap&pht all representative time steps best is found as

c= argmindgk,b(Di, U).

Database shapseis fitted to the single posg, , (Z;) of Z; out of all the represen-
tative poses which best matches the shape tbfus

t,, = argmin dglob(DmR(Zj))'

te{ts,..,tr}

By this way, we guarantee that the shape is fitted to the optimally matching con-
figuration of the cell, and thus the required transformation dfiring the fitting

itself is minimal. The effect of spatio-temporal fitting is compared to single time
step fitting in Fig. 15.3.

The fitting itself first coarsely registers shapandZ; in poseP,, (Z;) by align-
ing their centers of gravities and principal components in orientation and scaling.
Thereatfter, the initial fitting is refined by running an ICP-like alignment [Besl92].

Although shape matching and fitting are fully automatic processes, user interac-
tion is possible to meet artistic preferences. On the one hand, a user can restrict
matching to a subset of the database or even manually choose a collage shape
which will be fitted into the cell. Additionally, a user can also manually adjust the
fitted shape’s position, scale and orientation.

Finally, we note that, while there are many applicationsplartial shape match-
ing, the use of alobal approach is essential to our method, as our goal is to



15.5 Animating the 3D collage 149

faithfully fill in the whole cell. This way, self-intersectis and artifacts during

the animation are minimized since the cells have a near-rigid structure. Further-
more, bigger holes in the collage are prevented. Consequently, we decided to fit
only one shape per cell to provide the most plausible results for the animation.

15.5 Animating the 3D collage

In the final stage of our method, we compute the animation collage from the set of
animation cells and associated collage shapes. Note that each of the collage shapes
has potentially been fitted to a different reference time stepy the procedure
described in the previous section.

Our approach proceeds again cell-wise; per-frame transformation of the ani-
mation cells is propagated to the fitted shapes. We consider this transforma-
tion as a general deformation of the cell, which is expected to be nearly rigid.
Among the many surface deformation methods which are available in the lit-
erature, we chose free-form deformation based on 3D mean-value coordinates
[Floater03, Floater05, Ju05], because it can directly process our input data, pro-
duces good results, and is robust and simple in implementation. Using the stan-
dard approach, the triangulation of the animation cell would serve directly as con-
trol mesh for the deformation. The collage shape is rigidly fitted into the geometry
of the animation celP,  (Z) at a reference time step,, and then mean value co-
ordinates are used to reconstruct shapes which deform like the geometry of cell
P,(Z) at any other time step < ¢ < N. However, there are two requirements
which render this immediate deformation impractical for our special animation
collage setting: first, we want to provide the user some additional global con-
trol over the deformation, and second, we have to ensure numerical robustness.
Both requirements are related, and we apply a two-step deformation approach
with spatio-temporal offsets.

The key idea of our deformation is to use certain morphological offsets of the
animation cells as control meshes, i.e. the cells’ geometry is extruded in the di-
rection of the surface normal (but avoiding self-intersections). By this way, we can
control the stiffness of the deformation by taking advantage of the well-known be-
havior of the pseudo-harmonic fields induced by mean value coordinates for the
new, enlarged boundary polyhedra, as shown in Fig. 15.4. One such offset cell for
the torso segment of a horse is shown in Fig. 15.2(right)

At the same time, we avoid numerical instabilities resulting from evaluating the
field in the vicinity of the control mesh, a situation which cannot be generally



150 Chapter 15: Designing Non-Photorealistic Animation Collages

Figure 15.4: With larger offset segments, the fruits in the hose’s leg deform
more stiffly (right) than with tighter offsets (left).

avoided when using the animation cells’ geometry directly. Our offsets can be
easily constructed in a volumetric representation using level-sets. As accuracy is
not crucial here, we use an even simpler approach and compute a discrete voxel
model for each animation cell mesh following [Min03], which is then dilated and
converted back into a triangle mesh using marching cubes. Here the voxel resolu-
tion and dilation radius define the offset radius. Then, we compute an offset cell
for each animation cell with respect to the reference time step. The computation
is efficient and guarantees watertightness and no self-intersections. However, we
lose control over the combinatorial structure of the offset mesh, i.e. it does not
share the animation cell’s connectivity, and an alternative mapping to the anima-
tion cell need to be provided by the second deformation step.

The final animation of a single collage shape proceeds as follows. First, the time-
dependent geometry of the animation cell is used as control mesh to compute a
deformed offset cell. Second, the offset cell is used as control mesh and its defor-
mation is propagated to the collage shape. Note that, by volumetric construction,
the genus of the offset cell might differ from that of the respective animation
cell. However, using the free-form deformation approach influencing the whole
volume of the animation cell, this does not imply any problem. The offset radius
provides an additional parameter to control the effect of the deformation: the more
distant the offset, the stiffer the deformation. Fig. 15.4 shows that the shapes in
the horse’s leg bend more crisply, if the offset segments are tighter. While this
parameter has no physically plausible meaning, we find it intuitive to use.

15.6 Results and Discussion

We have generated a variety of animation collages from mesh sequences of a gal-
loping and a collapsing horse, a galloping camel, as well as two scanned humans
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X i

Figure 15.5: Our method automatically generates moving 3D dtages out of
mesh animations by rebuilding them as moving assemblies of shape primi-
tives. In the example above, the galloping horse (top row) has been trans-
formed into two galloping sets of fruits.

performing a motion captured jump and a cartwheel. For none of the sequences,
ground truth kinematics, e.g. in the form of animation skeletons, are available.
Our shape database comprises20fcollage shapes, ranging from fruits, over
industrial shapes like screws, to barrels and bottles, Fig. 15.6. A variety of anima-
tion collages with different appealing visual styles were created, Fig. 15.8. The
collages do not only have very aesthetic looks at a single time step, but nicely
approximate the spatio-temporal appearance of the input animation, see Fig. 15.5
and, in particular, the resulting video.

The top row in Fig. 15.8 shows freeze-frames from the front and the back of an
animation collage showing a jumping human. For the original sequence, mo-
tion capture data was used to animate a laser-scan using the method described
in Chapter 7. With both fruits, as well as barrels, bottles, and screws)5the
computed animation cells are both faithfully and sometimes funnily approxi-
mated. We particularly like the head being automatically approximated by a
strawberry or a pear. Please refer to the accompanying video (http://www.mpi-
inf. mpg.de/~edeaguia/thesis/animcollage.avi) to also see that, due to our offset-
based deformation, the moving collages maintain the subtle motion details of the
input which lends them a very human-like motion style.

The galloping horse is shown for fine and coarse segmentations3iveind 17

animation cells in the upper middle row in Fig. 15.8. In comparison, one sees
clearly the non-rigid transformation for the coarse segmentations, for instance,
in the lower legs where the hoofs are not covered by additional cells. However,
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Figure 15.6: Shape database used in our system comprising o0 Zhapes,
ranging from fruits, over industrial shapes like screws, to barrels and bottles.

even these deformations appear rather natural due to stiffness provided by the
offset cells. Of course the individual impression depends on the viewers particular
expectations and preferences, and spending more animation cells usually leads
to better approximations of rigid parts. Moreover, our choice of using a single
collage shape per cell is justified by the fact that the animation looks plausible,
and there are few holes and self-intersections.

The galloping camel is shown for fine (lower middle row) and coarse segmenta-
tions (bottom row) with31 and13 animation cells in Fig. 15.8, respectively. We
would like to point out the nice approximation of the hunch, e.g. by pears (coarse)
and by bananas (fine). Specially, the arrangement of bananas is non-trivial, and
the impression of a sophisticated design is given. Such arrangements are enabled
by the partition in animation cells, and the example thus nicely confirms our algo-
rithmic approach to break the fitting problem into cell-wise problems.

The majority of the results in Fig. 15.8 was generated fully-automatically. Only in
some cases, marked with a black dot in the upper right, we changed the position
or the kind of at most two shapes to match personal preferences, Fig. 15.7.

Table 15.1 summarizes information on input animation complexity and run times
measured on a Pentium IV 3.0 GHz. Our approach is very efficient: run times are
dominated by rigid body segmentation (Seg) and cell generation (Cell), both of
which need to be run just once per input sequence. Shape fitting and alignment
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Figure 15.7: Although the automatic result generated with ou framework
looks nice (left), the user is able to perform small changes at the tail and the
leg of the animation collage to match personal preferences (right).

(Fit), as well as the animation of the collage (Anim), are performed once for each
collage style created from an input sequence. Even for sequences with more than
200 frames, both steps can be finished in less than four minutes. Run times could
be further sped up by working with decimated input or cell meshes, however, we
always worked on the originals.

Our approach is subject to a couple of limitations. As mentioned in Sect. 14.6,
while our clustering algorithm provides excellent results for the shown input ani-
mations, its output generally depends on these inputs: a meaningful segmentation
can only be expected if there is actual relative motion of all limbs in an anima-
tion. We conclude that this approach works best for animations with kinematic
structure. Inherently, fitting is limited by the shapes available in the database. If
no proper shape is available, unnatural deformations may be necessary. As the
database also defines the visual style, we leave this as an artistic problem that has
to be considered by the user. From a more technical point of view, our approach
requires that segments span a volume. The approach is thus not able to fit collage
shapes to nearly planar segments. Note that the spatio-temporal segmentation,
which provides the segments, is not at all affected.

Furthermore, for fitting, we assume that the animation cells are in motion and
hence being transformed. This is different from considering a static fitting prob-
lem, where alternative approaches such as Gal et al. [Gal07] may show better
results, and where it may be advantageous to allow for more shapes per cell.

Despite these limitations, we present a novel approach to fully-automatically gen-

erate animation collages from input mesh animations, providing a compendium of

spatio-temporal matching and segmentation techniques. Our software prototype
is an interesting add-on to the graphics artist’s toolbox and also allows untrained

people to produce high-quality results.
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Seq. N A | k|| Seg| Cell | Fit | Anim
jumping | 216 | 26 312| 25| 416 | 401 | 46| 171
gal. horse| 48 |16843| 35| 297 | 190| 64| 134
camel 47 | 43758| 13| 914 | 139| 59| 131
cartwheel| 120| 7318| 11| 45| 188| 22 68

Table 15.1: Typical animation data. Shown are time stepsV, number of
triangles in the mesh A, and number of animation cellsk. Furthermore,
measured computation times (in seconds) are given for the four parts of the
pipeline: Seg = Rigid patch segmentation; Cell = Animation cell + offset cell
computation for each sequence; Fit = Shape fitting and alignment; Anim =
Animation of the collage.

Figure 15.8: Different visual styles for distinct frames of ajumping human,

a galloping horse, and a galloping camel sequence. Black dots in the upper
right mark animations including manual changes of position or kind of at
most two shape primitives.



Chapter 16

Conclusions

This thesis has presented novel algorithms to accurately capture, manipulate and
realistically render real-world human performances, going beyond the limits of
related capture techniques. Each method described in this work can be regarded
as a specific solution to a challenging problem or as a building block that enables
the development of novel applications. The methods outlined in this thesis have
been originally tailored to deal with human actors. However, the fundamental
principles are also applicable to a larger class of real-world scenes.

In part | of this thesis, we described how we model a real-world camera, and
the kinematics, shape and appearance of a real-world subject in a computer. We
also detailed the differential-based mesh deformation methods, which are used
throughout the thesis to manipulate and track the input static scanned model. Fur-
thermore, we presented the technical components of a new acquisition setup that
provides high quality data for the different projects proposed in the thesis. Our
studio allows us to generate realistic virtual doubles of real-world subjects by pro-
viding high-quality models and multiple video streams of the subject performing.
The description of our studio also serves as a practical guide for people planning
to build such facility.

Part Il of this thesis introduced a simple framework to reduce the overhead caused
by the traditional skeleton-based animation pipeline. By abandoning the concept
of a kinematic skeleton, which most commercial softwares rely on, our mesh-
based algorithms enable animators, or even untrained users, to quickly and effec-
tively create realistic animations. The first approach (Chapter 6) and its extension
(Chapter 7) integrate into the traditional animation workflow and simplify the
whole procedure by employing mesh deformation methods to guide the motion
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generation and the motion transfer processes. Moreovemrxpariments have
shown that our new pipeline is able to simultaneous solve the animation, the sur-
face deformation, and the motion retargeting problem.

Our proposed approach streamlines the whole pipeline from laser-scanning to an-
imation from marker-based or marker-less motion capture data, and it is a step to-
wards simplifying the traditional, not so straightforward acquisition-to-animation
pipeline. As future work, we plan to incorporate a volumetric mesh deformation
method, as the one presented in Sect. 3.3, to guide the motion transfer process.
By this means, local cross-sectional areas are preserved, which will enable us to
handle extreme deformations properly. We also would like to add intuitive key-
framing capabilities into our framework.

In part Ill, we have described the evolution of a system to directly capture real-
world performances using a high-quality deformable model and multi-view video
sequences. We demonstrated that by explicitly abandoning any traditional skeletal
or motion parameterization and by posing performance capture as deformation
capture, acquisition methods with a high level of flexibility and versatility can be
developed. As aresult, a spatio-temporally coherent dynamic scene representation
can be produced which can easily be modified by animators.

The first algorithm is described in Chapter 9. By combining an optical flow-
based 3D correspondence estimation technique with a fast Laplacian-based track-
ing scheme, the method is able to accurately and automatically capture both pose
and surface deformation of human actors wearing everyday apparel. The second
algorithm is presented in Chapter 10. The purely passive hybrid tracking approach
is able to identify and track the 3D trajectories of features on a moving subject
without requiring any a priori information or optical markers. By combining the
trajectories, a static laser-scanned model and an efficient deformation technique,
the human scan can be animated and follows the same motion as its real-world
counterpart.

In Chapter 11, we have presented our more advanced video-based performance
capture system that augments the previously described approaches and overcomes
many of their shortcomings. It produces a novel dense and feature-rich output
format comprising of spatio-temporally coherent high-quality geometry, lifelike
motion data, and surface texture of recorded actors. This is achieved by combining
efficient volume- and surface-based deformation schemes, a multi-view analysis-
through-synthesis procedure, and a multi-view stereo approach. By this means,
our method is able to reconstruct an unprecedented range of real-world scenes
at a high level of detail. It supplements and exceeds the capabilities of optical
capturing systems that are widely used in the industry, and provides animators
and CG artists with a new level of flexibility in acquiring and modifying real-
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world content.

By being completely passive, our performance capture methods also enable us to
record the subject’'s appearance. By combining the input footage with our high-
quality spatio-temporally coherent scene representation, a system to render high-
quality 3D Videos can be created, which enables convincing renditions of the
recorded subject from arbitrary synthetic viewpoints. This combination also opens
the door for attacking new challenging reconstruction problems that were hard due
to the lack of a decent dynamic scene capture technology.

Currently, there is a resolution limit to our capture techniques. Some of the high-
frequency details, such as fine wrinkles in clothing or details of the face, has been
part of the laser-scan in the first place. The deformation on this level of detail is
not actually captured, but it is "baked in” to the deforming surface. In the future,
we want to investigate ways to capture such complex time-varying details. We
also intend to create tools for higher-level 3D Video editing operations.

In part IV of this thesis, we proposed novel algorithmic solutions for processing
mesh animations, either generated by animators or acquired by our performance
captured methods. With our proposed tools, we have made important contribu-
tions to the animator toolbox with a variety of applications in visual arts, movie
and game productions.

The first approach is presented in Chapter 14 and enables the fully-automatic
conversion of a mesh animation into a skeleton-based animation. Our results
show that the efficient combination of skeleton learning and temporally-coherent
blending weight computation enables us to effectively bridge the gap between the
mesh-based and the skeleton-based animation paradigms. This way, we are able
to preserve the great modeling flexibility of purely mesh-based approaches while
making the resulting skeleton-less animations straightforwardly available to the
animator’s repertoire of processing tools.

The second method is presented in Chapter 15 and converts a mesh animation into
a novel non-photorealistic animation style, the so-called animation collage. Our
system is able to fully-automatically generate animation collages from input mesh
animations, providing a compendium of spatio-temporal matching and segmenta-
tion techniques. Our software prototype is an interesting add-on to the graphics
artist’s toolbox and also allows untrained people to produce high-quality results.

The methods described in this thesis demonstrate that today it is possible to create,
manipulate and render authentic virtual doubles of real-world actors performing.
Although most projects are still research prototypes, we are convinced that the
algorithmic solutions described in the thesis can be integrated in commercial ap-
plications, thus augmenting the power of current animation and capturing tools.
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