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Abstract
Patch-based texture synthesis algorithms produce reasonable results for a wide variety of texture classes. They pre-
serve global structure, but often introduce unwanted visual artifacts along patch boundaries. Pixel-based synthesis
algorithms, on the other hand, tend to blur out small objects while maintaining a consistent texture impression,
which in return doesn’t necessarily resemble the input texture. In this paper, we propose an adaptive and hybrid
algorithm. Our algorithm adaptively splits patches so as to use as large as possible patches while staying within
a user-defined error tolerance for the mismatch in the overlap region. Using large patches improves the reproduc-
tion of global structure. The remaining errors in the overlap regions are eliminated using pixel-based re-synthesis.
We introduce an optimized ordering for the re-synthesis of these erroneous pixels using morphological operators,
which ensures that every pixel has enough valid (i.e., error-free) neighboring pixels. Examples and comparisons
with existing techniques demonstrate that our approach improves over previous texture synthesis algorithms, es-
pecially for textures with well-visible, possibly anisotropic structure, such as natural stone wall or scales.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture I.4.7 [Image Processing and Computer Vision ]: Feature Measurement–Texture

1. Introduction

Most textures used in 3D computer graphics applications are
produced either by manipulating digital images, by creating
procedural 20 or hand-drawn textures, or by a combination
of these techniques. Given the age of texture mapping 3, the
notion of texture synthesis, where a sample is used to gener-
ate a similar, arbitrarily sized texture, is still a fairly new and
not yet fully understood process. A large body of work has
been dedicated to the topic in the past decade and the cur-
rent results are very convincing for a large class of textures.
Still, existing methods may generate artifacts in the presence
of high frequency features, such as small scale structure or
object boundaries, or simply fail to preserve global structure.

In this paper we present a simple, yet effective adaptive
and hybrid texture synthesis method that tries to combine the
best aspects from several successful approaches. Our core al-
gorithm (described more formally in Section 2) is similar to
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other patch-based texture synthesis approaches 10, 17, how-
ever, uses the Fourier domain for finding the best match 23,
that is, the patch from the input texture which minimizes
overlap error with the existing synthesis result (Section 2.1).
In addition to this general framework, the main ideas and
contributions of our approach are:

• Overlap re-synthesis: Each new patch overlaps already
synthesized regions. In these overlap regions an error is
computed for each pixel (Section 2.3) and mismatched
pixels are re-synthesized using a per-pixel texture synthe-
sis strategy (Section 2.5). To ensure sufficient valid neigh-
borhoods for these pixels they are ordered using morpho-
logical dilation of the valid regions (Section 2.4).

• Adaptive patch sampling: We adapt the patch size so
that the error in overlap regions is bounded (Section 2.2).
The error bound allows a trade-off between preserving
global structure and avoiding detail artifacts: Increasing
the error threshold leads to generally larger patches and
a higher probability that large structures are preserved,
however, at the cost of having more invalid pixels in the
overlap region that need to be fixed, which is not always
possible.

c© The Eurographics Association 2003.

97

http://www.eg.org
http://diglib.eg.org


Nealen and Alexa / Hybrid Texture Synthesis

(a) Ri−1 (b) Ri,composite (c) Ri

(d) 4×Ri

Figure 1: In algorithm step i (with the black area in (a) to be synthesized) we select a new patch from the input texture,
constrained by the overlap with the already existing synthesis result Ri−1 (a). Here, the algorithm finds a good
match (with ∆i < ∆max) and does not adaptively split the patch. Pixels in the overlap region, which exceed a user-
defined pixel error tolerance (δmax ∈ [0,1]) are marked as invalid (white) and the new patch Pi is composited into
Ri−1 (b). Then the invalid pixels are re-synthesized (c). The final patch Pi is constrained on its entire boundary,
ensuring that the resulting texture will tile seamlessly (d). δmax = 0.03, ∆max = 0.05, ov = 6, initial patch size
32×32.

With these extensions we achieve visually pleasing syn-
thesis of most structured textures.

1.1. Previous Work

We list the work most relevant to ours in the following loose
classification.

Pixel-Based Texture Synthesis: Efros and Leung’s 9

Non-Parametric Sampling synthesizes a texture by repeat-
edly matching the neighborhood around the target pixel in
the synthesis result with the input texture. They perform
an exhaustive search for each synthesized pixel. Wei and
Levoy’s 26 algorithm is based on Efros/leung 9, extending
it to a synthesis pyramid, which allows the use of smaller
neighborhoods at possibly improved quality. They also ap-
ply tree structured vector quantization (TSVQ) to accelerate
the algorithm by two orders of magnitude. Ashikhmin’s 1 in-
telligent modification significantly reduces search space and
achieves interactive framerates. His paper also thoroughly
discusses drawbacks of previous, pixel-based methods, such
as blurring. Merging both Ashikhmin and Wei/Levoy syn-
thesis into a framework, Hertzmann et al. 14 produce inter-
esting results and open new areas of application, such as
texture-by-numbers. Zelinka and Garland 29 demonstrate an
alternative preprocess to synthesize texture in real-time.

Patch-Based Texture Synthesis: These methods pre-
serve global structure by generating the texture on a per-
patch basis. Efros and Freeman’s Image Quilting 10 al-
gorithm aligns adjacent patch boundaries, constrained by
overlap, and then performs a minimum-error-boundary-cut
(MEBC) within the overlap region to reduce overlap arti-
facts. Liang et al.’s Patch-Based Sampling 17 uses the same

technique for patch placement, but simply alpha-blends the
overlap regions (feathering). Their implementation uses var-
ious search data-structures which lead to real-time accelera-
tion.

Pyramid-Based Sampling / Feature Matching: Some
early texture synthesis algorithms model texture as a set of
features and then generate new images by matching these
features 2, 4, 13, 22. These algorithms are efficient, yet possibly
fail to preserve global 2, 4, 13 or local 22 patterns.

Texture Synthesis over Surfaces: Most surface tex-
ture synthesis methods are direct extensions of pixel-
based 25, 27, 28 or patch-based 21, 23 algorithms. Turk 25 and
Wei/Levoy 27 densely tessellate the input mesh and then per-
form a per-vertex color synthesis. Ying et al. 28 synthesize
per-texel using a texture atlas of the polygonal mesh. Praun
et al. 21 extend the chaos mosaic 12 to surfaces with a pre-
computed vector field to direct anisotropy. Recently, Soler et
al. 23 demonstrated how a mesh can be seamlessly textured
with only the input texture and a set of texture coordinates
for each vertex.

Bidirectional Texture Function Synthesis: In Liu et al.’s
work 19, geometry is recovered, synthesized and used to gen-
erate templates for each viewing/lighting setting. These tem-
plates then guide the actual BTF synthesis, thereby preserv-
ing global mesostructure. Tong et al. 24 extend Ashikhmin’s 1

algorithm by adding the k-nearest neighbors to each candi-
date pixel of the Ashikhmin-set (k-coherence search).

Geometrically Motivated Texture Synthesis: Dischler
and Ghanzfarpour have published many geometrically
and structurally motivated algorithms which are of semi-
procedural nature, yet also resemble the input so closely

c© The Eurographics Association 2003.

98



Nealen and Alexa / Hybrid Texture Synthesis

that they could be classified as texture synthesis algorithms.
In their work 6 a highly structured texture is analyzed with
some user intervention, from which the algorithm generates
seemingly random structured texture. Texture Particles 7 are
gathered by segmentation and the analysis of spatial arrange-
ments using morphological operations. These are then pro-
cedurally assembled in the synthesis stage.

There are numerous other examples closely related to tex-
ture synthesis and a complete survey is beyond the scope of
this paper. The inclined reader could follow general work in
the computer vision literature 15, 16, 30, 31, 32.

1.2. Overview

Variable Meaning

T 2D input texture
R, Ri resulting 2D texture (final/in step i)
P , Ps list of non-overlapping pixel-patches pi which,

when combined, resemble a tiling of the
resulting texture area R =

⋃
i pi (initial/split)

ov, ovs patch overlap in pixels (initial/split)
∆max user defined patch overlap error tolerance in [0,1]
δmax user defined pixel error tolerance in [0,1]
i integer algorithm step, starting at 1
pi a patch of connected pixels with index i in list P .

pi defines a region in R with SIZE(pi) > 0
Ri,composite intermediate 2D result after Compositing (Fig. 1)
Ii 2D image mask extracted from Ri−1,

using pi (Fig. 4)
Ji 2D binary support function for Ii (Fig. 4)
Ei, Ei,trim 2D error image computed from T , Ii, Ji (Fig. 5)
Pi 2D texture patch picked from T in step i (Fig. 5)
∆i patch overlap error in [0,1] for Pi

Si 2D error surface between Ri−1 and Pi (Fig. 8)
Mi 2D pixel traversal map, defining the order in

which erroneous overlap pixels are
re-synthesized (Fig. 10)

Wc a three-element, color channel weighting vector
(c = {R,G,B}) with ∑c Wc = 1

x,x0 a 2D vector/coordinate (x,y)

Table 1: List of used variables/terms

Our goal was to improve upon existing texture synthesis
algorithms by combining their strengths. The improvement
is two-fold (Fig. 1): first, we allow the algorithm to adap-
tively split the sampling grid if the current best match ex-
ceeds a user-defined overlap error tolerance ∆max ∈ [0,1],
similar to Soler et al. 23 and Drori et al. 8. Second, our overlap
artifact minimizing procedure re-synthesizes invalid pixels
above a user-defined pixel error tolerance δmax ∈ [0,1], us-
ing a pre-computed pixel traversal map to order the pixels for
the overlap re-synthesis. This results, as we find, in bound-
ary regions which display a negligible number of noticeable
artifacts when compared to feathering 17 or MEBC 10.

2. Our Algorithm

Now we give a description of our (recursive) algorithm for
Hybrid Texture Synthesis (HTS). For variables/terms and
their meanings, see Table 1. In algorithm step i, a patch
of connected pixels is selected from an example texture T
which best fits the target region pi in the intermediate re-
sult Ri−1. This selection/search procedure is constrained by
overlap of ov pixels in each direction with Ri−1. A candi-
date patch Pi is used either if the overall error in the over-
lap region is below the maximum overlap error ∆max, or the
patch cannot be further split – otherwise the search process
is repeated using smaller patches. If a patch satisfying the
error bound has been found, every pixel in the overlap re-
gion exceeding the pixel error threshold δmax is marked as
invalid and the valid region is dilated to form a pixel traver-
sal map Mi, thereby defining the order in which erroneous
overlap pixels are re-synthesized on a per-pixel basis. This
ensures sufficient valid neighborhoods for each pixel. We re-
peat this process until each patch pi in the initial patch list
P has been assigned pixel values. Formally, the algorithm
could be stated by the pseudocode in Figure 2.

1: HYBRIDSYNTHESIZE(T,P,ov,∆max,δmax,R) : R
2: for all patches pi ∈ P do
3: [Pi,∆i]← FINDBESTPATCH(T,Ri−1, pi,ov)
4: if (∆i < ∆max or ISSINGLEPIXEL(pi)) then
5: Si← ERRORSURFACE(Pi,Ri−1)
6: Pi← MARKINVALIDPIXELS(Pi,Si,δmax)
7: Mi← BUILDTRAVERSALMAP(Pi)
8: Ri,composite← COMPOSE(Pi,Ri−1)
9: Ri← OVERLAPRESYNTHESIS(T,Ri,composite,

Mi)
10: else
11: Ps← SPLITPATCH(pi)
12: ovs← max(3,�ov/2�)
13: Ri← HYBRIDSYNTHESIZE(T,Ps,ovs,∆max,

δmax,Ri−1)
14: end if
15: end for
16: return R

Figure 2: The HYBRIDSYNTHESIZE Algorithm

In our implementation, the patch list P initially consists
of N×M quadrilateral patches with size 2n by 2m (n,m ∈ N)
in scanline order, however, our concepts generalize to arbi-
trarily shaped patches. Note that we have tried to use the
notation given in Table 1 consistently throughout the text, in
all pseudo-code examples, and all figures.

2.1. Finding the Best Patch

For each patch pi ∈ P we must find the best possible patch
Pi in the input texture T , constrained by overlap with the
existing result Ri−1. We do this as described in Figure 3.
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1: FINDBESTPATCH(T,Ri−1, pi,ov) : [Pi,∆i]
2: Ii,Ji← BUILDIMAGEMASK(Ri−1, pi,ov)
3: Ei← ERRORIMAGE(T, Ii,Ji)
4: Ei,trim← TRIMINVALIDREGIONS(Ei,Ji, pi)
5: [Pi,∆i]← BESTPATCH(Ei,trim,T )
6: return [Pi,∆i]

Figure 3: The FINDBESTPATCH Algorithm

The image mask Ii and binary support function Ji (Fig. 4)
are needed for the error image computation (Fig. 5).
BUILDIMAGEMASK simply grows the current patch by the
pixel overlap ov and checks the grown region in the current
result Ri−1 for already synthesized pixels: if there exists a
valid pixel, Ji (initially all 0’s) is set to 1 and the color value
from Ri−1 (Fig. 1(a)) is stored in Ii. Figures 1(a) and 4 show
that for this patch we must match on its entire boundary to
produce a tileable texture.

Figure 4: The input texture T (left), the binary support func-
tion Ji (middle) and the image mask Ii for the example out-
lined in Figure 1

Given Ii, the input texture T (both with RGB color val-
ues in [0,1]) and Ji , we can compute the weighted error
∆i ∈ [0,1] between the mask Ii and a circular shift x0 of T
(where the error image Ei stores ∆i for each x0) as

Ei(x0) =
1
κi

∑
x

∑
c

[
Ji(x)Wc(Ii,c(x)−Tc(x+x0))

2
]

(1)

with κi = ∑x Ji(x), c = {R,G,B} (the set of color channels
in RGB space) and ∑cWc = 1. Given that Ji(x)Ii(x) = Ii(x),
and the cross correlation between two images (functions)
f �g is defined as ( f � g)(x0) = ∑x f (x)g(x + x0), we can
write Equation 1 as 23

Ei(x0) =
1
κi

∑
c
Wc

[
∑
x

Ii,c(x)2−

−2(Ii,c �Tc)(x0)+(Ji � (T 2
c ))(x0)

]
(2)

The correlation f �g between two functions can be computed
in O(N logN) (N being the number of pixels in the input
texture) in fourier space as f �g = F−1(F( f )∗F(g)). In our
implementation we pre-compute the fourier transform for T
and need only recompute the fourier transforms of Ii and Ji
for each new patch pi

23.

In our implementation, WR,G,B = {0.299,0.587,0.114},
analogous to the Y component (luminance) of the YIQ color

model 11. This accounts for the greater sensitivity of the hu-
man visual system to changes in luminance than changes in
hue or saturation 11. Note that this is not equivalent to match-
ing on gray levels.

Figure 5: The error Image Ei (left), the trimmed error im-
age Ei,trim with the selected patch Pi superimposed (middle,
the overlap region is darkened), and Pi with Ii from Fig-
ure 4 superimposed to highlight the remaining artifacts be-
fore overlap re-synthesis (right). See Figure 12 for a com-
parison of overlap repair strategies using this example.

The grayscale error image Ei, which in x = (x,y) stores
∆i for the grown patch with these upper left bounding box
coordinates, is computed under the assumption that the input
texture wraps in both dimensions (the green scales texture
used throughout this paper has this property). If T wraps and
we were to allow all possible positions in Ei for the match,
the algorithm would produce verbatim copies of T . Liang et
al. 17 use a relative error value ε ∈ [0,1], (where ε = 0 picks
only the best match and ε = 1 picks at random) to control the
allowed error, yet we still find that the results in their paper
display a large amount of verbatim copying, even for values
of ε = 0.2. Thus, in our implementation we always trim Ei
such, that no part of Pi crosses the texture border (Fig. 5). As
pointed out by Soler et al. 23, trimming the error image Ei
significantly reduces possible matches, especially for small
input textures (compare the images in Figure 5). We have
experienced that this also results in more varied synthesis
results with less large scale verbatim copying.

In our implementation, we search in pre-computed rota-
tions and scales of T for isotropic textures. For anisotropic
textures, the use of rotations and scales depends on the ini-
tial patch size, ∆max and the feature size(s) within T . If these
parameters are carefully balanced, using rotations and scales
of T can produce interesting and correct results.

2.2. Adaptive Patch Sampling

Existing patch-based synthesis algorithms operate on a fixed
grid of uniform quadrilateral patches 10, 17. Our adaptive ap-
proach is inspired by Hierarchical Pattern Mapping 23, and
therefore very similar: after choosing a candidate patch Pi
from the input texture T (line 3 in HYBRIDSYNTHESIZE),
if the weighted error ∆i between the overlapping pixels of Pi
and the existing result Ri−1 exceeds the user-defined ∆max,
we split the current patch pi into four congruent patches
(denoted by the set Ps), and recurse (lines 3,4 and 11-13
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in HYBRIDSYNTHESIZE and Figure 6). This leads to adap-
tive sampling grids such as the one shown in Figure 6, bot-
tom right, and Figure 15, right column. Note that we halve
the pixel overlap ov for recursive calls, choosing a minimal
value of ov = 3 (line 12 in HYBRIDSYNTHESIZE).

Synthesizing
white patch p

∆i > ∆max →
SPLITPATCH

∆i < ∆max →
OVERLAPRESYNTHESIS

Final sampling
grid

Figure 6: Adaptive patch sampling. Shades of gray repre-
sent already synthesized patches, the hatched areas are the
overlap regions used for best patch search.

Figure 7: Balancing ∆max. Left: ∆max = 0.01, resulting in
many small patches, comparable to pixel-based algorithms.
Middle: ∆max = 1.0, which uses only the initial, uniform
patch list and fails to eliminate all overlap artifacts. Right:
∆max = 0.04, resulting in a good trade-off between global
and local structure. The images are all 128×128 results of
Figure 13(a)

The amount of patch splits depends entirely on the value
for ∆max: setting ∆max to 0 always splits (yielding a tradi-
tional per-pixel synthesis method), whereas setting to 1 will
only use the original patch list (as in typical patch-based
methods). Using less extreme values allows trading struc-
tural inconsistencies for detail artifacts. If ∆max has a large
value (e.g. ∆max � 0.1), large patches are used and global

structures are preserved. On the downside, many invalid pix-
els in the overlap regions have to be re-synthesized, which
might lead to artifacts. If ∆max is chosen very small (e.g.
∆max � 0.01) only few pixels are erroneous and artifacts
almost vanish, yet the use of small patches leads to some
global structure problems. This trade-off is illustrated in Fig-
ure 7.

2.3. Overlap Error and Pixel Invalidation

After a patch Pi is picked from T (Pi includes the overlap
pixels extracted from T , superimposed in Figure 5, middle),
we compute the error surface Si (Fig. 8, left) in the overlap
region Ji(x) �= 0 (the darkened strip in Figure 5, middle) as

Si(x) = ∑
c

Ji(x)Wc(Ii,c(x)−Pi,c(x))2 (3)

withW and c as defined in Table 1 and Section 2.1.

Figure 8: The error in the overlap region Si, defined in
Equation 3 (left; the error-values Si(x) are normalized to the
interval [0,1] for visualization purposes) and the feathered
patch Pi with invalid pixels marked blue (dark gray).

MARKINVALIDPIXELS (in HYBRIDSYNTHESIZE, line 6)
takes the user-defined δmax ∈ [0,1] to mark pixels with
Ji(x) �= 0 and Si(x) � δmax as invalid and in need of per-pixel
re-synthesis. All pixels for which Ji(x) �= 0 and Si(x) < δmax

are preserved and a stepwise alpha mask (feathering) is ap-
plied during Compositing (Figures 8, right, and 1(b)). Note,
that setting δmax = 1 results in pure feathering 17, whereas
δmax = 0 re-synthesizes the entire overlap region. Typical
values for δmax used in this paper are between 0.02 and 0.05.

2.4. Pixel Traversal-Map

During our experiments, we have realized that simply
re-synthesizing the invalid overlap pixels in scanline or-
der often produces more artifacts than feathering. This is
mainly due to the causal neighborhood of the invalid pix-
els: by re-synthesizing in scanline order, we do not actu-
ally re-synthesize invalid pixels based on the valid pixels of
Ri,composite, but to a large extent on other re-synthesized pix-
els. To ensure that each re-synthesized pixel has a sufficient
causal neighborhood in Ri,composite, we introduce the con-
cept of a traversal-map (Mi). Mi is computed before overlap
re-synthesis by repeated morphological dilation of the binary
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support for valid pixels with a euclidian disk of radius one
(Fig. 10), which is, in essence, a city-block distance trans-
form 5. We build the traversal-map Mi as described in Fig-
ure 9.

1: BUILDTRAVERSALMAP(Pi) : Mi
2: level = 1
3: Dlevel ← binary image of size Pi initialized to 0
4: Dlevel ← set all valid pixels ∈ Pi to 1
5: Mi← Dlevel
6: while (∃pixel ∈ Dlevel ∧ pixel = 0) do
7: level = level +1
8: Dlevel ← DILATE(Dlevel−1,Disk)
9: Mi←Mi +(Dlevel ∧Dlevel−1)∗ level

10: end while
11: return Mi

Figure 9: The BUILDTRAVERSALMAP Algorithm

We then re-synthesize the pixels in each level of Mi
sequentially in ascending order. This is analogous to the
method applied by an art restorer: a stepwise restoration of
the hole from the boundary of the existing image.

level 1 level 2

level 3 level n

Figure 10: Traversal-map (Mi) construction by repeated
morphological dilation of valid pixels. Level 1 shows valid
pixels in gray, invalid pixels in black. Levels 2, . . . ,n are the
steps in creating Mi, each a zoom of the upper left corner of
level 1.

We have also experimented with dilating from both the
new texture patch Pi and the existing result Ri−1, which in-
tuitively seems like the straightforward solution, given the
aforementioned analogy. Generally, more pleasing results

are achieved when leaving the responsibility of fixing a bad
overlap configuration to only the new patch. This does not al-
ways eliminate all overlap artifacts, but significantly reduces
their frequency (Fig. 12, bottom).

2.5. Compositing and Overlap Re-synthesis

After Compositing Pi into Ri−1, resulting in Ri,composite
(Fig. 1(b)), we re-synthesize invalid pixels in traversal-map
ordering. In this procedure, each re-synthesized pixel is as-
signed a square-shaped neighborhood (7×7 pixels in all of
our examples) from which we gather already synthesized
pixels into an image mask and a binary support function,
identical to the best patch search of Section 2.1 (Fig. 11).

Figure 11: Re-synthesizing a single pixel (circle) in the over-
lap region (with not yet synthesized pixels in white) using a
7×7 neighborhood. From the highlighted 7×7 area (left) we
extract the image mask I (upper right) and the binary sup-
port function J (lower right) for best pixel search in T .

We apply a gaussian falloff to the binary support function
and furthermore blend the immediate four neighboring pix-
els of the selected pixel from T with Ri,composite to reduce
unwanted and, more importantly, non-existent noise.

3. Results

We were especially interested in improving the results of
Wei/Levoy’s green scales (Fig. 13), and Liang et al.’s natu-
ral stone wall (Fig. 14). Both display a significant amount of
structure and anisotropy, which generally challenge existing
synthesis algorithms. As pointed out by Liang et al. 17, Im-
age Quilting has a tendency to produce abrupt color changes,
termed boundary mismatch, which is why they prefer feath-
ering over the MEBC. We find that feathering, although ad-
mittedly very fast and sufficient for a large class of textures,
tends to blur high frequency features along patch boundaries.

In Figure 12 we compare a typical scenario in which
our algorithm correctly fixes the artifacts in the overlap re-
gion: the results of synthesizing the final 32× 32 patch of
a small 64× 64 synthesis result. We deliberately chose the
final patch for these examples, as this is the most difficult
match and very likely to introduce disturbing artifacts. We
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Figure 12: Pasting the final 32×32 patch into a circularly
shifted version of Figure 1(a). Top: MEBC 10, middle: feath-
ering 17, bottom: overlap re-synthesis. See right image in
Figure 5 for the above example before the overlap region
is repaired.

use a pixel overlap of six pixels and a pixel error tolerance
of δmax = 0.03. The example is a circularly shifted version of
Figure 1(a), with the black region centered. The results (each
with two zooms by a factor of 2) show, that our overlap re-
synthesis (bottom) significantly reduces boundary mismatch
(top, MEBC) and blurring artifacts (middle, feathering).

Figure 13 compares existing texture synthesis algorithms
to Hybrid Texture Synthesis, using the benchmark green
scales texture, which is compared in most other papers as
well. (a) Shows the input 64× 64 texture T . In (b) we
see the results of Efros/leung’s non-parametric sampling,
which, as it applies no neighborhood blending or multiscale-
synthesis, produces a significant amount of non-existent
noise. This noise is successfully eliminated in Wei/Levoy’s
result, shown in (c). The question at hand is: do (b) or (c)
resemble (a)? We find that while anisotropy is debateable,
scale is not perceived as similar. (d) Is a texture generated
by Image Quilting (IQ) and (e) by Patch-Based Sampling
(PBS). Although these results preserve global structure and
similarity much better than (b) and (c), the blurring and
boundary mismatch artifacts are noticeable, thus revealing
the regular patch grid. We find that while our algorithm (f)
does not entirely nullify the existence of overlap artifacts,
it does reduce their overall frequency, thereby eliminating
visible patch boundaries. All synthesis results in Figure 13
are of size 128× 128. Note that (b) was taken from Alexei
Efros’ website, (c) from Li-Yi Wei’s website and (d) from

Alexei Efros’ SIGGRAPH presentation. We produced (e) by
using our algorithm and setting ∆max = δmax = 1.

The natural stone wall texture used by Liang et al. 17 is
compared in Figure 14. The PBS result shows the typical
blurring of small scale structure. Our result tends to cut off
structure where the overlap is too small to completely repair
the damage done. It seems to be a question of personal flavor
what type of artifact is less disturbing. The mosaic texture is
presented as a failure 17 as the object boundaries are often
not properly aligned and therefore blurred. Our algorithm
manages to avoid such pitfalls in several cases.

More Hybrid Texture Synthesis results are shown in Fig-
ure 15 (see color page), with their respective sampling grids.
The top three results are of good quality, whereas the result
of the puzzle texture (bottom) exhibits the main limitation of
our method: in the presence of high frequency structure the
error metric given by Equation 1 simply fails.

4. Conclusions and Future Work

Our algorithm does a good job of eliminating overlap ar-
tifacts between adjacent patches, but also has some draw-
backs in its current state which will be addressed in our fu-
ture work.

Most importantly, both the adaptive patch sampling and
the overlap re-synthesis stages suffer from their computa-
tional expense, as we perform multiple fourier transforms,
each of O(N logN), for each sampled patch/pixel. A straight-
forward application of existing acceleration schemes (e.g.
fixed neighborhood searching 26 or reduced set of overlap
cases 17) is not possible, as we would have to build multiple
search structures on the patch level (due to varying patch and
overlap sizes), and we do not a priori know the pixel neigh-
borhood in the overlap region. The drawback on the patch
scale is negligible when compared to the pixel scale, as we
generally (depending on δmax) synthesize much more pixels
than patches. Our speedup work is therefore primarily fo-
cussed on the overlap re-synthesis stage. One approach we
are currently examining is to fill invalid pixels in the over-
lap region from the valid part by scattered data interpolation
(push-pull: downsampling and upsampling of Ri,composite),
yielding a fixed, square-shaped neighborhood for each re-
synthesized pixel, to which we can apply fixed neighborhood
search methods such as Wei/Levoy’s TSVQ. Other per-pixel
acceleration possibilities include using Ashikhmin’s 1 algo-
rithm or it’s extension, k-coherence search 24.

As in previous approaches, high frequency features, such
as small scale structure or object boundaries, are given
no preference in the distance metric used for overlap er-
ror computation. Even though overlap re-synthesis works
well in many cases, it can’t repair certain overlap config-
urations. Possible future research topics could include the
development of a better distance metric, augmenting the
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(a)

(b) (c)

(d) (e) (f)

Figure 13: A comparison of texture synthesis algorithms on the benchmark green scales texture: (a) the input texture sample
(64×64), (b) Efros/Leung synthesis, (c) Wei/Levoy synthesis, (d) Image Quilting, (e) Patch-Based Sampling, and (f)
Hybrid Texture Synthesis. Each of the above is a 128×128 crop of a larger synthesis result. The synthesized textures
behave toroidally in all cases, excluding the Image Quilting result. Patch sizes in (e) are 32×32. Parameters for
(f): δmax = 0.02, ∆max = 0.04, ov = 7, initial patch size 32×32.

input texture with semantic/structural information, or pre-
synthesizing a structural template 19.

Our current implementation uses a geometrically defined
quad mesh, which is rastered during the synthesis process.
This is to allow an alignment of the patches to the main di-
rections of texture anisotropy. We have started initial exper-
iments on automating the initial quad mesh layout by auto-
correlation 18 and first results look promising.
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Figure 15: Hybrid Texture Synthesis results: the original texture (left), the tileable result (middle), and the result
with the adaptive sampling grid overlaid (right). The inputs are 200×200 and 64×64, results are all
256×256, [δmax,∆max,ov, initial patchsize] from top to bottom: [0.02,0.02,14,64× 64], [0.02,0.02,14,64× 64],
[0.01,0.05,7,32× 32] and [0.04,0.02,12,64× 64]. The bottom row shows an example where our algorithm fails
to produce a satisfying result.
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