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Abstract

This paper describes a new out-of-core multi-resolution data structure for real-time visualization and interactive
editing of large point clouds. In addition, an editing system is discussed that makes use of the novel data structure
to provide interactive editing tools for large scanner data sets. The new data structure provides efficient rendering
and allows for handling very large data sets using out-of-core storage. Unlike related previous approaches, it also
provides dynamic operations for online insertion, deletion and modification of points with time mostly independent
of scene complexity. This permits local editing of huge models in real time while maintaining a full multi-resolution
representation for visualization. The data structure is used to implement a prototypical editing system for large
point clouds. It provides real-time local editing tools for huge data sets as well as a two-resolution scripting
mode for planning large, non-local changes which are subsequently performed in an externally efficient offline
computation. We evaluate our implementation on several synthetic and real-world examples of sizes up to 63GB.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling - Object Hierarchies; 1.3.5 [Computer Graphics]: Graphics Utilities - Graphic Editors

1. Introduction

Acquisition of real-world scenes using 3D scanning technol-
ogy is nowadays a standard technique. Applications range
from acquiring small mechanical parts for quality control to
acquisition of archaeological sites or even complete cities
[AFM™*06]. In such applications, enormous quantities of 3D
data are produced, typically in the form of large unstruc-
tured point clouds. Usually, it is necessary to perform fur-
ther processing on the acquired data. Typical editing opera-
tions are either manual interactive editing (for example, re-
moving artifacts caused by people walking by from a city
scan), or automatic processing such as filtering and nor-
mal estimation. Given the capabilities of modern commod-
ity hardware, processing medium sized scenes (up to some
hundred MB in size) is not problematic and several tools
have been developed that specifically target handling point
cloud data directly [ZPKG02, PKKGO03, WPK*04]. How-
ever, editing and geometry processing becomes much more
problematic if data sets exceed the limits of main mem-
ory. There exist a well developed set of techniques for of-
fline streaming processing of large quantities of geometry
[IG03, CMRSO03, ILO0S, PajOS]. However, currently no tech-
niques exist that allow interactive editing of large point
clouds. The main challenge here is the coupling of visual-
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ization and processing: Traditional techniques for real-time
display of large scenes require expensive preprocessing to
build the data structures that accelerate rendering. Rebuild-
ing such data structures after modifications of the scene is
too costly for interactive applications. In consequence, it is
not possible to perform interactive editing of scenes that are
substantially larger than available main memory. In this pa-
per, we propose a new data structure that fills this gap: We
describe a point-based multi-resolution data structure that al-
lows for fast rendering of complex scenes, efficient online
dynamic updates and out-of-core storage of unused portions
of the data set. The complexity of a dynamic update opera-
tion is proportional to the amount of geometry affected while
the size of the scene has only minor influence on the update
costs. In addition, the dynamic update algorithms have been
carefully designed for high throughput so that local editing
can be performed in real time: A user walking through the
virtual scene is able to change portions of geometry of up to
some hundred thousand points interactively and immediately
continue his inspection of the data set. For even larger edit-
ing operations, the performance degrades gracefully (i.e. lin-
early) to streaming out-of-core processing. The only general
requirement is spatial coherence, i.e., the actual data blocks
accessed within a local time window must fit into main mem-
ory. During processing, a full multi-resolution representation
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of the complete data set is immediately available. We have
implemented the data structure as part of an interactive edit-
ing system for large point clouds. The architecture of the
system has been specifically optimized to complement the
features of the underlying data structure. It uses a command
history architecture [Mye98] that allows for planning com-
plex, global editing operations on a simplified low resolution
model and then applying the operations to the final high res-
olution data set in an offline process. We evaluate the per-
formance of the new data structure on both synthetic and
real-world examples. In practice, we have been able to per-
form real-time walkthroughs and interactive local editing in
scenes of up to 63GB in size. The implementation of the
data structure and the editor application are available online
as open source software [XGRO7].

2. Related Work

In literature, many solutions have been proposed for efficient
rendering and processing of complex geometry. An exhaus-
tive summary is beyond the scope of this paper. In the fol-
lowing, we will therefore mostly focus on out-of-core tech-
niques that allow for handling large quantities of data as well
as large scene editing techniques. The basis of most ren-
dering strategies for complex geometry is geometric sim-
plification. For triangle meshes, this is typically done us-
ing edge contraction algorithms [Hop96]. To avoid dealing
with triangulation consistency issues, early out-of-core sim-
plification algorithms [Lin00,SGO01,Lin03,SGO05] have been
based on vertex-clustering [RB93]. Our data structure em-
ploys a similar grid-clustering technique to provide efficient
multi-resolution updates. General out-of-core edge contrac-
tion can be implemented using blockwise simplification and
edge stitching [Hop98]. In order to efficiently utilize current
graphics hardware, which works batch oriented [WHO3],
fine grained hierarchies are not optimal. More recent ap-
proaches therefore form coarser hierarchies by combining
spatial subdivision and simplification within each spatial
subdivision cell [CGG*04, GBBK04, YSGM04, BGB*03].
We adopt a similar idea to hide latencies in our approach. Re-
cently, point-based multi-resolution data structures have be-
come popular because of their robustness in cases of strong
topological simplification and not at least because point-
based representations are the native format of most 3D ac-
quisition devices. Point-based multi-resolution representa-
tions have been proposed with the Surfels and the QSplat
systems [PZvBGO0O0, RLOO]. The first forms an octree hierar-
chy of sample points with fixed relative spacing, while the
second is based on a bounding sphere hierarchy which it-
self provides the splats. Streaming QSplat is a network im-
plementation that provides external efficiency by utilizing a
layered memory layout and blocking [RLO1]. Other out-of-
core algorithms have been built on top of the Surfels idea of
using large point clouds per node in a spatial hierarchy to
achieve external efficiency [GMO04, WS06]. The data struc-
ture proposed in this paper follows this line of work. None of

the aforementioned approaches supports efficient dynamic
changes; the data structures are built once in an offline pre-
processing step. Up to now, only very few schemes have
been proposed that allow dynamic modifications. [WFP*01]
describe a point-based multi-resolution rendering scheme
that supports dynamic updates. However, the employed ran-
domized sampling pattern cannot be implemented efficiently
in out-of-core settings. Klein et al. [KKF*02] develop a
similar sampling-based representation for out-of-core set-
tings but do not provide dynamic operations. In recent work,
[BS06] describe a two-resolution scheme for texturing and
painting on large out-of-core models. In contrast to our
method, this technique is restricted to attribute modifica-
tions, not allowing the geometry to be changed. A multi-
resolution editing system for large out-of-core terrains based
on wavelets is described by Atlan and Garland [AG06], sim-
ilar in spirit to earlier (in-core) wavelet-based image edit-
ing systems [BBS94]. The wavelet approach is clean and
elegant but the heightfield assumption does not allow for
handling objects of arbitrary topology. Multi-resolution edit-
ing for surfaces of general topology has been described ear-
lier by [ZSS97], however, without out-of-core capabilities
so that only moderately complex surfaces can be handled.
A similar multi-scale editing approach for point clouds has
been proposed by Pauly et al. [PKGO06], again not targeting
at large scenes. Another large scene editing approach has
been described by Guthe et al. [GBKO04], who dynamically
create a triangle hierarchy from a NURBS scene description.
An alternative, non-hierarchical approach for processing
huge data sets is streaming processing [IG03, IL0S5, Paj05].
Here, the processing order is fixed and data is processed
in one or more sequential passes. This processing model
allows highly efficient algorithms but does not allow gen-
eral data access, therefore not permitting interactive visual-
ization. A data structure for more general out-of-core pro-
cessing of triangle meshes using spatial hierarchies has been
described by Cignoni et al. [CMRSO03]. However, this data
structure does not provide a multi-resolution representation,
which is necessary for interactive rendering. Our system
was strongly motivated by the PointShop3D editing sys-
tem of Zwicker et al. [ZPKGO2] for point cloud process-
ing. PointShop3D aims at moderately sized, in-core data
sets. The goal of our work is not to provide a similarly rich
set of point cloud editing tools but rather demonstrate that
point-based editing techniques in principle can be applied to
large data sets. Most point-based geometry processing tech-
niques [PKKGO03, WPK*04] rely heavily on local proxim-
ity queries such as k-nearest neighbors or geometric range
queries. We address the problem of providing efficient sup-
port for fine grained geometric queries as well as efficient
rendering using a layered approach of nested hierarchies that
are updated transparently during editing.
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3. The Dynamic Multi-Resolution Out-of-Core Data
Structure

In the following, we will discuss our new data structure. It
consists of a dynamic octree with a grid-quantization-based
dynamic multi-resolution representation in each inner node.
Subsequently, we describe how the data structure and the
dynamic operations are implemented and how out-of-core
data storage is realized. After that, we will briefly address
the concept of secondary data structures and the employed
rendering strategy.

3.1. Multi-Resolution Data Structure

Our basic data structure is an octree [PZvBGO00], which is
especially well suited for dynamic operations due to its reg-
ular structure. All octree nodes are associated with cubes that
are bounding volumes of the geometry stored in their corre-
sponding subtrees; the root node is associated with a cube
that contains the whole scene. We store all data points in the
leaf nodes only and inner nodes provide simplified multi-
resolution representations. The subdivision depth of the tree
is uniquely defined by requesting that no leaf node should
contain more than nuqy points (typically: nmqx ~ 100,000)
and no unnecessary splits should be performed, i.e. no set of
leaf nodes should exist that can be subsumed into the par-
ent node without exceeding nuqx points per leaf. Updating
such an octree dynamically is a standard problem [Sam90].
The main contribution of this paper is a dynamic multi-
resolution scheme for such spatial hierarchies that can be
updated efficiently. The basic idea is to provide downsam-
pled point clouds in inner nodes with a sample spacing that
is a fixed fraction of the bounding cube side length of the
corresponding node ( [PZvBGOO0], see Figure 1). We cre-
ate these downsampled representations using a quantization
grid [RB93, WFP*01]: In each inner node of the octree, we
establish a k> grid (typically k ~ 128). All points of the sub-
tree are quantized to the grid cells and only one represen-
tative point is kept. In order to keep track of the representa-
tion under dynamic modifications, we also store a weight for
each grid cell that counts the number of points represented
(Figure 2a). This weight is necessary for dynamic modifica-
tions later on. For handling these weights, we have different
choices: The first option (which is used in our current imple-
mentation) is to just store a random representative point and
count the number of points stored in the weight variables. To
improve the uniformity of the sampling pattern, we can also
quantize the points stored in the grid cells. To avoid alias-
ing, we could also store a sum of all point attributes instead
of just a single representative point and then normalize the
average by dividing by the weight counter. This corresponds
to an unweighted average filter. The quantization grid itself
is not stored explicitly as an array but using a hash function:
The quantized x,y, z-positions of the points are input into a
pseudo-random hash function to access buckets in a dynamic
hash table. The length of the bucket list is adjusted dynam-
ically to retain a constant fill factor (1 in our current im-
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Figure 1: The first three levels of a surfel hierarchy.

plementation). Using this representation, only O(m) bytes of
memory are used for storing m non-empty cells and random
access is in expected constant time. In out-of-core settings,
the hash tables are not stored in disk but rebuild on-the-fly
from a list of non-empty cells.

3.2. Dynamic Updates

Grid quantization is not the best uniform sampling strat-
egy [Wan04] and also does not provide adaptive sampling
[PGKO2], which potentially reduces the sampling cost fur-
ther. The big advantage, however, is that this technique
permits efficient dynamic updates. Our data structure pro-
vides two basic dynamic operations: insertion and removal
of points from the multi-resolution tree. More complex oper-
ations are mapped to a sequence of removals and (re-) inser-
tions. In the following, we describe the dynamic operations
on the octree and how the multi-resolution data structure is
kept up-to-date during these operations.

Inserting points: If the data structure is empty, a leaf
node containing the single point is created (leaf nodes do
not store a multi-resolution grid, only inner nodes do). Oth-
erwise, two cases have to be distinguished: the new point
might be inside or outside the root node of the tree. If the
point falls inside the root node, we determine a path to the
lowermost node in the tree that contains the point. If this is a
leaf, we insert the point into the leaf. If the last node contain-
ing the point is an inner node, we create a new leaf for this
point. On the way down from the root node, we insert the
point into each quantization grid in each inner node we visit
(Figure 2b). To do so, we only have to compute the quantized
grid cell, add/store the attributes of the points and increment
a counter. Therefore, the overhead in comparison to a stan-
dard dynamic octree that does not keep a multi-resolution
representation in its inner nodes is small. Please note that
the update costs do not depend at all on the complexity of
the multi-resolution representation in each node, every up-
date is O(1) per node. After the update, we run an amortized
validation step that subdivides nodes if necessary; this step
is discussed later as it will be used in subsequent operations
as well. In order to guide the validation procedure, we also
mark the path down from the root node with flags. In the
second case, where the point falls outside the root bounding
box, a new root box has to be created. In order to do this, we
enlarge the root box by a factor of two and make the old root
a child of the new one. We chose one of the 8 possible new
positions for the root box that brings the new box closest to
the new point. This procedure is repeated until the new point
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is comprised in the root box. Then, a new leaf below the root
box is created to store the new point. Now we have to up-
date the multi-resolution representation in the new root node
and the chain of nodes leading to the old root node. We use
the same grid-quantization algorithm as in the previous case
on these nodes to update their quantized point sets, inserting
the multi-resolution representation stored in the quantization
grid of the old root node and the new point as well into the
nodes on top of the old root. For consistent counting, we add
the correspondingly larger weights when processing points
from the quantization grid of the old root.

(a) quantization tree with
counting

(b) inserting a point: incre-
menting counters

Figure 2: Updating the multi-resolution representation

Deleting points: Deletion of points proceeds in a similar
way. We delete the point from the list in its leaf node and
then follow a path upward the hierarchy to the root node.
In each inner node, we compute the quantized grid cell this
point corresponds to, decrement the weight by one and, op-
tionally, subtract the point attributes if running averages are
used. If the weight becomes zero, the entry is removed from
the hash table storing the quantization grid. Again, the nodes
on the path are marked for validation. To locate a point, i.e.
if only its position but not its node and list index are known,
we trace a path from the root node to the leaf node that con-
tains the point and linearly search the leaf list for the point
position.

Validation step: The algorithms outlined above are not
yet complete because they do not enforce the nqx criterion
for the size of the leaf nodes. To do this, we run an addi-
tional validation step. This validation could be performed af-
ter each point insertion but in practice this severely degrades
performance (typically by an order of magnitude). There-
fore, we call the validation algorithm only after a large num-
ber of points have been changed or before a new rendering
operation is invoked. "Large" means that we must prevent
overflows of the leaf node lists in out-of-core settings, so we
typically perform validations after a maximum of 100,000
points have been inserted. The validation algorithm follows
(and clears) the flags down to modified leaf nodes and then
performs two checks: If a leaf node contains more than 7,4
points, it needs to be split. This is done by considering this

leaf node a root node of a local sub-octree and performing
the dynamic insertion algorithm as outlined above, includ-
ing the updates of newly created multi-resolution grids. At
this point, the former leaf node will become an inner node
and will be assigned a multi-resolution grid as well. The
second check refers to the opposite case: Whenever a par-
ent node of a leaf node contains a subtree that contains no
more than 7,4y points, the whole subtree can be compressed
into one new leaf node. All the other nodes and the multi-
resolution representation of the parent node are discarded
in this process. After such an operation, the same check is
applied recursively to the newly created leaf node and its
parent until no more node removals are possible. A subtlety
here is to efficiently determine the size of a subtree of an
inner node. For this, we keep track of the number of points
in each subtree during all dynamic operations by counting:
Each node contains a 64Bit counter that is updated when
points are traced through the hierarchy during insertion and
deletions. Counting is not limited to counting the number of
points; our implementation also supports counting other sub-
sets of points, for example those flagged for selection. This
mechanism will be used later on for efficiently retrieving se-
lected points in large point clouds by recursively traversing
only subtrees that contain selected points.

Discussion: We have also considered an alternative de-
sign of the data structure, where points would only be in-
serted and deleted into/from the leaf nodes and the multi-
resolution representation would be rebuilt lazily, bottom-up
on demand. This approach would have had the advantage
that adaptive sampling and more general attribute filters in
multi-resolution nodes could be implemented more easily.
Aiming at real-time editing, we opted for the scheme pre-
sented here because interactive edits (typically affecting only
small portions of the points of a leaf node) are expected to
be much more efficient with the chosen strategy.

3.3. Out-of-Core Storage

The multi-resolution representation described above can eas-
ily be used in out-of-core settings. In the following, we
basically apply standard virtualization techniques [RLO1,
KKF*02, CGG*04, GBBK04, YSGM04, GM04, GMO05,
BGB*05, WS06] to the data structure described above: The
main idea is to load only those nodes into memory that are
needed for rendering or editing. For changing a single point
of the original data, only a path from the root node to a leaf
node has to be accessed, which, in practice, is a very small
number of nodes. For rendering with fixed on-screen res-
olution, only a small fraction of nodes has to be accessed
while most of the data structure remains unused. Our im-
plementation provides two methods for out-of-core support:
fetch and access. Fetching demands a node to be used in the
near future and access asserts that the data resides in main
memory. We use a standard LRU (least recently used) queue
to swap out unused nodes to disk when the allocated local
cache for nodes is exceeded. Nodes that have not been mod-
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ified are deleted immediately and not written back to disk.
Using 64Bit integers for node indices, we can handle scene
sizes that are practically only limited by available secondary
memory. Fetching of nodes is done in a separate thread to
hide disk latencies. Fetch operations and in-core processing
can be performed concurrently, only actual access to non-
memory resident nodes is blocking. The nodes themselves
are stored in multiple files, each file providing a stream of
blocks of a fixed size, with block-sizes increasing in pow-
ers of two among the files. Using this approach, every block
can be directly accessed with only one seek operation. Using
multiple files leaves the allocation and fragmentation prob-
lem to the operating system, which worked reasonably well
in our experiments. In case more explicit control over disk
space allocation is needed, one could also allocate big blocks
and subdivide them in powers of two to create allocation
units that are guaranteed not to be fragmented, however, at
increased allocation and implementation costs.

An interesting question that remains is whether the hier-
archical out-of-core data structure is efficient, and how we
should choose the parameters for best rendering and pro-
cessing performance. The important trade-off here is be-
tween blocking overhead and block access latencies: A typ-
ical off-the-shelf hard disk has a random access seek time of
roughly 10ms and a transfer rate of about 50-100MB/sec.
This means that reading S00KB blocks from disk wastes
50% of the available bandwidth due to latencies. Thus, node
sizes should be chosen in the range of hundreds of kilobytes
or megabytes at least. Obviously, using larger block sizes in-
creases the throughput. On the other hand, using large blocks
has disadvantages due to the reduced adaptivity. For edit-
ing, it is harder to track the region of interest precisely with
coarse blocks. Similarly, for rendering, view frustum culling
and level-of-detail control become less accurate for larger
block sizes. In the case of localized editing, the minimum
requirement is to store at least 1-8 adjacent leaf nodes (in
case boundaries regions are involved) and a path to the root
node in order to perform local operations efficiently, which
is easily met. For larger editing operations, the actual per-
formance depends on the data access patterns. For render-
ing, the trade-off of using point clouds of different sizes in a
multi-resolution octree is analyzed in [Wan04]. It is shown
analytically and empirically that even larger nodes (typically
20% or more of the screen size under projection) can be used
with acceptable overhead. For VGA resolution, this corre-
sponds to quantization grids of roughly k ~ 128, which is
sufficient to hide latencies (for our replicated bunny bench-
mark scene, see Section 5, this corresponds to an average
of 750KB per inner node for position only and estimated
1.3MB with color and normals).

3.4. Secondary Data Structures

For out-of-core paging, we have to use a very coarse hierar-
chy. This is not favorable for operations such as small scale
range queries or nearest-neighbor queries, which are fre-

(© The Eurographics Association 2007.

quently used in point-based modeling. Therefore, we create
a secondary layer data structure that can be attached to nodes
in the primary hierarchy. In our current implementation, we
use octrees with a node size of nmax = 20 points that are at-
tached to the leaf nodes of the hierarchy. For the query algo-
rithm, we treat the cascaded hierarchy as one single virtual
hierarchy. In general, secondary data can be stored on disk
along with the main hierarchy. For the secondary octrees,
we currently do not use this option but delete them when
being paged out and recompute them on demand. The cur-
rent implementation uses an efficient iterative static octree
construction algorithm that processes about 1 million points
per second, which is almost as fast as loading from disk and
does not use additional external memory. The secondary hi-
erarchy stores only indices to the points in the primary hier-
archy’s node and is recomputed on demand after changes to
the geometry. However, conceptually, other data structures
such as secondary kD-trees or dynamic octrees could also
be handled easily using the same mechanism. The secondary
data structure mechanism is also useful for rendering: De-
pending on the performance characteristics of the external
memory versus those of the graphics card, different blocking
factors might be favorable for the two domains. If rendering
works better with smaller block sizes, we can use the sec-
ondary octree to achieve more adaptivity while still fetching
larger blocks from hard disk. However, for current hardware
it turned out that this is not necessary: Current GPUs have a
per-batch latency of about 10us (Windows XP, [WHO03]) and
internal bandwidth in the range of up to 50-100GB/sec. This
is three orders of magnitude faster than the external storage
(a single, contemporary consumer hard disk) but shows al-
most the same ratio between latency and throughput, which
determines the optimum block size. In addition, given the
performance gap, the hard disk will typically be the bot-
tleneck, even if slow movement of the observer allows for
extensive caching. Therefore, we currently use the primary
hierarchy for both rendering and paging and optimize the pa-
rameters for optimum hard disk utilization, which typically
also gives good GPU throughput. In case a drastically differ-
ent hardware setup is employed (such as RAID arrays with
higher throughput/latency ratio and/or new GPU APIs with
drastically reduced latency), secondary octrees give us the
necessary flexibility to adapt the block sizes.

3.5. Rendering

The rendering algorithm performs a depth-first traversal of
the hierarchy until the minimum projected point spacing in
an octree box is below a fixed threshold [PZvBGO0] (typ-
ically 1-5 pixel). During the descent, the algorithm tests
nodes for main memory presence and schedules non-present
nodes to be fetched by the background thread, using a lower
resolution representation for rendering until the nodes be-
come available. For local image reconstruction, we use point
primitives (point sprites) that are scaled according to the
point sample spacing [RLO1]. The minimum primitive size
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is assumed to be given in the original data and enlarged auto-
matically for inner nodes of the hierarchy in order to prevent
reconstruction holes. In case this information is not avail-
able, we compute it from k-nearest neighbor distances as de-
scribed below.

4. System Architecture

We have implemented an interactive point cloud editing ap-
plication on top of the proposed data structure that provides
prototypical editing tools (selection, transformation, paint-
ing, etc.) as well as batch processing operations such as
PCA-based normal and sample spacing estimation. In the
following, we give a brief overview of the system architec-
ture and how scalable, output-sensitive editing tools can be
implemented.

4.1. Channels, Iterators and Tools

The basic primitive of the system is a point cloud, which
is defined as an unstructured set of points where each point
provides a set of attribute channels such as position, color,
or normals, which can be configured at run time. Within
one point cloud, all points have the same set of attributes.
For rendering, the channel values are copied into GL ver-
tex buffer objects and are available to the vertex shader of
the GPU. Access to data is not granted directly but via itera-
tors that abstract from a possible out-of-core implementation
(the system provides non-hierarchical and hierarchical point
clouds, the latter in an out-of-core and an in-core version).
Iterators can be hierarchical or linear; the first represents a
hierarchy of boxes containing lists of points while the second
provides only linear access to a virtual list of points. Follow-
ing the paradigm of functional programming, iterators can
be cascaded. For example, the basic iterators expose the pri-
mary hierarchy. They are used as input to a cascaded iterator
which automatically detects, creates and attaches secondary
octrees on-the-fly in leaf nodes and transparently returns a
deeper, secondary hierarchy. A third iterator might use the
previous cascade to perform k-nearest neighbor queries, re-
sulting in a virtual long list of nearest neighbors to a ge-
ometric position, which then has a linear, non-hierarchical
structure.

4.2. Implementing Editing and Processing Tools

Our current editor application uses cascaded iterators for
general geometric range queries (filtering out points and
subtrees not intersecting a given subsets of three space),
for k-nearest neighbors computation (as described above)
and for selection (filtering out non-selected points hierarchi-
cally). Using these building blocks, we have created inter-
active tools for selecting, painting, texturing, transforming
and deleting points. The point selection tool is for example
implemented by issuing ray queries, i.e., range queries for
perspective extrusions of on-screen circles or rectangles. For
points within this range, a selection flag is set. Surface paint-
ing, texturing and embossing are implemented by first deter-

mining the closest point within a narrow ray and then issuing
a spherical range query around the point of intersection. Ac-
tual modifications to data are implemented by deleting and
reinserting points with modified attributes. In case the po-
sition has not changed, a more efficient implementation is
used that changes only the point attributes and updates the
multi-resolution hierarchy accordingly, avoiding reinserting
points, which speeds up tools such as surface painting. For
deleting selected points, we finally use the hierarchical se-
lection iterator to efficiently retrieve selected points and re-
move them from the data structure. All operations described
so far are strongly output-sensitive; the running time for lo-
cal editing is O(mh) where m is the amount of data affected
(up to node accuracy) and /4 is the height of the hierarchy.
The scene size affects the execution speed only via the hi-
erarchy height A, which, in practice, can be expected to be
logarithmic in the number of primitives and thus reasonably
small.

4.3. Command Objects

The tools described before are not efficient for large scale
changes. For example, painting on 20 million points at a
time cannot be done at interactive rates. It seems that there
is no principal solution to this problem, as processing a large
number of points will inevitably take a long time. However,
we can improve the usability in these cases by adapting the
software architecture. In our editor application, we have im-
plemented a command object architecture [Mye98] that au-
tomatically records all user actions and stores these as a list
of commands. Each command consists of a set of parame-
ters, including user input such as the parameters of the query
region for selecting points or the color of painting opera-
tions. During interactive editing, the user can browse the list
of commands, change parameters and reexecute subsets of
the commands. We have also implemented a simple scripting
language that provides variables and basic control flow and
is able to alter parameters and reexecute previously recorded
commands procedurally. These capabilities can be used to
perform large scale edits: At first, editing is performed on a
low resolution version of the scene for which global edit-
ing is efficient. For this purpose, we have implemented a
simple streaming-simplification tool that selects a fraction
of points randomly. The user can then perform operations
interactively and save the resulting command script. Then,
by removing the resampling command and reexecuting the
script, the full resolution edit is computed offline. All previ-
ously described editing tools are externally efficient; if the
selection comprises a large set of points, these will automat-
ically be processed in octree-order which leads to coherent
processing patterns and avoids cache trashing.

5. Results

In order to evaluate our proposal, we have conducted a series
of experiments on synthetic and real-world data sets. Unless
noted otherwise, all tests have been performed on a mid-
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Figure 3: Processing times for different parameter settings. All parameter axis are shown in log scale, timings in linear scale.

range PC system with single core Pentium-4 3.4GHz with
Hyperthreading, Seagate 500GB/7200rpm SATA hard disk
and an nVidia Quadro FX 3450 graphics board.

Parameter optimization: In order to determine suitable
parameters for the data structure, we create a simple syn-
thetic test scene for various parameter settings and measure
the performance of rendering and editing operations. In the
first test, we use a script that replicates a number of Stanford
bunny models on a simple heightfield (2,2M points total) and
renders a walkthrough. The results are shown in Figure 3: As
expected, hierarchy creation becomes more expensive with
increasing depth, i.e. smaller leaf nodes. Additionally, the
quantization grid also has an influence; for fixed nmqx, larger
grids are more expensive to build, as this increases the data
structure size (in practice, we choose parameters so that leaf
and inner node sizes are comparable). At typical in-core pa-
rameters (nuax = 131,072, k = 128), we can insert 300,000
points/s. For rendering, larger batches, i.e. large quantization
grids and many points per leaf node, are better. Only for very
large leaf nodes (> 500,000 points), performance degrades.
The effect is limited in this example due to the small scene
size. Next, we perform a similar test using the out-of-core
hierarchy. Figure 3c shows hierarchy creation (14M points)
and local editing times (working on 36K points) for the same
test scene. Again, construction times drop for coarse grained
hierarchies, where local editing times are optimal for about
nmax = 500,000 points.

Output-sensitive editing: Next, we perform a fixed-
size editing operation (selecting and subsequently moving
a patch of ca. 2300 points out of a large flat quad covered
uniformly with points) for increasing scene size (Figure 3d).
Scene creation and editing are performed subsequently with-
out flushing the memory cache. Correspondingly, the editing
time goes up significantly once the whole scene does not fit
into the main memory cache anymore. The expensive part
is the first selection command, which pages the nodes into
main memory. The subsequent transformation command,
which accesses the same points again, is much more effi-
cient. Overall, editing time for cached geometry (which is
the typical case for local edits) changes only moderately with
scene size; local editing can still be performed efficiently

(© The Eurographics Association 2007.

in very large scenes (the expensive first editing operation is
an artifact of the synthetic, non-interactive benchmark; typ-
ically, one would only select geometry that has been previ-
ously fetched for rendering).

Real-world data sets: We have used our system for in-
teractive editing and visualization of three large 3D scan-
ner data sets (see the accompanying video for an interac-
tive demonstration). The first is a scan of an archaeological
site at Ephesus, Turkey (courtesy of M. Wimmer, TU Vi-
enna). The data set has been acquired using a laser range
scanner and consists of 14 million points. This data set is
small enough to fit into main memory. Therefore, we use the
in-core implementation of our hierarchical data structure for
visualization. As shown in the accompanying video, we can
perform interactive editing in this scene while updating the
multi-resolution representation on-the-fly.

The second data set is a scan of the interior of a building
acquired with a custom scanning platform [BFW*05] (cour-
tesy of P. Biber and S. Fleck, University of Tuebingen). It
consists of 75.7 million points (6.5GB of raw data). Import-
ing the data set into the system took 85min:58sec for pars-
ing the ASCII input file and writing it back to a temporary
binary file and additional 16min:57sec sec for building the
out-of-core multi-resolution hierarchy. This corresponds to
an average insertion rate of 74,400 points per second. In the
final hierarchy, 20% of the disk space is used by inner (multi-
resolution) nodes and 80% by leaf nodes. Once the hierarchy
has been constructed, interactive visualization and render-
ing can be performed as demonstrated in the video. As also
shown in the video, we can perform local editing operations
in real time on this data set. In addition, we have also created
a script that performs a large scale modification of the data
set, planning the operations on a 1 : 100 resampled version
of the data set and then executing the recorded commands
offline. The test case shows removing part of the roof and
clouds of outliers from the raw data set. Planning is real-time
and offline processing takes 13min (removing 21.5 million
points). As an example of a full-data set batch processing
operation, we have computed the average point spacing from
nearest neighbors, which is necessary for correct rendering.
Estimating sample spacing from 9 nearest neighbors out-of-
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(a) Ephesus:
data set, 14M points (courtesy
of M. Wimmer, TU Vienna)

archaeological

(b) scan of a corridor in a build-
ing, 75M points (courtesy of P.
Biber and S. Fleck, University of
Tuebingen)

(c) structure-from-motion scan
of an urban environment, 2.2
billion points (courtesy of J.M.
Frahm, UNC)

(d) a closeup of the data set
shown in (¢)

Figure 4: Example scenes - see video for details

core took 11h for this data set. This is externally efficient
(the average CPU utilization has been almost 100%), but
significantly costlier than in-core or streaming out-of-core
processing, as a full multi-resolution representation is kept
up-to-date during processing. These additional costs are of
course only warranted if interactive visualization is needed.

The third data set is a structure-from-motion reconstruc-
tion of an urban area (courtesy of J.M. Frahm, University
of North Carolina [AFM™06]). The raw data set consists of
63.5GB of binary data in multiple files, providing position,
normal, color and sample spacing information. Importing
the data into the data structure took 14h:15min (correspond-
ing to 43,000 points/sec) as well as additional 7h:9min for
parsing the input data and storing it to a single linear bi-
nary file. Using the multi-resolution data structure, real-time
walkthroughs and interactive modifications are possible as
shown in the video accompanying this paper.

6. Conclusions and Future Work

We have described a new dynamic multi-resolution out-of-
core data structure for rendering and editing large point
clouds efficiently and a prototype editing system that uses
this data structure for interactive editing of large data sets.
The main contribution here is making such a data struc-
ture fully dynamic with special focus on high efficiency
of the dynamic operations without sacrificing external ef-
ficiency or GPU utilization. The data structure can be up-
dated at typical rates of 300,000 points/s for small in-core
data sets and 40,000 — 70,000 points/s for very large out-
of-core data sets. The main limitation in comparison with
non-dynamic multi-resolution data structures is the need to
employ uniform grid quantization for resampling in inner
nodes, not permitting adaptive sampling. In addition, we
have described a novel large scene editing system. Given
the growing amount of large data sets from 3D scanning de-
vices, we believe that the ability for interactive editing of
such data sets will become increasingly important in practi-
cal applications. In future work, several enhancements to the
current data structure could be examined. We would like to
implement general multi-resolution filtering schemes based
on fractional weights and extend the data structure to handle

dynamic multi-resolution triangle meshes based on a combi-
nation of vertex clustering with counting and edge contrac-
tion.
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