
A Sampling Theorem for MLS Surfaces

Peer-Timo Bremer John C. Hart

University of Illinois, Urbana-Champaign

Abstract

Recently, point set surfaces have been the focus of a large number of research efforts. Several different methods
have been proposed to define surfaces from points and have been used in a variety of applications. However, so far
little is know about the mathematical properties of the resulting surface. A central assumption for most algorithms
is that the surface construction is well defined within a neighborhood of the samples. However, it is not clear that
given an irregular sampling of a surface this is the case. The fundamental problem is that point based methods
often use a weighted least squares fit of a plane to approximate a surface normal. If this minimization problem
is ill-defined so is the surface construction. In this paper, we provide a proof that given reasonable sampling
conditions the normal approximations are well defined within a neighborhood of the samples. Similar to methods
in surface reconstruction, our sampling conditions are based on the local feature size and thus allow the sampling
density to vary according to geometric complexity.

1. Introduction

The moving least squares (MLS) method filters a finite
noisy collection of scattered surface points, projecting each
data point onto a local approximated tangent plane [Lev03].
The robustness of this filtering has made MLS an attrac-
tive method for surface reconstruction [ABCO∗03], and the
MLS surface an attractive shape representation for editing
[ZPKG02], modeling [PKKG03] and animation [MKN∗04].

The simplicity of the MLS method belies an underlying
complexity that hinders analysis. For example the original
algorithms for projecting the data points onto the MLS sur-
face [Lev03, ABCO∗03] actually missed the surface, as pre-
viously reported [AK04]. The problem is that the MLS sur-
face is defined as the stationary points of a projection, but the
direction of this projection is dynamic across space, and can
be undefined in some data point configurations. The robust-
ness of the MLS method relies on ensuring this projection
direction is well defined.

Adamson and Alexa [AA03] used this criterion to con-
struct a sampling condition, labeling an MLS surface as well
sampled if this projection direction is defined everywhere
within a neighborhood of the MLS surface. This property
suffices as a smoothness criterion as it allows the implicit
function theorem to prove the differentiability of the MLS
surface embedding. However this property fails as a sam-

pling criterion because it measures the relationship of the
samples to the reconstructed MLS surface and not the origi-
nal surface from which the samples were drawn.

This paper derives a new sampling condition that states a
criterion on the samples based on the local feature size of
the original surface sufficient to yield a well-defined (and
smooth) MLS surface reconstruction. Our sampling condi-
tion is also adaptive since it is based on local feature size,
which will eventually enable it to provide tighter bounds
than one could with a uniform sampling.

This theorem relies on the local feature size of the sam-
pled surface, which is in general not available when measur-
ing real world data. Our review of previous work in Sec. 2
recalls that this was also the case for Voronoi-based surface
reconstruction methods where a well-defined sampling cri-
teria was needed first before stronger theorems on the topo-
logical and geometric accuracy of the reconstruction could
be proven. A similar situation exists now for MLS surface
reconstruction. Sec. 3 reviews properties of adaptive sam-
pling relative to the local feature size that we will need for
our sampling condition, and Sec. 4 reviews the MLS method
using a convenient implicit formulation of the MLS surface.

Sec. 5 states and proves a theorem that shows that the nor-
mal vector needed by the MLS method does not vanish using
a property of the MLS weighted variance of the sampling.
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This preparation enables Sec. 6 to state and prove the main
theorem of the paper, that given appropriate though overly
restrictive conditions on the surface and its sampling, the
normal is well defined (does not vanish) near the sampled
surface S (as opposed to the reconstructed surface). Sec 7
concludes with a discussion of the sampling conditions with
ideas on how they could be further relaxed.

2. Related Work

Our sampling criterion for an MLS surface is based on the
local feature size of the original surface from which the sam-
ples were taken. This result resembles the first sampling
criteria for the crust method [ABK98, AB99], which was
shown to work when the number of samples was sufficiently
dense relative to the local feature size. Even though the crust
method worked well in practice with samples 0.5 times the
local feature size apart, a very dense sampling of 0.06 times
the local feature size was needed to prove the correctness of
the crust method. Likewise, the constants used in the proof
of our sampling theorem are similarly much more restrictive
than what is used in practice for the MLS method, and will
likely be relaxed by further, future analysis.

Similar to the methods described in this paper the orig-
inal crust method is limited by requiring knowledge of the
medial axis. Nevertheless, the crust algorithm forms is the
ancestor of number of very successful combinatorial surface
reconstruction algorithms such as power crust [ACK01], co-
cone [ACDL02] and the robust cocone [DG04]. All of which
were eventually proven to yield topologically correct and ge-
ometrically accurate approximations to the original surface,
under the necessary sampling conditions.

Recently, several papers have been published aiming at
proving results similar to those of Voronoi-based algorithms.
Kolluri [Kol05] proved that, under globally uniform sam-
pling conditions, one particular implicit MLS reconstruc-
tion is homeomorphic and geometrically close to the original
surface. However, Kolluri assumed input normals at sample
points and suggested using the probabilistic method of Mitra
and Nguyen [MN03] to estimate normals. By design these
normal are likely but not guaranteed to be well behaved. Fur-
thermore, the normals are fit to a uniformly weighted local
neighborhood of sample points, whereas the MLS surface
derives its normals from the non-uniform weighted average.

In [DS05b] Dey and Sun based on some earlier results of
Dey and Goswami [DG04] show that an MLS surface similar
to the one used here is isotopic to the original surface under
uniform sampling conditions. The method relies heavily on
well approximated normals and they provide a combinato-
rial algorithm to estimate provably good normals. That result
complements our own as it provides good normals, which we
lack, but requires a less desirable uniform sampling.

In a parallel paper Dey and Sun [DS05a] propose a new
variant of an MLS surface which also reconstructs a surface

isomorphic to the original but under adaptive sampling con-
ditions. Unlike the assumptions of Section 3, the new con-
struction does not require a bounded range of local feature
sizes, but leads to a result based on a different MLS surface
than the one commonly used.

3. Preliminaries

Before we describe MLS surfaces, it will first be useful to re-
view some useful definitions and results regarding the sam-
pling of a surface.

A sampling condition should guarantee that a surface is
“appropriately” sampled everywhere, which at least intu-
itively means that the local sampling density should depend
on the local geometric complexity, e.g. some indication of
curvature. For a point s on a closed manifold surface S⊂R3,
we can define its local feature size ρ(s) as the radius of the
largest closed ball whose boundary contains s but whose in-
terior does not intersect S.

The medial axis M of the surface S is the collection of
points that have exactly two closest points in S. It is not dif-
ficult to see that the above definition of local feature size
matches its usual (e.g. [AB99]) definition ρ(p) = d(p,M)
where d(p,M) is the distance from a point p to its closest
point in the closure of M. The local feature size is Lipschitz
[AB99] with constant 1 so for any a,b ∈ S,

|ρ(a)−ρ(b)| ≤ ||a−b||. (1)

For any point q ∈ R3 let proj(q) denote the projection of
q onto a closest point in S. For τ < 1 we define a tubular
neighborhood Tτ of the surface S as

Tτ = {q ∈ R3|d(q,S)≤ τρ(proj(q))} (2)

where as before d(q,S) is the distance from q to the nearest
point in S. In other words, the tubular neighborhood consists
of points whose projection w onto S is no further away than
τ times the local feature size of w. w is unique since τ < 1.

The analysis of the MLS surface is eased by imposing
both an upper and lower bound on the sampling density. The
lower bound ensures that no part of S remains completely
unsampled while the upper bound is necessary to avoid an
arbitrary oversampling of a small region which could distort
the analysis of the weighted averages.

We impose these bounds by requiring an (ε,δ )-sampling
of the surface. A set P = {pi}N

i=1, pi ∈ S, is an (ε,δ )-
sampling of the surface S if (1) the collection of balls cen-
tered at the pi of radius ερ(pi) covers S, and (2) balls center
at the pi of radius δρ(pi) do not intersect.

The density of an (ε,δ )-sampling is dependent on the lo-
cal feature size. If the local feature size could become ar-
bitrarily small the sampling density could grow arbitrarily
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large which would further complicate the analysis of covari-
ance. Let

ρmin(S) = min
s∈S

ρ(s), ρmax(S) = max
s∈S

ρ(s) (3)

represent the minimum and maximum local feature size of
the surface S. We use these bounds to construct a bound α on
the “bandwidth” of the surface S as α > ρmax(S)/ρmin(S).

Given an (ε,δ )-sample of a surface one can establish up-
per and lower bounds on the number of samples.

Lemma 1 (Sampling Density) Given an (ε,δ )-sampling P
of surface S, let F ⊂ R2 indicate an arbitrary planar projec-
tion of S. Furthermore, let Q = {qi}N ′

i=1 be any set of sam-
ples such that balls centered at of radius δρmin(S) cover S.
Then the number of samples in P is bounded from below and
above by

Area(F)
πε2ρ2

max(S)
≤ |P| ≤ |Q|. (4)

Proof The lower bound holds because the cover of S with
balls of radius ερ(S) when projected is a cover of the projec-
tion F of S and the planar area the projections of these balls
could cover is less than the denominator. The upper bound
follows from the fact that any covering of S with spheres of
size δρmin(S) has more samples than allowed.

4. The MLS Surface

This section reviews the moving least squares method, using
an implicit formulation based on the weighted covariance
matrix [AA03].

Let S⊂R3 be a smooth manifold and P = pi
N
i=0 be a set of

points used to discretely sample S. The MLS method local-
izes its least squares fit using a weight function θ : R+ →R+

that decreases monotonically to zero as its parameter in-
creases. As do most others, we use the Gaussian θ(r) =
exp(−r2/σ2).

Given a query point in space q ∈ R3 the weighting func-
tion θ defines its weighted average

a(q) = ∑i θ(||q− pi||)pi

∑i θ(||q− pi||)
, (5)

and its 3×3 weighted covariance matrix

covθ (q) = ∑
i

θ(||q− pi||)(q− pi)(q− pi)T (6)

where q and pi are represented by 3-element column vec-
tors. If covθ (q) has a unique smallest eigenvalue λ1 then its
corresponding eigenvector v1 is called the normal direction
at q and denoted n(q) (or simply n when the context is clear.)

This normal direction allows the formulation of the MLS
surface reconstruction an implicit surface Ŝ = f−1(0) of

f (q) = n(q)T (q−a(q)). (7)

This implicit formulation requires that the normal directions

n(q) be well defined (non-vanishing), which lead to a Adam-
son and Alexa’s sampling criterion: a surface S is well sam-
pled by a point set P if the normal directions n(q) are defined
(in other words the weighted covariance matrix has a unique
minimum eigenvalue) inside a neighborhood of Ŝ.

This definition has also been used by others, e.g. [AK04],
to ensure that the local frame used in the projection operator
can be fitted uniquely. While this definition of a “well sam-
pled” surface is valid, it is problematic for both practical and
theoretical reasons. The MLS surface construction is initial-
ized by evaluating f (q) or at least n(q) in the neighborhood
of the original surface S and its sample points P, and not the
reconstruction Ŝ which could be a significant distance from S
and P. Hence according to this definition, the surface S could
be “well sampled” by P and nevertheless result in an unde-
fined normal direction at one or more of the sample points.

Furthermore, this definition of “well sampled” is circular
in that it is impossible to test whether a surface is well sam-
pled unless the sampling suffices to generate a singularity
free MLS reconstruction. We would prefer instead a guar-
antee that under specified sampling conditions relative to S
and P (and not Ŝ) that a proper MLS surface results. We thus
call a sampling P of a surface S well defined if the normal
directions n(q) do not vanish over a neighborhood of S that
includes the samples P. We can prove a sampling to be well
defined by ensuring the weighted covariance matrix has a
unique smallest eigenvalue over a neighborhood of S.

5. Uniqueness of the Smallest Covariance Eigenvalue

This section states and proves a condition for the unique-
ness of the smallest covariance eigenvector in terms of the
weighted variance. The weighted variance of the samples P
at a query position q is defined

varθ (q) =
N

∑
i=1

θ(||q− pi||)||q− pi||2. (8)

We can also define the directional weighted variance by ex-
amining the variance in a specific direction indicated by the
unit vector n ∈ S2 as

varn(q) =
N

∑
i=1

θ(||q− pi||)(nT (q− pi))2. (9)

Combining (9) with (6) relates the directional weighted
variance to the weighted covariance as

varn(q) = nT covθ (q)n, (10)

which allows us to express the (real, symmetric and positive
definite) directional weighted variance in terms of the de-
composition of the weighted covariance matrix into eigen-
values λ1,λ2,λ3 and corresponding unit-length mutually
perpendicular eigenvectors v1,v2,v3 as

varn(q) = a2
λ1 +b2

λ2 + c2
λ3 (11)
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w
S

B+

B-

n

q

ρ(w)

τρ(w)

Figure 1: The query point q projects
as far as τρ(w) to w ∈ S which yields
two osculating balls B+,B− of ra-
dius ρ(w) whose complement bounds
the surface. The value τ indicates the
magnitude of this projection in units of
local feature radius.

q

x

y
 n

Figure 2: The two mutually perpen-
dicular planes pass through q paral-
lel to the y-axis, intersecting the ball B
of radius ρ(w) in an hourglass shape.
Data points pi in the hourglass region
below (or above) the two planes in-
crease varn more, whereas data points
above only one of the planes increase
varx more.

x

y

w
R1

R2

R2

R3

R3

R4

R4

G1G1G2 G2

Figure 3: Top view of S around w. The
regions Ri cover the hourglass region
between the two dashed lines where
data points contribute more to varn
than varx . Points outside the hour-
glass are only partially measured by
the regions Gi but nevertheless over-
come even the overestimate due to Ri
overlap.

where a = nT v1,b = nT v2 and c = nT v3.

We can use this relationship to show that when the small-
est eigenvalue of the weighted covariance matrix is not
unique, then the direction of least variance is also not unique.

Lemma 2 Let covθ (q) be a weighted covariance matrix with
unit eigenvectors v1,v2, and v3 and eigenvalues λ1 = λ2 ≤
λ3. Then for any unit vector v there exists a perpendicular
unit vector w such that varv(q)≥ varw(q).

Proof Without loss of generality, we rotate the coordinate
system so the eigenvectors vi are the coordinate axes. Then
given any unit vector v = (a,b,c) such that |c| 6= 1, the vector
w = 1/

√
a2 +b2(−b,a,0) is perpendicular. (If |c| = 1 then

w can be any unit vector of the form (a,b,0).) Then

varv(q) = a2
λ1 +b2

λ2 + c2
λ3

≥ a2
λ1 +b2

λ2 + c2
λ1

= λ1

= varw(q).

Thus a weighted covariance with two equal smallest
eigenvalues indicates the existence of a plane where the vari-
ance is minimal. The contrapositive of this statement pro-
vides a sufficiency condition to guarantee the smallest eigen-
value of a covariance matrix is unique.

Theorem 1 If the directional weighted variance varv(q)
for some unit vector v, is strictly less than the directional
weighted variance of any perpendicular unit vector w, then
the smallest eigenvalue of covθ (q) is unique.

Our MLS sampling condition now relies on showing for

each query point q in an adaptive tubular neighborhood of
the surface S that we can find a normal direction whose
weighted variance is less than that of any perpendicular tan-
gent direction.

6. The Sampling Theorem

In this section, we project the query point q onto a surface
point w ∈ S in a normal direction n extending from w to the
center of an osculating ball of radius ρ(w), as illustrated by
Fig. 1. Theorem 1 shows that the weighted normal does not
vanish at a given location if we can find a direction whose
weighted variance is strictly less than the weighted variance
in any perpendicular direction. We show that for the point w,
the variance in the normal direction n is strictly less than in
any direction tangent to S at w. We derive an upper bound
of the weighted variance in the normal direction n, and a
lower bound of the weighted variance in an arbitrary chosen
tangent direction x. We then determine sampling conditions
under which the least possible variance in the x-direction
still exceeds the greatest possible variance in the normal di-
rection, which by Theorem 1 shows the normal direction is
unique and well defined at q.

In order to show varn(q) < varx(q), we need to partition
our data points pi into ones that increase varn more versus
ones that increase varx more. From the definition of direc-
tional variance (9), this competition boils down to the mag-
nitude of the n− or x− component of (pi−q). We thus con-
struct two separating planes

P± = {p ∈ R3|nT (p−q) =±xT (p−q)} (12)
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through the query point q parallel to the y = n× x axis, as
drawn in Fig. 2. Data points below (or above) both planes
will increase varn(q) more than varx(q).

We allow the query point q to be as much as τ times the
local feature size (at w = proj(q)) above (or below) the sur-
face S, and the surface S can recede away from these planes
by as much as is allowed by the curvature of w’s medial ball
as shown in Fig. 2. Due to this recession, the region on this
ball below both planes (corresponding to points that increase
varn more than varx forms an hourglass shape (bounded by
a pair of opposing circular arcs) whose x-width grows as the
magnitude of y increases.

We project this hourglass region onto the lower medial
ball B−, and bound it with the union of a collection of
“risky” regions Ri, indicated in red in Fig. 3. To be on the
safe side we seek to find a limit of the maximum possible
effect of these “risky” samples. Hence Sec. 6.2 defines the
regions Ri and uses them to overestimate the number of sam-
ples and their contribution to varn . The contribution of these
“risky” points are countered by “good” samples that do not
fall below (or above) both planes. Sec. 6.3 underestimates
their number and contribution to both varx and varn by ex-
amining only their subsets in the “good” regions Gi, shown
in green in Fig. 3.

The upper bound of varn computed via Ri and Gi and the
lower bound of varx computed via Gi are only computed
within a radius of 1/4 of the local feature size of w. “Far”
samples outside this radius are discussed in Sec. 6.4 where
their contribution is ignored by the lower bound of varx and
an overestimate of all of their contributions (regardless of
their position with respect to the separating planes) are added
to the upper bound of varn .

6.1. Upper Bounds of Data Point Displacement

Before we can construct the Ri regions bounding the data
points used in the upper bound of varn, we first need to de-
termine the geometry of the hourglass shape obtained by
slicing the lower (or upper) medial ball by the two sepa-
rating planes. This geometry is revealed by computing how
far a point descends from the tangent plane of a sphere as a
function either of the distance along the tangent plane or the
Euclidean distance from the descended point to the plane’s
point of tangency. Because the surface S lies between the
two medial balls of radius ρ(w) that osculate the surface at
w, this spherical displacement serves as an upper bound on
the distance from the surface to the tangent plane.

Let w be a surface point with local feature size ρ. Then a
surface point p∈ S projecting perpendicularly to w’s tangent
plane to a point x units away from w can be no farther than

max |z|= ρ −
√

ρ2− x2 (13)

from the tangent plane, using the Pythagorean theorem on
the configuration shown in Fig. 4.

x
d

x

p

w

z

ρ

φ

α

θ

ρ√ρ²-x²

Figure 4: Geometry for determining the maximum vertical
displacement z a point p can extend from the tangent plane
of a surface point w with local feature size ρ, in terms of
the distance d = ||p−w|| in space or the length x along the
tangent plane.

To find the maximum z displacement given instead the
distance d = ||p−w||, we first use the law of cosines on
the isosceles triangle to find cosα = 1−d2/(2ρ2) and angle
sums to find α = 2θ . Then

max |z|= d sin
α

2
= d

√
1− cosα

2
=

d2

2ρ
. (14)

6.2. Upper Bound on the Number of “Risky” Samples

The query point q can be as much as τρ(w) units above its
projection w ∈ S. The planes P± descend with unit slope,
which creates an affine correspondence between altitude and
horizontal offset of |x|= τ + |z|. Using (14) to maximize |z|
given the Euclidean distance to w, the hourglass shape H is
defined on the medial ball B− as

H = {p ∈ B−| |xT p| ≤ τρ(w)+
||p−w||2

2ρ(w)
}. (15)

We cover H with the regions Ri ⊂ B− defined as

Ri =

{
p ∈ B−

∣∣∣∣∣ (i−1)∆r ≤ ||p−w|| ≤ i∆r,

|xT p| ≤ (i∆r)2

2ρ(w) + τρ(w)

}
(16)

for positive integers i.

We now need an upper bound on the number of samples
in Ri which we will use to compute an upper bound of varn .

Lemma 3 Let P(Ri)⊂ P be the subset of the (ε,δ )-samples
of S lying between B− and B+ that project in the n-direction
onto Ri. Then

|P(R1)| ≤
⌈

2
∆b2

⌉
d∆red∆r2 +2τe, (17)

∆b =
√

2δ (ρ(w)− i∆r)
√

ρ(w)2−2ρ(w)i∆r
i∆r
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and for i > 1,

|P(Ri)| ≤
⌈

1
∆b2

⌉
×⌈

2i∆r−2
√

?2− (τ + i2∆r2/2)2
⌉
×

d(i∆r)2 +2τe, (18)

? =

√
(i−1)2∆r2− (i−1)4∆r4

4ρ(w)4 . (19)

Proof Let Si ⊂ S be the portion of the surface between B−
and B+ that projects in the n-direction onto Ri. The set P is
an (ε,δ )-sampling of S, so we seek to find a finer cover of
the surface patch Si with balls of size less then δρmin The
number of balls in this finer cover will serve as an upper
bound of the number of samples in P(Ri).
If the region Si was flat we could cover it with balls centered
at the vertices of a rectilinear grid of cell size

√
2δρm, with

ρm = mins∈Si ρ(s). Since Si may not be flat, we will need to
compress the covering grid using a Lipschitz constant on its
altitude function over the tangent plane at w.
From (16) we find ||w−s|| ≤ i∆r, ∀s∈ Si. Since local feature
size is Lipschitz with constant one, it follows that ρ(s) ≥
ρ(w)− i∆r, ∀s ∈ Si. We can construct from (13) an altitude
equation with the most severe slope allowed given ρ(s) =
ρ(w)− i∆r as

z(x) = (ρ(w)− i∆r)−
√

(ρ(w)− i∆r)2− x2 (20)

which yields the slope

z′(x) =
−x√

(ρ(w)− i∆r)2− x2
. (21)

Since |z′| increases monotonically we find its maximum over
Si occurs when x = i∆r, yielding

Lip
Si

z(x) =
i∆r√

ρ(w)2−2ρ(w)i∆r
. (22)

Thus a uniform rectilinear grid of balls spaced

∆b =
√

2δ (ρ(w)− i∆r)
√

ρ(w)2−2ρ(w)i∆r
i∆r

(23)

apart suffices to cover Si.
Fig. 3 shows each Ri consists of two components, one above
and one below the x-axis. The projected area of an Ri’s upper
component is included in the tangent plane rectangle

[
− i2∆r2

2
− τ,

i2∆r2

2
+ τ

]
×

√
?2−

(
i2∆r2

2
+τ

)2

, i∆r

 ,

as shown in Figure 5. Notice that unlike its near side (ymin),
we have not foreshortened the far side of the rectangle
(ymax = i∆r) because we are counting samples on its projec-
tion onto the surface S, which could slope less and perhaps
even be flat.

τ + (i∆r)²/2
i∆r

Ri(i-1)∆r
(i-1)²∆r²/2ρ

tangent
plane

side view top view

ymin

ρ





Figure 5: Derivation of a bounding rectangle of the projec-
tion of Ri in the z-direction onto the tangent plane at w.

6.3. Lower Bound on the Number of “Good” Samples

All samples outside the hourglass shape H contribute more
to varx than to varn. Rather than considering the complete
surface outside H we restrict ourselves to a smaller subset
for which we bound the contribution to the variances with
relative ease. As indicated in Figure 3 the Gi’s are defined as

Gi =
{

p ∈ B−

∣∣∣∣ ||p−w||2− (nT p)2 ≤ 2i+1∆r,
|xT p| ≥ 2i∆r

}
(24)

By definition Ri is outside H and we now need a lower bound
on the number of samples in Ri. This bound is used in com-
puting the lower bound on varx and also must be considered
in the upper bound of varn.

Lemma 4 Let P(Gi)⊂ P be the subset of the (ε,δ )-samples
of S lying between B− and B+ that project in the n-direction
onto Gi. Then

|P(Gi)| ≥

⌊
2π−3

√
3

6 (2(i+1)∆r)2

πε2ρ2
M

⌋
, (25)

ρM = ρ+

√
2ρ2−2ρ

√
ρ2−4i+1∆r2, (26)

where ρ = ρ(w) and ρM denotes the largest possible feature
size over the region Gi (not the entire surface S).

Proof The numerator is the area of Gi and the denominator
includes an upper bound ρM of the local feature size of S
over Gi using the Lipschitz bound on the local feature size
and the results of Sec. 6.1.

We will later also need the following upper bounds.

Lemma 5 For a sample p ∈ P(Gi),

|nT (q− p)| ≤ τ +ρ −
√

ρ2−4i+1∆r2, (27)

||w− p||2 ≤ 2ρ −2
√

ρ2−4i+1∆r2, (28)

||q− p||2 ≤
(

τ+ρ−
√

ρ2−4i+1∆r2
)2

+4i+1
∆r2. (29)
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Proof The rather straightforward application of (13) to the
geometry of Gi on B−.

6.4. Upper Bound of varn for “Far” Samples

We will use the regions Ri and Gi to analyze samples inside
a ball about q of radius one-fourth the local feature size of w.
Outside this ball, we will ignore the samples when comput-
ing varx, but will use the following lemma to overestimate
their effect on varn .

Lemma 6 Let B ρ

4
= B(q,ρ(w)/4). Then

varn(P\B ρ

4
)≤ 2

δ 2ρ3
min

∫
∞

ρ/4−2ρmin

r4
θ(r)dr. (30)

Proof We fill space with a ridiculously large number of sam-
ples by placing them on a series of concentric spherical
shells. The maximum number of samples P(r) possible on
one of these shells ∂B(q,r) is

|P(r)| ≤ 4πr2

πδ 2ρ2
min

(31)

whose numerator is the surface area of the shell and denom-
inator is the surface area consumed by an (ε,δ )-sample (re-
call Lemma 1). We can thus compute an upper bound of varn
for the shell ∂B(q,r) as

varn P(r)≤ 4r2

δ 2ρ2
min

r2
θ(r) (32)

where the second factor r2 bounds the (nT (q− p))2 factor of
(9) by pretending all of the samples lie along the z-direction
from q.
Because of the (ε,δ )-sampling, the shells cannot be spaced
closer than 2ρmin from each other. We can thus bound the
contribution to varn of all samples outside B ρ

4
as

varn(P\B ρ

4
)≤

∞

∑
i=0

varn P(ρ/4+2iρmin) (33)

=
4

δ 2ρ2
min

∞

∑
i=0

(ρ/4+2iρmin)4
θ(ρ/4+2iρmin), (34)

≤ 4
δ 2ρ2

min

∫
∞

0
(ρ/4+2(i−1)ρmin)4

θ(ρ/4+2(i−1)ρmin)di,

(35)
which by a change of variables equals (30).

6.5. Main Theorem

Theorem 2 Let S be a surface of bounded positive local
feature size ρmax/ρmin ≤ α, sampled by an (ε,δ )-sampling
of points p ∈ P no farther than τρ(w) from S, where w
is the closest point on S to p. Then for α ≤ 1000,ε ≤
1/200,δ ≥ 1/2000, and τ ≤ 1/250, the MLS surface con-
structed with an adaptive Gaussian kernel of standard devi-
ation σ = ρ(w)/25 on the samples P is well defined in that
its normals never vanish over the τ neighborhood of S.

Proof Let w = proj(q) be the closest point on S to a query
point q. Without loss of generality assume n = (0,0,1) to be
the normal of S at w, ρ(w) = 1, and x = (1,0,0) represent an
arbitrarily chosen unit vector perpendicular to n.
We will prove the result by contradiction, by first assuming

varx(q)≤ varn(q). (36)

We now split the evaluation of the variances inside B ρ

4
and

outside B ρ

4

varx(P∩B ρ

4
)≤ varn(P∩B ρ

4
)+varn(P\B ρ

4
), (37)

ignoring the samples outside B ρ

4
for varx, which makes the

left side smaller and leaves the right side unchanged. We
then restrict both sides to the regions R = {. . . ,Ri, . . .} and
G = {. . . ,Gi, . . .} defined earlier

|G|

∑
i=0

varx(Gi)≤
|G|

∑
i=0

varn(Gi)+
|R|

∑
i=1

varn(Ri)+varn(P\B ρ

4
),

(38)
ignoring the samples not above Ri on the left side which
makes it smaller yet. The number of regions in R is |R| =
d 1

4∆r e, and in G is |G|= d− log2(4∆r)−1e.
Now we bound the remaining terms. We assume a minimum
number of samples in each Gi, since for each sample p ∈
Gi, |nT (q− p)| ≤ |xT (q− p)|, which leads to the lower bound

varx(Gi)≥ |P(Gi)|4i
∆r2

θ(rmax) (39)

using the minimal number of samples, the minimal distance
in x direction, and the smallest possible weight, obtained by
setting

rmax =

√(
τ+ρ−

√
ρ2−4i+1∆r2

)2
+4i+1∆r2. (40)

Alternatively the upper bound

varn(Gi)≤ |P(Gi)|
(

ρ −
√

ρ2−4i+1∆r2 + τ

)2
θ

(
2i

∆r
)

,

(41)
uses again the fewest possible samples, but the maximal dis-
tance in the n direction and the maximum weight. Likewise
the upper bound

varn(Ri)≤ |P(Ri)|
(

i∆r2

2
+ τ

)2

θ((i−1)∆r), (42)

uses the largest number of samples, maximal distance, and
maximal weight.
Setting ∆r = 1

128 and using the parameter settings provided
by the Theorem statement, the evaluation of the inequality
(via a Mathematica program) leads to the contradiction

0.000849593 ≤ 0.000707577. (43)

7. Conclusion

We have shown that given a dense enough sampling the nor-
mal estimations based on the covariance matrix are well de-
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fined in a neighborhood around the original samples and so
is the point set surface construction. The results suggest that
normal directions should not be computed any distance away
from the samples as they might not be well defined in which
case the result is random noise.

While the proof is nearly exclusively design to show the
existence of proper sampling conditions, most approxima-
tions (except varn(P\B ρ

4
)) are tight enough to suggest some

practical implications. An important but unavoidable differ-
ence to traditional methods is that the point set surface used
here relies on an adaptive σ . The rather small value of σ

is mostly due to the crude approximation of varn(P \B ρ

4
).

Ignoring the contribution outside B ρ

4
could increase σ and

decrease the sampling density. In practice θ is often evalu-
ated over finite support and P\B ρ

4
will likely fall outside its

domain. Finite support would also allow remove the bound
on the local feature size.

Even more restrictive than σ is the small τ, which seems
to be less of an artifact of the approximations and more of
an indication of how unstable the covariance matrix is at
estimating the normal. τ could be raised if σ was increase
accordingly. For example τ = 0.01 and σ = 0.2 are pos-
sible values if one ignores varn(P \ B ρ

4
). But raising σ to

nearly the radius of B ρ

4
increases the contribution of points

outside B ρ

4
significantly. Even more sophisticated estima-

tions of varn(P \B ρ

4
) would cause a comparatively large σ

to likely invalidate the proof. One practical solution is to
use n(a(q)) instead of n(q) as it is implemented in the ex-
tremal surface extension of PointShop3d. This would require
only a(q) to lie inside T which would allow much greater
distances of q to S. Unfortunately, we have yet to formally
bound the distance of a(q) from the surface.
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