Eurographics Symposium on Parallel Graphics and Visualization (2007)
Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors)

Exploiting Parallelism in Physically-Based Simulations on
Multi-Core Processor Architectures
Simon Pabst!

Bernhard Thomaszewski' Wolfgang Blochinger2

I'WSI/GRIS, Universitit Tiibingen, Germany
2 Symbolic Computation Group, Universitit Tiibingen, Germany

Abstract

As multi-core processor systems become more and more widespread, the demand for designing efficient parallel
algorithms propagates also into the field of computer graphics. This is especially true for the physically-based
simulation, which is notorious for expensive numerical methods. In this paper we explore possibilities for acceler-
ating these algorithms on modern multi-core architectures. As an application we focus on physically-based cloth
simulation. In this context, two distinct problems can be identified: the physical model and the collision handling
stage — both bearing potential bottlenecks for the simulation. From the parallelization point of view these two
components are substantially different. The physical model can be treated efficiently using static problem decom-
position. The collision handling problem, however, requires a different approach, due to its dynamically changing
structure. We address this problem using multi-threaded programming with fully dynamic task decomposition.
Furthermore, we propose a new task splitting approach based on a robust work estimate. The associated data is
derived from temporal coherence. Altogether, the combination of different parallelization techniques leads to a
concise and yet versatile framework for highly efficient physical simulation.

Categories and Subject Descriptors (according to ACM CCS): C.1.4 [Processor Architectures]: Parallel Architec-
tures, G.1.3 [Numerical Analysis]: Numerical Linear Algebra, G.4.5 [Mathematical Software]: Parallel and Vector

Implementations, 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Physically-based simulation is an important research area in
computer graphics and has a broad range of applications.
The most prominent examples are fluid, soft body, and cloth
simulation. All of these applications utilize computationally
intensive methods, and runtimes for realistic scenarios are
often excessive. Of course, for the physically more accu-
rate variants this situations is further aggravated. Most of the
computation time is spent on two stages, time integration
and collision handling. In the following, we will therefore
consider these two major bottlenecks, which are present in
almost every physically-based simulation. Although we will
focus on cloth simulation in this work, the techniques pro-
posed herein transfer to many other applications.

1.1. Implicit time integration

Oftentimes, the physical model at the centre of a specific
simulator gives rise to stiff differential equations with re-
spect to time. Due to stability reasons implicit schemes are
widely accepted as the method of choice for numerical time
integration (cf. [BW98]). Implicit schemes require the solu-
tion of a (non-)linear system at each time step. As a result

(© The Eurographics Association 2007.

of the spatial discretization, the matrix of this system is usu-
ally very sparse. There are essentially two alternatives for
the solution of the system. One is to use an iterative method
like the popular conjugate gradients (cg) algorithm [She94].
Another is to use a direct solver based on some sort of factor-
ization. The cg-method is more popular in computer graph-
ics as it offers much simpler user interaction, alleviates the
integration of arbitrary boundary conditions and allows bal-
ancing accuracy against speed. We will therefore focus on
the cg-method in this work.

1.2. Collision Handling

For realistic scenes it is necessary to model the interaction of
deformable objects with their virtual environment. This in-
volves the detection of proximities (collision detection) and
the reaction necessary to keep an intersection free state (col-
lision response). In the remainder, we refer to these two com-
ponents collectively as collision handling. We usually distin-
guish between external collisions (with other objects in the
scene) and self-collisions. For each of these types different
variants of algorithms are usually used. Even with common
acceleration structures (see Sec. 3.2) these algorithms are
still computationally expensive. For complex scenarios with

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

http://www.eg.org
http://diglib.eg.org

70 B. Thomaszewski et al. / Exploiting Parallelismin Physically-Based Smulations on Multi-Core Processor Architectures

complicated self-collisions the collision handling can easily
make up more than half of the overall computation time. It
is therefore a second bottleneck for the physical simulation
and hence deserves special attention.

2. Related Work

Parallel Numerics. The parallel solution of large sparse lin-
ear systems is a well explored and yet active field in high
performance computing. Most of the work from this field is
focused on problem sizes which are considerably larger than
the ones dealt with in computer graphics. Therefore, usual
techniques do not necessarily translate directly to our appli-
cation area. Generally, good overviews on parallel numerical
algebra can be found in the textbook by Saad [Saa03] and the
report compiled by Demmel et al. [DHv93]. The parallel im-
plementation of sparse numerical kernels like the ones used
in this work were investigated e.g. by Hallaron [O’H97].
Special ordering strategies explored node ordering strate-
gies and programming paradigms for sparse matrix compu-
tations. Parallel preconditioning was, however, not consid-
ered in these two works.

Parallel Cloth Simulation. Previous research on parallel
cloth simulation addressed shared address space [RRZ00,
LGPTO1, GRR*05] as well as message passing-based ar-
chitectures [ZFV02,ZFV04, KB04, TB06]. Since this paper
specifically deals with multi-core CPUs, we will restrict our
discussion of related work to approaches designed for shared
address space machines.

Lario et al. [LGPTO1] describe the parallelization of a
cloth simulator which employs multilevel techniques. The
authors focus on the cloth motion modeling stage and do
not address parallel collision detection. Particularly, they
present a comparison between message passing-based and
thread-based parallelization of multilevel methods on differ-
ent shared address space architectures.

Romero et al. [RRZ00] present a parallel cloth simulator
designed for non-uniform memory access (NUMA) archi-
tectures. Their work addresses parallelization of the physical
modeling phase and of the collision handling phase. While
the approach taken for the modeling phase is similar to our
work, the way collision handling is carried out differs sig-
nificantly. In their work, parallel collision handling is imple-
mented by a data-parallel strategy which partitions lists of
potentially colliding primitives. These lists are maintained
by heuristics. Bounding volume hierarchy (BVH) tests are
only carried out to initialize the lists and in case the size of
the lists exceeds a given threshold. By contrast, our approach
to collision handling aims at robustness and accuracy. As a
consequence, we perform a complete series of BVH tests
in every collision handling phase. However, this strategy re-
quires parallelizing the BVH testing procedure. Due to the
hierarchical and irregular nature of these tests, we apply a

task-parallel method which is based on fully dynamic prob-
lem decomposition.

The work of Gutierréz et al. [GRR*05] draws spe-
cial attention to histogram reduction computations which
can be found at the core of numerical simulation codes,
like cloth simulation. The authors present a framework for
partitioning-based methods on NUMA machines which ex-
ploits data affinity. In the context of this framework, several
methods for parallel reduction are applied to the force com-
putation loop of a cloth simulator and compared with each
other. While their work concentrates on optimizing a specific
aspect, our approach encompasses all of the computation in-
tensive components of physically-based simulation.

3. Physically-based Cloth Simulation

As already stated in the introduction, the methods described
in this article apply to any specific approach provided it uses
implicit time integration for the physical model and bound-
ing volume hierarchies for the collision handling stage. De-
tails on the modules employed in this work are given below.

3.1. Physical Model

The basis for the physical model is a continuum mechan-
ics formulation of linear elasticity theory [Cia92]. The cen-
tral quantities in this case are strain, which is a dimension-
less deformation measure, and stress, which is a resulting
force per area. These two variables are related to each other
through a so called constitutive law, which in our case is sim-
ply linear. The resulting partial differential equation (PDE)
is discretized using a linear finite element approach as de-
scribed in [EKS03]. For dynamic simulation, inertia effects
have to be included as well as viscosity and possibly external
forces. Finally, the problem of implicit time integration can
be defined as follows. Let Y be a vector of size 6n where n is
the number of nodes in the system. Y is the concatenation of
positions and velocities of the nodes. The first order implicit
Euler integrator now seeks to find Y (¢ + /) such that

Y(t+h) =Y (t) +hf(t,x(t +h),v(t + 1))+ O(K*) (1)

where f is the derivative of the state vector Y. Generally, f
is a nonlinear function in terms of ¥ and the system has to
be solved using Newton’s method. In any case this breaks
down to (repeatedly) solving linear systems. In our particu-
lar case, Eq. (1) is linear and we therefore only need to solve
one linear system per time step. Our approach to the parallel
solution of this system using the method of conjugate gradi-
ents is described in Sec. 4.

3.2. Collision Handling

Collision Detection. As a first step, possible interferences
have to be detected for the deformable objects in the scene.
Since all objects are represented as polygonal meshes, this

(© The Eurographics Association 2007.

B. Thomaszewski et al. / Exploiting Parallelismin Physically-Based Smulations on Multi-Core Processor Architectures 71

could be accomplished by testing every pair of primitives
(i.e., polygons) geometrically for intersection. Because the
average runtime of this naive approach is unacceptably high,
BVHs are usually used for acceleration [THM™*05]. In this
way, non-intersecting parts are quickly ruled out for a given
object pair. Such a hierarchy consists of two components: a
tree representing the topological subdivision of the object
into increasingly finer regions and bounding volumes en-
closing the geometry associated with every node in the tree.
In our implementation we use discrete oriented polytopes
(k-DOPs) as bounding volumes (see [KHM*98, MKEO03]).

Testing two objects for interference using BVHs is a recur-
sive process. First, the bounding volumes associated with the
roots of the two hierarchies are tested for overlap. Only if
they overlap, the respective children are tested recursively
against each other. Finally, the leaves of the tree need to be
checked for intersection using exact geometric tests. If a test
signals close proximity or intersection, an appropriate colli-
sion response has to be generated next.

Collision Response. Generally speaking, the task of the
collision response stage is to prevent intersections. There
are various methods to achieve this, ranging from motion
constraints over repulsion forces to stopping impulses. Con-
straints are simple to enforce and do a good job when it
comes to preventing intersections with external objects in
rather simple scenes. However, releasing constraints is usu-
ally cumbersome and often leads to nodes being arbitrarily
fixed at some point in space. This is particularly disturb-
ing for self-collisions and literally breaks the simulation. In
our implementation we therefore use a combination of re-
pelling forces and stopping impulses (see [BFA02]). If the
distance between two approaching objects falls below a cer-
tain threshold, we apply a repulsion force. If the objects can-
not be stopped in this way during the next few time steps,
we apply stopping impulses which reliably prevent immi-
nent intersections. While this is a straightforward concept in
the sequential case, there are some important implications
for parallel implementations. We will discuss these issues in
Sec. 5.

4. Parallel Solution of Sparse Linear Systems

We assume that a sparse linear system of the form Ax = b
is to be solved up to some residual tolerance using the cg-
method. The number of necessary iterations and therefore
the speed of convergence depends on the condition number
of the matrix A. Usually, this condition number is improved
using a preconditioning matrix M leading to a modified sys-
tem

M 'Ax=M"'b,

where M1 A is supposed to have a better condition number
and M~ ! is fairly easy to compute. The choice of an ap-
propriate preconditioner is crucial because it can reduce the

(© The Eurographics Association 2007.

iteration count substantially. The setup and solution of the
linear system now breaks down to a sequence of operations
in which (due to their computational complexity) the sparse
matrix vector multiplication (SpMV) and the application of
the preconditioner are most important. As a basis for the ac-
tual parallelization we will consider problem decomposition
approaches subsequently.

4.1. Problem Decomposition

In the following, we assume the compressed row storage
(CRS) format for sparse matrices in which nonzero entries
are stored in an array along with a row pointer and a column
index array (see [Saa03]). The most intuitive (and abstract)
way to decompose the SpMV operation into a number of
smaller sub-problems is to simply partition the matrix into
sets of contiguous rows. The multiplication can then be car-
ried out in parallel among the sets. This simple approach
has several disadvantages. First, the matrices we deal with
are always symmetric (due to the underlying PDE). Hence,
only the upper triangular part, including the diagonal, has to
be stored. This leads to smaller memory requirements for
the data as well as for the index structure. In its sequen-
tial version, the resulting numerical kernel is more efficient
(cf. [LVDYO04]): it visits every matrix entry only once, per-
forming both dot products and vector scalar products. How-
ever, the access pattern to the solution vector is not as local
as for the non-symmetric case, i.e., entries from different sets
need to be written by a single processor. The required syn-
chronization would make a direct parallel implementation of
the symmetric SpMV kernel inefficient. Another reason why
the above decomposition is inadequate is that it does not take
into account two other important components of linear sys-
tem solution, matrix assembly and preconditioning.

Methods based on domain decomposition are better suited
for this case. They divide the input data geometrically
into disjoint regions. Here, we will only consider non-
overlapping vertex decompositions, which result in a par-
titioning P of the domain Q into subdomains €2; such that
Q=U;Q;and Q;NQ; = (@, for i # j. Decompositions can
be obtained using graph partitioning methods such as Metis
[KK96] in our case. An example of this can be seen in Fig.
1, which also shows a special vertex classification. This will
be explained in the next section.

4.2. Parallel Sparse Matrix Vector Multiplication

Let n; o be the number of local vertices belonging to par-
tition i and let V; be the set of corresponding indices. These
vertices can be decomposed into n;,, internal vertices and
npnq interface or boundary vertices, which are adjacent to
nexe vertices from other partitions (see Fig. 1). If we reorder
the vertices globally such that vertices in one partition are
enumerated sequentially we obtain again a partitioning of
the matrix into a set of contiguous rows. The rows a; g to a; ,

72 B. Thomaszewski et al. / Exploiting Parallelismin Physically-Based Smulations on Multi-Core Processor Architectures

Matrix structure:

- a
-
L] o &
o u
L N —%
I RS \ A.'.-.--
A('.\'l
Source vector:
+ + n]’m‘ n:'(r
® internal vertices —_—

m boundary vertices

— ——

external vertices M My

Figure 1: Decomposition of a mesh into four disjoint par-
titions indicated by different colours. The associated vertex
ordering leads to a special structure of the matrices and the
source vector.

of matrix A where i € V; have the following special struc-
ture: the block A; ;.. defined by {a;,|l € V;,m € V;} and
lying on the diagonal of A is symmetric. The nonzero en-
tries in this block describe the interaction between the local
nodes of partition i. More specifically, this means that when
nodes / and m are connected by an edge in the mesh, there
is a nonzero entry 4y, in the corresponding submatrix of A.
Besides this symmetric block on the diagonal there are fur-
ther nonzero entries a;, where [€ V; is an interface node and
e ¢ V;. These entries describe the coupling between the local
interface nodes and neighbouring external nodes. The multi-
plication can be carried out efficiently in parallel if we adopt
the following local vertex numbering scheme (cf. [Saa03]).
The local vertices are reordered such that all internal nodes
come before the interface nodes. For further performance en-
hancement, a numbering scheme that exploits locality (such
as a self avoiding walk [OBHLO2]) can be used to sort the
local vertices. Then, external interface nodes from neigh-
bouring partitions are locally renumbered as well. Let Aey
be the matrix which describes the coupling between internal
and external interface nodes for a given partition. Notice that
Aexr 1s a sparse rectangular matrix with np,,; rows. With this
setup the multiplication proceeds as follows

L. y(ovnloc) =Ajoe 'x(07nloc')
2. y(int, Mioe) = Y(int s Mioe) + Aext - Xext (0, 1ext)

The first operation is a symmetric SpMYV, the second one is
a non-symmetric SpMV followed by an addition. Both these
operations can be carried out in parallel among all partitions.
This decomposition is not only used for the SpMV kernel
but also as a basis for the parallel matrix assembly, precon-
ditioner setup and preconditioner application.

4.3. Parallel Preconditioning

In order to make the cg-method fast, it is indispensable to
use an efficient preconditioner. There is a broad variety of
different preconditioners ranging from simple diagonal scal-
ing (Jacobi preconditioning) to sophisticated multilevel vari-
ants. For the actual choice one has to weigh the time saved

from the reduced iteration count against the cost for setup
and repeated application of the preconditioner. Additionally,
one has to take into account how well a specific precondi-
tioner can be parallelized. Unfortunately, designing efficient
preconditioners is usually the most difficult part in the par-
allel cg-method [DHv93]. As an example, the Jacobi pre-
conditioner is very simple to set up and apply even in par-
allel but the reduction of necessary iterations is rather lim-
ited. Preconditioners based on (usually incomplete) factor-
ization of the matrix itself or an approximation of it are more
promising. One example from this class is the SSOR precon-
ditioner. It is fairly cheap to set up and leads to the solution
of two triangular systems. For the sequential case, this pre-
conditioner has proven to be a good choice in terms of ef-
ficiency [HEO1]. However, parallelizing the solution of the
triangular systems is very hard. Even if it is not possible
to decouple the solution of the original triangular systems
into independent problems we can devise an approximation
with the desired properties. Let A be the block diagonal ma-
trix with block entries A;; = A j,c, i.€. the external matrices
Aex are dropped from A to give A. Setting up the SSOR-
preconditioner on this modified matrix leads again to the
solution of two triangular systems. However, solving these
systems breaks down to the solution of decoupled triangular
systems corresponding to the A; j,. blocks on the diagonal.
This means that they can be carried out in parallel for every
partition. For reasons of data locality we use n smaller SSOR
preconditioners constructed directly from the A; ,-blocks.
Approximating A with A means a comparably small loss of
information which in turn leads to a slightly increased itera-
tion count. However, in the test cases we performed this in-
crease was small compared to the speedup obtained through
parallelization. As a result, the preconditioner scales very
well both in terms of setup and application (see Sec. 6.2).

4.4. Optimizations

Besides the points that were treated above a further aspect
restricts the efficiency of a parallel implementation of the
cg-method. Dense matrix multiplications usually scale very
well since they have regular access patterns to memory and
a high computational intensity. For the SpMV kernel, how-
ever, the computational intensity per data element is rather
modest and the locality of data accesses to the source vector
is low. The performance of the SpMV algorithm is there-
fore mostly limited by memory bandwidth and cache per-
formance. This fact is also reflected by our experiments (see
Sec. 6.2), which indicate that the optimal speedup using four
cores is not reached. This can be attributed to the fact that
two cores per processor share the same memory interface.
Because of this, it is important to improve data locality and
thus cache performance. A good way to achieve this is to
exploit the natural block layout of the matrix as determined
by the underlying PDE: the coupling between two vertices is
described by a 3x3 block — therefore nonzero entries in the
matrix occur always in blocks. This blocked data layout al-

(© The Eurographics Association 2007.

B. Thomaszewski et al. / Exploiting Parallelismin Physically-Based Smulations on Multi-Core Processor Architectures 73

ready compensates for a lot of the inefficiency. An additional
benefit can be achieved using single precision floating point
data instead of double precision. This reduces the necessary
matrix data (not including index structure) transferred from
memory by a factor of two. We found that with only minor
modifications even the largest examples did not show sta-
bility problems using single precision arithmetic. From our
measurements we draw the conclusion that these modifica-
tions together are sufficient to yield satisfying speedups (see
Sec. 6.2).

5. Parallel Collision Handling

From the parallelization point of view, the problem of colli-
sion handling differs substantially from the physical model.
Collisions can be distributed very unevenly in the scene and
their (typically changing) locations cannot be determined
statically. This is why the naive approach of letting each
processor care for the collisions of its own partition can
lead to considerable processor idling, which seriously affects
the overall parallel efficiency. Therefore, a dynamic problem
decomposition is mandatory. Compared to previous work
aimed at distributed memory architectures [TB06], our ba-
sic parallelization strategy is similar. However, the shared-
memory setting enables us to set up heuristics exploiting
temporal and spatial coherence. In this way, we can effec-
tively control thread creation overhead.

5.1. Basic Problem Decomposition

The recursive collision test of two BVHs can be considered
as a depth-first tree traversal. For inducing parallelism, we
implemented this procedure using a stack which holds indi-
vidual tests of two BVs. During the traversal, the expansion
of a node yields n additional child nodes. We process one
node immediately while the others are pushed onto the stack.
The traversal goes on downwards until a leaf is reached. Up-
ward traversal begins by processing elements from the stack.
In this way, all of the nodes in the tree are visited. The basic
idea to dynamically generate parallelism is now to remove
nodes from the stack in an asynchronous way and to create
tasks from them. One or more tasks can then be assigned to
a thread and executed on an idle core.

Unlike in the distributed memory setting we do not have
to care for load balancing explicitly. As long as there are
enough threads ready for execution the scheduler will keep
all cores busy. However, for problems with high irregularity,
like parallel collision handling, it is generally impossible to
precisely adjust the amount of logical parallelism to be ex-
ploited to the amount of available parallelism (i.e., idle pro-
cessors). Especially on shared memory architectures, thread
creation overhead can considerably contribute to the overall
parallel overhead. Therefore, an over-saturation with threads
has to be avoided as well.

In our approach, we minimize thread creation overhead on

(© The Eurographics Association 2007.

two levels. On the algorithmic level, we employ a heuristics-
based approach which prevents threads with too fine a gran-
ularity from being generated. On the implementation level,
we decouple the process of thread creation and thread exe-
cution. The next two paragraphs explain these optimizations
in more detail.

5.2. Controlling Task Granularity

For effectively controlling the granularity of a task, we need
a good estimate of how much work corresponds to a cer-
tain task. The computational cost for carrying out a test in
the collision tree is determined by the number of nodes in
its subtree. Generally, this number is not known in advance.
Because of the inherent temporal locality due to the dynamic
simulation we can, however, exploit coherence between two
successive time steps. After each collision detection pass we
compute the number of tests in the respective subtree for ev-
ery node in the collision tree using back propagation. This
information is then used as a work estimate for tasks in the
subsequent collision handling phase.

Work Estimate Error

— Seli Collisions
—— External Collisions;

Prediction Error (%)

Time (seconds)

Figure 2: Work estimate error for scene 2. The diagram
shows the deviation from the actual amount of work over
time in percent. Even in this very dynamic scene, the tempo-
ral coherence is high.

In this way, we can avoid creating tasks with too small
an amount of work. Additionally, we can use this informa-
tion to determine which tests should be carried out imme-
diately. The error involved in the work estimation is usually
very small. This can also be seen in Fig. 2 which shows a
comparison of the estimated and the actual work load for 5.5
seconds of simulation (second test scene (see 6.1). For evalu-
ating the benefit arising from this new task splitting scheme,
we performed comparisons with two alternative approaches.
The first one, being the simplest variant, carries out the test
corresponding to leftmost subnode immediately and assigns
the remaining subnodes to tasks. The second one is based
on randomization, which is a widely adopted paradigm for
achieving well-balanced load distribution in parallel appli-
cations. In this case, we randomly select the subnode to be

74 B. Thomaszewski et al. / Exploiting Parallelismin Physically-Based Smulations on Multi-Core Processor Architectures

treated immediately. The results of these comparisons show
that our new scheme is very competitive. While the random-
ized variant already beats the simple approach, our robust
work estimation scheme can even improve on this. It clearly
outperforms both of the methods in common scenarios (as
e.g. scene 1) and keeps track with the randomized variant
even in most demanding applications as e.g. our second test
scene (see Fig. 6). This attests to the fact that temporal co-
herence in dynamic collision detection is a valuable source
for performance improvements.

5.3. Implementation

As in our previous work (which addressed distributed mem-
ory architectures) we employed the DOTS system platform
[BKLW99] for parallelizing collision handling. The inter-
ested reader will find a detailed description of the fully dy-
namic problem decomposition process with the (strict) mul-
tithreading parallel programming model provided by DOTS
in [TBO6].

In order to ensure high performance on shared memory ar-
chitectures, DOTS employs lightweight mechanisms for ma-
nipulating threads. Forking a thread results in the creation of
a passive object, which can later be instantiated for execu-
tion. Thread objects can either be executed by a pre-forked
OS native worker thread or can be executed as continuation
of a thread which would otherwise be blocked, e.g., a thread
reaching a synchronization primitive.

6. Results

Because the aim of this work is to accelerate computa-
tions for physically-based simulations on commodity plat-
forms, we decided to use a system which is easily available
at the current time. This system is based on a dual AMD
Opteron 270 machine with 2GB of main memory. Each of
the Opterons is a dual core processor running at 2GHz. The
memory architecture is shared address space, more specifi-
cally cc-NUMA (cache-coherent-NUMA).

6.1. Test Scenes

We tested our approach with two scenes, each of them high-
lighting different aspects. Since the focus is on accelerating
commonly used scenarios, we decided to use only moder-
ately large input data. This is an important difference to the
distributed memory setting, which traditionally aims at prob-
lem sizes exceeding the capacity of a single workstation. The
first example (see Fig. 3) is a simulation of a dress worn by a
female avatar with a fairly complex geometry (over 27000
vertices). The dress, consisting of roughly 4500 vertices,
is pre-positioned around the body and drapes under grav-
ity during one second of simulation. This test scene focuses
primarily on the parallel performance of the physical model
and on the case of evenly distributed collisions.

The second scene puts special emphasis on self-collisions.

Figure 3: Test scene 1 consists of a woman wearing a dress
which is comprised of roughly 4500 vertices. The avatar
consists of more than 27000 vertices.

r

Figure 4: In the second test scene, the deformable object is
a long vertically oriented ribbon (0.05m x 2.00m) comprised
of 4141 vertices.

In this more dynamic example, the deformable object is a
long vertically oriented ribbon, comprised of 4141 vertices
(see Fig. 4). It first falls onto two differently inclined planes,
from which it rebounds towards the floor where it finally
comes to rest. In the course of the simulation, external col-
lisions as well as complicated self-collisions occur. The col-
lisions are, however, not as evenly distributed as in the first
example and change dynamically over time. Hence, the tem-
poral and spatial coherence is considerably lower than in the
first scene.

6.2. Measurements

This section presents runtime measurements for the test
scenes described above. In both cases, separate timings are
given for the three important phases, i.e. application of

(© The Eurographics Association 2007.

B. Thomaszewski et al. / Exploiting Parallelismin Physically-Based Smulations on Multi-Core Processor Architectures 75

Scene 1

Average Speedup

Scene 2

35

’

/

/l
// 25

l\// '

/A

T
2 —y / —
15 £~ L / f-

0.5 T u \ 0.5 T
1 2a 2b 2a 2b 4

4 1
Number of Cores
I —&— pc_apply —8—spmv —&— coll_handling

Speedup Evolution

Scene 1 Scene 2
5 5
45
4.5 4 1
e
35 o e 5
,)
25 - Pl N \
25 = 3 ~
2 =%)
3 15 48
25 !
05 |
2 0+ T
0.04 0.54 1.00 0 2 4
Time (seconds)
[— - =pc_apply spmv - coll_handling |

Figure 5: Integral speedups obtained for the test scenes. The two leftmost tables show average speedups of the different stages
for both of the scenes. The two rightmost diagrams show the evolution of speedup over time.

the preconditioner (pc_apply), sparse matrix vector product
(spmv) and the collision handling stage (coll_handling). The
leftmost table in Fig. 5 shows the results obtained for the
first scene, indicating a high parallel efficiency for each of
the stages. As can be seen in the third table from the left, the
speedup stays nearly constant over time for this rather static
scene.

The second table from the left in Fig. 5 shows the results
for scene 2. Excellent performance for the numerics is ob-
tained while the speedup for the collision handling stage is
lower as for the first scene. One reason for this behaviour
is that collisions occur only marginally in the beginning of
the simulation (see Fig. 5, rightmost). Hence, there is not
enough work to yield good parallel efficiency. Furthermore,
it has to be noted that this test scenario is very challenging
as it exhibits only low temporal coherence and collisions are
distributed very unevenly. We chose this case to evaluate the
robustness of our method and we consider the results sat-
isfying, although there is still room for improvements. It is
interesting to see the evolution of the speedup for this scene
over time (see 5, rightmost). The computational intensity for
the numerics slightly varies but more noticeable is the per-
formance for the collision handling stage. The curve reflects
the temporal progression of the scene: it first shows a steep
slope as more and more collisions occur. The curve attains
its peak after the third second when multiple fabric layers
come to lie on each other and finally slightly decreases as
the ribbon untangles.

The last aspect to notice is the performance of the differ-
ent task creation strategies. Fig. 6 shows their influence on
the performance of the parallel collision handling algorithm
for the two scenes. It can be seen that the naive stationary
approach does not scale well when compared to the random-
ized version, which already shows quite a good performance.
The work estimate approach performs very good for the first

(© The Eurographics Association 2007.

Strategy Comparision

4.5
i B Scene 1
H Scene 2
3.5
a
3
g
& 25
2 L
1.5 =
1 +
32 o & +#
6\6& o@a‘ 6@(‘ @Qﬁ
& o o
Q_ =

Figure 6: Comparison of different strategies used for task
generation. Our coherence-based method keeps track with
the randomized variant for scene 2 and clearly outperforms
it in scene 1. Results without the overhead for updating co-
herency data are also shown.

scene and attains a similar speedup as the randomized ver-
sion for the second scene. The diagram also shows speedups
for the work estimate approach with and without the over-
head for updating the coherence data. At the moment, this is
done sequentially as a post-processing step after each colli-
sion handling pass. It could, however, be integrated directly
into the collision detection and in this case, the overhead
could almost completely be avoided.

7. Conclusions and Future Work

In this work we presented key techniques for exploiting par-
allelism in physically-based simulations on multi-core archi-
tectures. We focused on the two major bottlenecks of the

76 B. Thomaszewski et al. / Exploiting Parallelismin Physically-Based Smulations on Multi-Core Processor Architectures

simulation, namely the solution of the linear system and the
collision handling stage, and proposed efficient parallel algo-
rithms to accelerate these problems. Our initial performance
measurements confirm the parallel efficiency of these meth-
ods and indicate that physically-based simulations on mod-
ern commodity platforms can be greatly accelerated if par-
allelism is exploited. Because the scalability is encouraging,
we would like to further explore the presented methods us-
ing more processors. It will be particularly interesting to see
how well bandwidth limited components (e.g., SpMV) scale
on quad- and eventually n-core-based systems.

References

[BFA02] BRIDSON R., FEDKIW R. P., ANDERSON J.:
Robust Treatment of Collisions, Contact, and Friction for
Cloth Animation. In Computer Graphics (Proc. SIG-
GRAPH) (2002), pp. 594-603.

[BKLW99] BLOCHINGER W., KUCHLIN W., LUDWIG
C., WEBER A.: An object-oriented platform for distri-
buted high-performance Symbolic Computation. Mathe-
matics and Computers in Simulation 49 (1999), 161-178.

[BWOS] BARAFF D., WITKIN A.: Large Steps in Cloth
Simulation. In Computer Graphics (Proc. SIGGRAPH)
(1998), pp. 43-54.

[Cia92] CIARLET P. G.: Mathematical Elasticity. Vol. I.
North-Holland Publishing Co., Amsterdam, 1992.

[DHv93] DEMMEL J., HEATH M., VAN DER VORST
H.: Parallel numerical linear algebra. In Acta Numer-
ica 1993. Cambridge University Press, Cambridge, UK,
1993, pp. 111-198.

[EKS03] ET1zMUSsS O., KECKEISEN M., STRASSER W.:
A Fast Finite Element Solution for Cloth Modelling. Proc.
Pacific Graphics (2003).

[GRR*05] GUTIERREZ E., ROMERO S., ROMERO L. F.,
PLATA O., ZAPATA E. L.: Parallel techniques in irreg-
ular codes: cloth simulation as case of study. Journal of
Parallel and Distributed Computing 65, 4 (April 2005),
424-436.

[HEO1] HAUTH M., ETzMUSS O.: A High Performance
Solver for the Animation of Deformable Objects using
Advanced Numerical Methods. In Computer Graphics
Forum (2001), pp. 319-328.

[KB04] KECKEISEN M., BLOCHINGER W.: Parallel im-
plicit integration for cloth animations on distributed mem-
ory architectures. In Proc. of Eurographics Symposium
on Parallel Graphics and Visualization 2004 (Grenoble,
France, June 2004).

[KHM™*98] KrosowskI J. T., HELD M., MITCHELL
J. S. B., SowizrRAL H., Z1KAN K.: Efficient colli-
sion detection using bounding volume hierarchies of -
DOPs. IEEE Transactions on Visualization and Computer
Graphics 4,1 (1998), 21-36.

[KK96] KARYPIS G., KUMAR V.: Parallel Multilevel k-
way Partitioning Schemes for Irregular Graphs. Tech.
Rep. 036, Minneapolis, MN 55454, May 1996.

[LGPTO1] LARIO R., GARCIA C., PRIETO M., TIRADO
F.: Rapid Parallelization of a Multilevel Cloth Simu-
lator Using OpenMP. In Third European Workshop on
OpenMP (2001).

[LVDYO04] LEE B. C., Vupuc R. W., DEMMEL J. W,
YELICK K. A.: Performance models for evaluation and
automatic tuning of symmetric sparse matrix-vector mul-
tiply. In ICPP *04: Proceedings of the 2004 International
Conference on Parallel Processing (ICPP’04) (Washing-
ton, DC, USA, 2004), IEEE Computer Society, pp. 169—
176.

[MKEO3] MEZGER J., KIMMERLE S., ETZMUSS O.: Hi-
erarchical Techniques in Collision Detection for Cloth
Animation. Journal of WSCG 11, 2 (2003), 322-329.

[OBHLO2] OLIKER L., BISWAS R., HUSBANDS P., LI
X.: Effects of ordering strategies and programming
paradigms on sparse matrix computations. Siam Review
44:3 (2002).

[O’H97] O’HALLARON D.: Spark98: Sparse matrix ker-
nels for shared memory and message passing systems,
1997.

[RRZ00] ROMERO S., ROMERO L. F., ZAPATA E. L.
Fast Cloth Simulation with Parallel Computers. In Euro-
Par (2000), pp. 491—499.

[Saa03] SAAD Y.: [terative Methods for Sparse Linear
Systems, 2nd ed. SIAM, 2003.

[She94] SHEWCHUCK J. R.: An Introduction to the Con-
jugate Gradient Method Without the Agonizing Pain,
1994. http://www.cs.cmu.edu/"quake-papers/painless-
conjugate-gradient.ps.

[TB0O6] THOMASZEWSKI B., BLOCHINGER W.: Parallel
simulation of cloth on distributed memory architectures.
In Proc. of Eurographics Symposium on Parallel Graphics
and Visualization 2006 (Braga, Portugal, May 2006).

[THM*05] TESCHNER M., HEIDELBERGER B.,
MANOCHA D., GOVINDARAJU N., ZACHMANN
G., KIMMERLE S., MEZGER J., FUHRMANN A.: Colli-
sion Handling in Dynamic Simulation Environments. In
Eurographics Tutorials (2005), pp. 79-185.

[ZFV02] ZARA F., FAURE F., VINCENT J.-M.: Physical
Cloth Animation on a PC Cluster. In Fourth Eurographics
Workshop on Parallel Graphics and Visualisation (2002).

[ZFV04] ZARA F., FAURE F., VINCENT J.-M.: Paral-
lel simulation of large dynamic system on a pcs cluster:
Application to cloth simulation. International Journal of
Computers and Applications (march 2004). special issue
on cluster/grid computing.

(© The Eurographics Association 2007.

