
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)

C. Alvarado and M.- P. Cani (Editors)

AlgoSketch: Algorithm Sketching and

Interactive Computation

Chuanjun Li1, Timothy S. Miller1, Robert C. Zeleznik1 and Joseph J. LaViola Jr.2

1Brown University, Department of Computer Science, Providence, RI USA
2University of Central Florida, School of EECS, Orlando, FL USA

Abstract

We present AlgoSketch, a pen-based algorithm sketching prototype with supporting interactive computation. Al-

goSketch lets users fluidly enter and edit 2D handwritten mathematical expressions in the form of pseudocode-like

descriptions to support the algorithm design and development process. By utilizing a novel 2D algorithmic de-

scription language and a pen-based interface, AlgoSketch users need not work with traditional, yet complex 1D

programming languages in the early parts of algorithm development. In this paper, we present the details behind

AlgoSketch including the design of our 2D algorithmic description language, support for iteration and flow of

control constructs and a simple debugging trace tool. We also provide some examples of how AlgoSketch might

be used in the context of image analysis and number-theoretic calculation problems found. Based on prelimi-

nary user feedback, we believe AlgoSketch has the potential to be used to design and test new algorithms before

more efficient code is implemented. In addition, it can support users who may not be familiar with any advanced

programming languages.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [User Interfaces]: Graphical user interfaces

1. Introduction

In traditional algorithm design, pencil and paper is often

used in the early stages of the design process to create flow

charts or pseudocode. This creativity and conceptual un-

derstanding phase is followed by implementation in an ad-

vanced language, such as C/C++, Java, C#, Mathematica or

Matlab code. Using pencil and paper in the algorithm design

process allows for fluidity of thought and clear expression

of ideas. However, paper is a static medium and it is not

possible to visualize algorithm results and behavior using it

in isolation. Unfortunately, the exploration of an algorithm’s

behavior sketched out on paper requires a transformation to

code in a subsequent implementation that can be time con-

suming and error prone. In addition, any necessary change

in the algorithm design could require costly changes in im-

plementation.

Mitigating the transition from pencil and paper algorithm

design to programming language implementation requires

the ability to go directly from pencil and paper to program

execution. The ability to recognize handwritten 2D mathe-

matical expressions using a pen-based computer (see Fig-

ure 1) makes this possible [LZ04, ZML07]. Since a series

of handwritten 2D mathematical expressions can be consid-

ered a simplified algorithm we can bridge the gap between

pencil and paper and executable code. Thus, the idea be-

hind algorithm sketching not only removes the subsequent

implementation, but can also support the display of interme-

diate results for better understanding of algorithm behavior,

algorithm debugging, and hand-drawn diagrams as shown in

Figure 2.

In this paper, we present AlgoSketch, a prototype system

that focuses on entering algorithms using a mathematically-

based 2D algorithmic description language. The AlgoSketch

prototype not only introduces flow of control constructs into

pen-based computing, but also makes available intermedi-

ate results and variable values for execution-tracking and

problem-fixing. Intuitive 2D expressions, including matri-

ces, are also supported for algorithmic computing. We also

show applications of algorithm sketching to image process-

ing and number theoretic computation, and discuss the pro-

totype’s existing limitations and future work.

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


C. Li & T. Miller & R. Zeleznik & J.LaViola / AlgoSketch

Figure 1: Computing from 2D mathematical expressions.

The system colorizes ink strokes based on the recognized

symbols’ semantic meanings. Recognition of the handwrit-

ten expressions is discussed in Section 4. Variables in the

last expression are replaced with the corresponding values,

and the result is available after the evaluation gesture, an

ending double arrow.

Figure 2: The concept of pen-based algorithm sketching.

Hand-drawn 2D diagrams, notations and visualization re-

sults are directly available from sketched notations.

2. Related Work

The idea of using a sketch-based interface in the early stages

of design is not new. For example, Damm et al. used a

gestural user interface in their Knight system, a tool for

cooperative objected-oriented design [DHT00]. Gross used

gestures for creating and editing diagrams for conceptual

2D design tasks [GD96] and, in the 3D domain, Zeleznik

et al. used simple sketches for rapid conceptualizing and

editing of approximate 3D scenes [ZHH96]. Igarashi et al.

also used a sketch-based interface in creating free-form 3D

models [IMT99]. In other examples, Forsberg et al. used

a sketch-based interface for the rapid creation of musical

scores [FDZ98] and Landay and Myers developed a sys-

tem for prototyping user interfaces [LM95]. Finally, both

Alvarado and Kara have developed sketch-based interfaces

for the early stages of mechanical design [Alv00, KGS04].

The main difference between these conceptual design sys-

tems and our work is that they did not focus the conceptual

design of algorithms.

Pen-based interfaces have also been developed for mathe-

matical computation. Chan and Yeung developed PenCalc, a

simple pen-based calculator [CY01], while xThink, Inc. de-

veloped MathJournalTM, a system designed to solve equa-

tions, perform symbolic manipulation, and make graphs.

Other pen-based interfaces that support both numeric and

symbolic computation include MathBrush [LMM∗06] and

Microsoft MathTM. These systems are similar to AlgoSketch

in that they support computation. However, they do not sup-

port flow of control mechanisms and conceptual algorithm

design. In addition, these systems do not provide real-time,

write anywhere interfaces [ZML07].

The MathPad2 system [LZ04, LaV07] is the closest in

spirit to AlgoSketch. MathPad2 was designed to let users

create dynamic illustrations for exploring mathematical and

physical concepts by combining handwritten mathematics

and free-form drawings with a pen-based interface. This

system let users effectively sketch out small algorithmic

descriptions that were used to drive animations. Although

MathPad2 supported flow of control constructs (i.e., iteration

and branching), it was limited in the types of algorithms that

could be created. In addition, it did not give users real-time

feedback when writing mathematical expressions and pro-

vided no debugging support. AlgoSketch supports a richer

set of possible algorithms in domains such as image pro-

cessing and number-theoretic computation.

3. AlgoSketch Language Design

In this section, we discuss some specifications and de-

sign issues related to algorithm sketching, including support

of keywords and flow of control, spatial arrangements of

sketches, and scope specification and identification. We also

present the use of a trace table construct for facilitating the

understanding of the sketched algorithms. The AlgoSketch

language specifications are summarized in Table 1.

Flow of control and lexical scoping are an integral part

of the algorithm sketching language. AlgoSketch recognizes

only the most frequently used constructs including if, else

for conditionals and for for loops. Based on our experience,

we believe these constructs are necessary and sufficient for

specifying the algorithms AlgoSketch users are likely to at-

tempt. More constructs, such as do, while, etc. could be

added if the need arises. Scope specification for these con-

structs utilizes the concept of overloaded notations in con-

junction with the 2D spatial layout of the algorithmic state-

ments.

3.1. Algorithm Sketching Language Constructs

The flow of control constructs use shorthand symbolic nota-

tions when possible, and resort to keywords otherwise. For

c© The Eurographics Association 2008.

176



C. Li & T. Miller & R. Zeleznik & J.LaViola / AlgoSketch

Table 1: AlgoSketch Language Specifications

Constructs and Notations Descriptions

Constructs

if
for conditionals. Keywords are used.

else

for for for loops. ∀ is used for it.

Notations

← for function definition and return

∀ a shortcut for for

∈ for argument type specification and loops

∼ for omitted data. Order is enforced.

= for assignment and equality

//T () specifically for trace table

րց−→ set trace point if any one is inside function definition

// for comments. It can cover multiple lines

example, we define the compact mathematical symbol ∀ to

mean the for loop construct. Alternatively, the keywords if

and else are typically used directly, although shortcut nota-

tions using braces (Figure 3) are also available when each

conditional expression can fit on a single line. Other short-

cut notations are also used, such as an ending left arrow (←)

for function definition, a left arrow for return, and a tilde

(∼) as shown in Figure 3. More conventional ellipses (· · ·)
can be used in place of a tilde (∼), however, both entering

and recognizing handwritten ellipses is more difficult.

These notations can be overloaded, as they are in general

mathematics notations, to have different meanings in differ-

ent contexts as shown in Figure 3. The example on the left

side of the figure defines an integer from a sequence of digits,

whereas the tilde surrounded by commas defines a sequence

of integers, with the sequence number being the input in-

teger, and the values of the integers being specified by the

ending expression (x2) as shown by the result of the function

call g(9). The right example computes the sum of two equal

digit integers. The tilde in ∀i ∈ 0 ∼ n denotes the integer

range [0,n], while the tilde in← (wn+1wn ∼ w1w0) denotes

the omitted digits in an integer value. Notice that no mat-

ter what contexts a tilde might be in, it enforces an order on

the data it represents. An equal sign (=) is also overloaded

for both equality and assignment depending on its context.

Likewise, different notations can be overloaded according to

the usage domain.

Notations can still be clear even though they have differ-

ent meanings in different contexts. For example, in mathe-

matical notation associated with cryptanalysis, x,y ∈ P[n +
1]b can denote that x and y are positive integers of n+1 dig-

its with base b, while xi, yi, and wi denote the ith digit of

x, y, and w, respectively. Some notations can cover multiple

"lines" as shown in Figure 3 for the if-else comment.

Although the execution order of algorithmic statements

plays a key role in making a program function as expected,

statements can be positioned in different ways so long as

they can be reached in the required order. For example, se-

quential statements can be positioned sequentially from top

to bottom, or they can be arranged as in Figure 1. For the

flow of control constructs, such as the if, else, or for state-

ments, starting on new lines would make the sketches look

neat and make reading and understanding easier. Hence, we

require each flow of control construct to start on a new

line, but any other statements can follow each other hori-

zontally. Since we associate no baseline with the algorithmic

sketches, a new line refers to the lower space that does not

overlap with previous statements vertically.

The scope of flow of control constructs is based on visual

indentation. This not only improves the visual clarity of the

algorithms but also avoids the problems associated with rec-

ognizing more subtle punctuation or verbose lexemes, such

as the various scope identifiers/tags in any HTML or LaTeX

file. Identification of horizontal indentations depends on the

size of the indented space and the sizes of the drawn sym-

bols. Computing the size of the drawn symbols can be in-

efficient if there are many symbols and poorly defined, if

there are very wide symbols such as
√

and division lines.

Thus, we use the difference between the horizontal starting

position of flow of control constructs and those of following

statements to determine the presence of an indentation. If the

difference in the horizontal starting positions is larger than

the height of the construct statement, there is an indentation

and the lower statement is within the scope of the construct.

Otherwise, it is outside of the scope of the construct.

3.2. Variable Tracing

AlgoSketch not only offers the flexibility and fluidity of en-

tering and manipulating sketched/handwritten expressions

or statements, but also provides a tool for understanding the

execution of sketched algorithms. For example, a trace ta-

ble of the run-time values of indicated variables at a specific

lexical position in the algorithm can be displayed at a tar-

get location. To produce such a trace, an arrow (ր, ց, or

−→) is drawn from the trace point to where the trace display

c© The Eurographics Association 2008.

177



C. Li & T. Miller & R. Zeleznik & J.LaViola / AlgoSketch

Figure 3: Notation extension for algorithm sketching. The same notation (∼) can have different meanings in different contexts.

should be shown. We will use an example in Section 6 to

further illustrate these trace tables.

4. Segmentation and Recognition of Mathematical

Expressions

AlgoSketch is built in the context of MathPaper, a pen-based

mathematical expression recognition and computation sys-

tem. In this section, we briefly summarize how MathPaper

turns strokes into mathematical expressions. More details

can be found in [ZML07].

Figure 4 shows the steps required to recognize a mathe-

matical expression as strokes are entered. When a new ink

stroke is input, it is first tested against a set of command ges-

ture templates. Command gestures are ink strokes that are

distinct from mathematical symbols which immediately per-

form upon input, such as lasso selection, symbol dragging,

stroke deletion, menu selections, etc. If a stroke is recog-

nized as a command gesture, its action is performed and the

stroke is deleted without ever being sent to the mathematics

recognition engine. All other strokes are passed to the sym-

bol recognizer and then the expression recognizer.

The symbol recognizer is a large rule-base of ad hoc

boolean algorithms each finely tuned to recognize a symbol

allograph (e.g., different ways of writing the same charac-

ter). Each allograph is mapped by default to a mathemati-

cal symbol, although users can override this mapping if they

wish. There are no formal guidelines or restrictions for writ-

ing these algorithmic rules, we have found that finding cusp-

based features is often helpful. If none of the rule-based rec-

ognizers match an input stroke(s), we fall back on the recog-

nition label assigned by the Microsoft handwriting recog-

nizer.

Based on the symbol recognition labeling and additional

ad-hoc spatial tests, strokes are grouped into ranges. A range

is a group of symbols that collectively constitute a single,

complete expression or line of an algorithm. When new

strokes are drawn or deleted, only the ranges that are directly

affected by the action are parsed.

The parsing of the recognized symbols in one range in-

cludes two stages, called Parse 1 and Parse 2. Parse 1 ex-

amines all symbols in one range and collects symbols for

a common baseline, and stores the common baseline sym-

bols in a Line object. Depending on the types of symbols

in a Line object, each symbol may have one associated su-

perscript Line object and/or one associated subscript Line

object. Here a super/subscript Line records the geometric

relationship between the parent symbol and its child sym-

bols. The output of Parse 1 is a tree of Line objects, with the

root being the common baseline. Parse 2 converts Parse 1’s

geometric representation into a semantic mathematical ex-

pression tree. During this process, a language model can be

used to coerce changes to either the symbolic or geometric

parse structure; for instance, the input sequence ’c”0”5’ will

be converted into "cos" as long as a single stroke allograph

for ’5’ was recognized .

This process of symbol recognition and parsing is exe-

cuted in real-time after each stroke is input. The result of the

recognition is displayed using one of several different visu-

alization strategies [LLMZ08]. In addition, the mathematical

expression that is output can be exported to Mathematica or

any one of many symbolic or computational engines.

c© The Eurographics Association 2008.

178



C. Li & T. Miller & R. Zeleznik & J.LaViola / AlgoSketch

Figure 4: Dataflow of mathematical expression recognition from ink strokes. Multiple expressions can be recognized, each in

one range determined by largely spatial tests of recognized symbols. A tree of Line objects is generated for each range by Parse

1 which determines the geometric structure of symbols in each range, followed by a semantics representation Expr generated

by Parser 2 (Figure adapted from [ZML07]).

5. Parsing and Computation of Sketched Algorithm

In AlgoSketch, mathematical expressions are recognized,

parsed and translated for export to Mathematica as described

above. Since algorithms involve more notations, syntax and

semantics, more work is required to take these descriptions

and execute them.

Due to our overloaded notation scheme, precedence needs

to be considered for the various symbols or keywords used in

algorithm sketching. For parsing convenience, we assign if,

else and ∀ with the lowest precedence such that these flow

of control constructs can be easily detected in our parsed

expression tree. The ∈ keyword has lower precedence than

a comma, and also lower precedence than multiplication to

enable correct parsing of expressions such as x,y ∈ P[n +
1]b, since P[n + 1]b is parsed as the multiplication of P and

[n+1]b by Parse 2. The mod operator has higher precedence

than multiplication, yet lower precedence than parentheses.

The ∼ symbol is not treated as an operator, and expressions

containing it are parsed in another stage, called Parse 3 as

shown in Figure 5.

Parse 3 sorts the expression trees output from Parse 2

into algorithm statements which have the right order and

scope information. Expressions are first sorted according to

the vertical coordinates of their bounding box’s left top cor-

ner. After testing whether more than one expression over-

laps horizontally, each set of horizontally overlapped ex-

pressions is sorted by the horizontal coordinates of the as-

sociated bounding box’s left top corner. Expressions starting

with double slashes (//) are treated as comments and skipped

during parsing.

If the algorithm or function name has more than one sym-

bol, Parse 2 will parse them as the multiplication of these

symbols, multiplied by the argument list if any. For instance,

the function name add in Figure 3 would be the product

’a”d”d’ before calling Parse 3. Parse 3, will detect the defi-

nition of a function and will convert the product into a single

word consisting of the individual symbols. Parse 3 will also

convert the function definition to be a single expression, with

one field being the function name, add in the case of the right

example in Figure 3, and additional argument fields. Similar

parsing is done for function calls.

Before exporting to Mathematica, Parse 3 determines the

scope for each flow of control construct by using the inden-

tation information. If the indentation of a lower expression

statement is greater than a threshold, i.e., the height of the

bounding box of the expression, the lower expression is in

the scope of the flow of control construct. Otherwise the

scope ends above the expression. Each outermost construct

and the expressions in its scope will be converted to form

one input statement for Mathematica. The statement is hi-

erarchical and will contain all the nested statements in its

scope, and these statements will contain statements for any

inner constructs within the scope.

When generating Mathematica input, overloaded nota-

tions are disambiguated according to their context. For ex-

ample, exporting a tilde (∼) to Mathematica does not make

sense, so the tilde needs to be replaced with data available at

run-time. Hence Mathematica input is generated only when

there is a function call as illustrated in Figure 5. When a

function call is complete, argument pre-processing is done

for value assignment: loading data from a file if the file pro-

vides data for any argument, testing if the number and types

of arguments are correct, and assigning argument-related

data to associate variables, etc. All the pre-processing is ex-

ported to Mathematica to improve run-time performance.

The output processing step in Figure 5 handles output is-

sues, such as displaying computation results and the popu-

lated trace table if available.

6. Example Applications

This section shows two case study applications for AlgoS-

ketch. The first one illustrates the computation of the fac-

torial of the larger argument from a function call with two

arguments, and outputs half of the factorial as shown in Fig-

ure 6, while the second one shows the application of AlgoS-

ketch to image processing as shown in Figure 7.

Figure 6 shows the support of flow of control con-

c© The Eurographics Association 2008.

179



C. Li & T. Miller & R. Zeleznik & J.LaViola / AlgoSketch

Figure 5: Data flow of AlgoSketch after Parse 2.

Figure 6: Application of AlgoSketch to computation. Flow

of control and trace table are illustrated in this application.

structs, including if, else and a for loop. The function call

max f ac(22,6) can be anywhere outside of function defi-

nition, and the function call result is displayed right af-

ter the function call. Notice the first argument 22 is actu-

ally a 2D expression itself. The left arrow (←) at the end

of max f ac(x,y) is for function definition, specifying that

max f ac is a function with two parameters. The left arrow

in front of N
2 is for returning a value or a 2D expression to a

function call.

Indentation is used for the scopes of the if and for con-

structs, while the statement M = y is right after the else key-

word. The statement ∀i ∈ 1 ∼ M is equivalent to for each

increasing integer i between 1 and M.

The statement in front of //Input specifies the argument

types for the function call, in this specific example, two posi-

tive integers. We use //T (...) to display trace variables, with

variables separated by blank space as shown in this exam-

ple. Again, the variables can be 2D expressions as shown for
N
2 . This can be very convenient for displaying both individ-

ual variables and expressions when values of expressions are

expected. The trace table can be at any blank space, and can

be lassoed and dragged if needed.

We use an arrow to specify a trace point where variables

are to be displayed below the trace table head //T (...). The

tail end of the arrow is located at the right of the target state-

ment, indicating that after the statement is executed, the val-

ues of the variables are to be traced.

Notice the typeset expression below the function call.

Hovering over any sketched expression would display its

recognized typeset below the sketch, helping correct recog-

nition error if any.

Figure 7 shows how to process an image using AlgoS-

ketch. The matrix F is a filter to be applied to each selected

group of pixels in an airfield image. The image data is stored

in a file named airport.jpg. The image file can of be any ma-

jor type, such as bitmap, jpeg, tiff, and PNG etc, and the file

extension can be omitted for input simplicity.

The function takes two matrix parameters, one matrix as

a filter, and the other for the original image to be processed.

It outputs a processed image with RGB values of selected

pixels averaged by applying the filter to each pixel and its

neighboring pixels. The four assignments above the outer for

loop assign the dimensions of the two matrix arguments to

the respective variables, which are used for specifying filter

values and pixels to be processed. HA is the height of matrix

A, or number of rows in A. WA is the width of, or number

of columns in A. Bm,n is for the m,nth pixel of output image

B. Our current implementation uses two for loops to specify

the ranges of pixels to be processed, and processes all RGB

values individually for each pixel.

The original image and the processed image can be dis-

played together with the processing function as shown in

Figure 7, giving a direct comparison between the two im-

ages, and allowing for revisions to the function. A shortcut

is taken by having the sizes and locations of the displayed

images hard-coded. They can be easily adjusted by specify-

ing two windows at different locations. The images can be

annotated as the red boxes show.

c© The Eurographics Association 2008.

180



C. Li & T. Miller & R. Zeleznik & J.LaViola / AlgoSketch

Figure 7: Application of AlgoSketch to image processing. 2D input, including matrix input, and 2D expressions, as well as for

loops are illustrated in this application.

7. Limitations and Future Work

AlgoSketch has been proposed for facilitating algorithm de-

sign and data analysis or data processing, such as image

processing, and for promoting quick understanding of new

algorithms. It takes advantage of the flexibility and fluidity

of making modifications with little effort, real-time comput-

ing and responsiveness, the capability for listing values at

any trace point, and for adding annotations using pen-based

interaction. The work we have done so far explores mostly

the feasibility of algorithm sketching and provides a proof-

of-concept prototype. Only a single function definition on

a single page is supported. To make it more robust, mul-

tiple functions on one or more pages and function calls in

functions need to be supported. More data types and flow of

control constructs also need to be supported. For example,

introduction of recursive calls or even the class concept into

AlgoSketch would make it more applicable.

AlgoSketch is built in the context of MathPaper, which

has a very friendly user interface for fluid recognition error

detection and correction [ZML07]. Hence symbol recogni-

tion errors can be conveniently corrected, and debugging can

be focused on sketch syntax errors only. If there is a syntax

error, AlgoSketch simply does not do any computation, and

does not report where the syntax error occurs. More work

needs to be done to have sketch syntax errors reported.

For the image processing application, our current imple-

mentation algorithmically specifies a rectangular region to

be processed. It can be extended such that an arbitrary region

can be specified by using the pen. In addition to entering the

filtering matrix, it can also be extended for a filtering func-

tion to generate the data to be applied to the selected region.

Finally, multiple region selection should also be supported.

The trace table shows values of the listed variables at any

specific trace point. It would be helpful to be able to trace

the value changes of some variables at multiple trace points,

and this can be done easily by associating one trace table

with multiple trace points. In addition to trace tables, other

visualization approaches such as graphs would also be help-

ful in showing algorithm output

The computation of the sketched algorithm is enabled by

translating the recognized algorithm into Mathematica no-

c© The Eurographics Association 2008.

181



C. Li & T. Miller & R. Zeleznik & J.LaViola / AlgoSketch

tation. Translating the Mathematica code, or the recognized

sketches into other programming languages, such as C/C++,

Java or C#, etc. is possible and would boost run-time speed.

Support for 2D hand-drawn diagrams for computation and

visualization as illustrated in Fig 2 needs to be explored.

Currently 2D diagrams are uninterpreted and are for anno-

tations only. Finally, usability studies are needed to evaluate

how AlgoSketch performs for real algorithm design, espe-

cially if applied to long or computationally intensive algo-

rithms.

8. Conclusion

We have presented AlgoSketch, a pen-based, prototype ap-

plication for sketching algorithms and interactive compu-

tation. Using a novel 2D algorithmic description language

based on traditional mathematical notation and special over-

loaded operators, we support flow of control constructs such

as if, else and for as well as a trace table for tracing algo-

rithm execution and facilitating algorithm debugging. In ad-

dition, indentation is used for specifying the scope of the

supported constructs. We have also shown two example sce-

narios for image processing and number-theoretic computa-

tion with AlgoSketch, illustrating the feasibility and poten-

tial of algorithm sketching. Although there is more work to

do on AlgoSketch, we believe our prototype is a good start-

ing point for letting users design and test new algorithms

before more efficient code needs to be implemented.

Acknowledgements

This work is supported, in part, with grants from Microsoft

Research and IARPA.

References

[Alv00] ALVARADO C.: A Natural Sketching Environ-

ment: Bringing the Computer into Early Stages of Me-

chanical Design. Tech. rep., Master’s Thesis, Department

of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, May 2000.

[CY01] CHAN K.-F., YEUNG D.-Y.: Pencalc: A novel

application of on-line mathematical expression recogni-

tion technology. In Proceedings of the Sixth Interna-

tional Conference on Document Analysis and Recognition

(September 2001), pp. 774–778.

[DHT00] DAMM C. H., HANSEN K. M., THOMSEN M.:

Tool support for cooperative object-oriented design: ges-

ture based modeling on an electronic whiteboard. In

CHI ’00: Proceedings of the SIGCHI conference on Hu-

man factors in computing systems (New York, NY, USA,

2000), ACM, pp. 518–525.

[FDZ98] FORSBERG A., DIETERICH M., ZELEZNIK R.:

The music notepad. In UIST ’98: Proceedings of the 11th

annual ACM symposium on User interface software and

technology (New York, NY, USA, 1998), ACM, pp. 203–

210.

[GD96] GROSS M. D., DO E. Y.-L.: Ambiguous inten-

tions: a paper-like interface for creative design. In UIST

’96: Proceedings of the 9th annual ACM symposium on

User interface software and technology (New York, NY,

USA, 1996), ACM, pp. 183–192.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.:

Teddy: a sketching interface for 3d freeform design. In

SIGGRAPH ’99: Proceedings of the 26th annual confer-

ence on Computer graphics and interactive techniques

(New York, NY, USA, 1999), ACM Press/Addison-

Wesley Publishing Co., pp. 409–416.

[KGS04] KARA L. B., GENNARI L., STAHOVICH T. F.:

A sketch-based interface for the design and analysis of

simple vibratory mechanical systems. In Proceedings of

ASME International Design Engineering Technical Con-

ferences (2004).

[LaV07] LAVIOLA J.: Advances in mathematical sketch-

ing: Moving toward the paradigm’s full potential. IEEE

Computer Graphics and Applications 27, 1 (2007), 38–

48.

[LLMZ08] LAVIOLA J., LEAL A., MILLER T.,

ZELEZNIK R.: Evaluation of techniques for visual-

izing mathematical expression recognition results. In To

appear in Graphics Interface 2008 (May 2008).

[LM95] LANDAY J. A., MYERS B. A.: Interactive

sketching for the early stages of user interface design.

In CHI ’95: Proceedings of the SIGCHI conference

on Human factors in computing systems (New York,

NY, USA, 1995), ACM Press/Addison-Wesley Publishing

Co., pp. 43–50.

[LMM∗06] LABAHN G., MACLEAN S., MIRETTE M.,

RUTHERFORD I., TAUSKY D.: Mathbrush: An experi-

mental pen-based math system. In Challenges in Sym-

bolic Computation Software (2006), Decker W., Dewar

M., Kaltofen E., Watt S., (Eds.), no. 06271 in Dagstuhl

Seminar Proceedings, Internationales Begegnungs- und

Forschungszentrum fuer Informatik (IBFI), Schloss

Dagstuhl, Germany.

[LZ04] LAVIOLA J., ZELEZNIK R.: Mathpad2: A system

for the creation and exploration of mathematical sketches.

ACM Transactions on Graphics 23, 3 (Aug. 2004), 432–

440. (Proceedings of SIGGRAPH 2004).

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES

J. F.: Sketch: an interface for sketching 3d scenes. In SIG-

GRAPH ’96: Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques (New

York, NY, USA, 1996), ACM, pp. 163–170.

[ZML07] ZELEZNIK R., MILLER T., LI C.: Designing UI

techniques for handwritten mathematics. In Proceedings

of the 4th EUROGRAPHICS Workshop on Sketch-Based

Interfaces and Modeling (SBIM 2007) (Aug. 2007).

c© The Eurographics Association 2008.

182


