
Graphics Hardware (2008)
David Luebke and John D. Owens (Editors)

Coherent Layer Peeling for Transparent
High-Depth-Complexity Scenes

Nathan Carr Radomír Měch Gavin Miller

Adobe Systems Inc.

Abstract
We present two new image space techniques for efficient rendering of transparent surfaces that exploit partial
ordering in the scene geometry. The first technique, called hybrid layer peeling, combines unordered meshes with
ordered meshes in an efficient way, and is ideal for scenes such as volumes with embedded transparent meshes.
The second technique, called coherent layer peeling, efficiently detects and renders correctly sorted fragment
sequences for a given pixel in one iteration, allowing for a smaller number of passes than traditional layer peeling
for typical scenes. Although more expensive than hybrid layer peeling by a constant factor, coherent layer peeling
applies to a broader class of scenes, including single meshes or collections of meshes. Coherent layer peeling does
not require costly clipping or perfect sorting. However, the performance of the algorithm depends on the degree
to which the data is sorted. At best, when the data is perfectly sorted, the algorithm renders a correct result in
a single iteration. At worst, when the data is sorted in reverse order, the algorithm mimics the performance of
layer peeling but with a higher cost per iteration. We conclude with a discussion of a modified form of coherent
layer peeling designed for an idealized rasterization architecture that would match layer-peeling in the worst case,
while still exploiting correctly sorted sequences when they are present.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Efficient rendering of transparent surfaces has long been a
problem in computer graphics. Classically such rendering
has been handled by a well known technique known as the
painter’s algorithm. The painter’s algorithm starts by sorting
geometry in a back-to-front manner as viewed from the cam-
era. The furthest away surfaces are drawn first and each suc-
cessive transparent layer can be blended over the top, much
the same way a painter goes about forming a painting. Two
primary drawbacks exist with this approach. Firstly, sorting
is required on the surfaces and secondly, geometry must be
split when either geometric intersections happen or visibility
cycles arise during sorting. The latter of the two drawbacks
can make this process particularly expensive. The painter’s
algorithm can be classified as an object level approach to the
rendering of transparent surfaces since it works by sorting
geometric primitives such as triangles.

An alternative class of algorithms work at the pixel level.

These algorithms work by sorting surfaces viewed through
each pixel center. Probably the most well known pixel level
technique is layer peeling [Mam89, Eve01]. Layer peeling
works by rendering the geometry multiple times to accumu-
late a final result. Each iteration of rendering peels off a sin-
gle surface depth layer visible through each pixel. The core
algorithm has the distinct advantage that it does not require
the geometry to be sorted up front. Furthermore, geometric
splitting is not needed as in the case of object level trans-
parency techniques. Layer peeling, however, does require as
many iterations as the worst pixel’s transparent depth com-
plexity. Given n transparent surfaces viewed through a pixel,
the worst case algorithmic complexity of layer peeling is
O(n2), since n peels are required and all n surfaces are ren-
dered on each peel.

Our paper presents two new pixel level techniques for trans-
parent surface rendering. They are both enhancements of
layer peeling that exploit ordered structure in the geome-
try. One algorithm is ideal for combining unsorted meshes

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

N. Carr, R. Mech, G. Miller / Coherent Layer Peeling for Transparent High-Depth-Complexity Scenes

with sorted meshes. The second algorithm exploits correctly
sorted sequences of layers at a given pixel for a partially
sorted collection of meshes. The combined approach of ap-
proximate model-space sorting with enhanced peeling logic
per pass enables dramatic speed-ups for high-depth com-
plexity scenes. In closing we provide inspiration for hard-
ware designers by detailing an even more efficient algorithm
with only minimal changes to existing hardware.

2. Previous Work

Much research has gone into improving the performance of
traditional peeling. Wexler et al. [WGER05] noted that the
asymptotic complexity of layer peeling in many cases can be
reduced to O(n) by decomposing the problem into smaller
sub-problems. They start by placing their objects in a heap
effectively sorting them in O(n lgn) from front-to-back. A
small fixed number of objects are extracted from the heap in
sets to form a set of batches. If the depth range of each batch
does not overlap then classic layer peeling is performed on
each batch and compositing (front-to-back) is done to ac-
cumulate the solution. In the case of overlapping batches,
clipping planes are used to define a z-range for the current
batch. Any object (even objects not in the batch) that span
this range must also be included when processing the current
batch. This algorithm works well when batches do not over-
lap each other much in depth. Since perfect object level sort-
ing is not required by this algorithm, we note that heap sort
could be replaced with a linear time bucket sort to achieve a
running time of O(n) for many scenes.

Another approach is to perform object level sorting using
the graphics hardware and the occlusion query extension
[GHLM05]. Such an approach works well when the data can
be properly ordered, however, in the presence of visibility
cycles, clipping is still necessary to resolve surface ordering.
Numerous extensions to hardware have been proposed to al-
low more efficient handling of transparent surfaces. Aila et
al. proposed the idea of delay streams [AMN03] to improve
the efficiency of handling transparent surfaces in graphics
hardware.

Another approach is to store lists of fragments that arrive
at a given pixel along with their colors and depths. Mark
et al. [MP01] introduced the concept of the F-buffer which
captures streams of fragments through each pixel in an inter-
mediate representation. The ordering of these fragments can
be resolved in additional passes. Houston et al. [HPS05] de-
veloped a practical hardware implementation of the F-buffer.
Bavoil et al. [BCL∗07] detailed a more restricted form of this
concept they refer to as the k-buffer. The k-buffer restricts
the size of fragments that can be stored at each pixel and
it provides a limited read-modify-write operation to this list.
Another alternative is to use the existing multi-sampling fea-
ture of graphics hardware along with stencil routing to store
lists of fragments per pixel [MB07]. By ignoring read-write

hazards, Liu et al. [LWX06] was able to use multiple ren-
der targets simultaneously bound as textures to implement a
k-buffer strategy.

Section 3 introduces hybrid layer peeling. Section 4 de-
scribes an overview of coherent layer peeling. Section 5 il-
lustrates how it may be implemented on a legacy GPU with
stencil and z-buffering. Section 6 explores how coherent
layer peeling may exploit floating point blending operations
to reduce the number of passes. Section 7 discusses how the
algorithm might be implemented on an ideal rasterization ar-
chitecture of the future. Section 8 compares performance of
GPU implementations of the hybrid and coherent layer peel-
ing algorithms relative to traditional layer peeling. Section 9
draws conclusions and outlines areas for future work.

3. Hybrid Layer Peeling

It is relatively common to have easily sorted transparent ge-
ometry, such as slices through a volume data-set or screen-
aligned sprites. Often, however, these may intersect geo-
metrically with other meshes, such as semi-transparent iso-
surfaces or treatment beams. For perfectly sorted geometry
only a single rendering pass is required. However, as soon as
the scene includes overlapping unsorted geometry, a more
general technique such as layer peeling is required. This
can lead to a very large number of passes for high-depth-
complexity scenes.

Figure 1: Traditional layer peel requires 257 iterations to
render the image versus a hybrid layer peeling approach
needing only 3 iterations. This yields a 62x speed-up in ren-
dering performance.

A straightforward extension of layer peeling is to make the

c© The Eurographics Association 2008.

34

N. Carr, R. Mech, G. Miller / Coherent Layer Peeling for Transparent High-Depth-Complexity Scenes

observation that we can segment the algorithm into alternat-
ing steps. In one step, a conventional layer peel is performed
for the unsorted geometry. In the second step the sorted ge-
ometry is rendered but clipped to a z-range between the pre-
vious peel depth and the current one. This simple algorithm,
called hybrid layer peeling, is ideal for example scenes such
as that shown in figure 1, where a semi-transparent surface,
representing a beam, intersects a trivially sorted stack of vol-
ume slices. The algorithm is described more formally in Al-
gorithm 1.

Algorithm 1 Hybrid Layer Peeling
1: for all pixel sample locations do
2: zPeel← zNear
3: end for
4: gChanged← true
5: while gChanged = true do
6: gChanged← false
7: for all pixel sample locations do
8: zPeelNext← zOpaque
9: end for

10: for all unsorted geometry fragment locations do
11: if zPeel < zFragment < zPeelNext then
12: zPeelNext← zFragment
13: gChanged← true . occlusion query
14: end if
15: end for
16: for all sorted geometry fragment locations do
17: if zPeel < zFragment < zPeelNext then
18: Composite fragment into color buffer
19: end if
20: end for
21: if gChanged = true then
22: for all non-sorted geometry fragments do
23: if zFragment = zPeelNext then
24: Composite fragment into color buffer
25: end if
26: end for
27: swap(zPeel,zPeelNext)
28: end if
29: end while

The number of total iterations of the algorithm is determined
by the number of layer peels required for just the unsorted
geometry, rather than the total depth complexity of the worst
case pixel, including the sorted fragments. This can lead to
asymptotic performance improvements proportional to the
depth complexity of the sorted geometry, which in the case
of a volume stack, can be very high. Unfortunately, only a
limited class of scenes can be accelerated by hybrid layer
peeling, namely those in which one set of scene geometry
is perfectly sorted. A more general class of algorithm would
automatically exploit correctly sorted fragment sequences at
each pixel where they exist and correctly render unordered
fragment sequences as they arise. Such an algorithm is de-
scribed in the next section.

4. Algorithm Overview of Coherent Layer Peeling

Ideally we wish to develop an algorithm for correctly-
rendered transparency that runs in linear time. Suppose we
are given a list of transparent surfaces S that intersect the line
segment emanating out of the camera through a given pixel
center between the near and far plane. To properly composite
these surfaces together they must be blended in front-to-back
or back-to-front order. In either case this operation requires
sorting of the surfaces in S based on depth. For a set of arbi-
trarily placed surfaces we know that sorting can be done in
O(n lgn). When bucket sorting works, these surfaces can be
sorted in O(n) [WGER05]. This places assumptions on the
placement of surfaces.

Rather than making such assumptions, we use the property
of sorted coherency as done by Naga et al. [GHLM05]. We
assume that the surfaces in S are mostly in sorted order to
begin with and that we only need to fix the ordering of a
small constant number of surfaces. In practice this assump-
tion works well since data can be sorted up front based on
a given camera view and updated periodically as the camera
moves and the scene changes. For a practical scene with a
smoothly moving camera and geometry it is unlikely that the
surfaces will become completely out of order from frame to
frame. The asymptotic performance of our algorithm is tied
to the number of correctly sorted uninterrupted spans in the
list S.

Let s0...sn−1 ∈ S be the list of mostly ordered surfaces
that intersect the line segment emanating out of the camera
through a given pixel center between the near and far plane.
For any si ∈ S, let D(si) denote the z-depth of the surface. Let
us assume that our surfaces are mostly sorted in a front-to-
back manner. Suppose we have done coherent layer peeling
up to some surface sc. Ideally we want to find the depth of
the next out-of-order surface in the z-range (D(sc),∞]. Fig-
ure 2 shows one such sequence of mostly sorted surfaces.
The last peeled surface is given by s4. The next out of or-
der surface in the sequence is s9. All surfaces within the peel
range [D(s3),D(s10)] are by definition guaranteed to be in
the correct order.

S4 S3 S5 S6 S10 S2S9 S7

D(s)

D(s)

z_min_prev

peel range
c

n

S1S8

z_min_post

Figure 2: Example of coherent peeling an out of order list
of surfaces.

We break the algorithm down into a series of steps. Let D(sn)

c© The Eurographics Association 2008.

35

N. Carr, R. Mech, G. Miller / Coherent Layer Peeling for Transparent High-Depth-Complexity Scenes

be the first surface in depth following the last peeled layer sc
(see Figure 2).

4.1. Step 1: Examine the surfaces preceding sn

In this step we find the nearest surface in the depth range
(D(sn),∞] that precedes sn in sequence. By definition any
surface that comes before sn in the list whose depth is greater
than sn is an out-of-order surface. We define this list of sur-
faces as follows: Ŝ = {s : si ∈ S, i < n,D(sn) < D(si)}. Thus
we need to find the nearest depth of any such surface if one
exists. This is given by:

z_min_prev =
{

argminŝ∈Ŝ D(ŝ), if ŝ 6= /0
∞ otherwise

The depth z_min_prev provides us a loose bound on the
depth range of surfaces that are in order. Any coherent list of
surfaces must now fall within the range [D(sn),z_min_prev).

4.2. Step 2: Examine the surfaces that come after sn

In this step we find the nearest out-of-order sur-
face in the depth range [D(sn),∞) that follows sn
in sequence. This list of surfaces Ŝ is given by:
Š = {si : si ∈ S, i > n,D(sn)≤ D(si),D(si)≤ D(si−1)}. The
nearest depth of any surface that occurs after sn in the list is
given by:

z_min_post =
{

argminš∈Š D(š), if ŝ 6= /0
∞ otherwise

The depth z_min_post provides a loose bound on the depth
range of coherent surfaces. A tight bound on our peel range
is now given by: (D(sn),min(z_min_prev,z_min_post)].

4.3. Step 3: Compositing the depth layers

Given the peel range interval, we can render our surfaces S
clipped to the peel range. The surfaces within the peel range
are guaranteed to be in correct front-to-back order so com-
positing can be done in a single pass through the data.

5. A GPU Algorithm

We now describe how both steps in section 4 can be mapped
onto modern graphics hardware using five passes.

5.1. Initializing the algorithm

We start by separating our opaque surfaces from our
transparent ones for rendering efficiency. We render the
opaque objects into a depth map. We call this map the
opaque_depth. We then initialize another depth map (which
we call D(sc)) to the z-near plane. These two buffers encode
the depth range between which we must correctly resolve
transparent ordering.

Following step 1 from section 4.1, we find the nearest out-
of-order surface in the depth range (D(sn),opaque_depth)
that precedes sn in sequence. This step is broken down into
two passes given by pass 1 and 2. As input to this step we
are given the interval (D(sc),opaque_depth) stored in maps.
The output of this step is the interval (D(sn),z_min_prev).

Pass 1: We start by counting the number of surfaces that
update the z-buffer value and whose depth values lie in the
range (D(sc),opaque_depth). We use the stencil buffer to
do that. The depth range clipping is done in a simple frag-
ment shader. The OpenGL state required for rendering this
pass is as follows:

glClearStencil(0);
glClearDepth(1.0);
glStencilMask(0xFF);
glClear(DEPTH_AND_STENCIL_BUFFER_BITS);
glEnable(DEPTH_TEST);
glDepthFunc(LESS);
glEnable(STENCIL_TEST);
glStencilFunc(ALWAYS,0,0xFF);
glStencilOp(KEEP,KEEP,INCR); . fail,zfail,zpass
drawTransparentObjects();

Since we are clipping to the range (D(sc),opaque_depth)
in the fragment shader, the stencil counting process is only
impacted by surfaces si where i <= n. As soon as surface
sn flows through, D(sn) is written to the depth buffer and all
subsequent surfaces (e.g. si : i > n) fail the z-test. At the end
of this pass the stencil holds a count of the number of sur-
faces that updated the z-buffer. This count includes the up-
date to the z-buffer by sn. The depth buffer will hold D(sn),
required in subsequent steps.

In the case illustrated in Figure 2 the following surfaces up-
date the stencil buffer: s1, s2, and s3. Thus the stencil buffer
is set to 3 and the depth buffer to D(s3).

Note that the stencil count will be invalid if there is more
than 255 surfaces that are in the opposite order and the count
will overflow. Although that situation may happen in a very
complex scene, in our case we also help the algorithm by
providing a high level sorting of the surfaces thus virtually
eliminating the chance of the stencil overflow. A more robust
algorithm, which requires floating point blending, is given in
Section 6.

Pass 2: By counting the stencil buffer back down to 1 we
can find the minimum depth of any surface si : i < n in the
range (D(sc),opaque_depth]. To do this, we render the ge-
ometry again, using the same depth comparison logic, count-
ing down the stencil and only passing the stencil test if the
stencil count is greater than one. The result of this process
records z_min_prev into the z-buffer. Below is the OpenGL
state required for the rendering pass:

In the case of Figure 2 we skip s1 and stop at s2, because

c© The Eurographics Association 2008.

36

N. Carr, R. Mech, G. Miller / Coherent Layer Peeling for Transparent High-Depth-Complexity Scenes

glClearColor(1.0,1.0,1.0,1.0);
glClear(COLOR_AND_DEPTH_BUFFER_BITS);
glEnable(DEPTH_TEST);
glDepthFunc(LESS);
glEnable(STENCIL_TEST);
glStencilFunc(LESS,1,0xFF);
glStencilOp(KEEP,KEEP,DECR);
drawTransparentObjects();

after rendering s2 and setting the depth to D(s2) the stencil
count reaches 1 and the pixel is not updated any more.

Following step 2 from section 4.2, we find the
nearest out-of-order surface in the depth range
[D(sn),min(z_min_prev,opaque_depth) that follows sn in
sequence. This requires two passes given by pass 3 and 4.
For the next two passes we clip all surface fragments that fall
outside the range [D(sn),min(z_min_prev,opaque_depth)
using a simple fragment shader. It follows from step 1, that
all surfaces si with i < n fall outside this range so they play
no role in Pass 3 or Pass 4.

Pass 3: We start by counting the number of correctly
ordered surfaces that directly follows sc in the range
[D(sn),min(z_min_prev,opaque_depth). We set the z-test to
GL_GREATER and each time a surface passes the z test we
increment the stencil count. The first surface that fails the z-
test will invert the stencil value and cause the stencil test to
cull away all remaining surface fragments. The result of this
pass is a stencil value that gives an upper bound on the num-
ber of surfaces that are in the correct depth order following
sc. The pseudo-code for this pass follows:

glClearStencil(0);
glClearDepth(0);
glClear(DEPTH_AND_STENCIL_BUFFER_BITS);
glEnable(DEPTH_TEST);
glDepthFunc(GREATER);
glEnable(STENCIL_TEST);
glStencilFunc(GREATER,128,0xFF);
glStencilOp(KEEP,INVERT,INCR); . fail,zfail,zpass
drawTransparentObjects();

In Figure 2 the stencil buffer is incremented for surfaces s3,
s5, s6, and s7. The surface s9 inverts the stencil value of 4 to
251 and sets the depth to D(s9).

There are no overflow issues in this pass. If there are more
than 128 surfaces in proper order, when the stencil count
reaches 128, the counting stops and we will assume that the
last surface was out of order. Consequently, we can process
at most 128 surfaces in one iteration of the algorithm.

Pass 4: In Pass 3 we counted the number of sorted z-
coherent span of surfaces that directly follow D(sc). There
may be other surfaces s j : j > n that interrupt this coherent
span (for example, surface s10 in Figure 2). In this pass we

compute the minimum depth of such surfaces. This value is
z_min_post. The logic in Figure 5.1 culls away the first k
surfaces that form the coherent span, counted in pass 3, us-
ing the stencil test and incrementing the stencil each time
the stencil test fails. Once the stencil value reaches 255, the
remaining surfaces flow through the pipeline and the one
with the minimum depth is found using z-buffering with
GL_LESS. The pseudo-code for pass 4 is as follows:

glClearColor(1.0,1.0,1.0,1.0);
glClearDepth(1.0);
glClear(COLOR_AND_DEPTH_BUFFER_BITS);
glDepthFunc(LESS);
glStencilFunc(EQUAL,255,0xFF);
glStencilOp(INCR,KEEP,KEEP); . fail,zfail,zpass
drawTransparentObjects();

In our example in Figure 2, we skip surfaces s3, s5, s6, and
s7 and render surfaces s9 and s10. The depth value is set to
D(s10).

5.2. Step 3 (2-passes): Compositing the n depth layers

The surfaces that lie in the interval
[D(sn),min(z_min_post,z_min_prev,opaque_depth)
are guaranteed to be in an uninterrupted correct depth order.
A standard compositing pass can use a fragment shader to
clip to this range to accumulate these surfaces into the final
image (pass 5).

Note that the surface at the upper bound of the peel range
may be an out of order surface (in case the z_min_post is
not set – for example, if the surface s3 in Figure 2 was di-
rectly followed by surface s2). Since we have this depth we
can peel this surface away as well using a z equals test in
an additional compositing pass (pass 6). Thus our algorithm
will peel away (in the worst case) two layers per iteration of
the process.

Once the coherent range of surfaces have been composited,
we update D(sc) to be the min of z_min_prev, z_min_post,
and opaque_depth and return to Step 1. This process is re-
peated until no surfaces remain to be peeled. We can detect
when this occurs using occlusion queries during the com-
positing phase.

6. Advanced Formulation using Floating Point Image
Blending

Both pass 1 and 2 can be replaced by a single pass bringing
the total count to five. This is done by using floating point
blending to store the depth of the surface that was previously
closest to the camera in the color channels. To achieve that
we initialize the depth and color channels to have a value of
z-far. When we render the geometry we set the color to 1.0,
1.0, 1.0 and the alpha to the fragment depth. By using a blend
method that multiplies the source color by the destination

c© The Eurographics Association 2008.

37

N. Carr, R. Mech, G. Miller / Coherent Layer Peeling for Transparent High-Depth-Complexity Scenes

alpha, we move the depth of the previous surface in the frame
buffer to the color channels of the frame buffer. The result
of this pass will store the value of z_prev_min in the color
channels. The OpenGL state required for rendering this pass
is given as follows:

glClearStencil(0);
glClearDepth(1.0);
glClearColor(1.0,1.0,1.0,1.0);
glClear(DEPTH_BUFFER_BIT);
glClear(COLOR_AND_DEPTH_BUFFER_BITS);
glEnable(DEPTH_TEST);
glDepthFunc(LESS);
glEnable(BLEND);
glBlendFuncSeparate(ZERO,DEST_ALPHA,ONE,ZERO);
drawTransparentObjects();

7. An Ideal GPU Algorithm

The algorithm in section 6 requires five geometry passes per
iteration. It peels away at least two layers per iteration. We
now detail an algorithm that reduces the number of geometry
passes down to two, with only minor modifications required
to existing hardware. An ideal rasterization engine would
allow for efficient rasterization of geometry while permit-
ting access to multiple destination buffers in a rasterization
shader. The rasterization shader could either be part of a gen-
eral shader, computing color and alpha at the same time, or
it could be run on a finer scale, at the level of sub-pixel sam-
ples (such as in the rasterization of pixels unit), with the sur-
face material shader being amortized over several pixel sub-
samples, as is done in current GPUs. In current GPUs the
rasterization of pixels unit (ROP) is restricted to a limited
frame-buffer state machine. The proposed algorithm could
also be implemented as an extension of such a state machine.

The rasterization shader would have available interpolated Z
for the fragment at the sample location as well as multiple
z values and additional integer values (equivalent to sten-
cils) that could be read and written to in the equivalent of
render targets. The rasterization shader would be executed
for each fragment in rasterization order for each pixel sub-
sample. Such a system would enable several of the passes
for conventional GPUs to be collapsed into a single pass on
this ideal GPU.

Available to the rasterization shader would be:

zFragment : the interpolated depth of a fragment

zPeel : the peel depth from the previous pass of the algorithm

zOpaque : the depth of the nearest opaque surface or zFar,
whichever is nearest to the camera

z1, z2, z3 : a set of full precision buffers used to store z-
values (either floating point or fixed point)

Algorithm 2 Ideal Coherent Layer Peel
1: for all pixel sample locations do
2: z3← zNear
3: end for
4: gChanged← true
5: while gChanged = true do
6: gChanged← false;
7: for all pixel sample locations do
8: z1← zOpaque;
9: z2← zOpaque;

10: zPeel← z3;
11: zPostFlag← false
12: end for
13: for all geometry sample locations do . Pass 1
14: if (zPeel < zFragment < z2) then
15: gChanged← true;
16: if zFragment < z1 then
17: z2← z1
18: z1← zFragment
19: z3← z1 . Reset the state for post
20: zPostFlag← false
21: else if zPostFlag = true then
22: if zFragment < z3 then
23: z3← zFragment
24: end if
25: else
26: if zFragment < z3 then
27: zPostFlag← true
28: end if
29: z3← zFragment
30: end if
31: else if zFragment = zPeel then
32: Composite fragment into color buffer
33: end if
34: end for
35: if gChanged = true then
36: for all geometry sample locations do . Pass 2
37: if (zPeel < zFragment < z3) then
38: Composite fragment into color buffer
39: end if
40: end for
41: end if
42: end while

8. Performance

To assess the value of the different algorithms, we consid-
ered two metrics. One was absolute timings of performance
on current state-of-the-art hardware (NVIDIA 8800 GTX),
and the second was the number of geometry passes required
to render a particular scene with correct transparency. Abso-
lute performance is practically interesting in the short term
for obvious reasons. The number of geometry passes is more
theoretically interesting since it indicates the value of a hy-
brid or coherent layer peeling algorithm assuming further

c© The Eurographics Association 2008.

38

N. Carr, R. Mech, G. Miller / Coherent Layer Peeling for Transparent High-Depth-Complexity Scenes

50 100 150 200 250

0.5

1

1.5

2

2.5

3

3.5

Layers

Ru
nn

in
g

tim
e

(s
)

Hybrid
Coherent
Layer

Figure 3: Volume rendering with transparent intersecting
cone as shown in figure 1.

Figure 4: Semi-transparent engine, car, and Siebel Center
models.

optimization of the rasterization hardware. This optimization
could be done by enabling an ideal coherent layer peeling
algorithm or by improving or merging passes of the current
GPU algorithm.

All scenes that may be rendered by hybrid layer peeling may
also be rendered by coherent layer peeling and traditional
layer peeling. To determine how the algorithms scale with
depth complexity we used a stack of alpha-modulated planes
representing a volume intersecting a conical shell represent-
ing a treatment beam. Since the conical shell has very low
depth complexity, this is an ideal case for hybrid rendering

Figure 5: Semi-transparent Sponza, Lucy, and dragon
model.

model faces coherent coherent layer
Figure vertices peel A peel B peel
Engine 133K f 22 fps 23 fps 21 fps
(Fig.4) 120K v 7 it,42 g 7it,35 g 22it,44 g
Dragon 150K f 51 fps 53 fps 35 fps
front 749K v 3 it,18 g 3 it,15 g 14it,28 g
Dragon 150K f 51 fps 53 fps 35 fps
side (Fig.5) 749K v 3 it,18 g 3 it,15 g 14 it,28 g
Lucy 250K f 37 fps 41 fps 15 fps
end on 125K v 3 it,18 g 3 it,15 g 22 it,44 g
Lucy 250K f 36 fps 40 fps 27 fps
front (Fig.5) 125K v 3 it,18 g 3 it,15 g 12 it,24 g
Sponza 66K f 36 fps 40 fps 12 fps
end on 61K v 3 it,18 g 3 it,15 g 26 it,52 g

Sponza 66K f 56 fps 50 fps 35 fps
front (Fig.5) 61K v 3 it,18 g 3 it,15 g 16 it,32 g

Car 730K f 0.28 fps 0.34 fps 0.27 fps
front (Fig.4) 365K v 11 it,66 g 11 it,55 g 36 it,72 g

Siebel Center 357K f 0.71 fps 0.83 fps 0.86 fps
front (Fig.4) 444K v 20 it,120 g 20 it,100 g 50 it,100 g

Table 1: Frame rates, number of algorithm iterations (it),
and geometry passes (g) for various models rendered using
the coherent layer peel algorithm A, the advanced version
with floating point blending B, and the traditional layer peel-
ing algorithm.

and coherent layer peeling. Figure 3 shows the test scene
timings, with the number of slices spanning the volume be-
ing a settable parameter. It shows the absolute timings and
number of required peels for the different algorithms. As ex-
pected, the number of peels increases linearly with the num-
ber of volume layers for traditional layer peeling. The total

c© The Eurographics Association 2008.

39

N. Carr, R. Mech, G. Miller / Coherent Layer Peeling for Transparent High-Depth-Complexity Scenes

time for traditional layer peeling increases faster than linear
time. In contrast, the number of passes required by hybrid
and coherent layer peeling remain constant, with the render-
ing times increasing linearly with the number of layers, as
expected. For 256 layers, hybrid layer peeling achieves a 52
to 1 speed improvement over layer peeling. Coherent layer
peeling is slower by a constant factor of approximately 6.
This is due to the larger number of geometry passes per it-
eration of the algorithm as well as the need for rendering
the volume layers in each pass. For hybrid layer peeling the
volume slices only need to be rendered for the compositing
pass, not the depth peel pass.

To explore the performance of coherent layer peeling versus
traditional layer peeling for more general scenes, we used a
variety of models. The total number of layers required by tra-
ditional layer peeling depends on the location of the camera.
We compare a top and side view of some models. These typ-
ically represented the range in performance when rendering
these models. Results are given in Table 1. Coherent layer
peeling based on the algorithm in Section 5 shows up to a 3x
speed improvement over traditional layer peeling. The float-
ing point variant of the algorithm is slower and faster than
the stencil-based version depending on the model. The vari-
ation is due to the relative cost of fewer geometry passes for
the floating-point blending algorithm versus the more expen-
sive bandwidth to the framebuffer required by floating point
blending.

9. Conclusions and Future Work

We introduced two new approaches to layer peeling that take
advantage of the available sorted structure in a scene. Hybrid
layer peeling is somewhat narrow in applicability, but shows
great speed-ups relative to traditional layer peeling and is
simple to implement on current GPUs. Coherent layer peel-
ing applies to a broader class of partially sorted scenes, and
shows an up to 3x speed up on current hardware for typical
test models. However, it holds the promise to be the basis
of improved rendering hardware in the future that could al-
low it to match traditional layer peeling in the worst case,
and have asymptotically better performance for high-depth
complexity scenes with good but not perfect sorting.

This paper focused on the rasterization logic of hybrid and
coherent layer peeling. Coherent layer peeling benefits from
well-sorted scenes. Determining the ideal sorting algorithms
and other heuristics, such as geometry dicing, when coherent
layer peeling is the core rasterization algorithm is a rich area
for future work. Our example implementation used a simple
bucket sort of triangle centroids, so there is probably scope
for improvement. Investigations of coherent layer peeling on
future GPUs as they become available may yield significant
speed-ups. Exploring how framebuffer state-machines might
be enhanced to reduce the number of passes is also a promis-
ing line of research, as will be actual implementations of the

ideal algorithm if suitable hardware becomes available. Z-
culling is key to the efficiency of traditional layer peeling,
and exploitation of z-culling in the context of coherent layer
peeling is still an area of future work. We expect an ideal sys-
tem would combine the approaches of coherent layer peeling
and that of Wexler et. al [WGER05] to further enhance per-
formance. Finally, as it becomes practical to render scenes
with high transparent depth complexity, it will be important
to explore how such rendering may be used effectively in
visualization.

References

[AMN03] AILA T., MIETTINEN V., NORDLUND P.: De-
lay streams for graphics hardware. In SIGGRAPH ’03:
ACM SIGGRAPH 2003 Papers (New York, NY, USA,
2003), ACM, ACM, pp. 792–800.

[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A.,
COMBA J. L. D., SILVA C. T.: Multi-fragment effects on
the GPU using the k-buffer. In ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games (New York,
NY, USA, 2007), ACM, ACM, pp. 97–104.

[Eve01] EVERITT C.: Interactive Order-Independent
Transparency. Tech. rep., NVIDIA Corporation,
May 2001. http://developer.nvidia.com/
object/Interactive_Order_Transparency.
html.

[GHLM05] GOVINDARAJU N. K., HENSON M., LIN

M. C., MANOCHA D.: Interactive visibility ordering and
transparency computations among geometric primitives in
complex environments. In ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (New York, NY,
USA, 2005), ACM, ACM, pp. 49–56.

[HPS05] HOUSTON M., PREETHAM A., SEGAL M.: A
Hardware F-Buffer Implementation. Tech. Rep. CSTR
2005-05, CS Dept., Stanford U., May 2005.

[LWX06] LIU B., WEI L.-Y., XU Y.-Q.: Multi-Layer
Depth Peeling via Fragment Sort. Tech. rep., Microsoft,
June 2006. http://research.microsoft.com/
research/pubs/view.aspx?tr_id=1125.

[Mam89] MAMMEN A.: Transparency and antialiasing al-
gorithms implemented with the virtual pixel maps tech-
nique. IEEE Comput. Graph. Appl. 9, 4 (1989), 43–55.

[MB07] MYERS K., BAVOIL L.: Stencil routed k-buffer.
In ACM SIGGRAPH 2007, sketches (New York, NY,
USA, 2007), ACM, p. 21.

[MP01] MARK W. R., PROUDFOOT K.: The F-buffer: A
rasterization-order FIFO buffer for multi-pass rendering.
In Graphics Hardware 2001 (2001), EUROGRAPHICS.

[WGER05] WEXLER D., GRITZ L., ENDERTON E.,
RICE J.: Gpu-accelerated high-quality hidden surface re-
moval. In Graphics Hardware 2005 (July 2005), pp. 7–
14.

c© The Eurographics Association 2008.

40

http://developer.nvidia.com/object/Interactive_Order_Transparency.html
http://developer.nvidia.com/object/Interactive_Order_Transparency.html
http://developer.nvidia.com/object/Interactive_Order_Transparency.html
http://research.microsoft.com/research/pubs/view.aspx?tr_id=1125
http://research.microsoft.com/research/pubs/view.aspx?tr_id=1125

