
1

A Cellular Architecture for Ray Tracing

Abdelghani Atamenia, Michel Meriaux, Eric Lepretre, Samuel Degrande
and Bruno Vidal

ABSTRACT We propose in this paper a massively parallel machine dedicated to image
synthesis by discrete ray tracing techniques. This machine is a four-stage pipeline, the
last stage being a bidimensional cellular array with one cell per pixel. Two main phases
describe its behaviour:

• 	 Loading into the cellular array of the objects of the scene to be displayed, after
having been transformed into sets of planar polygons, and then into voxels.

• Cellular ray tracing over the fully distributed scene.

The first phase allows us to see this machine as a massively parallel (not realistic)
rendering unit: at the end of the loading phase: objects are fully identified pixel per pixel
in the cellular array. Then, we have only to display the computed visual features (by
means of Gouraud or Phong-like incremental methods during the loading phase).

The second phase increases the image quality by executing the ray tracing algorithm
in a very special way, i.e., completely distributed all over the many cells of the array.
In that phase, objects are seen as split into voxels into a virtual 3D memory space. The
machine is an attempt to bring a dramatic answer to the problem of performance, taking
into account not only the computational power required for image synthesis by using a
massive parallelism, but also the realization costs by using very regular structures, which
make it a VLS1-oriented architecture.

Introduction

The aim of this paper is to describe a VLS1-oriented machine dedicated to ray tracing.
This machine uses the massive parallelism of a cellular network in order to achieve the
amount of computation required by computer image generation.

Cellular networks are usually built for solving specific problems, such as linear alge­
bra [6], [9]. Some attempts have appeared in the fields of image synthesis or image process­
ing ([12], [5], [10]), but none of them has dealt with ray tracing yet. Some experimental
work is currently being done on the Cube-3 Machine, at the University of New-York.

Let us quote, however, two models which are not so far from what we propose here:

• 	CM2 [4] is a multicomputer machine based on a regular subdivision of the object
space in order to limit the number of computations of ray-object intersections to
the objects belonging to the volume where the ray actually is. But its extension to
a very large number of processors would cause a lot of costly repetitions of (parts
of) objects in the processors.

http://www.eg.org
http://diglib.eg.org

86

• 	 VOXAR is a Transputer-based multicomputer machine with a hypertorus struc­
ture [3]. Every processor handles a metavoxel space, every metavoxel being com­
posed of voxels. The 3D space is subdivided into voxels crossed by rays, until they
meet one voxel occupied by an object. Rays in different metavoxels are processed
in a parallel way in different processors. Rays are traced analytically (according
to the 3DDA algorithm proposed fro ARTS [8]) through the voxels of the same
metavoxel.

2 Proposed Architecture

The architecture we propose here aims at using massive parallelism for ray tracing (several
thousands of elementary processors), instead of the low or medium parallelism of the
previous attempts.

2.1 Global Description

The architecture is a 4-stage pipeline. The first one, namely the 'geometry' subsystem, is
concerned with geometric computations, and outputs objects in screen coordinates. The
geometry subsystem is supposed to be able to, on the one hand, solve the usual geometric
problems, mainly those about the complex scene modelling, and on the other hand, be
fast enough to feed the downstream states [2].

The 3 following states, precomputaiion, distribution and RC, handle the voxel part of
the image synthesis process, which has to discretize the objects of the scene into voxels
and to load those voxels into a memory space fully distributed all over the network. This
will allow further shading computations.

2.2 Precomputation

Precomputation essentially splits the polygons into trapezes with horizontal parallel sides
and computes the true normals to their vertices. The choice of this special type of polygon,
which has the drawback of artificially increasing the number of faces, is due to the fairly
better performances we get under a pipeline mode while loading the polygons into the
network ([11]).

2.3 Object Distribution

The objects are distributed to the cells of RC by using the left edge of the network. They
go across the network like a wavefront, and are at the same time converted into surface
elements (voxels), which are stored in the virtual 3D memory space associated with the
physical 2D network.

2.4 Cellular Network

RC is the main module of this architecture. It is a 2D matrix with one cell per pixel.
RC obviously belongs to the class of image-space partitioning machines.

The aim of RC is:

• 	 To store the objects as surface or volume elements in the virtual 3D memory space.

• 	 To execute the ray tracing algorithm in a cellular way in order to compute the
shadows and shadings of all the visible objects.

I
i

••••••••

~~~~~~~~........ 

•••11••••~........ ~ 


~ 

87 

i 
I 

I 


I 

I
1111111II••II III tc;;; 

1I111•••II••~ 
••••••nl.% 
••••••III.CV' 

New problems about programming and control appear when using a cellular network. 
These are essentially due to the large size of the array (512 x 512 or 1024 x 1024) and to 
the need for an efficient communication tool allowing for easy cooperation between the 
cells. 

The greatest interest of such an architecture, apart from its obvious massive paral­
lelism, lies in the special loading of the scene into the network: it appears to be a kind of 
splitting of the database, which allows, on the one hand, to suppress the usual bottleneck 
when accessing at this database, and on the other hand, to drastically reduce the com­
plexity of the ray-object intersection computation, by only making a very easy comparison 
between one ray coming into a given cell and what this one contains. 

For architectural reasons as well as computational complexity ones, the network we 
use is only 4-connected. 

3 Modes of Operation 

There are two modes corresponding to the two phases of scene loading and ray tracing. 

3.1 Scene Loading 

The loading phase makes each cell know what objects, split into voxels, it has to handle, 
and give it the relevant information about light sources and the viewer's position. 

The objects are split into trapezes and normals at the vertices are computed in the 
precomputation unit. The trapezes are then injected in a distribution pipeline and split 
into horizontal lines Of 'spans'. Lastly, each horizontal span is split into voxels in the 
multipipelines of the RC network. 

Every cell will receive the features of the objects, such as object type, proper colof, 
coefficients for further shading computations, etc., followed by the sequence of polygons 
belonging to the object. 

Xl, Xr left and right limits of a span 
Z, DZx depth and depth variation along x 
N,DN normal and normal variation along x 

3.2 Ray Tracing Execution 

It is well known that the ray tracing algorithm can be highly parallelized because the 
computations are independent in one pixel from another. This remark fully justifies the 
use of cellular networks for ray tracing. 



88 

From a global point of view, a ray tracing algorithm builds and evaluates a forest of 
intersection trees, each one being associated with a pixel. Cellularly speaking, the forest 
can be seen as distributed all over the network, with one root per cell. Indeed, the image 
computation is the evaluation by every cell of the corresponding distributed tree. 

The tree construction is started by every cell, which, given the viewer's position, 
searches its own memory space for an intersection; if it is the case, secondary rays are 
cast. When a given ray goes out of the memory space of the cell, i.e., x or y changes, a 
request is transmitted to one of the neighbours in the right direction. This new cell will 
then have either to route the ray if there is no intersection, or to send again secondary 
rays, thus building a sub-part of the initial tree. When receiving a ray which intersects 
some object, a cell has to compute the light intensity which must be sent back to the 
emitting cell. This computation consists of storing the received ray, computing the new 
rays, sending them, and waiting for them to come back. 

Every cell will thus compute the sub-tree it has generated and will transmit the 
computed values to the node which has sent it the request (the ray). The execution of the 
algorithm, started by the cells of the screen (i.e., the cells with =0), mainly consists of 
drawing rays in the virtual 3D network and trying to find intersections in the cells crossed 
by the rays. In order to decide whether there is intersection, one only has to compare the 
current depth of the ray with the depths of the various voxels composing the objects the 
cell has to deal with. The ray propagation is exactly an analytic drawing of the half-line 
in 3D, given its direction ([18], [1 D. 

However, the rays carrying the intensity information back to the root of a sub-tree 
already know their destination: so we can use a more straightforward way of routing them 
through the network. This is also the case for ways toward the light sources. 

3.3 Other Problems 

RC Size 
As the cellular structure is finite, the question arises whether the chosen size (screen 

size) is correct. Some problems appear) due to the fact that we are only able to discretize 
that part of the scene which is inside the virtual 3D cube. So we cannot deal with objects 
or parts of objects outside the cube; moreover rays going outside the cube are lost. A 
minimal solution to this important problem is to suppose that the whole scene is inside 
the cube. Another solution would be to add some processors executing a classical ray 
tracing outside the cube. 

Viewer's Position 
The viewer's position has only an importance on the primary rays. If the viewer is 

located at a finite distance, it is necessary to send oblique primary rays. However some 
aliasing effects may appear when he is close to the screen. 

Shadowing 
A question arises about the best solution between the two following ones: 

• 	 should we cast rays from the voxels toward the sources, every cell being supposed 
to know their positions? 

• should we, 	in a first step, try to illuminate all the voxels from every source, and 
keep in every cell information about the sources which can reach it? In the second 
step, it would thus be unnecessary to send secondary rays toward the sources. 

It appears that a good storage/communication load balance leads us to choose the 
last solution, i.e., pre-casting the source rays. 



I 

! 

1 

89 I 

I 
l 

4 The Basic Cell 

A cell is a processor with a special communication tool and some reduced computational 
power. This is a compromise between a higher integration rate-allowing for a lower 
cost-a shorter image generation time and a better quality. 

4.1 Computational Power 

A cell must be able to identify objects and commands it receives. It has to manage coming 
and going rays. A coming ray may generate 2 rays. The cell has to determine their direc­
tions from the coming ray and the local normal, and evaluate the light intensity according 
to a given shading model, e.g. Whitted's or Phong's. It is clear that the most time- or 
silicon-consuming parts are the computations of the reflected or transmitted rays, requir­
ing complex operations like square root (for normalization) or division, and the evaluation 
of the intensity model, requiring exponentiation. it appears that approximations can be 
used without any important consequence on the resulting image. 

We have chosen to use a standard 20 bits ALU with a RAM microprogram in the first 
implementation of the cell, helped by specialised operators. 

4.2 Storage Size 

A cell has to store some rays (say M), including the primary one at the beginning of 
the ray tracing process. But M is rather hard to evaluate; however it is quite important 
because it could cause the deadlock of the communication system. In case of such a 
deadlock, we propose to destroy one or more sub-trees and to postpone the corresponding 
computations. 

A cell must store in its memory: 

1. viewer's position 

2. visible light sources positions and features 

3. ambient light intensity 

4. each voxel it has to deal with, and its visual features (including true normal). 

Thus, every cell is able to compute the data necessary for generating new rays or 
evaluating light intensity. 

The most important part is obviously the voxel storage: our study shows that about 40 
bytes are necessary per voxel. This will be implemented in the first prototype in standard 
cell for 16 voxels. In a full custom implementation, we intend to store only the occupied 
voxels, by using an index table. If the occupancy rate is 10 per cent, the voxel storage 
would cost about 5 Kbytes if the depth is 1024, which is quite compatible with current 
full custom technology. 

4.3 Communications 

Communications are unidirectional and asynchronous. They use buffers shared by neigh­
bouring cells. To every buffer is associated a mutual exclusion flag indicating its current 
state (full or empty). 

A cell has to get a message only when the corresponding output buffer is free in the 
case of simple routing, or when the message has to be processed locally (i.e., in case of 
intersection). 



90 

I til [I!

i 	
I 

~ 
i 

FCCP
r 


5 Simulation 

This architecture has been simulated on a 17 Transputer network: the distribution stage 
and RC are implemented on a 4 x 4 network, and a first Transputer with more memory 
acts as precomputation and data construction unit. It appeared quickly that we could not 
successfully simulate large networks on this array. We are now simulating the machine on 
a Parstec Multi-Cluster with 32 TSOO, with 2 Megabytes per Transputer. This allows us 
to simulate a 128 x 128 cellular network with 64 depth levels. 

6 Conclusion 

The fully distributed approach that we propose appears to be realistic: the first simulation 
results we have got for the ray tracing phase are very positive and go along the same 
line as the theoretical and practical results we had for the first loading phase. We are 
now studying more accurately the architecture of the basic cell for a VLSI semi-custom 
implementation. Such a basic cell should be operating at mid-1990, allowing the building 
of a 16 x 16 prototype (but with coordinate range over 0-1023 in x, y, z) by mid-1991. 
Other theoretical studies remain to be done, e.g., about deadlock cases, correct processing 
of non trivial light sources, or antialiasing. 

References 

[1] 	 Amanatides, A., et al: A Fast Voxel Traversal Algorithm for Ray Tracing. EUrIJgraphics '87, pp. 3-12. 

[2) 	 Atamenia, A.: Architectures Cellulaires Pour La Synthese d'Images. These de Doctorat, Lille, June 
1989. 

[3] 	 Caubet, R., et al.: Le suivi analytiqu€ de rayons: un algorithme incremental rapide pour la machine 
Voxar, MICAD '89, Paris, pp. 653-664. 

[4J 	 Cleary, J.G., et at.: Multiprocessor Ray Tracing. Computer Graphics Forum, vol. 5, no. 1, March 1986, 
pp. 3-12. 

[5J 	 Deering, M., et al.: The Triangle Processor and Normal Vector Shader: A VLSI System for High 
Performance Graphics. Computer Graphics, vol. 22, no. 4, August 88, pp. 21-30. 

[6] 	 Drake, B.L., et a!.: SLAPP: A Systolic Linear Algebra Parallel Processor. Computer, vol. 20, no. 7, 
July 1987, pp. 45-49. 

[7] 	 Eyles, J., et al.: Pixel-Planes 4: A Summary. Advances in Computer Graphics Hardware II. Euro­
graphicSemillars. Springer, 1988, pp. 1833-207. 

[8] 	 Fujimoto, A., et a!.: ARTS: Accelerated Ray-Tracing System. IEEE Computer Graphics and Applica­
tions, April '86. 



91 

(9) 	 Kung, S.Y., et aL: Wavefront Array Processors-Concept to Implementation. Computer vol. 20, no. 
7, July 1987, pp. 18-33. . 

[10] 	 Lattard, D. and Mazare, G.: Une nouvelle architecture cellulaire pour la reconstruction parallele 
d'images. Proceedings of PIXIM 88, Paris, pp. 193-207. 

[11] 	 Lepretre, E.: Algorithmes Paralleles et Architectures Cellulaires Pour La Synthese d'Images. These 
de Doctorat, Lille, June 1989. 

[12] 	 Martin, P., et al.: Circuit systolique pour la synthese d'images. COGNITIVA 87, Paris La Villette, 
18-22, May 87, pp. 112-117. 

[13J 	 Meriaux, M.: Contributions a l'imagerie informatique: Aspects algorithmiqueset architecturaux. These 
d'etat, LilIe, 1984. 

[14J 	 Meriaux, M.: A Cellular Architecture for Image Synthesis. Microprocessing and Microprogramming, 
1984, vol. 13, pp. 179-187. 

I 
i 

I 

I 

I 

~ 


