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Abstract

A central component of expressive volume rendering is the identification of tissue or material types and their
respective boundaries. To perform appropriate data classification, transfer functions can be defined in high-
dimensional histograms, removing restrictions of purely 1D scalar value classification. The presented work aims at
alleviating the problems of interactive multi-dimensional transfer function design by coupling high-dimensional,
probabilistic, data-centric segmentation with interaction in the natural 3D space of the volume. We fit variable
Gaussian Mixture Models to user specified subsets of the data set, yielding a probabilistic data model of the iden-
tified material type and its sources. The resulting classification allows for efficient transfer function design and
multi-material volume rendering as demonstrated in several benchmark data sets.

Categories and Subject Descriptors (according to ACM CCS): 1.3.0 [Computer Graphics]: General—

1. Introduction

Volume rendering is used in fields such as medicine [PB07]
and engineering and relies on the definition of transfer func-
tions, which map properties of scalar data to visual proper-
ties such as color. If the visualization goal is the display of
distinct materials, transfer functions are effectively a classi-
fication technique that serves as input to a rendering stage.

The design of transfer functions is complex even for low-
dimensional domains and is therefore, since it typically can-
not be performed fully automatically, often offloaded to the
user. In an interactive setting, these transfer functions can
be designed by operating in spaces such as a histogram
[KD98], a correlation space [BM10], or a topological ab-
straction [BPS97]. Here, raising the dimensionality of the
histogram domain allows for better data classification but at
the same time fundamentally increases the complexity of in-
teractive transfer function design. In more than two dimen-
sions visual representations of the domain and interaction
techniques become complex and increasingly non-intuitive.

This paper proposes a technique to decorrelate classifi-
cation power and interactive design complexity by utiliz-
ing unsupervised learning and probabilistic classification.
We hide conceptual complexity of high-dimensional transfer
function design from the user by modeling the classification
procedure as one-class classification based on user-specified
samples of the volume data. As the user selects such a set
of voxel samples, an unsupervised learning approach mod-
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els the selected samples as set of random variables orig-
inating from multiple probabilistic sources by performing
adaptive Gaussian Mixture Model (GMM) fitting. As a re-
sult, a complex classifying data model is learned while the
user selects part of the data directly in 3D and performs it-
erative classification of the data set. This query-driven ap-
proach reduces the complexity of interaction operations by
hiding computational complexity from the user while at the
same time achieving multi-dimensional data classification.
In summary, our work makes the following contributions:

e Non-global, high-dimensional, and probabilistic transfer
function design in 3D

e Iterative query-driven, local data model specification

e Local data model estimation with mixed GMMs

2. Motivation and Related Work

Scalar data may be classified into materials based on prop-
erty selection in 1D (e.g., scalar histograms [Lev88]), or
higher-dimensional spaces (as defined by derived prop-
erties such as gradient, curvature [SWB*00], locality
[LLYO06, CQC*08], correlation [BM10], and other mea-
sures [KKHO02, KVUS*05, HPB*10]). However, due to
noise, measuring inaccuracies, and other effects, meaning-
ful features in the volume data do not necessarily correspond
to generic features in histogram space. In multi-dimensional
histograms, specific data models may be used to identify
histogram features with data features (cf. arcs in gradient-
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intensity histograms [KD98]). However, generic data mod-
els for automatic classification are rare.

Fortunately, humans are capable to interpret desired re-
sults in volume classifications easily [MAB*97], imply-
ing user-guided data model generation outside of histogram
space as a solution to this problem. For basic transfer func-
tions the user is able to identify approximate features directly
in the volume rendering - whereas automatic classification
[MWCE09, WZL*12,1VJ12] is clearly superior when oper-
ating in the high-dimensional histograms. For this reason,
we propose the unification of interactive image centric clas-
sification and automatic data centric classification as an ap-
proach for efficient multi-dimensional volume classification.
A number of works have aimed at providing means for effec-
tive (semi) interactive transfer function design. Direct modi-
fication of global transfer function properties in 3D was pro-
posed by Guo et al. [GMY11]. In other work, unsupervised
learning of two-class classification by Neural Networks or
Support Vector Machines or other means [TLMO0S5, PRH10]
facilitates non-local volume classification by allowing the
user to paint classes on 2D slices of the data. A probabilistic
approach to clustering of a 2D transfer function domain with
the help of GMMs as introduced by Wang et al. [WCZ*11]
supports interactive volume rendering by proposing a classi-
fication of the domain into a set of overlapping normal dis-
tributions. Wu et al. [WQO7] provide means for feature com-
bination in the volume data. Some of these interaction tech-
niques involve direct editing in volume space [BKWO08]. Our
approach unifies key advantages of these approaches. It op-
erates directly in 3D and does not require complex histogram
interaction. It does not rely on the presence of (carefully
placed) slices through the data and is robust with respect
to outliers in user selection. The application of one-class
classification additionally allows the direct specification of
interesting classes leading to simplified interaction opera-
tions. This facilitates classification without making concrete
a-priori assumptions about a data model and feature proper-
ties for a specific data set.

3. Localized Data Models with GMMs

In the following we detail the steps of our image-based data
model estimation approach as illustrated in Figures 1 and 2.

Data Selection in the Volume As interaction with his-
togram space can be both unintuitive in low-dimensional
spaces and infeasible in high-dimensional spaces, a direct
way for local data selection is 3D interaction with the vol-
ume rendering. A selection in image space corresponds to a
partial histogram selection. This selection serves as a basis
for local data model estimation.

Local Data Model Estimation The selection of a subset of
the histogram results in a high-dimensional point-set con-
sisting of representatives of a data model. In terms of ma-
chine learning, this set corresponds to the training data used

sample selection in 3D
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Figure 1: The user initiates automatic model estimation of
the local data model by providing feature samples. This local
model is used to perform classification of all remaining vol-
ume samples. Combination of classifications results in com-
plete transfer function definition.

Figure 2: Left to right: After performing selection (green)
in the volume, our probabilistic classifier assigns parts of
the volume to the learned class (purple). The histogram and
class model is shown in Figure 3. The class can be modified,
discarded, or saved to the class list (rounded icons).

to construct a class model that generalizes properties of class
members to the complete data set. Central requirements for
modeling such a classifier in the context of this work are:
Robustness to outliers to mitigate selection uncertainty, un-
supervised learning, and one-class classification with appro-
priate generalization and fitness qualities.

Bayesian classification techniques can be adapted to sat-
isfy these requirements in a straight-forward fashion. Since
GMMs have proven to be valuable for histogram segmenta-
tion [WCS*10, WCZ*11], we employ this technique in an
extended and localized fashion (see Appendix for details).
Note that in this previous work, GMMs are fitted to the com-
plete histogram and further interaction in a 2D histogram
space is required to find a model that clearly emphasizes fea-
tures in the volume, thus limiting histogram dimension and
initial locality.

Application of GMM We apply mixed GMM estimation
directly to histogram selections. The resulting set of normal
distributions allows for probabilistic classification of all vox-
els in the data set. We perform classification in two steps.
First, samples that lie within a predefined confidence inter-
val of the extracted normal distributions are automatically
classified as belonging to the class with respective proba-
bility. Because this classification is based solely on sample
distributions and does not take features of the histogram into
account, we perform a second step for full classification. In
this second step we extend this classification to neighbor-
ing data points by taking image connectivity and histogram
continuity into account. A data point j with a probability of
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P; for belonging to the current class that is not yet classi-
fied as a member is included in this classification, if all of
the following conditions are fulfilled. i) Its probability P; is
significantly above zero ii) It is a direct neighbor (in image
space) to a member i of the class. iii) P; > 6P, with & < 1.

These conditions guarantee that class membership is only
extended to voxels that are spatially close to definite mem-
bers both in volumetric image space and histogram space,
i.e., it counteracts the GMMSs’ tendency to overgeneralize.
Note that the last condition ensures neighborhood in the
histogram by constraining the maximal probability gradient
magnitude. The examples given in this paper use 6 = 0.5.

Modification of Classification Applying the probabilistic
classifier to the histogram assigns class membership proba-
bilities to all voxels of the data set, which can be modified by
interaction with the volume, such as sample addition, until
the user visually verifies the local data model. After verifi-
cation, the local data model is saved to a list of valid classi-
fiers for the data set and its members (for a given confidence
value) are removed from the volume.

4. Results

We apply our techniques to three data sets that are frequently
used in the volume rendering community. The data sets have
different optimal histogram dimensions. The tooth data set is
the most complex out of the three, where an optimal classi-
fication requires three or more dimensions in the histogram.

4.1. Interaction and Rendering

We provide the user with a spherical selection tool that
moves along the surface of the (unclassified) volume. By
providing a simple direct volume rendering we enable the
user to create data selections for classification. Note that an
online classification of voxels based on a class model that
is represented by a large set of Gaussians slows down vol-
ume rendering significantly, since large numbers of Gaus-
sians have to be evaluated [KPI*03] per sample point on the
rays. To alleviate this performance problem we make use of
pre-classified volume ray-casting [EKEO1], i.e., each voxel
is assigned class memberships during class construction.

The interaction process follows the steps illustrated in
Figure 1 and shown in practice in Figure 2. In the given
examples, we employ a transfer function mapping gradient
magnitude to opacity and scalar values to a blue-white-red
colormap. During interaction, regions within the selection
sphere are highlighted, and selection is performed in voxel
space, where a mask is updated locally during run-time to
display selected regions of the volume. After selection, a
mixture of GMMs is fitted to the selected subset of the his-
togram and used for voxel classification. Notice how after
fitting samples of the current class are marked as classified
(in purple). The user can inspect or drag and drop this class
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into a class-browser for later modification. This interface is
similar to work proposed by Tzeng et al. [TMO04]. Editing
of the selection, discarding or saving of the generated class
is possible. Saved classes are shown in a class list for fur-
ther interaction, such as specification of optical properties
or class merging. Figure 3 shows a histogram rendering of
the selection made in the Tooth example. This selection pro-
cess guides local feature classification in the histogram as
opposed to global fitting [WCS*10].

Figure 3: Global GMM fitting (c.f, [WCS*10]) (left, 14
Gaussians) produces multiple small Gaussians in high den-
sity regions. Only clipping of these regions can allow for
more balanced global fitting with less Gaussians (middle,
4 Gaussians). Right: The model of an intensity-gradient se-
lection (blue) is estimated locally as a mixture of GMMs us-
ing our technique (c.f., close-up). The GMM is used to as-
sign class membership probabilities and together with spa-
tial confidence growing defines the class boundaries.

4.2. Classification Results

A comparison of classifications of the tooth data using our
method with automatic global GMM fitting is shown in Fig-
ure 4; the outermost class is transparent. The automatic clas-
sification employs a 2D transfer function domain to allow
for the easy distinction of multiple classes. Note how our
approach performs localized fitting and can produce results
for 3D histograms, since no interaction in histogram space
is required. Interactive classification with our approach re-
quired on average three selection iterations per class.

-

Figure 4: A classification of the tooth data. Left: Our ap-
proach (using 2D histogram on the left, 3D on the right),
showing three local classes. Note how 3D classification re-
moves an extra feature visible in the background. Right: The
two meaningful classes as obtained by EM fitting of 4 Gaus-
sians (see Figure 3) in the intensity-histogram. The latter
suffers from bad classification due to automatic global fit-
ting. Interactive adjustments to this classification are only
possible for 2D histograms (see [WCS*10]).

A simpler data set, whose main classes are fully separable
in 2D is given by the engine data set. Figure 5 gives an im-
pression of the selection process along with the three major
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classes found in the data set. The last data set was classi-
fied in two dimensions, revealing bones and skin (see Figure
6). Fine details are preserved by the classification techniques
and selection uncertainty is mitigated as indicated by clearly
segmented features with probabilistic class memberships.

The performance of interaction depends largely on com-
putational efficiency of the model estimation procedure. The
proposed mixture of GMMs generally does not achieve in-
teractive frame rates for large numbers of data points. For the
given examples, classification took between 10 and 30 sec-
onds depending on the complexity of the point distribution,
despite the use of optimizations such as localized Gaussian
kernels, space subdivision, and parallelization. For an on-
line local data model generation further optimizations have
to be considered. It is notable that the optimal number of
Gaussians per GMM was generally low (below 4) in all ex-
amples, thus allowing constriction of range search during
GMM estimationton € [1...3].

Figure S: Classification of the engine data set. Left column:
3D interaction and resulting classification for the main en-
gine part. Right: Three and two of the detected classes.

Figure 6: Classification of the fish data set into two rele-
vant classes: Skin and bones. The first step of segmentation
is commonly the removal of background material. Despite
the fact that it often covers large parts of the data set, clas-
sification is fast due to very simple data distributions.

5. Conclusions and Future Work

We have introduced a concept for transfer function de-
sign that couples data-centric and interactive image-centric
classification techniques. The proposed model estimation
methodology was realized with the help of GMMs. While

an implementation with computationally complex estimators
such as GMMs cannot perform online classification, we ex-
pect simpler methods to reach comparable results within a
fraction of the time. We plan to investigate and evaluate the
use of such alternative model estimators in the future.

Appendix: Mixtures of Gaussian Mixture Models

Local selections in the histogram can be interpreted as partial
selections of overlapping probability density functions. As-
suming a complex distribution of values, GMMs are a non-
parametric method to estimate this set of distributions by fit-
ting a number of normal distributions to the d-dimensional
data. Given a parametric d-dimensional Gaussian distribu-
tion NV (x;u, £) with mean u € R?, covariance ¥ € R?*? and
d-dimensional vector x, an n-component GMM is given as

p(x|@®) :ZO)[N(x;pi,Zi). (1)

For a specific n € N, estimation of the parameter array
0 = {w;,u;,X;} is achieved by multi-dimensional Gaussian
fitting [VVKO3]. In our application, GMMs represent an un-
supervised learning techniques suitable for model estima-
tion. We use them to create a generative model for the locally
selected data in histogram space. In practice, the number of
normally distributed sources present in the data is unknown,
preventing the a-priori choice of a fixed n. A solution to
this problem is offered by estimating n along with ®, effec-
tively modeling the fitting problem as a mixture of GMMs
[AADO6]. Such mixtures of GMMs eliminate the need of a-
priori knowledge about the number of distributions. A non-
parametric method for the computation of these mixtures
performs repeated GMM fitting for a range of different n
and subsequently selects the best fitting GMM. These steps
are illustrated in Figure 7 (for details see [AADO06]).

Figure 7: Steps of mixed GMM estimation. Left: Mean shift
finds maxima of density (see for example [WJ94]). Middle:
With the resulting maxima locations and covariance esti-
mates, the data is clustered. Right: For every cluster, we es-
timate n along with ©, resulting in sets of Gaussians.
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