
Low-Discrepancy Point Sampling of Meshes for Rendering

J. A. Quinn, F. C. Langbein and R. R. Martin

School of Computer Science, Cardiff University, UK

Abstract

A novel point sampling framework for polygonal meshes is presented, based on sampling a mesh according to a

density-controlled low-discrepancy distribution. The local sampling density can be controlled by a density func-

tional defined by the user, e.g. to preserve local features, or to achieve desired data reduction rates. To sample the

mesh, it is cut into a disc topology, and a parametrisation is generated. The parameterised mesh is sampled using

a Hilbert curve in the parameter domain, which is adapted to parametric distortions and mapped onto the mesh.

1D sample points along the Hilbert curve are then generated, correcting for parametric distortion and a user-

specified local density, to give a density-controlled low-discrepancy sampling of the mesh. After a pre-processing

step, the sampling density can be adjusted in real-time. Experiments show that this approach can quickly resample

existing meshes with low discrepancy samples. The effectiveness and speed of the approach are demonstrated by

applying it to viewpoint dependent rendering, level of detail representation, and interactive remeshing.

1. Introduction

Point based representations of surfaces are becoming a vi-
able alternative to polygon meshes, especially for complex,
smooth or dynamic surfaces [KB04]. However, meshes are
the most common method for rendering and storing models.
Triangle meshes may be irregular due to limitations of the
capture process, and may e.g. describe large flat areas using
a small number of polygons. Vertices of such meshes are not
suitable for point based rendering. There is a need to resam-
ple such meshes to produce point sets more useful for point
based graphics, e.g. with more regular distributions that pre-
serve shape well. A secondary objective may be to adjust the
sampling density to meet user criteria, e.g. the local point
sampling density is proportional to surface curvature.

This paper thus does not focus on rendering of the points,
but on the sample distribution. Nevertheless, the sampling
must take into account all requirements of the rendering
stage in order to be useful. The criteria that we suggest
are as follows: the points should be evenly distributed, usu-
ally with respect to some function of curvature. The points
must not be, however, arranged in a regular pattern in order
to avoid artifacts and aliasing problems [Zwi03]. The point
sampling must be invariant to direction, that is, given a uni-
form, isotropic density, the distance between points should
be consistent in all directions.

We propose a technique, utilising previous work

on sampling parametric surfaces with space-filling
curves [QLME06], to resample arbitrary polygonal meshes.
The emphasis is on the quality of the new point distribution,
with the ability to control and adjust the sampling density
at interactive rates. We generate a point distribution on
the surface that has low discrepancy with respect to a
user-specified density function. Previous work has shown
that low-discrepancy sampling of a manifold is a very
efficient method of capturing geometry with a minimum
number of samples [RWCS05]. Low-discrepancy distri-
butions also generally ensure an even distribution without
regular grid-like patterns, and thus such sampling produces
fewer artifacts caused by aliasing [Coo86]. This can
be important in such applications as computing volume
properties [DMB99], and rendering [Kel97]. In Sect. 4.2,
we also demonstrate that our jittered sampling produces a
better surface coverage than other techniques for common
point-based rendering approaches.

We now briefly overview our technique (for details see
Sect. 3). Taking a triangle mesh as input, we first cut it (if
necessary) to give a disc topology, and parameterise it in
[0,1]2. We then adaptively generate a finite approximation
to a Hilbert curve in this parameter domain, such that when
its vertices are mapped back to the surface mesh, the mesh is
covered uniformly according to a user-specified density (see
Sect. 3.2). The space-filling curve allows us to treat the 2D

Eurographics Symposium on Point-Based Graphics (2007)
M. Botsch, R. Pajarola (Editors)

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

J. A. Quinn & F. C. Langbein & R. R. Martin / Low-Discrepancy Point Sampling of Meshes for Rendering

problem of evenly distributing points on the surface as a 1D
problem. We start by generating a 1D distribution to sam-
ple the Hilbert curve; for reasons discussed in [QLME06],
we use jittered samples. To achieve the desired density of
points on the surface, we approximate the local area distor-
tion caused by the parametrisation, and take into account the
user specified density function. We use a technique similar
to histogram equalisation from image processing to produce
the desired point distribution on the mesh.

There is no universally applicable method to assess the
quality of a resampled surface. Various assessment criteria
are employed in the literature, e.g. discrepancy [RWCS05],
minimum angle statistics [SG03], the blue-noise crite-
rion [AMD02] and the Hausdorff distance: for measuring
the accuracy of remeshed surfaces [CRS98] and point sam-
pled surfaces [WZK05]. Even visual assessment can be
useful, especially if the final application is rendering. For
(quasi) Monte-Carlo integration, it has been demonstrated
that estimates of the area or volume of an object using low-
discrepancy samples converges far faster than when using
random sampling [LWMB03]. An experimental technique
used by [RWCS05] involves sampling a unit square polygon
divided into two triangles, and calculating the star discrep-
ancy for a varying number of points. The technique demon-
strates the discrepancy on the plane, but does not address the
discrepancy of the surface as a whole.

In Sect. 4, we employ an approximate discrepancy mea-
sure on the entire mesh to demonstrate that the discrep-
ancy in point sets produced by our approach drops as we
increase the number of points in a similar fashion to low-
discrepancy sequences previously tested on parametric sur-
faces [QLME06, CF97]. This verifies that the mesh sam-
ple distributions exhibit low discrepancy properties, i.e. they
cover the surface area well and do not suffer from aliasing
associated with regular sampling. We also assess the cover-
age of points in the unit square, comparing low-discrepancy
and random distributions to our technique.

Although the pre-processing step of generating the Hilbert
curve in [0,1]2 is somewhat time-consuming (a few sec-
onds), generating a new set of point samples on the mesh
is extremely fast (less than 10 milliseconds for all meshes
tested), allowing us to resample the surface at interactive
rates in response to user required changes of the density, e.g.
as the camera zooms in or out. If the density changes signif-
icantly, we must subdivide the curve locally (see Sect. 3.2)
in a background process.

Experimental results are given to demonstrate the distri-
butions produced using our technique, and to compare them
to other approaches. To demonstrate the flexibility of our
technique and advantages of using the Hilbert curve as the
underlying technique for resampling, we show that it can be
easily applied to viewpoint and level of detail based render-
ing 4.3, and remeshing 4.4. For the former, we give timing
and visual results, and demonstrate silhouette enhancement.

We compare the quality of meshes produced by our remesh-
ing implementation to other competitive techniques by mea-
suring the Hausdorff distance using Metro [CRS98], show-
ing results competitive with one of the most popular remesh-
ing techniques.

In the following, we first discuss prior work (Sect. 2). We
then present our algorithms (Sect. 3), followed by experi-
mental results (Sect. 4) and conclusions (Sect. 5).

2. Related Work

In this section, we review work related to point sampling
meshes and low-discrepancy distributions.

An overview of point based graphics is given
in [AGP∗04]. This includes work on levels-of-detail
(LOD) and viewpoint dependent rendering (VDR), neigh-
bourhood computation, especially K-nearest neighbours
and triangulation, surface simplification, especially iterative
methods and particle simulation, and error metrics such
as the Hausdorff distance. Kobbelt and Botsch [KB04]
also give a broad review of point based techniques, with a
concise overview of different representations and rendering
techniques. Of particular interest is the discussion about
neighbourhood calculations, point sampling and level of
detail (LOD). Zwicker [Zwi03] also surveys the field
thoroughly; he briefly looks at methods to avoid aliasing
problems in sampling, such as the blue noise criterion,
also discussed with regard to remeshing in [AMD02], and
non-spectral properties, namely discrepancy.

Rovira et al. [RWCS05] describe how to sample an in-
put mesh by intersecting uniformly distributed lines with the
model, projected from bounding box tangent planes. They
numerically assess their technique by sampling a unit square
polygon divided into two triangles, and measure the star dis-
crepancy of the distribution. They show results that appear
to be two orders of magnitude worse than sampling points
directly on the polygon with known low-discrepancy dis-
tributions (such as Hammersley and Sobol). They also do
not consider the discrepancy of the sampling over the whole
mesh, and cannot control sampling density. Our approach,
however, provides a low-discrepancy distribution over the
whole mesh, whilst also having full control over the sam-
pling density. The distributions generated by our algorithm
are superior to common low-discrepancy distributions for
point based graphics applications, as we show later.

Wu et al [WK04] suggest a sampling technique, and gen-
eralise this to LOD splatting [WZK05], employing a pro-
gressive error-based decimation technique for point based
models, taking into account splat geometry. They demon-
strate good results, with low errors, taking about 30 seconds
to generate a single model for a large mesh. They cannot,
however, control the density of the distribution, and only
consider the quality of the distribution in terms of the sur-
face approximation error. Also, whilst the time required to

c© The Eurographics Association 2007.

20

J. A. Quinn & F. C. Langbein & R. R. Martin / Low-Discrepancy Point Sampling of Meshes for Rendering

generate a single level of detail is similar to our technique,
after this processing time, our approach allows interactive-
rate control of the level of detail with arbitrary granularity,
according to a specified density, with a guaranteed sampling
quality.

We now discuss some of the methods that we utilise in our
work. The input mesh, if not already having disc topology,
must be cut; we use the algorithm in [SAL06]. Our methods
are applicable to arbitrary polygonal meshes, but for sim-
plicity we only consider triangle meshes here. Thus, we use
Floater’s [Flo97] parameterisation technique, as we desire
triangle shapes to be preserved to avoid anisotropic stretch.
Because we adaptively sample the parameterised mesh, large
area ratios between triangles on the surface and in the param-
eter domain do not affect the quality of our results (although
they may have a minor impact on speed). Floater’s technique
is also fast. We generate an adaptive Hilbert curve in [0,1]2,
based on the algorithm described in [QLME06], according to
the input mesh. In [SM03], it is demonstrated that a jittered
sampling of the Hilbert curve can produce a generalised
stratified sampling. In [QLME06], it is demonstrated that
this technique can be further generalised to parametric sur-
faces, using an approach similar to histogram equalisation
to evenly distribute the samples on the surface. When sam-
pling the curve, we recommend a 1D jittered, or stochastic
sampling of the Hilbert curve to produce a low-discrepancy
distribution. However, other, completely deterministic sam-
pling techniques may also be used such as evenly spaced
points or the Niederreiter sequence. Such sequences can be
used to guarantee that points on the coarser level models
are a subset of the points of finer levels. We also utilise
ideas from [KV03]; each sample is stored as a ‘differen-
tial point’, providing discrete differential surface properties
such as principal curvatures and surface normals, allowing
the most efficient use of sample points.

Due to the absence of topology in point based surface
representations, the literature often notes the importance
of neighbourhood calculations, e.g. for normal computa-
tion [DLS05]. Work such as [SSV07], focusing on huge
point sets, further shows the importance of efficient neigh-
bourhood calculations. Our approach uses the Hilbert curve
as the underlying construct for the point distributions which
also implies a topology: a Hilbert curve is related to a partic-
ular quad-tree decomposition of [0,1]2. This inherently pro-
vides fast neighbourhood operations [KF94], allowing us to
recompute surface properties very quickly if required.

We now briefly consider some of the work related to
the applications of our method. [KB04] and [AGP∗04]
discuss LOD as an important topic; we also consider
VDR [BLM04]. For point based graphics, when performing
LOD calculations, a key advantage is that removing a point,
unlike for meshes, does not modify any topology. Due to
the speed at which we can resample the Hilbert curve, once
pre-processing is complete , we can easily resample the sur-

face at interactive rates as the distance between the model
and the camera changes: we can achieve an arbitrarily fine-
grained LOD technique after one-time initial pre-processing.
The sampling of the curve can also be completely determin-
istic, thus minimising the effect of visual popping, discussed
in [LWC∗02].

With regard to VDR, we do not consider image space
culling or occlusion, but an object space analysis of the
scene. Thus, we consider what part of the scene is visible
to the camera, and then simply sample that part of the scene
at the desired density. There is considerable computational
overhead involved, and we demonstrate it mainly to show
how fast our technique is in practice. A situation where this
might be useful could be if the user required a fixed scene
complexity regardless of viewing angle. Our approach can
also be used to increase the sampling density around silhou-
ettes, providing the illusion of a higher quality model, espe-
cially useful for masking the mesh-complexity of a simple
model with a high-resolution texture.

For an introduction to requirements of and approaches to
remeshing techniques, see Alliez et al. [AGGA05]. An im-
portant criterion highlighted is that of fidelity: at a given
resolution, a newly generated mesh should approximate the
original mesh accurately with as few triangles as possible.
Previous work [LWMB03] indicates that a low-discrepancy
sampling of a surface may fulfil this requirement very well
for a set of points. However, we note that it is not nec-
essarily true that a triangulated low-discrepancy distribu-
tion has the same quality. Minimising the number of trian-
gles may not always be the most important requirement—
for example, finite element methods are more likely to re-
quire a regular mesh of equally sized, almost equilateral tri-
angles. Most remeshing techniques require some form of
parameterisation, either global [AMD02] or local [SG03].
However, techniques not requiring parameterisation also ex-
ist [ACSD∗03,BK01].

Building on the basic technique described in [QLME06],
the contributions of this paper are to provide a robust frame-
work tailored for point based graphics applications, allow-
ing the user to generate high quality low-discrepancy distri-
butions from large, arbitrary genus, polygonal meshes very
quickly. We generalise our previous work to arbitrary mesh
sampling, including GPU accelerated mapping from the pa-
rameter domain to the mesh, high quality mesh area compu-
tation, mesh discrepancy calculations, and most importantly,
demonstration of applications, including a working system
for real-time arbitrarily fine-grain localised LOD, viewpoint
dependent rendering and a remeshing application to demon-
strate the flexibility of our framework.

3. Sampling using Space-Filling Curves

This section describes our approach to resampling a mesh.
We first briefly overview the complete algorithm and then

c© The Eurographics Association 2007.

21

J. A. Quinn & F. C. Langbein & R. R. Martin / Low-Discrepancy Point Sampling of Meshes for Rendering

provide details on Hilbert curve generation, mapping the
Hilbert curve onto the mesh, and the sampling process along
the Hilbert curve on the mesh.

3.1. Overview

Our algorithm takes an arbitrary meshMs and a user-defined
density function δ as input and computes a set of points
sampling that mesh. δ : Ms → R

+
0 is a user-defined, posi-

tive function indicating the desired sampling density for the
construction of the new distribution; δ might be constant, or
proportional to surface curvature, for example. As Ms can
be of arbitrary genus it is first cut into disc topology using
the algorithm described in [SAL06]. Then a mesh parametri-
sation algorithm [Flo97] is used to generate a mapping f :
Mp ⊂ [0,1]2 → R

3 from a parameter mesh Mp ⊂ [0,1]2 to
the surface mesh Ms. As mentioned earlier, the choices of
parameterisation and cutting algorithms have little effect on
the final sampling due to the adaptive nature of the Hilbert
curve.

Reducing the dimensionality often simplifies a computa-
tional problem. In our case, we do so by sampling the mesh
in the parameter domain using a space-filling curve: we gen-
erate an adaptive curve in [0,1]2 which coversMp. We use a
recursive Hilbert curve construction [QLME06] locally ex-
panded to different recursion depths, determined by the area
scale factor between Mp and Ms given by the parametrisa-
tion, and the density function δ. The parametrisation f maps
the Hilbert curve onto the surface Ms. We then place sam-
ple points {pl : l = 1, . . . ,N} along the curve on Ms based
on how the integral

R

δds increases along the curve, using an
approach similar to histogram equalisation. Note that this in-
tegral corresponds to a surface integral, as the Hilbert curve
in the limit covers the complete surface. The output distri-
bution is a low-discrepancy set of points sampling the sur-
face [QLME06], meaning that for each subset A of the orig-
inal meshMs, the ratio of the number of sample points lying
inside A to the overall number of points N should approxi-
mate the ratio of the surface integrals

R

A δds/
R

Ms
δds.

3.2. Generating the Hilbert Curve

For a general introduction to space-filling curves
see [QLME06]. A Hilbert curve can be interpreted as
mapping H : [0,1] → [0,1]2. We compute an adaptive
approximation of this curve using a quad-tree approach,
where each vertex of the curve represents a quad (square)
in [0,1]2. This can be done rapidly to provide a set of
Hilbert curve vertices {hl : l = 1, . . . ,L} ⊂ [0,1]2 expressed
by 2D co-ordinates, which uniquely correspond to 1D
co-ordinates via H. If a parameterisation technique similar
to that in [GY03] were used, the parameter domain could be
sampled uniformly, avoiding the need for an adaptive curve.
This would allow use of the ideas in [But68] to generate the
Hilbert curve. Otherwise, an adaptive curve is needed, i.e.

a curve for which the level of recursive construction is not
constant (see Fig. 1). Note that although a change in curve
density will affect the exact placement of points, it does not
affect the quality of the distribution. The recursion depth of
the curve is approximately bounded below by some constant
ω times the ratio

R

A δds/
R

Ms
δds, for each subset A of the

mesh Ms. In practice, we find that ω ≥ 10 is sufficient to
provide the required density of space-filling curve vertices
on the surface mesh Ms with respect to the density function
δ, regardless of parametric stretch or distortion. Simply put,
we must locally maintain a minimum density of Hilbert
curve vertices, hl so that we can place our final point
distribution with sufficient accuracy.

To calculate how many Hilbert curve vertices hl are re-
quired locally, using the bijective mapping between triangles
in Mp and Ms, we cannot simply increase the depth of the
Hilbert curve solely based on the area of each triangle inMs
(a small triangle in Mp may map to a very large triangle on
Ms). Hence, first we define the number of point samples we
need in a given surface triangle as N△ =

R

△ δdA/
R

Ms
δdA.

We thus require v△ Hilbert vertices inside a surface trian-
gle with v△ ≥ ωN△. Given an initial construction of our
Hilbert curve to some preset recursion depth, we then ap-
proximate the required number of vertices that should be
contained within a quad at any given level. In practice, we
require that vquad ≥ v△/(Ap/Aquad), where vquad is the num-
ber of vertices in each quad of the quad tree, Ap is the area
of the triangle f−1(△) ∈ [0,1]2, and Aquad is the area of the
Hilbert quad. These values must be calculated independently
for each quad.

Subsequent to this pre-processing phase of our algorithm,
if the density changes greatly, so that there are insufficient
pre-computed Hilbert curve vertices in one or more quads,
the recursive depth of the curve must be increased to com-
pensate. In this case, we initially approximate the distribu-
tion with the maximum accuracy possible with the current
Hilbert curve vertices. We then create a new low-priority
thread, which subdivides the curve locally as required, and
resamples the distribution. The time it takes to subdivide the
curve is difficult to meaningfully quantify. For a dramatic
change in density, involving nearly all quads, we treat δ as
becoming rδ, where r is some constant, and we increase the
number of points in each quad by a factor r, resulting in a
global increase in recursion depth of the Hilbert curve–this
is much faster then recomputing areas for the entire surface.
Thus, for small changes we recompute areas locally, and for
large changes, globally increase the density as described.

As described in [SM03], as we construct the curve, each
1D co-ordinate is mapped to a 2D coordinate, thus halv-
ing the precision available in the unit interval when using
limited precision arithmetic. This must be monitored, and
in exceptional circumstances, reparameterisation may be re-
quired [QLME06].

c© The Eurographics Association 2007.

22

J. A. Quinn & F. C. Langbein & R. R. Martin / Low-Discrepancy Point Sampling of Meshes for Rendering

Figure 1: Uniform (left) and Adaptive (right) Hilbert Curve

3.3. Mapping the Hilbert Curve onto the Surface

Once the adaptive curve has been generated in the parameter
domain, we must map it onto the surface meshMs, using the
parameterisation f . We convert the points hl ∈ [0,1]2 to local
triangle barycentric co-ordinates on the parameter meshMp,
and hence to Cartesian co-ordinates onMs ⊂R

3, resulting in
a set of Hilbert vertices on the mesh, Hl = f (hl). During this
process, we also perform a bilinear interpolation of the den-
sity function, and the normals for each of the curve vertices.
We interpolate these values to allow us to calculate the dis-
crete density sl for each Hilbert curve vertex Hl as described
below.

When performing this mapping, we must first find out
which triangle contains each hl . To do this rapidly, we use
the graphics hardware to render the parameter mesh Mp in
the frame-buffer at the same resolution as the Hilbert curve,
and give each triangle a unique colour. We then read it out as
a texture, and for each vertex hl , we may compute the colour
of the triangle that matches its position to find the triangle
containing it. Due to the adaptive nature of the curve, we
must either render the curve at the maximum depth, or cut
the parameter domain into sections based on the depth and
perform the operation per section. Furthermore, if required,
containment checks can be performed after this process to
ensure that points close to a triangle edge were computed
accurately. This process is very fast, as we show later.

3.4. Sampling along the Hilbert Curve

We now discuss how to compute the cumulative density Sl ,
approximating the surface integral along the Hilbert curve on
the mesh. This allows us to discretely sample a sequence of
points pl along the Hilbert curve vertices Hl on the surface
mesh in a similar way to histogram equalisation. We wish
to compute SL ≈

R

S δds, where L is the number of vertices
Hl , and thus SL is the cumulative density along the Hilbert
curve. Given the discrete nature of H, we can approximate
this integral by Sl = ∑

l
k=1 sk, l = 1, . . . ,L. Note that the over-

all surface integral of δ can be ignored as it is simply a scal-
ing factor and we assume the desired number N of sample
points is given. We compute the area of the surface patches
Al multiplied by the density δ, approximating

R

Al
δds. We

calculate the area of each element Al using the technique de-
scribed by Meyer et al. [MDSB02]: the area of the Voronoi
region of the triangles △PQR for each Q ∈ {Hl} and each
pair P, R of consecutive neighbours in Q’s one-ring is cal-
culated. Then the total Voronoi area for Q is determined by
summing the areas of each of the Voronoi regions, giving us
an approximation of Al . Our cumulative density function, for
non-obtuse triangles, is thus

Sl =
l

∑
l=1

ϕl ∑
j∈N(il)

(cotαil j+ cotβil j)‖xil − x j‖
2

where x j is a neighbour of vertex xil of the one-ring neigh-
bourhood N1, α and β are the opposite angles of the respec-
tive triangles to the line segment between xil and x j, and ϕ

is a discrete local approximation of the density δ. For ob-
tuse triangles, as [MDSB02] recommends, we approximate
the Voronoi area by taking the mid-point of the side oppo-
site the obtuse angle in the triangle instead of the Voronoi
vertex for that triangle to ensure that no area elements over-
lap. Note that the basic triangulation is constructed using the
eight neighbours of each Hilbert vertex, requiring little addi-
tional computation.

We then generate a set of 1D jittered samples {ql : l =
1, . . . ,N} in [0,1]: we take an evenly spaced set of samples,
which are moved a uniform random amount up to half the
distance towards the next or previous sample. Once we have
calculated the cumulative density Sl over Hl , we move along
the Hilbert curve, and whenever Sl becomes larger than the
threshold described by the 1D sequence ql (multiplied by
SL), we sample a point pl at a vertex along the curve on the
surface mesh Ms, producing a distribution of jittered points
lying on the surface of the input meshMs.

4. Experimental Results

We next consider the run-time of the algorithm and visu-
ally demonstrate the output using some example models. We
then assess the sample distributions produced by our algo-
rithm by computing their discrepancy and visually assessing
the quality of point based rendered images. Following this,
we illustrate applications of the framework, viewpoint and
LOD based rendering, and remeshing. Finally, we discuss
our results. All tests were carried out on a 3GHz Pentium 4,
with 1GB of single channel DDR RAM.

4.1. Visual Results and Run-Time Analysis

We first consider the run-time of our algorithm, and demon-
strate the results visually for some meshes. Our research
does not approach the rendering process of point based mod-
els, thus to show them, we use a simple technique described
in [Ada06], to produce an output similar to Gourad shading.

Fig. 2 shows the processing stages of our algorithm for
the Squirrel model: the original mesh (10K vertices), its pa-
rameterisation in [0,1]2, the adaptive Hilbert curve in [0,1]2,

c© The Eurographics Association 2007.

23

J. A. Quinn & F. C. Langbein & R. R. Martin / Low-Discrepancy Point Sampling of Meshes for Rendering

Figure 2: Squirrel Mesh during the Mesh Processing Stages: Original; Parameterised; Adaptive Hilbert Curve in 2D; Adaptive

Hilbert Curve in 3D; Uniform Sampling; Primitive surfel rendering

Figure 3: Uniform, Curvature-Controlled and Rendered Re-

sampling of Igea Mesh

Mesh Nf Nv tp tc tm ts t

J Caesar 49K 24K 5.3 7 1 0.001 13.3
Squirrel 20K 10K 1.3 4 0.8 0.001 6.1
Igea 268K 134K 70 10 1.1 0.0015 81.1
Lion 40K 20K 152 5 1 0.001 158.1

Table 1: Number of Faces Nf and Vertices Nv and Process-

ing Times for Parametrisation tp, Hilbert Curve Generation

tc, Mapping from Parameter Domain to Surface tm, Sam-

pling the Surface ts and Total Time t in Seconds for Test

Meshes

which is then mapped back onto the mesh and finally a uni-
form density splatting (1.5K points) and a primitive splat
rendering (15K points). Figs. 3, 4, show uniform splatting,
splatting according with density given by Gaussian curva-
ture, and a primitive splat rendering for the Chinese Lion
and Igea meshes (2K, 2K and 25K points respectively).

Table 1 gives run-times for each stage of our algorithm.
Parameterisation (tp) using Floater’s method [Flo97] takes
70 seconds for the 268K triangle Igea. Complex cuts, how-
ever, can result in longer parameterisation times, e.g. for
the Chinese Lion. Generating the adaptive Hilbert curve
(tc) depends solely on the maximum number of points re-
quired in the resampled surface. It typically takes less time
than parametrisation: e.g. for the Igea, generating the space-

Figure 4: Uniform, Curvature-Controlled and Rendered Re-

sampling of Chinese Lion Mesh

filling curve to a precision necessary to generate 64K points
takes about 10 seconds. The mapping stage of the algo-
rithm (tm) takes about 1 second. After this pre-processing
has been done, the mesh can be resampled (ts) in a fraction
of a second regardless of the number of samples required
(see Sect. 3.2 for what happens if the density becomes too
high to be correctly represented on the Hilbert curve). Af-
ter pre-processing, even large models with over 100K trian-
gles can be resampled in less than 10 milliseconds. The main
bottlenecks are parameterisation and adaptive Hilbert curve
generation. The generation of this curve, however, has not
been optimised, and could be further sped up, using either a
GPU or multi-core CPU approach.

4.2. Distribution Quality and Discrepancy

We next assess the quality of the resampled distributions for
several example meshes by measuring their discrepancies.
We then consider how different distributions can have an im-
pact on the number of samples required for common point
based graphics rendering techniques, comparing our tech-
nique to other popular methods.

For distribution quality assessment we consider the star

c© The Eurographics Association 2007.

24

J. A. Quinn & F. C. Langbein & R. R. Martin / Low-Discrepancy Point Sampling of Meshes for Rendering

discrepancy measure [Zer68]: for all axis-aligned rectan-
gular subsets of a planar rectangular domain, the differ-
ence between the ratios of points inside each subset and
the relative area of that subset is calculated; the supre-
mum of this difference is the discrepancy. For a given num-
ber of points N, the lower the discrepancy the better. Dis-
crepancy tells us how well the new points are placed in
terms of surface coverage, and thus how well they sam-
ple the underlying surface. The following tests demonstrate
that the sample points produced by our algorithm behaves
as expected for a low-discrepancy distribution. Theoreti-
cally, the discrepancy of such a sampling in [0,1]2 should
vary according to O(N−1 log2N) [Nie92]. Chazelle [Cha00]
proves that a jittered sampling in [0,1]2 has an absolute dis-
crepancy of O(N1/4

√
logN) for any rotated box, providing

a near-optimal rotationally-invariant distribution. As previ-
ously shown for differently shaped subset shapes on the
plane and the sphere [QLME06], we generalise this idea to
triangle meshes. We define a subset of the mesh as a con-
tiguous set of triangles, grown from a random seed triangle
to a random number of triangle rings. We then compare the
fractional area of this subset of the mesh to the fractional
number of points it contains.

We use this discrepancy measure to compare the points
generated by our algorithm to random point distributions
generated by the following method: for each triangle, given
a sample set size N, we approximate the number of points
n that should lie in that triangle by calculating the ratio
A△/Amesh, then generate each point by randomly interpolat-
ing the three vertices of that triangle. Note that this is locally,
not globally, random, and actually improves the distribution.
We compute the discrepancy for sets of new mesh vertices
of size N = 2l and N = 2l + 2l−1 for l = 1, . . . ,20, result-
ing in 40 sets ranging from 2 (clearly useless in practice) to
1572864 samples. We plot a graph of the logarithm of dis-
crepancy versus logN, to which we fit a least squares line,
allowing us to easily compare the gradients. For testing, we
used an adaptive Hilbert curve where the Hilbert vertices Hl
on the the mesh surface Ms are uniformly distributed, and
|{Hl}| ≥ 16,000,000, thus ensuring the ratio ω ≥ 10 as ex-
plained earlier. We sample N points on this curve for each
test using a constant density of δ ≡ 1 to give an even distri-
bution of points on the surface.

Fig.5 shows the results for various test meshes on a loga-
rithmic scale. In each case, our approach demonstrates dis-
crepancy which scales better with N than the random distri-
bution (which gave almost identical results for each mesh,
so is only shown once). Gradients for the slopes shown in
Table 2 back up this consistency, demonstrating a mean gra-
dient of about −0.72 compared to −0.5 for the random
sequence. These results mirror those in [QLME06] using
low-discrepancy point samples generated on a parameterised
sphere; they also correspond very closely to the known Ham-
mersley distribution on the sphere [CF97]. This indicates

��� �������� �� 	��
��� �
��
� ��� � ������ ������ ��
���
���
�� � ����
� �� ��
 ��� �� ��
 �
���
����� 	� ��
 ��� ����
 ��� �
� �� ��
���

������
������
� � � � � � � �

��� !"#$%& �' (�)!*+
,-./01234567839 :;<=>?@ ABB< CD=<E=BFB=;GHI=HJGK

Figure 5: Discrepancy Test Results

Mesh Discrepancy Metro

Gradient 75% 50% 25%

J Caesar -0.70 0.009 0.014 0.02
Squirrel -0.74 0.008 0.01 0.018
Igea -0.73 0.0032 0.013 0.017
Lion -0.73 0.009 0.016 0.022

Table 2:Gradients of Discrepancy Tests, and Hausdorff Dis-

tances for Test Meshes

that our approach generates low-discrepancy point distribu-
tions on meshes.

Low-discrepancy and stratified distributions have been
widely used in computer graphics, e.g. for applications such
as radiosity [Kel97] and ray tracing [Coo86]. In [RWCS05],
low-discrepancy and pseudo-random distributions were
sampled from triangle meshes, though no investigation was
done to assess the quality with respect to the final appli-
cation: point based graphics. Almost all current techniques
employ splatting or surfel rendering techniques [KB04] to
provide a contiguous surface coverage. In Fig. 6, we have
sampled 3K points in the unit square, drawn using solid cir-
cles, first using a random distribution, then the Niederreiter
distribution, followed by our technique. It is clear that our
distribution produces a considerably better surface cover-
age for this application (n.b. the distribution produced using
our technique is not deterministic). As discussed in [SM03],
sampling a Hilbert curve with a jittered 1D sampling is ac-
tually a generalised form of stratified sampling. Thus, di-
viding the plane up into cells and randomly placing a point
within each cell would produce the same output. However,
the advantages of our technique are: (i) the number of sam-
ples need not be a perfect-square (for a square parameter do-
main), (ii) we can maintain an evenly stratified distribution
on an arbitrary surface, (iii) parametric distortion does not
effect the neighbourhood and connectivity of the samples.

c© The Eurographics Association 2007.

25

J. A. Quinn & F. C. Langbein & R. R. Martin / Low-Discrepancy Point Sampling of Meshes for Rendering

4.3. LOD and Viewpoint Dependent Rendering

In this section, we look at two applications of our frame-
work: Levels-of-Detail (LOD) and Viewpoint Dependent
Rendering (VDR).

We first discuss LOD representation of surfaces using our
approach, using two methods. In the first method, we com-
pute the distance d between the centre of the object and the
camera. Some simple function (linear or non-linear) of d is
used to determine the number of points N used to repre-
sent the surface as d changes. We initially pre-process the
model, and then execute the equalisation step of the sam-
pling process as d changes (see Sect. 3.4). This step typically
takes less than 10 milliseconds, depending on the depth of
the curve, allowing for interactive frame rates. A coarser ap-
proach, to speed up computation on large models, involves
dividing the surface up into regions according to their dis-
tance from the camera, and give each region a different den-
sity which decreases with distance. The necessary compu-
tations are more expensive, but allow local level of detail
control on a surface, which may be useful for large objects.
Again, we can do the necessary computations at interactive
frame rates. Fig. 7 shows local LOD control for the cow
model, where the arrow indicates the user’s viewing direc-
tion, but we present the points from the side to show the
variation of density with depth. The distance computation
can efficiently be divided between multiple CPU cores as
each calculation is independent.

For VDR of a given surface, we compute the angle θl be-
tween the vector from the camera to a point Hl and the sur-
face normal at point Hl :

θl = cos
−1

(

(C−Hl) ·Nl
|C−Hl ||Nl |

)

,

where C is the camera location and Nl is the surface normal
at Hl . We adjust the discrete local density sl according to θl :

sl =

{

1− cos(θl)+ s0 if θl > 0,
0 otherwise,

where sl is the local density for vertexHl and s0 is a constant
to specify the start of the density reduction. As the vectors
C−Hl and Nl become orthogonal, θl approaches 0, and the
density increases, allowing us to increase the density around
silhouette regions of the surface (see Fig. 8). To do this, we
need to calculate sl for each Hl , and then perform the equal-
isation step of the sampling process to produce a viewpoint
dependent surface sampling. Fig. 8 demonstrates this pro-
cess for a sphere shown from different angles relative to the
camera direction. Our VDR implementation can recompute
50K sample points on an arbitrary surface approximately 40
times per second, and could be further optimised.

4.4. Remeshing

We next investigate another application of our framework:
remeshing, which requires sampling an entirely new distri-

Figure 6: 3K Points in [0,1]2: Random, Niederreiter and our
Method

Figure 7: 4K Points with Localised LOD (arrow represents
scene camera)

Figure 8: Silhouette Enhancement: A Sphere Shown from

Different Angles with a Fixed Camera

bution of points on a surface, and constructing a suitable
topology.

To generate a remeshed surface, we simply generate a
set of sample points pl on the surface Ms, and triangulate
them in the parameter domain using O(n logn) conformal
Delaunay triangulation [She96]. We do not insert any Steiner
points, as these would affect the prescribed density. If the
surface is to be water tight, we must stitch any cuts used to
open out the surface for parameterisation.

We measure the Hausdorff distance between
our remeshed surfaces and the original mesh with
Metro [CRS98] to assess how well the shape is pre-
served by our method. For each test mesh, we generated
three remeshed surfaces with 75%, 50% and 25% of the
original number of triangles, with user-defined density
δ proportional to Gaussian curvature. In each case, we
computed the Hausdorff distance as a percentage of the
bounding box diagonal to normalise the error. Table 2
demonstrates the results, showing a Hausdorff distance of
less than 0.01% for 75% of the points. Fig. 9 shows uniform
remeshing and remeshing according to Gaussian curvature
for the Julius Caesar head (15K vertices; 60% of original).
The triangulation took 0.3 seconds, which is adequate to
provide the user with interactive control over remeshing.

c© The Eurographics Association 2007.

26

J. A. Quinn & F. C. Langbein & R. R. Martin / Low-Discrepancy Point Sampling of Meshes for Rendering

Figure 9: Uniform and Curvature-Controlled Remesh of

Julius Caesar Mesh

4.5. Discussion

We now discuss the overall properties of our approach based
on the above examples and results. The timing results show
that, after pre-processing (including parameterisation) which
takes about 80 seconds for a large mesh (268K triangles), we
can perform density-controlled resampling of a mesh with
hundreds of thousands of points at video frame rates or bet-
ter. Note that during pre-processing, we generate a Hilbert
curve taking into account the density function δ, so we gen-
erate a higher density curve where we plan to place more
points on the surface. However, when resampling interac-
tively, if the user changes δ so much that the Hilbert curve
vertices are no longer dense enough in some places, we must
further subdivide the curve locally to compensate, requiring
extra computation time. For small changes, the distribution
is initially approximated on the existing curve, whilst a back-
ground thread subdivides the curve and then redistributes
the points. For larger density changes everywhere, it may
be cheaper to increase the level of Hilbert curve globally, re-
quiring about a tenth of the time taken to compute the initial
curve (as no area measurements are required).

The numerical discrepancy measured for of the resampled
points is in line with that for points generated on paramet-
ric surfaces using space-filling curve methods [QLME06],
demonstrating log gradients of about ≤ −0.7. All mod-
els tested demonstrated similar results which are consis-
tently better than for random sampling. We also showed that
the stratified sampling output produced by our approach,
when drawn with circular discs on the plane, provides bet-
ter coverage with fewer points than other well-known low-
discrepancy distributions, perhaps due to the directional in-
variance of the distribution. Examples of the variance exhib-
ited by some sampling methods are shown in [QLME06],
where the discrepancy of some distributions varies with re-
spect to the sampling shape used to approximate the star-
discrepancy; an undesirable quality for an arbitrary surface.

Our approach to level-of-detail representations allows ar-
bitrary surfaces to be resampled in less than 10 millisec-
onds, whilst maintaining the qualities of the sampling, such
as the discrepancy. We have also demonstrated a simple

viewpoint dependent rendering scheme, showing reasonable
frame-rates for fixed-complexity scenes.

We also considered the application of our ideas to
remeshing. When measuring the Hausdorff distance of the
remeshed surfaces, we obtain a low distance error between
the surfaces for all meshes, which scales well with decreas-
ing sample points. Metro gives an indication how well our
remeshing technique preserves the overall shape. However,
it does not necessarily tell us how well the shape of a mesh
has been preserved locally. Other information, such as nor-
mals, and in particular, curvature tensors which define the
local shape of the surface, might provide useful information
for assessing the new mesh. In [LS04], a depth weighted
Hausdorff distance is proposed, using local surface curva-
ture variance as a weighting. We believe that such a mea-
sure could more accurately assess the quality of a surface
remeshing process, and may better highlight feature loss
due to regular resampling. A popular remeshing technique
by Surazhsky and Gotsman [SG03] shows results for the
Igea mesh, demonstrating an error of 0.003% for a 105%
remesh. Remeshed to the same number of points, our tech-
nique demonstrates an error of just under 0.004%.

5. Conclusions

We have presented a mesh resampling method based on
low-discrepancy point distributions. Our approach requires a
simple surface parametrisation step which only has to fulfils
a few basic conditions, and a fast method can be used. Our
method is fast, allowing adjustment of the local sampling
density at interactive rates after a pre-processing stage. The
resulting distributions have low discrepancy and are well
suited for point-based rendering as well as remeshing with
low error. We have also demonstrated the use of our method
for viewpoint dependent rendering and level-of-detail repre-
sentations that allows models to be resampled at an arbitrary
granularity in real-time.

References

[ACSD∗03] ALLIEZ P., COHEN-STEINER D., DEV-
ILLERS O., LÉVY B., DESBRUN M.: Anisotropic polyg-
onal remeshing. In Proc. ACM SIGGRAPH (2003), Hod-
gins J., Hart J. C., (Eds.), vol. 22(3) of ACM Trans.
Graph., ACM Press, pp. 485–493.

[Ada06] ADAMS B.: Point-Based Modeling, Anima-

tion and Rendering of Dynamic Objects. PhD thesis,
Katholieke Universiteit Leuven, 2006.

[AGGA05] ALLIEZ P., GIULIANA U., GOTSMAN C.,
ATTENE M.: Recent Advances in Remeshing of Surfaces.
Research report, AIM@SHAPE EU Network, 2005.

[AGP∗04] ALEXA M., GROSS M., PAULY M., PFISTER
H., STAMMINGER M., ZWICKER M.: Point-based com-
puter graphics. In ACM SIGGRAPH 2004 Course Notes
(New York, NY, USA, 2004), ACM Press.

c© The Eurographics Association 2007.

27

J. A. Quinn & F. C. Langbein & R. R. Martin / Low-Discrepancy Point Sampling of Meshes for Rendering

[AMD02] ALLIEZ P., MEYER M., DESBRUN M.: In-
teractive geometry remeshing. ACM Trans. Graph 21, 3
(2002), 347–354.

[BK01] BOTSCH M., KOBBELT L.: Resampling feature
and blend regions in polygonal meshes for surface anti-
aliasing. Comp. Graph. Forum 20, 3 (Sept. 2001), 402–
410.

[BLM04] BHAKAR S., LUO L., MUDUR S. P.: View
dependent stochastic sampling for efficient rendering of
point sampled surfaces. InWSCG (2004), pp. 49–56.

[But68] BUTZ A.: Space filling curves and mathematical
programming. Information and Control 12 (1968), 314–
330.

[CF97] CUI J., FREEDEN W.: Equidistribution on the
sphere. SIAM J. Sci. Comput. 18, 2 (1997), 595–609.

[Cha00] CHAZELLE B.: The discrepancy method: ran-
domness and complexity. Cambridge University Press,
New York, NY, USA, 2000.

[Coo86] COOK R. L.: Stochastic sampling in computer
graphics. ACM Trans. Graphics 5, 1 (1986), 51–72.

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.:
Metro: Measuring error on simplified surfaces. Comp.
Graph. Forum 17, 2 (1998), 167–174.

[DLS05] DEY T. K., LI G., SUN J.: Normal estimation
for point clouds: A comparison study for a Voronoi based
method. In Symp. Point-Based Graphics (Stony Brook,
NY, 2005), Alexa M., Rusinkiewicz S., Pauly M., Zwicker
M., (Eds.), Eurographics Association, pp. 39–46.

[DMB99] DAVIES T. J. G., MARTIN R. R., BOWYER A.:
Computing volume properties using low-discrepancy se-
quences. In Geometric Modelling (1999), pp. 55–72.

[Flo97] FLOATER M. S.: Parametrization and smooth ap-
proximation of surface triangulations. J. Computer-Aided
Geometric Design 14, 4 (1997), 231–250.

[GY03] GU X., YAU S.-T.: Global conformal surface pa-
rameterization. In Symp. Geometry Processing (2003),
pp. 127–137.

[KB04] KOBBELT L., BOTSCH M.: A survey of point-
based techniques in computer graphics. Computers and
Graphics 28, 6 (2004), 801–814.

[Kel97] KELLER A.: Instant radiosity. In ACM SIG-
GRAPH (1997), pp. 49–56.

[KF94] KAMEL I., FALOUTSOS C.: Hilbert R-tree: an im-
proved R-tree using fractals. In 20th VLBD Conf., Santi-
ago de Chile (1994), pp. 500–509.

[KV03] KALAIAH A., VARSHNEY A.: Modeling and ren-
dering of points with local geometry. IEEE Trans. Vis.
Comput. Graph 9, 1 (2003), 30–42.

[LS04] LEE Y.-H., SHIM J.-C.: Curvature based human
face recognition using depth weighted hausdorff distance.
In ICIP (2004), pp. 1429–1432.

[LWC∗02] LUEBKE D., WATSON B., COHEN J. D.,
REDDY M., VARSHNEY A.: Level of Detail for 3D
Graphics. Elsevier Science, New York, NY, USA, 2002.

[LWMB03] LI X., WANG W., MARTIN R. R., BOWYER
A.: Using low-discrepancy sequences and the crofton
formula to compute surface areas of geometric models.
Computer-Aided Design 35, 9 (2003), 771–782.

[MDSB02] MEYER M., DESBRUN M., SCHRÖDER P.,
BARR A. H.: Discrete differential geometry operators for
triangulated 2-manifolds. In VisMath III (2002), pp. 35–
57.

[Nie92] NIEDERREITER H.: Random Number Generation
and Quasi-Monte Carlo Methods. SIAM, 1992.

[QLME06] QUINN J. A., LANGBEIN F. C., MARTIN
R. R., ELBER G.: Density-controlled sampling of
parametric surfaces using adaptive space-filling curves.
In Proc. Geometric Modeling and Processing (2006),
no. 4077 in LNCS, Springer, pp. 658–678.

[RWCS05] ROVIRA J., WONKA P., CASTRO F., SBERT
M.: Point sampling with uniformly distributed lines.
Eurographics Symp. Point-Based Graphics (2005), 109–
118.

[SAL06] SABORET L., ALLIEZ P., LÉVY B.: Planar pa-
rameterization of triangulated surface meshes. In CGAL-
3.2 User and Reference Manual, Board C. E., (Ed.). 2006.

[SG03] SURAZHSKY V., GOTSMAN C.: Explicit surface
remeshing. In Symp. on Geom. Proc. (2003), pp. 20–30.

[She96] SHEWCHUK J. R.: Triangle: Engineering a 2D
quality mesh generator and delaunay triangulator. In Ap-
plied Comp. Geom.: Towards Geom. Eng., Lin M. C.,
Manocha D., (Eds.), vol. 1148 of LNCS. Springer, 1996,
pp. 203–222.

[SM03] STEIGLEDER M., MCCOOL M.: Generalized
stratified sampling using the Hilbert curve. J. Graphics
Tools 8, 3 (2003), 41–47.

[SSV07] SANKARANARAYANAN J., SAMET H., VARSH-
NEY A.: A fast all nearest neighbor algorithm for appli-
cations involving large point-clouds. Comput. Graph. 31,
2 (2007), 157–174.

[WK04] WU J., KOBBELT L.: Optimized sub-sampling
of point sets for surface splatting. Comput. Graph. Forum
23, 3 (2004), 643–652.

[WZK05] WU J., ZHANG Z., KOBBELT L.: Progressive
splatting. In Symp. Point-Based Graphics (Stony Brook,
NY, 2005), Alexa M., Rusinkiewicz S., Pauly M., Zwicker
M., (Eds.), Eurographics Association, pp. 25–32.

[Zer68] ZEREMBA S.: The mathematical basis of monte
carlo and quasi-monte carlo methods. SIAM Review 10, 3
(1968), 303–314.

[Zwi03] ZWICKER M.: Continuous Reconstruction, Ren-
dering, and Editing of Point-Sampled Surfaces. PhD the-
sis, ETH Zurich, 2003.

c© The Eurographics Association 2007.

28

