
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2010)
J. Bender, K. Erleben, and M. Teschner (Editors)

A Modular Physical-Simulation Methodology

Florian Schanda and Philip Willis

Media Technology Research Centre
Department of Computer Science

University of Bath
Bath BA2 7AY, UK

http://bath.ac.uk/comp-sci/

Abstract

Physical simulation is useful so that the behaviour of objects emerges from the actions performed on them. How-

ever, a simulation simulates only one thing: the mechanics of collision behaviour for example. Further physical

properties require further simulators and the problems of making them work effectively together escalate. We of-

fer a structured way of making multiple simulations cooperate. The methodology is reviewed, then demonstrated

in use with examples of how users might construct novel objects, such as an electric motor, whose properties

emerge from the combined effects of the simulations on its components. The approach has potentially wide uses,

for example in interactive games, in a virtual teaching laboratory or in interactive virtual museum exhibits. Users

can create new objects which behave in predictable ways, discover solutions other than those built in by a game

designer or extend a virtual experiment in exploratory ways. For the designer of the game or experiment, our

approach requires fewer scripts and gives more play value for the design effort.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Simulation and Modeling]: Types of
Simulation—Gaming I.6.7 [Simulation and Modeling]: Simulation Support Systems—Environments

1. Introduction

our primary concern is with managing multiple physical
simulations. The motivation for this arose from computer
games and we will occasionally refer to games in explain-
ing what we have done. However it is equally applicable to
other uses of physical simulation.

A typical 3D gaming world might include terrain and
characters. The player character roams around and interacts
with other characters and with specific objects. Implementa-
tion relies heavily on scripting for these interactions, though
there may also be a physical simulation associated with the
core script. Scripts are costly to develop, partly because they
are necessarily specialised but also because of the large num-
ber needed in a large world. Moreover they usually define
the “solutions” that a player can achieve. Certain objects
can be collected, broken, filled with water etc, according to
the scripts associated with them. This requires the game de-
signer to anticipate the player’s actions sufficiently well that
the game can reach a satisfactory conclusion and so that it is
not possible for a player to reach an impasse.

A scripted world is constrained in ways which may not be
apparent to the user. A simple example is a door, which turns
out to be no more than a texture map and has no behaviour
at all. More frustrating is the case where the player can solve
a problem in principle but is prevented from deploying the
imagined solution because the game designer did not think
of it. If there is no script to permit this plausible solution the
user’s imaginative effort is lost. Where the gaming world is
realistic we mislead the player if they cannot perform realis-
tic actions; we know how to operate the real world.

Physical simulation permits the behaviour of objects to
emerge from the actions performed on them. Simulations
can be costly though some run fast enough for real-time
applications. A more compelling problem is that a simu-
lation simulates one thing: the mechanics of collision be-
haviour for example. If we require an additional physical
property, such as magnetism, then we need another sim-
ulation. Typical previous work on physical simulation of-
fers comprehensive solutions for one kind of simulation
[LLC10,DMYN08,LD09,VMTF09,NMK∗06]. Our brief is

c© The Eurographics Association 2010.

DOI: 10.2312/PE/vriphys/vriphys10/105-114

http://bath.ac.uk/comp-sci/
http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/vriphys/vriphys10/105-114


Florian Schanda and Philip Willis / A Modular Physical-Simulation Methodology

to ensure multiple simulations (not even a fixed set) work
together so that outcomes remain as the player expects.

We have written a harness which implements a structured
way of making multiple simulations cooperate. Having re-
viewed some earlier work we will describe our methodology
and demonstrate it in use. We show examples of how play-
ers might construct novel objects, such as an electric motor,
whose properties emerge from the combined effects of the
simulations. Importantly, such objects can be constructed
by the game player from basic components found in the
world, even if the game designer did not envisage them being
combined. Our approach associates physical properties with
components, as in the real world, and the simulation plug-ins
for each property do the rest, just as the laws of physics com-
bine in reality. The simulators can be chosen to have greater
realism or to offer non-realistic effects such as magic. They
can be swapped in and out, according to the immediate need.
In combination this opens up a new approach to virtual envi-
ronment design. It makes possible virtual worlds which are
much more fluid and offer a richer range of behaviours.

2. Previous work

Rigid body simulation is perhaps the most advanced area of
physical simulation. Its practical evolution can be seen in a
series of published games. Doom featured mainly collision
detection. Quake included vertical movement and basic ef-
fects such as players being pushed around by an explosion.
Doom 3 finally applied this simulation to most smaller ob-
jects (such as canned drinks or small crates) so that a strong
explosion in a store room would knock over most objects.

Other action games have also followed this trend. For ex-
ample the title Half-Life 2 included a ‘gravity gun’ which
allowed the player to pick up and hurl objects around. The
important part was that the gravity gun worked within the
physical rules of the rest of the world.

Some puzzle games also use physics simulations, such as
the Sierra classic ‘The Incredible Machine’. This provided
the player with basic building blocks ranging from famil-
iar objects like bowling balls and conveyor belts to the more
bizarre such as a jack-in-a-box or monkeys on bicycles. Each
object acted in a predictable fashion. The player was pre-
sented with a series of levels which had some objective, such
as getting all the balls in the bucket, and was given a small
number of these objects to place in the world. The player
then started the simulation. If the goal was eventually ful-
filled, the game progressed to the next level. There were usu-
ally many ways to achieve an objective and part of the charm
of the game was to find unconventional ones.

Other physical simulations have also occasionally ap-
peared in games. For example the Thief series based an im-
portant aspect of its game-play on sound: Certain types of
floor produced more sound when walked over, which in turn
increased the chance that a guard would notice the player.

Items were included that could mitigate (moss to cover par-
ticularly noisy ground such as metal) or take advantage of
this (sound emitters attached to arrows which could be shot
into a useful location to draw the guards away to investigate
allowing the player to move past them unnoticed).

The game Portal [Val07] demonstrates, in a unique way,
that unexpected emergent behaviour is a good property.
The original Source game engine developed for Half-Life
[Val04], was found to have such a flexible physics engine
(Havok) that the concept of ‘portals’ could be implemented.
The player was given the ‘portal gun’ which could create
blue and orange portals. They were limited to creating a sin-
gle blue and a single orange portal at a time. Entering one
portal would cause one to emerge from the other, preserving
momentum. The player had to find a way of escape, by cre-
ating portals. There was often more than one solution, not
always the expected one.

There have been a few attempts at a ‘meta’ physics en-
gine; frameworks that abstract away the implementation de-
tails of the various rigid body simulation and collision detec-
tion engines to provide a uniform API. For example OPAL
[FRS] (Open Physics Abstraction Layer) started as such a
high level interface to physics programming but at the time
of writing it only supports ODE as a back-end. However it
does support some features on top of ODE such as per-shape
material settings and breakable joints.

An independent work with a similar name, PAL [Boe],
also aims to provide a uniform interface and some extra fea-
tures on top of many different physics engines. Currently it
supports more than ten different underlying physics engines
but is only available on Windows.

An early attempt to demonstrate interactive physical
changes in a virtual world was the Virtual Manufacturing
project [WBTB93, BTBW95]. Here a virtual workshop was
used to cut and process metal in various ways, in order to
make a virtual component. This required dynamic updates to
a computational model of the object as a result of intersect-
ing it with machine tools. A real component could then be
made from the operations performed on the virtual milling
machine, lathe and spray gun.

Later work at the same site showed the use of a virtual
kit of standard parts to generate more than one new but
physically-plausible behaviour [Wil04]. The kit consisted
of gear wheels which could be plugged together in various
ways and the correct rotations resulted. The gears consisted
of two kinds of material, only one of which was conductive.
Consequently electrical paths could be created or isolated at
the same time, with the correct mechanical and electrical be-
haviour emerging automatically. However the construction
area was a fixed grid and all gear wheels were the same size.

More recently, the STORM approach [MGA07,GGAT08]
permits users to model the capabilities of an object and the
ways it which it offers interactions to other objects. The

c© The Eurographics Association 2010.

106



Florian Schanda and Philip Willis / A Modular Physical-Simulation Methodology

authors describe these as “a public activity (the behavior
and the object reaction) and an associated interface (a stan-
dard protocol of communication) which allows the object
to communicate with other unknown STORM objects”. The
method usefully abstracts these aspects from the way they
are implemented. In common with other methods it requires
a relatively heavy investment in creating the virtual object
but benefits from getting better interaction between them.

3. Our approach

We now turn to our approach, which offers a generic but
lightweight solution. Overall, the design has been heavily
influenced by the following two desired aspects:

• Modular Any solution should support the implementa-
tion of various different kinds of physics simulations in a
modular way, so that it is possible to write ‘plug-ins’ for
various common simulations and build a library of com-
monly used parts.

• Generic interactions With multiple kinds of simulation
acting on a given object, it is important that these combine
plausibly to reach the overall goal of having an environ-
ment that ‘just works’.

To illustrate modularity, in dynamics simulation (rigid
body simulation and collision detection) three well known
examples are described on the web: ODE (a free software
package), Havok (a commercial solution, originally pro-
vided by Havok and now by Intel) and PhysX (a hard-
ware based solution, originally provided by AGEIA and now
by NVIDIA). The modularity makes any existing solutions
available to the game physics. They can easily be replaced
as better simulators become available. They could even be
replaced dynamically in different parts of the game. For ex-
ample, a game set on a planet might represent gravity as a
constant downwards vector. If the play moves to space we
might substitute a more involved gravity model for orbiting
bodies.

To illustrate generic interactions, consider a massive steel
object which is attracted downwards by gravity and upwards
by a nearby electromagnetic crane. Gravity and magnetism
have to be combined in that object to determine whether the
object lifts, whereas a similar object made of non-magnetic
metal only responds to gravity. The electromagnet also re-
quires properties to be combined: if the electricity supply is
cut off it drops its load and gravity takes over.

To support this, each object in the scene has a list of phys-
ical properties. Mass, position and conductivity are all ex-
amples of properties. A practical implementation will de-
fine types for each of these properties, then instantiate a list
of variables of corresponding types for each object. Thus a
piece of brass will possess position, mass and conductivity
properties while a piece of steel will additionally have mag-
netism.

In any simulation there will be a physics engine which
simulates its particular kind of physics and resolves the
forces applied to each object in the scene. As the term
“physics engine” is often used more loosely than we intend,
we will call these resolvers. An example of a resolver is the
freely-available ODE rigid body simulator, which we use.
Other examples include an electrical resolver, a magnetic re-
solver and a gravity resolver. Our task is to build a world
with multiple resolvers and ensure that they work together
to produce consistent outcomes.

Each resolver only know about its kind of physics. How-
ever each object in the scene might be susceptible to more
than one kind of physics. Some way has to be found to en-
sure the individual effects of several resolvers can be com-
bined to produce a nett effect. Our approach is to use a
lightweight process called an interaction. Each interaction
takes whatever information it needs from wherever it is held
and updates data associated with one specific resolver. Each
resolver is associated with a list of zero or more interactions
which can update it, so that several interactions can update a
single resolver’s data. For example, magnetism, gravity and
collisions can all result in forces needed by the dynamics
resolver. When the dynamics resolver is next invoked these
forces will be combined to move the object accordingly.

We also find it useful to group together some transient
property-like features. For example magnetic force is de-
rived from position, rotation, shape and magnetic strength
of each object. It is practically useful to record this in one
place so that any interaction can use it. Similarly it is use-
ful to have the collision detection produce a list of colliding
objects for the dynamics resolver and to generate the forces
needed to prevent objects from overlapping in space. These
pragmatic features we call derived-property sets (DPS) and
they can be thought of as bundles which any of the interac-
tions can read but not update. There can be any number of
these, according to the needs of the world being constructed.

For simplicity of explanation it is easiest to consider
clock-driven simulation, though our approach works just as
well for event-driven simulation. The main loop will consist
of the following steps:

1. For each resolver, call advance.
This takes the simulation forward one step. Some optimi-
sations are possible at this point: Certain resolvers may
only be advanced every n time-steps, other resolvers can
be advanced in parallel.

2. For each derived-property set in the system, update its
derived properties. The same optimisations as above ap-
ply, with the addition that derived property sets may be
updated in parallel.

3. Finally, apply each interaction defined in the system.
All interactions can be applied in parallel, but unlike the
above two items all interactions are applied in every step
(though there may be no work to do for any given inter-
action).

c© The Eurographics Association 2010.

107



Florian Schanda and Philip Willis / A Modular Physical-Simulation Methodology

The main loop only deals directly with three out of the
four parts of the methodology. The properties layer is ma-
nipulated directly by the resolver layer; all other layers have
read-only access to it. There is no logic in the property layer,
it is simply ‘dumb’ data storage.

We now describe our four components in more detail.

3.1. Component 1: Properties and property types

Every object in a game world has a number of properties as-
sociated with it. They will define the behaviour and appear-
ance of the object in the simulation. Properties do not nec-
essarily have to serve a purpose in any simulation: the name
of an object is one example. Any number of properties can
be defined for the purpose of convenience. Although there is
no difference between one property and another they can be
roughly categorised as follows:

• Real properties, for example: Mass or position.
• Abstract properties, for example: A pointer to a data-

structure.
• Convenience properties, for example: The name of an ob-

ject.

In our approach, properties are referred to by their type. For
instance, the position property of an object could be imple-
mented as a vector of floating point values or as a vector of
fixed point values etc; however the rest of the system only
cares about it being a ‘position’ property. In reality, a given
implementation of the methodology will pick one represen-
tation but the methodology itself does not concern itself with
data types, representation or implementation language.

Each resolver in the system accesses a subset of all prop-
erties. For example the rigid body simulation resolver is
interested in the position, rotation, velocity, angular veloc-
ity and mass of an object, whereas a simplified electricity
model only considers conductivity, electrical state (perhaps
just ‘on’ or ‘off’) and a list of connections to other objects.

Certain properties are common to many different simula-
tions, such as the position or shape of an object. Some prop-
erties are unique to certain simulations and possibly even
unique to a particular implementation of a simulation. Con-
ductivity is an example for the former, and a pointer to a data
structure is an example of the latter.

Properties should also be independent of one another. If
the value of a certain property could be calculated (or de-
rived) using different properties as an input, it should be part
of a derived property set as outlined below in 3.3.

3.2. Component 2: Resolvers (Simulation)

A resolver is usually the core part of any given simulation.
For instance in a dynamics simulation the rigid body resolver
will calculate the effect of any forces that have accumulated

for each point mass object during the last frame move each
of them to its new position.

For an electricity simulation the corresponding resolver
updates the electrical state of any given object, reacting to
changes to the electrical circuit, such as new connections and
broken connections.

The purpose of a resolver is to represent and perform the
core work of any given simulation. The effect of this work is
that the resolver updates certain object properties. To give a
resolver work to perform (for example influencing the sim-
ulation by applying a certain force to an object) a group of
functions called ‘interaction functions’ are used. Calling the
interaction functions themselves does not modify any object
properties, it merely queues up work to be performed in the
next simulation step where all work is performed in a single
self-contained step.

3.3. Component 3: Derived property sets (Re-factoring

and abstraction)

In general, a derived property set has the following charac-
teristics:

• A set of the object properties it uses.
• A set of the resolver properties it uses.
• A set of functions used to calculate the derived properties.
• A set of the derived properties it provides.

Derived property sets can be quite complex in the work they
do, sometimes even more complex than a resolver. Most of
them update at each time step although if there is no change
of the properties that the derived property set depends on,
there is no need to update.

A derived property set will never change any object prop-
erties. It is simply a function over already existing properties
and does not directly influence object properties. A resolver
on the other hand specifically exists to change properties.

Derived property sets provide a common place for ab-
stracting common problems. Some functions over object
properties are required by more than one simulation and thus
it would be a waste to implement or perform them more than
once. One example of this is collision information: The dy-
namics simulation needs it to prevent the rigid body resolver
from moving objects into positions where they would inter-
sect with one another and the electricity simulation needs it
to determine which conducting objects are in contact with
each other.

A ‘derived’ property can be viewed as a mathematical
function. It has a number of arguments and performs some
kind of calculation over those arguments and only those ar-
guments, i.e. no global state is used and no side effects occur.
The result of the calculation is a property which is dependent
only on the function’s arguments.

Any number of such functions can be grouped together
(if it makes sense for the implementation) to form a derived

c© The Eurographics Association 2010.

108



Florian Schanda and Philip Willis / A Modular Physical-Simulation Methodology

property set. For instance it would make sense to group all
collision-related functions into a single derived property set.
This set will provide a number of derived properties such as:

• A list of contact forces.
• A list of objects which are currently colliding.
• A list of objects which have just started to touch in this

time-step.
• A list of objects which have collided in the previous time-

step but no longer touch in the current one.

A very different example of a derived property set is the cre-
ation of a shadow volume for dynamic lighting. This can be
represented by a derived property set calculated from four
properties: Object geometry, position, orientation and the
position of a light source. Generally shadow volumes are in-
tended for rendering real time shadows but they can also be
used for occlusion queries.

In theory, rendering the game world itself can also be con-
sidered a derived property: Its input would be all properties
of objects relevant for visualisation such as shape, texture,
etc. and the output would be a rendered image.

3.4. Component 4: Interactions

The purpose of an interaction is to allow one simulation to
influence (or interact with) another. For example if a new
electrical connection is made which causes a light bulb to
change its state to ‘on’, the mechanism which instructs the
light simulation to cause the light bulb to emit light is an
interaction between the electricity simulation and the light
simulation.

Sometimes interactions are also required to make certain
simulations work in the first place as they consist of more
than one component in the methodology. A good example of
this is dynamics: an interaction is required to feed back the
contact forces calculated by the “collisions” derived prop-
erty set into the “rigid body” resolver.

The main purpose of interactions however is to connect
different physics simulations together. This is the key to
making a world which, from the user view, “just works”.
For instance if two metal objects touch, an interaction calls
the relevant interaction function in the electricity resolver to
create an electrical connection; at the same time a different
interaction would lead to the appropriate sound being made
by the colliding bodies. Another example is an interaction
that applies the forces generated in a magnetics simulation
to the rigid body simulation so that there is a visible effect.

More formally, an interaction takes data from properties,
resolver properties and/or derived property sets and calls in-
teraction functions in a particular resolver. An interaction
has the following characteristics:

• A set of properties, global properties and derived proper-
ties it reads from;

• A single resolver (on which interaction functions will be
called).

Interactions only read from properties and never modify
them directly. The interactions are the only layer in the
methodology that can use the interaction functions of re-
solvers.

The components we have described form a harness which
embraces the designer’s choice of simulations. The simula-
tions can be physically precise, physically approximate or
indeed unrealistic. The harness provides the channel for con-
necting the virtual world model to the required behaviour.
There is no presumption in our approach about the dimen-
sionality of the model or of the range of physical behaviours
to be included.

4. The Construction Kit Experiments

We implemented our methodology in code and, to illustrate
emergent behaviour, we also coded a virtual construction kit
for a user to play with. The user is allowed to take standard
simple components and fix them together to construct new
mechanisms of their choice. These kinds of kits are com-
monly sold in physical form for children, usually themed
around mechanical, electrical or magnetic effects. Ours in-
cludes all three of these. There are no “preferred” solutions;
the user is encouraged to use whatever knowledge they have
to make something work. As we will see, unorthodox solu-
tions were offered and still were made to work.

After some earlier 3D experimentation we went with 2D
for this test because it is slower for the user to create useful
3D worlds. It is also less easy to see what is going on and in-
teraction with the world is more awkward for novice users.
A 2D world is simpler to manipulate (the obvious “drag and
drop” works well), simpler to lay out and easier to visualise.
There is nothing inherently 2D about our approach however.
We make use of the publicly-available ODE software to han-
dle the collisions and dynamics and this is a fully 3D pack-
age.

The components are simple metal bars and disks etc ar-
ranged on a flat “play area” to which they can optionally
be pinned. This arrangement confines the mechanisms to a
plane. There is otherwise no restriction on where the items
are placed and they can be moved at any time to provoke dif-
ferent behaviour. The user is presented with the play area and
a selection of basic components. They are invited to build a
functioning object from the components by assembling them
in any way that they choose.

We show here some actual results. We have however
renumbered the frames in a consistent way because the ac-
tual frame numbers are not relevant. Sequentially-numbered
frames correspond to real adjacent frames. A jump in the
numbering means that some time elapsed with nothing sig-
nificant happening in between.

c© The Eurographics Association 2010.

109



Florian Schanda and Philip Willis / A Modular Physical-Simulation Methodology

4.1. Experiment 1: Making a door bell

A doorbell is a non-trivial object made from more than one
part, showing complex overall behaviour – the bell rings if
electricity is supplied causing a magnetic field to draw a
metal striker to hit a gong. The user also built a switch to
turn the electricity on or off. Figure 1 shows the setup after
construction was complete.

Figure 1: A screen-shot of the initial setup of the scene. The

figure has been annotated, in purple, labelling each object

with its name and showing the electrical circuit (omitted

later for clarity)

Once the bell had been constructed the user closed the switch
by moving the metal bar to bridge objects 1 and 2. The de-
scription below is based on the actual frames which resulted.
We give a detailed explanation of how the bell shows the ex-
pected behaviour to illustrate how each component of our
methodology contributes.

4.1.1. Frame 0 - Setup

Before the first simulation step all the initial properties of the
objects are set, as are global properties such as the gravity
vector.

The first few frames of simulation are when the user picks
up the metal bar and drops it across the two contacts of the
switch, so that the electricity will flow. We join the simula-
tion at the frame after the switch has been closed.

4.1.2. Frame 100 - The switch is closed

The switch made contact with both objects 1 and 2 in the
previous frame and the (Electricity←Collisions) Interaction
has called the relevant interaction functions in the electricity
resolver. The consequences of this will be resolved in the
current frame.

4.1.2.1. Work for Resolvers The electricity resolver has
two new connections to deal with: One between object 1 and
the switch and the other one between the switch and object 2.

4.1.2.2. Work for Interactions Since the electromagnet is
now in a closed electrical circuit, the (Magnetics ← Elec-
tricity) Interaction will make this object a magnet by calling
the appropriate interaction function within the magnetics re-
solver.

4.1.3. Frame 101 - The electromagnet starts

4.1.3.1. Work for Resolvers The magnetics resolver has
one magnet to activate because of the interaction function
called in the last frame. Doing this is a simple operation,
the main work is performed in the magnetic forces derived
property set.

4.1.3.2. Work for Derived Property Sets There is an ac-
tive electromagnet in the scene and so the striker, which has
the property that it is susceptible to magnetism and is close
enough for it to be affected, has to have a force applied to it.
The magnetic forces DPS will determine the strength of the
force pulling the striker. The scene is set up so that this force
is stronger than the gravitational force acting on the metal
object.

4.1.3.3. Work for Interactions The Rigid-Body-
Solver ← Magnetics interaction will apply the magnetic
force calculated in the magnetics DPS to the striker by
calling the appropriate interaction function in the rigid body
resolver. This force, similar to the gravity force, will be
applied every frame (although its direction and magnitude
will change frame by frame), until the electromagnet is
turned ‘off’ again.

4.1.4. Frame 102 - The striker starts to move

The current state of the scene is shown in Figure 2.

4.1.4.1. Work for Resolvers The rigid body simulation
will apply the supplied force to the striker, which will cause
it to move towards the electromagnet (and ultimately the
bell).

4.1.4.2. Work for Derived Property Sets Since the striker
has moved away from the contact object, the collisions DPS
will recognise that the striker is no longer colliding with the
contact, remove this collision from the current colliders list
and place it on the previous colliders list.

c© The Eurographics Association 2010.

110



Florian Schanda and Philip Willis / A Modular Physical-Simulation Methodology

Figure 2: This annotated screen-shot shows the state of the

simulation just after the electromagnet has been activated by

closing the switch. The figure has been manually annotated

with an arrow to visualise the force exerted on the striker by

the electromagnet.

Since the electromagnet has not been deactivated yet and
the position of the striker has changed, a new force between
them is calculated.

4.1.4.3. Work for Interactions As in the previous frame,
the (Rigid-Body-Solver←Magnetics) Interaction will apply
the force calculated in the magnetic forces DPS to the striker.

The contact and the striker are no longer colliding, so the
(Electricity ← Collisions) Interaction will call the discon-
nect interaction function within the electricity resolver to re-
move this connection.

4.1.5. Frame 103 - The connection is broken

4.1.5.1. Work for Resolvers The electricity resolver has
been instructed to remove the connection between the con-
tact and the striker from the data structure representing the
circuitry. Doing so will break the circuit and set the state of
the electromagnet to ‘off’ once again.

4.1.5.2. Work for Interactions Since the electrical state
of the electromagnet has changed, the (Magnetics ← Elec-
tricity) Interaction will instruct the Magnetics Resolver to

rapidly (but not instantly) reduce the strength of the electro-
magnet to zero. This gradual ‘cool-down’ is both to make the
simulation more stable and also more accurately to model
real-life electromagnets which also exhibit this behaviour
due to self-induction.

4.1.6. Frame 110 - The striker hits the bell

The force applied to the striker from the electromagnet dur-
ing the first few frames was large enough for the striker to
build up sufficient momentum to collide with the bell at a
reasonably high velocity. Figure 3 shows the current state of
the scene.

Figure 3: The state of the simulation just as the striker hits

the bell. Since sound cannot be drawn, the reader is asked to

imagine a ‘ding’ noise at this point.

4.1.6.1. Work for Derived Property Sets The collisions
DPS will record the new collision between the bell and the
striker and, as usual, will generate the appropriate contact
forces.

4.1.6.2. Work for Interactions Since an object has col-
lided with the bell, the (Sound← Collisions) Interaction will
cause a pre-recorded bell sample to play. The rebound, aided
by gravity, will cause the striker to return to its start position.

c© The Eurographics Association 2010.

111



Florian Schanda and Philip Willis / A Modular Physical-Simulation Methodology

4.2. Experiment 2: Making an electric motor

An electric motor rotates because a magnetic field around
the armature repels a similar field generated by the arma-
ture. We will use this to illustrate how our approach causes
the behaviour (such as rotation) of a complex object (the
motor) to emerge from basic properties (electricity induces
magnetism; magnetic repulsion). In short, we see a motor
built and work as a consequence of its construction.

As it turned out our experimental subject built a non-
standard DC motor, with the fixed magnets on the arma-
ture and the field generated by an electromagnet. This should
still work and indeed it did. The subject had to use an even
number of poles in consequence (a traditional DC motor has
three or five poles to ensure repulsion) to ensure field alter-
nation and adopted a bias magnet to prevent dead spots. This
all worked.

The example is related to that of the doorbell but extends
it in the following important ways:

• We have rotary rather than oscillatory motion.
• The motion exhibited by an electric motor is more in-

volved than simple repulsion: the goal is continuous
smooth rotary motion.

• For the electrical wiring we have an arrangement in which
two circuits have to alternately make and break.

• The distinction between the ‘north’ and ‘south’ poles of
magnets is important.

Figure 4 shows the motor as built. The sliding contact is con-
nected directly to the electrical source and is hinged at the
left end, directly above the motor. It has mass and will rotate
clockwise under gravity, falling towards the vertical.

Around the axle is a rotor constructed from eight perma-
nent magnets (the ‘spokes’) that serve also as conducting
contacts. The exposed poles of the magnets alternate North-
South as we go round the circle and so an even number are
needed. These are are joined to the axle so that they rotate
along with it.

To the right of the motor there are the two electromag-
nets which model a single electromagnet of changing po-
larity. These provide the field. Depending on which of the
spokes the sliding contact is touching, one of the two elec-
trical circuits is closed, activating the electromagnet to repel
the spoke nearest to it (and to attract the one below it). The
switching of the circuit thus contrives to ensure that the field
reverses to oppose the nearest rotor pole and this leads to
rotary motion.

Below the main motor a static magnet has been placed.
This magnet ensures that the motor will always settle in a
position from which it can start turning, just as a real ar-
mature “clicks” to a preferred magnetic position. The axle
is pinned to the static world with a joint allowing free rota-
tion in the plane (but no other movement). This rotation has
frictional forces applied to it, so the motor will come to a

Figure 4: A screen-shot of the initial setup of the scene. The

figure has been annotated, in purple, labelling each object

with its name and showing the electrical circuit (omitted

later for clarity)

gradual stop when the electrical circuit is broken. This also
ensures that the simulation is stable and the rate of rotation
remains steady.

Once electricity is connected to the motor two distinct
simulation phases can be identified: The start up, in which
the motor begins to turn, and the steady state in which the
axle rotates in a regular and smooth fashion. The following
descriptions are based on an actual run of the complete sys-
tem.

4.2.1. Frames 0 to 29

Initially the sliding contact will rotate around its hinged
point due to gravity and will come into contact with the top
spoke of the motor. Once the contact collides with the top
spoke the electrical circuit is closed and that activates the
upper electromagnet.

4.2.2. Frames 30 to 59

Since there is some force transmitted from the initial colli-
sion of the sliding contact with the top spoke – the compo-
nents have mass and this is correctly simulated – the axle
will turn slightly anticlockwise anyway. However since the
‘north electromagnet’ is now active, it will further push any
‘north spokes’ away from it, in particular the one closest to
it, increasing the anticlockwise rotation of the rotor

c© The Eurographics Association 2010.

112



Florian Schanda and Philip Willis / A Modular Physical-Simulation Methodology

Figure 5: The left screen-shot shows the initial movement

of the sliding contact due to gravity. It has been manually

annotated with an arrow to show the movement exhibited by

the sliding contact. The right screen-shot shows the moment

the sliding contact collides with a spoke for the first time.

As the axle turns, the ‘south’ spoke below the one that
was initially closest to the magnets at the right in Figure 5
will be the closest south pole to the active north pole of the
electromagnet and thus there will be a large attractive force
between them, again reinforcing the anticlockwise motion.
Figure 6 illustrates these forces. Although magnetic forces
act on all the other spokes, they are not significant in com-
parison to the two main forces due to the inverse square law.

4.2.3. Frames 60 to 89

This rotation will continue until the next spoke (this time a
‘south’ spoke) collides with the sliding contact, activating
the other electromagnet (effectively reversing the polarity).
This will cause the axle to continue to turn anticlockwise.

This basic process will repeat for a while (and the initial
motion will be a bit ragged) until the simulation settles into
a smooth rotation.

Figure 6: Illustration of the two main magnetic forces occur-

ring in frames 30 to 59. Red dots represent north poles and

green dots represent south poles. Previously the slider has

been in contact with the ‘north’ spoke just to the left of it,

causing the ‘north’ electromagnet to push the ‘north’ spoke

above it away from itself and attract the ‘south’ spoke below

it. This causes the entire construct to turn anti-clockwise.

This figure has been manually annotated with two arrows

visualising the two most important force vectors caused by

the electromagnet.

4.2.4. Frame 200 onwards

The simulation has now reached a state of constant and
steady anticlockwise motion. Figure 7 shows snapshots of
approximately one eighth of a full rotation of the axle.

5. Discussion

Our examples illustrate atomic objects being freely com-
bined under user control to give broader behaviours. Our ap-
proach does not require objects to be modelled at the most
primitive level, even though we have done so. In most real-
life situations an electric motor is treated as an atomic ob-
ject with convenient properties. We would expect this to be
the same in a corresponding virtual world. What we addi-
tionally offer however is that the motor could be made to
drive a buggy or a hoist or be turned into a kitchen mixer.
All of these can be achieved by the user whether the de-
signer intended or not, as long as the appropriate compo-
nents are around. Indeed the designer can turn this to advan-
tage by providing objects which can be disassembled to help
solve problems. For an electrical item, the user can extract
the motor and use it in other equipment, confident that the
“electrically-powered rotation” property will transfer.

What we offer is a harness to permit simulations to co-
operate, avoiding the cost of writing many scripts. Our ap-
proach trades the high development cost of scripting for the
computational cost of simulations. This trade is increasingly

c© The Eurographics Association 2010.

113



Florian Schanda and Philip Willis / A Modular Physical-Simulation Methodology

Figure 7: Illustration of the stable rotation of the motor. On

the left the sliding contact has just made contact causing

the relevant electromagnet to activate, in the middle the an-

ticlockwise rotation has advanced slightly and on the right

the sliding contact has hit the next spoke.

attractive as computers improve and the cost of skilled pro-
grammers rises.

Simulations can be tuned to the problem in hand, be-
ing simple and computationally light where precise results
are not essential, or heavier where full accuracy is required.
They can be dynamically swapped from one environment
to another, ensuring that a simulation is only as complex as
need be. The same simulations can be used in other games
or virtual environments.

In our approach, objects are given physical properties
only, not scripts; their behaviour emerges from the simula-
tion associated with each property. There is a direct analogy
with what we do and with the real physical world. When ob-
jects interact, our software invokes the necessary simulators
and applies the relevant forces to produce the emergent ac-
tion. In the real world, objects have physical properties and
the relevant laws of physics act on them in a similar way to
generate the emergent behaviour. It is this which gives our
approach its strength and generality.

Acknowledgements

We are grateful to the anonymous referees who provided
many useful suggestions.

References

[Boe] BOEING A.: Physics abstraction layer.
http://www.adrianboeing.com/pal/.

[BTBW95] BOWYER A., TAYLOR R., BAYLISS G., WILLIS P.:
A virtual workshop for design by manufacture. 15th ASME In-

ternational Computer in Engineering Conference (1995).

[DMYN08] DOBASHI Y., MATSUDA Y., YAMAMOTO T.,
NISHITA T.: A fast simulation method using overlapping grids
for interactions between smoke and rigid objects. Computer

Graphics Forum 27, 2 (2008), 477–486.

[FRS] FISCHER A., REINOT A., STREETER T.: Physics abstrac-
tion layer. http://opal.sourceforge.net/index.html.

[GGAT08] GERBAUD S., GANIER P., ARNALDO B., TISSEUA

J.: Gvt: a platform to create virtual environments for procedural
training. Virtual Reality (2008), 225–232.

[LD09] LENAERTS T., DUTRÉ P.: Mixing fluids and granular
materials. Computer Graphics Forum 28, 2 (2009), 213–218.

[LLC10] LI H., LEOW W. K., CHIU I.-S.: Elastic tubes: Mod-
eling elastic deformation of hollow tubes. Computer Graphics

Forum 29, 6 (2010), 1170–1782.

[MGA07] MOLLET N., GERBAUD S., ARNALDI B.: Storm: a
generic interaction and behavioral model for 3d objects and hu-
manoids in a virtual environment. Eurographics Symposium on

Virtual Environments (Short papers and posters) (2007), 95–100.

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN

E., CARLSON M.: Physically based deformable models in com-
puter graphics. Computer Graphics Forum 25, 4 (2006), 809–
836.

[Val04] VALVE CORPORATION: Half-life 2. MS Windows, Mac
OSX, Playstation 3 XBox and XBox360, 2004.

[Val07] VALVE CORPORATION: Portal. MS Windows, Mac OSX,
Playstation 3 and XBox360, 2007.

[VMTF09] VOLINO P., MAGNENAT-THALMANN N., FAURE F.:
A simple approach to nonlinear tensile stiffness for accurate cloth
simulation. ACM Transactions on Graphics 28, 4 (2009).

[WBTB93] WILLIS P., BOWYER A., TAYLOR R., BAYLISS G.:
Virtual manufacturing. International Workshop on Graphics and

Robotics (April 19–22nd, 1993).

[Wil04] WILLIS P.: Virtual physics for virtual reality. Theory and

Practice of Computer Graphics (2004), 42–49.

c© The Eurographics Association 2010.

114


