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Abstract
Dynamical processes on networks play an important role in systems biology and statistical physics. To understand
these processes, it is essential to understand which topological properties of the network are the main factors
for the dynamics. We present a visualization approach that allows for such investigations. For visual encoding of
the network topology, we use a node-link diagram. The nodes, however, are placed according to the dynamical
processes. We use a projection method of the time series data to generate animations that maintain the mental
map and exhibit the behavior of the dynamics. Suitable coloring schemes for the nodes encode the current values
of the dynamics and individual nodes can be investigated with linked views to a time series plot. We present case
studies to demonstrate that our approach is effective for the observation whether the dynamical processes follow
the network topology.

1. Introduction

The complex networks found in biological systems and the
various classes of random graphs (like [ER59], [BA99],
[WS98], etc.) are typically high-dimensional objects that
cannot be embedded in a low-dimensional (2D, 3D) space.
Even in systems, where the nodes of the network are spa-
tially arranged, like in many transportation networks, finding
a functionally meaningful placing of nodes is non-trivial. In
the German long-distance train connection network, for ex-
ample, the travel time distances do not at all match geograph-
ical distances [FKW∗10]. The purpose of typical network
visualization algorithms is fundamentally different from our
goals: We strive for network visualizations that are guided
by dynamical data or functional information.

Dynamical processes on networks are defined in form of
a graph G = (V,E) with a set of vertices V and a set of edges
E ⊂V ×V and the dynamics in form of dynamical variables
d(v, t) for each vertex v∈V and time t ∈ [t1, tn], where t1 and
tn denote the start and the end of the described dynamical
process, respectively. The dynamical processes are typically
described by solving differential equations on each node or
by state machines of the nodes, which update the dynamical
variables of each node in each time step under the influence
of adjacent nodes.

Many studies over the last few years, in particular in sys-

tems biology and in statistical physics, have provided dra-
matic examples, how a refined network layout can facilitate
discoveries about the relationship between network archi-
tecture and network function (e.g., the comparison of topo-
logical modules with Gene Ontology (GO) classes or other
functional categories [GA05], the embedding of gene net-
works in the genome [MGHM08, SHSS09], the analysis of
effective networks derived from gene expression data under
various cellular conditions [LBY∗04, SGMH11], the distri-
bution of real or simulated dynamical data across hierarchi-
cal levels [JBW∗09,YG06,HJHL12]). In all these cases, the
network layout was constructed for the purpose of highlight-
ing a previously identified organizational principle. Our goal
was to develop a novel visualization technique that by visual
means provide insight into which topological features of the
network may or may not be relevant for the development of
the dynamics. The listed communities are the target users of
the proposed system of visualizing dynamical processes on
networks. Our methods needed to be developed and carefully
calibrated by minimal models (like the two dynamical sys-
tems described in this paper), before they can be applied to
more realistic models (e.g., of gene regulation, signal trans-
duction, and metabolic pathways) or even to experimental
data (in particular, microarray data, providing time courses
of gene expression levels in a cell).

Our approach is based on a node-link diagram for display-
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ing the network, where a projection method is used for the
node placement. The projection method projects from the n-
dimensional space formed by the first n time steps into a 2D
visual space by exploiting the similarities of the values of
the nodes’ dynamical variable for the n time steps of the dy-
namical process. The dynamical process is captured by an
animation. Since dynamical variable values of previous time
steps are included in the layout at any point during the ani-
mation, we maintain the mental map. During the animation,
it can be observed how clusters form and how they relate to
topological properties. The animation is supported by color
encoding of the nodes with respect to the current dynamical
variable value and by a linked view to a time series visual-
ization. We demonstrate the effectiveness of our approach in
case studies for two simple models for dynamical processes.

2. Related Work

Networks are commonly visualized using adjacency matrix
visualizations or node-link diagrams. Node-link diagrams
provide better means to display properties of nodes, which
makes them preferable for our purposes. They are based on
rendering the entities of the network as nodes and the rela-
tion between the entities as links (or edges). The main task
to be solved is to position the nodes appropriately accord-
ing to some design goal. Automatic layouts for node-links
have been studied excessively in the graph drawing com-
munity [Tol96]. Different algorithms have been developed
targeting graphs with certain properties. We refer to the sur-
veys for graph drawing techniques on planar graphs [Wei01],
orthogonal graph drawing [EFK01], multiple tree visual-
ization [GK10], and drawing clusters and hierarchies in
graphs [BC01] and to an annotated bibliography of algo-
rithms [DBETT94]. A formal description of all graph draw-
ing problems is given by Diaz et al. [DPS02]. The mentioned
graph drawing problems are based on topological properties
of the graph. Our objective, however, is more complex, as
we want to develop layouts of the graph that reveal the dy-
namical processes of the graphs in relation to the topological
properties. We also want to contrast our approach against dy-
namic graph drawing techniques. The goal of dynamic graph
drawing is to visualize a graph in an animated fashion to
show topological changes over time [Bra01]. We want to vi-
sualize dynamical processes on graphs, where the dynamical
processes are reflected by the changing properties of nodes
over time, while the topological structure of the graph is typ-
ically static.

In the visualization community, approaches for network
visualization enhance the visual encoding (in the sense
of graph drawing) with interaction mechanisms that allow
for an interactive visual exploration and analysis of the
graphs [HMM00,TAS09]. A comprehensive very recent sur-
vey on visual network analysis including visual encoding
and interaction algorithms is given by von Landesberger et
al. [vLKS∗11]. Commonly, the graph analysis task is to in-

vestigate the relationships between entities in the graph and
to assess the global graph structure. Our analysis is not based
on the graph topology only, but on the dynamics on the
graphs in relation to the topology.

3. Animated Node-link Diagram Based on Dynamical
Processes

The graph G = (V,E) is visually encoded using a node-link
diagram. Hence, the topological structure is shown in form
of edges that connect adjacent nodes. The current dynamical
variable value d(v, t) for a node v ∈ V at time t is visually
encoded using a color mapping. Figure 1 shows examples of
graphs with different topology, where a force-based layout
algorithm is used to depict the graph topology.

(a) (b)

Figure 1: Node-link diagrams of graphs with different topol-
ogy and color-coded dynamical variable values of a given
time step. The layout of the graphs are solely based on topol-
ogy using force-based positioning.

To lay out the nodes of the graph with respect to the dy-
namical processes on the network, we investigate the simi-
larities of the time series of the dynamical variable d(v, t).
The similarity or distance measure between two time series
d(vi, t) and d(v j, t) for any two nodes vi and v j and time
sequence t = (t1, . . . , tn) depends on the encoding of the dy-
namical variable. Two common groups of dynamical vari-
ables exist: First, the dynamical variables may be categorical
such that the distance measure becomes

dist(d(vi, t),d(v j, t)) =
1
n

n

∑
k=1

δ(d(vi, tk) 6= d(v j, tk)),

where

δ(x) =
{

1 if x = TRUE
0 otherwise

Second, the dynamical variables may be numerical such that
the distance measure may become the Euclidean distance.
However, for the scenario investigated in our case study the
dynamical variables actually represent phases ∈ [0,2π) and
the distance measure becomes

dist(di,d j)=
1
n

n

∑
k=1

√
(cosdik− cosd jk)2 +(sindik− sind jk)2

with di = d(vi, t) and dik = d(vi, tk).

Based on these similarities between nodes, we project the
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time series d(vi, t) from the n-dimensional space into a 2D
visual space. A well-known and well-established technique
to do so is multi-dimensional scaling (MDS) [CC01]. MDS
takes as input a matrix of pairwise distances like the ones es-
tablished above and computes locations in a Euclidean space
such that distances are preserved as much as possible. More
precisely, we assign to each node vi a 2D position pi such
that the positions of all nodes minimize the functional

∑
i< j

(‖pi−p j‖2−dist(d(vi, t),d(v j, t))2.

To show the dynamical processes on the network, we de-
velop an animation that changes the positions pi of nodes vi
over time. In each time step tk = t1, . . . , tn, we apply an MDS
step to compute the new positions. To maintain the mental
map during the animation we use the entire time series from
starting point t1 to the current point in time tk for building
the distance matrix. Hence, the animation has a memory and
point locations only change positions slightly with respect to
the preceding layout. Due to the nature of MDS, it may hap-
pen that the entire layout is flipped over, which can easily
be fixed by checking the coherence of two successive time
steps and potentially perform sign changes.

4. Color Encoding

The color encoding of the nodes is performed with respect to
the current dynamical variable value d(vi, tk) of each node vi.
The mapping depends, again, on the encoding of the dynam-
ical variable. In case of categorical values, we assign distinct
and clearly distinguishable colors to the different categories.
For the scenario shown in the case study, we have three cat-
egories, which are mapped to red, blue, and yellow, respec-
tively. In case of numerical values, one can assign a standard
continuous color map. Since our scenario deals with phases,
the color map shall be continuous and cyclic, i.e., it shall as-
sign the same values to phases 0 and 2π. We achieve this by
using a four-color scheme that assigns white to phase 0 and
2π, respectively, blue to phase π

2 , black to phase π, and green
to phase 3π

2 . For other phases we obtain the colors by inter-
polating luminance values. The color map basically consists
of a blue and a green luminance color map, which can be
attached to each other continuously at the luminance mini-
mum (black) and maximum (white), respectively. Figure 1 is
using this color mapping scheme.

5. Time-series Visualization

We also provide a linked view to a time series visualiza-
tion. Individual nodes can be selected and are highlighted
in both the nodelink diagram and time series visualizadtion.
The time series visualization depicts the dynamical variable
values of all nodes over time in 2D Cartesian coordinates.
For the scenario of dealing with phases, 2D polar coordi-
nates can be used, where time increases towards the origin
and the phases are located at the respective positions on a

circle. Figure 2 shows the two layouts for time series visual-
ization, where the radial layout is a hyperbolic one.

(a) (b)

Figure 2: Time series visualization is linked to the node-link
diagrams. (a) Using 2D Cartesian coordinates. (b) Using 2D
polar coordinates, where time increases towards the origin.

6. Case Study

We applied our visualization methods to two different types
of dynamical processes and each of them to networks with
different topologies. The first dynamical process we have
been investigating is that of synchronization of nodes within
a network. A widely used model is the one by Kuramoto,
where the nodes represent a population of phase oscillators
that are coupled through phase differences [Kur84, Kur03],
which has been studied on graphs, e.g., by Arenas et
al. [ADGPV06]. The following differential equation is used
to simultaneously update the phase values d(vi, t) of each
node vi at each time step:

dd(vi, t)
d t

= ε∑
j

Ai j sin(d(v j, t)−d(vi, t)),

where A = (Ai j) is the adjacency matrix that captures the
network topology in form of binary entries and ε is a global
parameter inducing a coupling strength. The process tries to
synchronize connected nodes, i.e., it tries to assimilate their
phase values. We first applied this dynamical process to the
network shown in Figure 1(a). The network consists of five
fully connected groups that are connected to a hub. Four of
the five groups have a node that is not directly connected to
the hub. The respective time series are shown in Figure 2.
We run the dynamical processes multiple times with differ-
ent random initial dynamical variable values and average the
time series for each node. The result of our animation is de-
picted in Figure 3. It can be observed how the five fully con-
nected groups and the hub start to separate over time. More-
over, the nodes that are not directly connected to the hub
are placed more distant from the hub than the directly con-
nected nodes of the same group. Hence, the dynamics follow
the topology and it can be concluded that the hub is the main
structural feature of the dynamical process.

Next, we applied the same dynamical process to other net-
works including the one shown in Figure 1(b). The main
topological structure of the network is given by three groups
that are coupled via a hub for each group. At the hubs, each
group splits into three subgroups. The animation shows that
it takes significantly longer to build a clear structure, but that
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Figure 3: Animation of node-link diagram based on dynamical processes with mental map. Vertex positions for all nodes vi in
the 30 figures are computed using MDS on time series (d(vi, tk))

n
k=1 for n = 1, . . . ,30, respectively. It can be observed that the

topological structure (Figure 1(a)) clearly triggers the dynamical process.

the main topological structure is again dominant. The trian-
gle formed by the three hubs governs the process, see Fig-
ure 4(a) for time step t99. However, here the hubs do not sep-
arate clearly from the three subgroups within the respective
groups.

(a) (b)

Figure 4: Results for the network in Figure 1(b): (a) Time
step t99 of animation for synchronization process. (b) Time
step t45 of animation for excitable networks.

The second dynamical process that we investigated was
that of excitable networks, which plays an important role in
biological modeling [MLHH08]. Each node is in one of the
three states ‘susceptible’, ‘excited’, or ‘recovering’. A ‘sus-
ceptible’ node enters the state ‘excited’ in the next time step,
if at least one of its adjacent nodes is in the state ‘excited’.
Moreover, even if no adjacent node is ‘excited’, the ‘sus-
ceptible’ node may still get ‘excited’ with a certain proba-
bility, called the spontaneous excitation rate (here, we chose
a spontaneous excitation rate of 0.1). An ‘excited’ node al-
ways enters the state ‘recovering’ in the next time step. A
‘recovering’ node enters the state ‘susceptible’ in the next
time step with a certain recovery probability (here, we chose
a recovery probability of 0.9). We applied this dynamical
process to the networks shown in Figure 1. Figure 5 show
four consecutive time steps of the animation when applied
to the network shown in Figure 1(a). It can be observed that
the three states govern the process and that network topol-
ogy does not play the main role. Note that other influences
of topology on dynamics may still exist. A similar observa-
tion can be made when applying the approach to the network
shown in Figure 1(b). One time step is shown in Figure 4(b).

Figure 5: Four consecutive time steps of animation for ex-
citation networks on network in Figure 1(a). No topological
structures appear.

7. Discussion

We have compared our results with two other types of visual-
izations: First, we took a static graph layout based on the net-
work’s topology and animated the colors of the nodes over
time. Figure 1 shows one of the time steps. As we can see
from Figure 3, there are nodes with very similar time series
whose current dynamical variable values are nevertheless
rather different. Hence, it was impossible to see any emerg-
ing structures from a color animation over a static graph.

Next, we looked into a dynamic force-based layout, where
the node locations are animated based on the similarity of
the current dynamical variable values. It turned out to be im-
possible to maintain a mental map and positions changed so
quickly, in large number, and in an uncoordinated fashion
that no structural behavior could be observed.

8. Conclusion

We have presented a visualization method for dynamical
processes on graphs based on an animation of node posi-
tions. The node positions are obtained using an MDS ap-
proach on the time series, which allows for an animation
that maintains the mental map. We have shown for differ-
ent dynamics and different topologies that our visualization
approach can be useful to draw conclusions about the rela-
tionship between network topology and dynamical processes
for minimal models.
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