
The 13th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST (2012)
D. Arnold, J. Kaminski, F. Niccolucci, and A. Stork (Editors)

Interactive exploration of gigantic point clouds

on mobile devices

Marcos Balsa Rodriguez, Enrico Gobbetti, Fabio Marton, Ruggero Pintus, Giovanni Pintore, Alex Tinti

CRS4 Visual Computing, Italy – http://www.crs4.it/vic/

Abstract

New embedded CPUs that sport powerful graphics chipsets have the potential to make complex 3D applications

feasible on mobile devices. In this paper, we present a scalable architecture and its implementation for mobile

exploration of large point clouds, which are nowadays ubiquitous in the cultural heritage domain thanks to the

increased performance and availability of 3D scanning techniques. The quality and performance of our approach

is demonstrated on gigantic point clouds, interactively explored on Apple iPad and iPhone devices using in variety

of network settings. Applications of the technology include on-site exploration during scanning campaigns and

promotion of cultural heritage artifacts.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.2]: Distributed/network
graphics—Computer Graphics [I.3.7]: Three-dimensional graphics and realism—

1. Introduction

The rapid evolution of shape and color acquisition technolo-
gies, from active scanning to computational photography
methods, is making large amounts of high-quality sampled
3D data available, especially in the field of cultural heritage
(CH) where artifacts are routinely scanned for preservation,
study, or presentation.

Detailed 3D models are non-trivial to render since they
require fast incremental loading, reasonable compression,
dedicated GPU rendering approaches, and adaptive view-
dependent culling techniques. For these reasons, interactive
rendering of these huge datasets remains a very challeng-
ing problem. The visualization of such massive models is
typically addressed using level-of-detail (LOD) and asyn-
chronous out-of-core data fetching coupled with parallel ren-
dering techniques, while the most commonly used data rep-
resentation for CH data sets is the triangulated mesh. How-
ever, recently the interest in the use of point clouds has
grown, since these are easy to build and manage. Points
as rendering primitives are more efficient and result in a
more compact representation, since the mesh connectivity
of triangles is not required. More benefits arise thanks to
the simplicity of pre-processing algorithms, and the reduced
amount of data transferred in client/server applications for
remote 3D visualization. Thus, direct point-based rendering
has gradually emerged as a useful tool to interactively in-

spect very large geometric models [GP07]. At the same time,
the rapid evolution of low-cost graphics hardware has made
3D model visualization available on very different platforms,
from laptop PCs to mobile devices. However, while a lot of
solutions have been presented for desktop and laptop plat-
forms [GKY08], distributing and rendering non-trivial 3D
models on portable device is still challenging, since it is sub-
ject to strong limitations in terms of 3D hardware capabili-
ties, memory, storage and network bandwidth.

Our contribution is a point-based rendering solution for re-
mote high-quality interactive visualization of massive static
point clouds on consumer-grade portable devices. The pre-
sented client-server framework gives the user the possibil-
ity to navigate and inspect the full-resolution model in real-
time, using a limited bandwidth. Our technique is easy to im-
plement, provides good performance and quality rendering
of massive point clouds, and performs an efficient massive
data distribution with a high level of scalability. Although
not all the techniques presented here are themselves novel,
their combination in a single system for remote rendering on
mobile platforms is non-trivial and represents a substantial
enhancement to the state-of-the-art.

2. Related Work

In this section we briefly discuss the approaches that are
most closely related with this work. Readers may refer to

c© The Eurographics Association 2012.

DOI: 10.2312/VAST/VAST12/057-064

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/VAST/VAST12/057-064


Balsa Rodriguez et al. / Gigantic point clouds on mobile devices

well-established surveys [KB04, GKY08, CPAM08] for fur-
ther details.

While many examples exist for rendering light 3D mod-
els on portable platforms (e.g., MeshPad [IST12] for meshes
or PCL [Mar12] for points), exploring massive models on
mobile devices is still a hot research topic. However, much
of the work in model distribution has focused so far on
compression rather than adaptive view-dependent streaming.
MPEG-4 is a reference work in the field [JPP08]. Early meth-
ods for view-dependent LOD and progressive streaming of
arbitrary meshes use fine-grained updates based on edge col-
lapses or vertex clustering [XV96,Hop97,LE97]. Many com-
pression and streaming formats for the web have been built
with these approaches [MLL∗10,BCK∗11,NKB10], but they
are CPU-bound and spend a great deal of rendering time
computing a view-dependent triangulation prior to render-
ing, making their implementation in a mobile setting par-
ticularly challenging. Recently, Gobbetti et al. [GMB∗12]
proposed an efficient image-based mesh representation; how-
ever, it only works for models for which an isometric quad
parametrization exists. In contrast, we focus here on a more
practical multi-resolution representation for point clouds.

While the use of points as rendering primitives was intro-
duced very early [LW85], only over the last decade have they
reached the importance of fully established geometry and
graphics primitives [KB04]. Since its inception, many tech-
niques have been presented for improving the display qual-
ity, LOD rendering, as well as for efficient out-of-core ren-
dering of large point models. Streaming QSplat [RL01] has
for a long time been the reference system for massive point
count rendering in a network setting. However, the algorithm
is CPU-bound since all the computations are made per point,
and CPU-GPU communication requires a direct rendering
interface. While reasonable performance has been demon-
strated on early PDAs [DD04,HL09], the methods are hardly
applicable to current devices with high-definition screens,
due to the high per-point costs. A number of authors have
thus proposed to raise performance limits through coarse-
grained structures and efficient usage of retained-mode ren-
dering interfaces.

Layered point clouds (LPC) [GM04a,GM04b] and Wand
et al.’s out-of-core renderer [WBB∗08] are prominent exam-
ples of high-performance GPU rendering systems based on
hierarchical model decompositions into large-sized blocks
maintained out-of-core. LPC is based on adaptive BSP sub-
division, and subsamples the point distribution at each level.
In order to refine an LOD, it adds points from the next
level at run-time, limiting its applicability to uniformly sam-
pled models and producing moderate quality simplification
at coarse LODs. In Bettio et al.’s approach [BGM∗09] these
limitations are removed by making all BSP nodes self-
contained and using an iterative edge collapse simplification
to produce node representations. In this work we propose
an improved BSP construction method which uses a split

plane position optimization, as well as a rendering architec-
ture tuned for mobile devices. In contrast, Wand et al.’s ap-
proach [WBB∗08] is based on an out-of-core octree of grids
and deals primarily with grid-based hierarchy generation and
editing of the point cloud. Its limitation is in the rendering
quality of lower resolutions created by the grid, no matter
how fine it is. Goswami et al. [GEM∗12] recently proposed
a technique based on multi-way kd-trees which, by con-
trolling a node’s fan-out, simplifies memory management
by creating uniformly sized nodes managed out-of-core in
a memory-mapped array. Unfortunately the method looses
much of its appeal in a networked setting, where variable bit-
rate compression is typically used at the node level. None of
the previous approaches have thus far been implemented on
mobile devices.

3. Method overview

Given an input model, we build a multi-resolution structure
based on its binary space partition. The structure has approx-
imately the same number of samples (few thousands) in the
leafs and in the inner nodes, which are constructed by fil-
tering the two child samples. This structure is pre-processed
off-line, starting from a point cloud model. The data is re-
cursively partitioned up to the leafs using an out-of-core ap-
proach. Inner levels are built merging children with a simpli-
fication strategy that aims to have a target number of equally
spaced samples per node. Multiple clients can access a server
farm on which the models are stored. Each client adapts the
representation of the model depending on the viewing pa-
rameters, incrementally updating the working set used for
rendering. The algorithm tries to keep the working set occu-
pancy constant with a LRU strategy, never going beyond the
allocated memory resources. Data is accessed through a data
access layer which takes care of the communication with the
server. Rendering is simply a matter of drawing all the vertex
buffer objects associated with the view.

4. Pre-processing

The pre-processing phase consists of two main steps: the first
one partitions the input dataset as a kd-tree, while the second
produces the node representations.

In the first step, the input point cloud is inserted into
an out-of-core array, which is recursively split down to the
leaves. Nodes are split if they contain more than the target
number of samples. The split plane has to be selected appro-
priately, taking into account conflicting constraints. First of
all, nodes should tightly bind geometries, excluding empty
space. Moreover, since at run-time a constant resolution will
be employed for rendering each node, they should be as
compact as possible, with approximately the same size over
the three dimensions. Finally, to reduce tree depth, points
should be uniformly split among a node’s children. Unlike
Goswami et al. [GEM∗12], who employ multi-way kd-trees

c© The Eurographics Association 2012.

58



Balsa Rodriguez et al. / Gigantic point clouds on mobile devices

but fixed plane positions, here we optimize the split plane po-
sition to balance the various constraints. To quickly achieve
this goal, we scan the point clouds generating split planes
that produce acceptable aspect ratios, and from these we
choose the plane that produces the most balanced partition.

During the second step, inner nodes are constructed bot-
tom up starting from the leafs. Each node is built by merg-
ing the samples contained in two children into a single sam-
ple set, before applying a simplification process to reduce
a node’s point could to the target sample count. The sim-
plification procedure uses a local kd-tree containing all the
samples of the two children, and applies a multiple choice
decimation technique [WK02]. At each decimation step, we
randomly select a small number (8) of points in the kd-tree
and look for the closest neighbor with a compatible normal.
We then select the pair with the shortest distance, merging it
into a single point. The procedure is repeated until the point
cloud reaches the target point count. The color and normal
attributes of the collapsed samples are interpolated with a
weight proportional to the sample splat area, while the ra-
dius is the minimum radius that covers both original samples
from the new sample position. The decimated point cloud is
then compressed to reduce run-time bandwidth usage and
the node is stored in an out-of core database.

Instead of looking for maximum compression, we employ
a compression algorithm which is fast enough to be decom-
pressed on a low-powered device. Each node contains an
header and a point cloud. In the header we store a flag in-
dicating if it is a leaf, the bounding box, the radius range
(min,average,max) and the total point count. The point cloud
is stored in four parallel arrays: positions, normals, colors
and radii. Compression is based on a simple wavelet com-
pression scheme which is characterized by fast decompres-
sion and reasonable compression rates. Before applying the
wavelet transformation the points are sorted according to an
order that minimize the Euclidean distance among adjacent
points. The attributes of the points in the point strip are then
stored in the rows of a 2D array. These rows are then trans-
formed using a reversible n-bit to n-bit wavelet based on the
Haar wavelet transform in order to reduce entropy [SLDJ04].
The low-pass coefficients produced by the transformation
are iteratively filtered by this wavelet step until we remain
with the root main single coefficient. We store the root and
all the detail coefficients at various levels. The resulting co-
efficients are then mapped to positive integers and encoded
using a simple Elias gamma code [Eli75], in which a posi-
tive integer x is represented by: 1+⌊log2 x⌋ in unary (that is,
⌊log2 x⌋ 0-bits followed by a 1-bit), followed by the binary
representation of x without its most significant bit. Upon de-
compression, all the steps are undone in the reverse order,
with the obvious exception of sorting. To transform the input
data to coefficients, an adaptive quantization step that consid-
ers the local sample spacing is employed: the positions are
expressed relative to the node bounding box and are quan-
tized to the minimum number of bits per component that is

able to produce a quantization error under a quarter of the
minimum sample radius. The same error threshold is used
to quantize radii expressed inside the radius range stored in
the header. To eliminate any holes the radii are subsequently
enlarged by the maximum quantization error. We exploit a
radial projection to compress normals to 16 bits, while col-
ors are first remapped to YCoCg-R color space [MS03] to re-
duce correlation and then mapped to 5 bits for the luminance
and 6 bits for each chroma components. Since the compres-
sion subsystem is used by both the pre-processing and the
run-time systems, quantization effects in a given node are
taken into account when constructing its parent.

5. Server

The server stores different databases, each one correspond-
ing to one model. In order to increase server-side scalability,
no processing component is present in the server. This ap-
proach makes it possible to leverage existing database com-
ponents instead of being forced to implement a storage man-
ager. For this work, we use Berkeley DB for storing, access-
ing and caching data, while we developed a custom mod-
ule for Apache2 to serve data. We employ Berkeley DB be-
cause it is an embeddable database that is open source and
widely deployed, and because of its technical characteristics;
namely, it provides a fast, scalable, transactional database
engine, and it is able to manage up to terabytes of data.
Moreover, the amount of per-process replicated cache is con-
figurable, and different instances of the same database are
able to share index memory, thus reducing memory load for
servers while handling multiple clients in parallel. Likewise,
we chose to serve data with Apache2 since it is an efficient,
extensible and secure open source web server which pro-
vides many HTTP services adhering with the current HTTP
standards. In addition, it is scalable, multi-threaded and in-
cludes features like persistent server processes and proxy
load balancing, which are essential for the scalability of our
application. A custom Apache2 module manages our appli-
cation’s connectionless protocol, based on HTTP. Client re-
quests are simply made by the database name and node iden-
tifier. The module parses the request, fetches the associated
data from the DB, and if data is present, returns the com-
pressed node data, otherwise it returns an empty message.
The proposed approach relies on widely tested components,
is simple to implement and provides very good performance,
particularly thanks to the concurrency features of Apache2
which it leverages to manage up to thousands of clients in
parallel by forking multiple child servers sharing the same
database.

6. Client architecture

Modern mobile devices such as the Apple iPhone, iPad and
other devices on other platforms, such as Android, typi-
cally offer support for OpenGL ES, the OpenGL specifica-
tion for embedded systems. The versions of OpenGL ES

c© The Eurographics Association 2012.

59



Balsa Rodriguez et al. / Gigantic point clouds on mobile devices

that are supported in the current generation of mobile de-
vices are 1.1 and 2.0. With the ES 1.1, which is based on
OpenGL 1.5, VBOs and vertex arrays are the only methods
to submit geometry primitives (polygons are not available as
primitives). Complex texturing (multiple textures and mip-
mapping), point sprites and clipping planes are supported.
Some devices also offer support for Frame Buffer Objects
and non-power-of-two textures as an extension. On the other
hand, in the ES 2.0, which is based upon OpenGL 2.0, all the
fixed pipeline functionality has been removed and vertex and
fragment shaders must be provided, which gives more flexi-
bility. More control on data precision has also been added to
the shading language. Frame buffer objects are included in
the specification while user clip planes have been removed
together with the fixed functionality.

The GPUs that are typically implemented in these devices
are focused on high efficiency and low power consumption.
For instance, the PowerVR SGX5XX used in the various
iPod, iPhone and iPad series, offers a fully programmable
hardware pipeline typically using tile-based deferred render-
ing (TBDR). Only once all the primitives have been sub-
mitted the driver splits the geometry into tiles that are then
rendered using a small amount of in-core memory. Due to
this architecture, reading back from the frame buffer is a
costly operation since it requires all the tiles to be written
to the frame buffer prior to reading from it. Most of the
GPUs used in mobile devices use this type of rendering tech-
nique. In general, the GPUs included in current mobile de-
vices are very efficient and give really good performance;
however, since the display resolution is constantly increas-
ing, the fragment load heavily penalizes the rendering (e.g.,
current iPad 3 devices are already offering resolutions over
HD with 2,048 by 1,536 pixels).

For these architectural reasons, we have thus designed the
run-time rendering engine to work using direct rendering,
communicating data in large batches using cached vertex ar-
rays, and reduced the usage of fragment shaders. We have
also decoupled rendering from adaptive refinement and data
fetching using a multi-threaded approach.

6.1. Adaptive view-dependent representation

Given viewing parameters and a fixed screen space toler-
ance, the client performs adaptive rendering of the multi-
resolution model, which is incrementally fetched from a
server. The view-dependent representation of the hierarchi-
cal structure is constructed coarsely and then refined. The
traversal algorithm of the kd-tree takes into account sev-
eral factors: the user’s point-of-view, the available GPU re-
sources on the mobile device platform, the current CPU us-
age level, and the network bandwidth required for stream-
ing the data from the remote repository to the mobile de-
vice. The model is represented by a coarse-grained kd-tree
structure, where for each node there is a pointer to a data ob-
ject – a decompressed vertex array inside a LRU cache. The

cache of vertex arrays is directly used for rendering, but it
also keeps a number of unused decompressed nodes, which
could be useful to refine previously visited branches of the
hierarchy. We hide network latency by using asynchronous
data requests. The refinement technique exploits the progres-
sive nature and coarse granularity of the multi-resolution hi-
erarchy to reduce CPU processing costs. At each frame, this
structure is adapted to the current point of view by incremen-
tally updating the current working set that approximates the
model.

The refinement process is driven by a user-defined pixel
threshold, which represents the required average sample
distance between adjacent splats on the screen. The algo-
rithm performs a single-pass recursive traversal of the multi-
resolution structure and selects the nodes that need to be in-
cluded in the working set. For each node, we test whether
the bounding box of the node is completely outside the frus-
tum view. If the node bounding box is outside, the traversal
stops discarding the entire branch of the tree. Otherwise, we
continue the recursive refinement of its children. The node
average sample distance is projected into the screen to obtain
the average splat size. A reasonable upper bound for the pro-
jected size is obtained by measuring the projected size of a
sphere with diameter equal to the average sample distance in
object space and centered at the bounding box corner closest
to the viewpoint. For each node, we compare the projected
average splat size with the threshold; if the value is under the
threshold, the corresponding point cloud within the node is
prepared for rendering and the sub-tree underlying the node
is coarsened to remove overrefined data. Otherwise, we try
to refine the node. In order to avoid freezing the renderer be-
cause of data access latency, we first check the availability of
the children nodes. If children are available, we proceed with
the refinement. Otherwise, we select the node for rendering.
Once the refinement is complete all the selected nodes can
be rendered.

6.2. Multi-threaded data access layer

The adaptive loader retrieves data through an asynchronous
data access layer, which encapsulates the data fetching mech-
anism and does not block the application when data is not im-
mediately available. The data access component runs in two
threads that communicate through a shared cache of com-
pressed nodes, which are identified by their node ids. Nodes
are kept in compressed form to increase the node capacity
of the cache and thus reduce cache misses and better shield
the application from network latency. The main application
thread asks for the data required to complete the refinement
of a node. If the data is available, the node is returned and
the refinement continues; otherwise, a request for the data is
pushed into a priority queue and the refinement process for
that node is paused. The requests pushed into the queue are
served by the second thread, which takes care of sending a
certain number of requests (as many as can be reasonably

c© The Eurographics Association 2012.

60



Balsa Rodriguez et al. / Gigantic point clouds on mobile devices

(a) Rotation (b) Translation

(c) Zoom (d) Pivot rotation

Figure 1: Graphical User Interface. Here we show the multi-touch gestures to navigate massive 3D models on iPad and iPhone platforms: (a)

rotation of the model about its bounding box; (b) translation; (c) zooming; (d) rotation of the model around a target (blue sphere) activated by

a single quick tap.

satisfied by the estimated available bandwidth). The remain-
ing requests are ignored. Since the requests are ordered by
their priority, which corresponds to the node’s projected er-
ror, coarser nodes are served first. Moreover, discarded re-
quests that are still needed will be posted on the next frame.
A simple limited memory first-in/first-out queue results in
a request ordering that is I/O-efficient and ensures that the
most relevant data is downloaded as soon as possible. Finally,
the second thread also manages the incoming compressed
bit-streams and storing them in the shared cache. In our cur-
rent implementation, we use a HTTP/1.1 persistent connec-
tion and optionally employ HTTP pipelining. The combi-
nation of these two techniques improves bandwidth usage
and reduces network latency. It also allows us to keep the
API for the protocol simple, since the client benefits from
a connection-based implementation hidden behind a reliable
connectionless interface. The use of HTTP pipelining allows
multiple HTTP requests to be sent together, without waiting
for the corresponding responses. The client then waits for
the responses to arrive in the same order in which the cor-
responding requests were sent. Request pipelining can result

in a dramatic improvement in response times, especially over
high-latency connections.

6.3. Rendering process

Once the incremental refinement is finished, the nodes in the
working set are the view-dependent 3D model approxima-
tion for the current frame. Since there are a variety of pos-
sible clients with different graphics capabilities, we have to
detect the underlying available GPU resources at the begin-
ning of the rendering stage. Then, we set graphics parame-
ters of our algorithms accordingly. Communication with the
GPU is performed exclusively through a retained mode in-
terface by managing a cache of vertex arrays in the GPU. It
exploits spatial and temporal coherence by reusing the same
data for several frames without the need to reload it again.
Our architecture supports two rendering modes. The first is
a simple approach which renders circular splats through gl-

PointSmooth and uses the same splat size for all the samples
in the point cloud. The second is a higher quality represen-
tation, implemented using vertex and fragment shaders, that
draws an oriented 3D circle depicting a textured quad for

c© The Eurographics Association 2012.

61



Balsa Rodriguez et al. / Gigantic point clouds on mobile devices

Figure 2: Precomputed view positions. The interface provides the

possibility of browsing a list of pre-computed view positions (bottom

side of the interface).

each sample [BK03]. The latter solution tries to simulate a
smooth surface by drawing each splat with its own size and
orientation. The splat has a size proportional to its average
sample distance, and it is orthogonal to the sample normal.

6.4. Graphical user interface

The Graphical User Interface (GUI) is based on the Cocoa
Touch UI framework and it is composed of a Model List
Widget and OpenGL Rendering Widget. Through the Model
List Widget the user can browse and select the desired model.
Then, the OpenGL rendering widget allows the user to ex-
plore the selected model through standard multi-touch ges-
tures. Specifically, the user can rotate the model about its
bounding box, center it by moving a single finger on the
screen (Fig. 1(a)), translate it by moving two fingers on the
screen (Fig. 1(b)), and finally zoom in and out by performing
a pinch gesture (Fig. 1(c)).

An alternative “target-based” navigation approach is also
provided. With a single quick tap the user can select a target
point, which will be shown as a small sphere attached to the
model. The user can then rotate the model about the target
sphere (Fig. 1(d)). Further, a quick tap on the sphere will
automatically animate the camera from the current position
toward target position. The target can be deactivated by tap-
ping outside the small sphere. For camera motion, the multi-
touch interaction system has been enriched with the possibil-
ity to browse a list of pre-computed view positions (Fig. 2),
displayed as a series of thumbnails in the lower part of the
screen. When a view is selected, the camera is smoothly ani-
mated from the current position the newly selected view.

7. Results

The method presented was used to develop a C++ applica-
tion composed of a pre-processor, a client application and a
server. Several tests were performed on pre-processing and

Model Resolution Pre-processing time
St. Matthew 190Mpoints 80mins
David 470Mpoints 4hours

Table 1: Datasets and pre-processing. We tested our algorithm on

two CH datasets: the David and St. Matthew statues from the Digi-

tal Michelangelo project. Here we list the size in points and the time

spent to pre-process the data to obtain the multi-resolution hierar-

chy stored on the server side.

rendering of very large models (see Fig. 3 and 4). In Table 1
we list the 3D models used for testing; these datasets are
the last version of the high resolution scan of the statues of
David (about 500M samples) and St. Matthew (about 200M
samples) from the Digital Michelangelo Repository of Stan-
ford University. The first model has a color signal acquired
after a restoration process. The color was blended on the ge-
ometry using the algorithm by Pintus et al. [PGC11]. The St.
Matthew data has an ambient occlusion gray scale attribute
per point. They are all acquired using triangulation laser
scanning with a sub-millimeter accuracy. Using these mod-
els, we first built an out-of-core multi-resolution hierarchy,
which was stored on the server side and was fetched by a re-
mote client application. This pre-processing was performed
using an off-the-shelf PC with Linux 3.0.6 (Gentoo distri-
bution) and an Intel(R) Core(TM) i7 CPU 960 @ 3.20GHz
with 24GB RAM. The David model was processed in about
240 minutes and generated a multi-resolution model made
of 470M samples. The St. Matthew model was processed in
about 80 minutes and generated a multi-resolution model of
190M samples. These run times are comparable with state-
of-the-art pre-processing methods for massive point cloud
rendering [BGM∗09,WS06,WBB∗08].

The client was implemented on iOS 5 using C++, OpenGL
and Objective-C++ and the rendering tests were performed
on an iPhone 4 and on ”the new iPad”. The iPhone has a
1Ghz Apple A4 processor with 512 MB RAM, a PowerVR
PowerVR SGX535 GPU and a screen resolution of 640 x
960 pixels, while the iPad has a 1Ghz Dual-core Apple A5X
processor with 1GB RAM, a PowerVR SGX543MP4 GPU
and a screen resolution of 2048 x 1536 pixels. Rendering
was tested in a variety of scenes ranging from far view to
near close up, including abrupt rotation to test the capabili-
ties of the algorithm. For both iPhone and iPad, we can sus-
tain an average rendering frame rates above 30 fps, never
going below the interactive rate of 15 fps. The iPad hard-
ware is more powerful than the iPhone, but it has to render
much more points due to its high screen resolution. For this
reason, the perceived performance on these two devices is
very similar. Multi-resolution and view frustum culling are
able to discard unneeded data, keeping a working set of 1M
points. The data compression rate is about 4.2bytes/sample
for the colored David model and 3.6bytes/sample for the St.
Matthew, since it only has a single gray scale value for the
ambient occlusion vertex attribute.

c© The Eurographics Association 2012.

62



Balsa Rodriguez et al. / Gigantic point clouds on mobile devices

Figure 3: Colored David 0.25mm dataset. A colored 470M-point 3D model rendered with iPad and iPhone devices. The model is from the

Digital Michelangelo project, courtesy of Marc Levoy and the Soprintendenza ai beni artistici e storici per le province di Firenze, Pistoia, e

Prato.

Connection peak average iPad full refinement iPhone full refinement
(MB/s) MB/s) (David/St.Matthew) iPhone start-up (David/St.Matthew)

ADSL 8Mpbs 6.4 3.2 1.5sec / 2sec <1sec
UMTS/HSPA 1.7 1.3 3.5sec / 6sec <1sec
EDGE 0.023 0.02 225sec / 375sec 12sec / 22sec

Table 2: Client network performance. Given three types of wireless network, we present their peak and average bandwidths and the start-up

full refinement time for the David 470Mp and St. Matthew 190Mp datasets using both Apple iPad 3 and iPhone 4 platforms.

One of the most critical issue in mobile applications is
the time needed to fully refine the data at application start-
up and to refine the model during the navigation. This time
is independent from the rendering thread and depends on
the network bandwidth. Due to the multi-resolution hierar-
chy the amount of points that should be rendered is output-
sensitive and the latency time is proportional to the maxi-
mum resolution of the mobile device. We have tested perfor-
mance with wireless connection to an ADSL 8Mbps router,
UMTS/HSPA and, in order to also include a worst-case situ-
ation, low-performance EDGE networks. In Table 2 we list
the peak and average bandwidths, along with the time re-
quired to see a fully refined frame after application start-up.
For these tests we typically set a screen tolerance of 2 pixels
for adaptive refinement. With the iPad, at start-up we need
to load 4.5MB of compressed data for full refinement of the
David and 7.2MB for St. Matthew. Hence, the latency time
is respectively about 1.5 and 2 seconds for a ADSL network
connection, 3.5 and 6 seconds for UMTS/HSPA, and 225
and 375 seconds for EDGE. The iPhone has a resolution
of 640 x 960, so at start-up it requires 250KB compressed
data to fully refine the David model and 450KB for the St.
Matthew. The latency times are less than 1 second for ADSL
and UMTS/HSPA, while they are respectively about 12 and
22 seconds for EDGE.

8. Conclusions

We have presented a point-based rendering tool for local
and remote interactive visualization of massive static point
clouds on consumer-grade portable devices. The scalable
data structure and framework architecture are able to cope
with limitations in 3D graphics capabilities, memory, storage
and network bandwidth, and they allow us to easily manage
rendering of gigantic datasets on mobile platforms such as
the Apple iPad and iPhone. We have tested our technique
with a number of network technologies, showing how it is
well-suited for on-site CH applications, such as exploration
during scanning campaigns and the study, preservation or
presentation of an artwork.

Acknowledgments. This work is partially supported by the EU FP7
Program under the DIVA project (REA Agreement 290277) and the
INDIGO project (242341). We also acknowledge the contribution of
Sardinian Regional Authorities. We thank Luca Pireddu for helpful
comments and suggestions.

References

[BCK∗11] BLUME A., CHUN W., KOGAN D., KOKKEVIS V.,
WEBER N., PETTERSON R., ZEIGER R.: Google body: 3d hu-
man anatomy in the browser. In ACM SIGGRAPH 2011 Talks

(2011), ACM, p. 19. 2
[BGM∗09] BETTIO F., GOBBETTI E., MARTON F., TINTI A.,

MERELLA E., COMBET R.: A point-based system for local and
remote exploration of dense 3D scanned models. In Proc. VAST

(2009), pp. 25–32. 2, 6

c© The Eurographics Association 2012.

63



Balsa Rodriguez et al. / Gigantic point clouds on mobile devices

Figure 4: Colored St. Matthew dataset. A 190M-point 3D model

with ambient occlusion rendered with iPad and iPhone. The model

is from the Digital Michelangelo project, courtesy of Marc Levoy

and the Soprintendenza ai beni artistici e storici per le province di

Firenze, Pistoia, e Prato.

[BK03] BOTSCH M., KOBBELT L.: High-quality point-based ren-
dering on modern gpus. In Proc. Pacifig Graphics (Oct. 2003),
pp. 335–343. 6

[CPAM08] CAPIN T., PULLI K., AKENINE-MOLLER T.: The
state of the art in mobile graphics research. Computer Graphics
and Applications, IEEE 28, 4 (2008), 74–84. 2

[DD04] DUGUET F., DRETTAKIS G.: Flexible point-based ren-
dering on mobile devices. IEEE Computer Graphics and Appli-

cations 24, 4 (July-August 2004). 2
[Eli75] ELIAS P.: Universal codeword sets and representations

of the integers. IEEE Trans. Inform. Theory 21, 2 (Mar. 1975),
194–203. 3

[GEM∗12] GOSWAMI P., EROL F., MUKHI R., PAJAROLA R.,
GOBBETTI E.: An efficient multi-resolution framework for high
quality interactive rendering of massive point clouds using multi-
way kd-trees. The Visual Computer 28 (2012), 1–15. 2

[GKY08] GOBBETTI E., KASIK D., YOON S.-E.: Technical
strategies for massive model visualization. In Proc. ACM sym-

posium on solid and physical modeling (2008), pp. 405–415. 1,
2

[GM04a] GOBBETTI E., MARTON F.: Layered point clouds. In
Proc. Eurographics Symposium on Point Based Graphics (2004),
pp. 113–120,227. 2

[GM04b] GOBBETTI E., MARTON F.: Layered point clouds: A
simple and efficient multiresolution structure for distributing and
rendering gigantic point-sampled models. Computers & Graph-

ics 28, 1 (February 2004), 815–826. 2
[GMB∗12] GOBBETTI E., MARTON F., BALSA RODRIGUEZ M.,

GANOVELLI F., DI BENEDETTO M.: Adaptive quad patches: an

adaptive regular structure for web distribution and adaptive ren-
dering of 3d models. In Proc. ACM Web3D International Sympo-

sium (August 2012), ACM Press, pp. 9–16. 2
[GP07] GROSS M., PFISTER H.: Point-based graphics. Morgan

Kaufmann Pub, 2007. 1
[HL09] HE Z., LIANG X.: Multi-attributes controlled point-

based rendering architecture for mobile devices. In Computer-

Aided Design and Computer Graphics, 2009. CAD/Graphics’ 09.

11th IEEE International Conference on (2009), IEEE, pp. 105–
110. 2

[Hop97] HOPPE H.: View-dependent refinement of progressive
meshes. In Proc. SIGGRAPH (1997), pp. 189–198. 2

[IST12] ISTI-CNR VISUAL COMPUTING LAB: MeshLab for
iOS: A powerful easy-to-use 3D mesh viewer for iPad and
iPhone. www.meshpad.org, 2012. 2

[JPP08] JOVANOVA B., PREDA M., PRETEUX F.: Mpeg-4 part
25: A generic model for 3d graphics compression. In Proc. 3DTV
(2008), IEEE, pp. 101–104. 2

[KB04] KOBBELT L., BOTSCH M.: A survey of point-based
techniques in computer graphics. Computers & Graphics 28, 6
(2004), 801–814. 2

[LE97] LUEBKE D., ERIKSON C.: View-dependent simplifica-
tion of arbitrary polygonal environments. In Proc. SIGGRAPH

(1997), pp. 199–208. 2
[LW85] LEVOY M., WHITTED T.: The use of points as a display

primitive. Tech. Rep. TR 85-022, University of North Carolina
at Chapel Hill, 1985. 2

[Mar12] MARION P.: Point cloud streaming to mobile devices
with real-time visualization. www.pointclouds.org, 2012. 2

[MLL∗10] MAGLO A., LEE H., LAVOUÉ G., MOUTON C.,
HUDELOT C., DUPONT F.: Remote scientific visualization
of progressive 3d meshes with x3d. In Proc. Web3D (2010),
pp. 109–116. 2

[MS03] MALAVAR H., SULLIVAN G.: YCoCg-R: A color space
with RGB reversibility and low dynamic range. In JVT ISO/IEC

MPEG ITU-T VCEG, no. JVT-I014r3. JVT, 2003. 3
[NKB10] NIEBLING F., KOPECKI A., BECKER M.: Collabora-

tive steering and post-processing of simulations on hpc resources:
Everyone, anytime, anywhere. In Proceedings of the 15th In-

ternational Conference on Web 3D Technology (2010), ACM,
pp. 101–108. 2

[PGC11] PINTUS R., GOBBETTI E., CALLIERI M.: Fast low-
memory seamless photo blending onmassive point clouds using a
streaming framework. ACM Journal on Computing and Cultural

Heritage 4, 2 (2011), Article 6. 6
[RL01] RUSINKIEWICZ S., LEVOY M.: Streaming QSplat: A

viewer for networked visualization of large, dense models. In
Proc. Symposium on Interactive 3D Graphics (2001). 2

[SLDJ04] SENECAL J. G., LINDSTROM P., DUCHAINEAU

M. A., JOY K. I.: An improved N-bit to N-bit reversible Haar-
like transform. In 12th Pacific Conference on Computer Graphics
and Applications (Oct. 2004), pp. 371–380. 3

[WBB∗08] WAND M., BERNER A., BOKELOH M., JENKE

P., FLECK A., HOFFMANN M., MAIER B., STANEKER D.,
SCHILLING A., SEIDEL H.-P.: Processing and interactive edit-
ing of huge point clouds from 3D scanners. Computers & Graph-

ics 32, 2 (April 2008), 204–220. 2, 6
[WK02] WU J., KOBBELT L.: Fast mesh decimation by multiple-

choice techniques. In Procs of 7th International Fall Workshop

on Vision, Modeling, and Visualization (2002), pp. 241–248. 3
[WS06] WIMMER M., SCHEIBLAUER C.: Instant points. In Proc.

Symposium on Point-Based Graphics (July 2006), pp. 129–136. 6
[XV96] XIA J., VARSHNEY A.: Dynamic view-dependent sim-

plification for polygonal models. In Proc. IEEE Visualization

(1996), pp. 327–334. 2

c© The Eurographics Association 2012.

64


