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Abstract

We address the reconstruction of CAD models from 3D point clouds, assuming that an a priori CADmodel, roughly

similar to the scene to reconstruct, is given. The problem can be solved using a Bayesian approach which states

the reconstruction task as the search of the most probable CAD model. This article presents a reliable cylinder

generation algorithm that can be used to efficiently reach the configuration which maximizes the target probability,

combined with an efficient specific optimization heuristic. Results illustrate how our approach can automatically

reconstruct CAD models of industrials scenes.

Categories and Subject Descriptors (according to ACM CCS): J.6 [Computer Applications]: Computer-Aided
Engineering—Computer-Aided Design (CAD) I.4.8 [Computing Methodologies]: Scene Analysis—Object
Recognition, Surface fitting, Shape, Range data

1. Introduction

Context and motivations The "As Built" reconstruction
task consists in building a 3D CAD model which describes
the actual state of a facility. 3D LIDAR data are often used
for that purpose, since they provide huge amount of 3D mea-
sures (point clouds) that can be used to infer an accurate
as built CAD model of the facility. The CAD models that
we consider here are assemblies of primitive shapes such
as planes, cylinders, cones and tori which allow a concise
representation of the scenes. However, the way shapes are
assembled together must be driven so as to provide consis-
tent representations of the scenes. Typically, the shapes con-
nections must fulfill constraints which relate to the way the
industrial facilities are built. Besides this expert knowledge,
we also assume that a CAD model which roughly describes
the scene to be reconstructed is available. For instance, we
have a CAD model of a facility which is similar to the one
where the point cloud has been acquired, although there may
exist significant differences between these two scenes. This
prior CAD model can be used to drive the reconstruction
process, and to reinforce the reliability of the reconstructed
3D model. Hence, we aim at reconstructing a CAD model
which fits to the point cloud and satisfies the expectations

embedded in the two sources of a priori knowledge men-
tioned above: the model must be consistent and it must also
be similar to the prior CAD model which is known to be a
fair estimate of the result.

Our contributions While usual approaches [SWK07,
RV05] fit independent shapes to the point cloud, we state
the reconstruction problem as a probability optimization task
embedding a priori expectations about the model to be re-
constructed [BCM∗11, LKBH10]. This problem is solved
using a greedy optimization algorithm based on a stochas-
tic shapes generation tool which is meant to provide reli-
able shapes with a high probability, thus making the explo-
ration of the solution space efficient. This framework en-
ables the simultaneous recognition of several shape types
by handling the conflicts that could arise, although we com-
pute the tori (that mainly stand for elbows) upon the detected
cylinders (that may stand for pipes). Unlike some other al-
gorithms [LWC∗11], our probabilistic approach may accept
any configuration which seems to be relevant, even if it does
not perfectly comply with the a priori constraints.

Data and notations We are given a point cloud
P = {(p1, n1) , . . . , (pn, nn)} coming from terrestrial LI-
DAR acquisitions in an industrial facility, where each pi de-
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Input point cloud P (orange) and
a priori modelM0 (grey)

Reconstructed model X
Segmentation (cylinders:green,

planes:blue, tori:red,
unrecognized:orange)

Figure 1: Results on industrial scenes with complete or partial a priori models.

notes a 3D point and ni denotes the normal vector to the
scanned surface at point pi (either provided with LIDAR
data, or computed using local planes fitting [MN04]). More-

over, we also haveM0 =
{

S1
, . . . ,Sm

}

a prior CAD model

standing for the theoretical state of the facility. Each element
S i ∈M0 is a parametrized primitive shape (the parameters
define the orientation, the position and the geometry of the
shape). In this paper, we only consider the S i’s that are ei-
ther planes, cylinders or tori. X = {S0, . . . ,Sx} denotes the
solution which is computed. Again, each Si is either a plane,
a cylinder or a torus.

2. Bayesian reconstruction

Probabilistic approach The reconstruction problem can be
stated as the search of the most probable CAD model. Thus
we have to find the configuration X ∗ that maximizes a given
a posteriori probability. According to the Bayes rule, this
probability quantifies the relevancy of any configuration X
with respect to both the observed data (point cloud) and the
a priori knowledge. Using decreasing exponential probabil-
ities, the a posteriori probability maximization problem is
turned into the minimization of the negative log-likelihood.
Thus we have to find the configuration X ∗ that minimizes
the energy:

E(X ) = λDED(X ,P)+λGEG(X ,M0)+λTET (X ) (1)

The data fitting energy ED quantifies how well the data P

fits to the modelX . It is modelled as the sum of the contribu-
tions eD(pi) over all the pi ∈ P . Each point pi is associated
with its nearest shape S j ∈X , and brings the following con-
tribution:

eD(pi) =

{

(

d(pi,S j)
ε

)2
−1 if d(pi,S j)≤ 3ε

0 otherwise
(2)

where d is the euclidean distance function and the parameter
ε stands for the noise in the point cloud. The points close to
their nearest shape decrease the energy while those that are
a bit to far increase it. The points that are obviously to far
from all the shapes (beyond 3ε) do not contribute, since we
do not want to penalize the partial reconstruction of the point
cloud. However, we consider that any shape in X must have
at least one neighbor (closer than 3ε).

The geometrical energy EG quantifies the similarity be-
tween X and the a priori model M0. It is modeled as the
sum of the contributions eG(Si,M0) over all the shapes
Si ∈ X . Each contribution is computed by associating the
shape Si ∈ X with its most similar match S j ∈M0, i.e. the
shape S j minimizing the similarity measurement eG(Si,S

j).

The topological energy ET quantifies how well X fulfills
the a priori expectation on the way shapes should be assem-
bled. It is modeled as the sum of the contributions eT (Si,S j)

for each pair of connected shapes (Si,S j) ∈ X 2 (shapes are
connected if they are in contact).

The expression of the geometrical and topological con-
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tributions depends on the shapes that are involved. We con-
sider cylinders and planes because they stand for a signifi-
cant amount of components in industrial scenes. Moreover,
the reconstructed cylinders can be used subsequently to com-
plete the reconstruction of pipe lines by using tori as elbows.

Energies for cylinders The similarity measurement
eG(Ci,C

j) between two cylinders Ci ∈X and C j ∈M0 com-
bines the angle α between the shapes axes, the distance δ

from Ci’s center to C j and the difference ρ between their
radii, given user specified tolerances σα, σδ and σρ to each
of these three changes:

eG(Ci,C j) =
(

α
σα

)2
+
(

δ
σδ

)2
+
(

ρ
σρ

)2
(3)

The contribution eT (Ci,C j) of two connected cylinders
Ci and C j combines three distinct constraints: cylinders
axes should intersect, the angle between cylinders axes
should be either flat or right and connected cylinders hav-
ing the same radius should be favored. Each of these
three constraints is modeled by an inverted Gaussian mix-

ture g(x) = ∑i b−aexp
(

c(x−di)
2
)

(with a > 0 and c <

0). These functions respectively depend on the cylinders
radii difference ζ, the distance χ and the angle η between
their axes. Their minima stand for the ideal cases χ = 0,
η ∈ {0◦,90◦} and ζ = 0. The whole contribution is the
sum of these three Gaussian mixtures, whose parameters are
computed so that each function becomes positive (increases
the energy) as soon as the error gets greater than user speci-
fied tolerances. However, the Gaussian mixture g(ζ) is neg-
ative whatever ζ, because we favor radii equality but do not
penalize their difference.

Extending energies to planes The similarity measure-
ment eG(Pi,P

j) between two planes Pi ∈ X and P j ∈M0
can be computed using equation 3 by considering that α is
the angle between the normal vectors of these two planes,
and δ is the distance from Pi’s center to P j (the leftmost
term of equation 3 vanishes for the planes).

Concerning eT , we expect connected planes to be orthog-
onal, and that any plane which is connected to a cylinder
is orthogonal to the cylinder axis. These two constraints are
modeled by two Gaussian mixtures that respectively depend
on the angle ηP between the normals vectors of two planes
and the angle ηC between the normal vector of a plane and a
cylinder axis, with minima ηP = 0◦ and ηC = 90◦.

3. Strategy for the optimization

We propose to adapt the stochastic birth and death optimiza-
tion approach [DMZ08] to the point cloud reconstruction,
by merging the birth (random shape generation) and death
(probabilistic shape removal) phases into one single greedy
transition process. This greedy optimization does not rely
on a simulated annealing scheme, contrary to the complete
stochastic approach [DMZ08].

A single random candidate C is generated at each step
(c.f . section 4). Once a candidate has been built, we try to
find the elements in X that are no longer relevant, i.e. the
set of shapes K∗ that lead to the best configuration (the low-
est energy) when removed from X . The new configuration
X ′ = X \K∗∪{C} is accepted if and only if it decreases
the energy (E(X ′)< E(X )).

The computation of the actual set K∗ is a combinato-
rial optimization problem whose resolution may take a pro-
hibitive time. Instead, we use heuristics to compute a set K′

approximating K∗. First, we reduce the solution space by
considering only the set L of shapes in X that are connected
to the new candidate C. Indeed, the elements that are not
connected to C are unlikely to get involved in the decrease
of the energy. Then we use a greedy approach in order to
efficiently estimate the subset of L reaching the lowest en-
ergy. Starting with K0 = ∅, we incrementally build the set
Ki =Ki−1∪{S∗

i } at each step i, where S∗
i ∈ L\Ki−1 is

the shape whose removal brings the best contribution (the
greatest decrease of the energy). The set K′ approximating
K∗ is the set Ki whose removal leads to the optimal config-
uration (the lowest energy). and can be computed in a time
which quadratically depends on the size of L.

4. Effective Cylinders Generation

Overview To make the optimization tractable, we have to
propose a random method which mostly generates shapes
that are relevant with respect to the energy E. We assume we
are given a cylinder Ci ∈M0 (e.g. randomly picked inM0),
and we would like to build a random C which looks like Ci

and fits well to the point cloud. For that purpose, we propose
an approach inspired by the RANSAC method [SWK07], in
which the candidate shapes are build from points randomly
chosen in the point cloud. But the points selection process is
biased in order to favor the generation of relevant shapes.

Localisation First, we have to find a part of P that is
likely to represent a cylinder matching Ci. To do so, we de-
fine a probability PS over P favoring the points that are
close to Ci and whose normal is compliant with Ci. We use
a Gaussian function of the distance dCi from the point to Ci

and the angle aCi between the normal and Ci’s axis, whose
maximum lies at (dCi = 0, aCi = 90◦), using deviances σδ

and σα introduced in equation 3. A first point p0 is picked by
simulating a sampling with probability PS over P [CG95].

Candidate generation Then we would like to find a set
of points Qp0 sampling the same surface as p0. The points
of P that are close to p0 have great chances to represent the
same surface as p0 Therefore we pick the remaining point
in a spherical neighborhood Np0 of p0, whose size depends
on Ci’s radius and whose center is shifted along the normal
vector associated with p0 in order to encompass the surface
sampled by P . We then compute a cylinder C′′ grossly ap-
proximating the points in Np0 . The axis of C

′′ is estimated
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Figure 2: Probability PS for a point to be picked with respect

to some a priori cylinder Ci (violet). We can see that PS is

high on surfaces matching Ci.

using a plane fitting in the Gaussian sphere of Np0 , while
its position and radius are computed using a circle detection
after the points have been projected in the plane orthogonal
to the detected axis [RV05]. The points in Np0 whose dis-
tance to C′′ is greater than ε are then discarded, and we build
the candidate C using a least square fitting on the remaining
points Qp0 (Levenberg-Marquardt algorithm initialized with
C′′).

Figure 3: Selection of the points Qp0
(blue) given a first

point p0 (red) for the cylinder generation.

5. Generate planes

This approach can be extended to the planes generation as-
suming we are given a prior plane P i ∈ M0 instead of a
cylinder Ci. To do so, we propose a probability for a point to
match P i which increases as the point gets closer to P i, and
as its associated normals aligns with P i’s normal. Moreover,
instead of using a spherical neighborhood, we use cylindri-
cal neighborhood whose radius depends on the area of P i

and whose height depends on the noise estimate ε.

6. Finalize the reconstruction

In the proposed approach, we do not handle shapes such as
tori and cones because these shapes usually stand for con-
nection pieces in pipe lines. Instead, the computed model is
completed afterwards: for each pair of connected cylinders, a
candidate torus linking the cylinders is built and fitted to the

points lying at the cylinders junction. This candidate elbow
is accepted if it decreases the data fitting energy ED.

7. Results and conclusion

The results presented in figure 1 show that the proposed
method can handle the recognition of a priori models, de-
spite changes in orientation, position and geometry of the
shapes to be detected. This algorithm can handle partial
a priori models, and only recognizes the parts that actually
match M0 up to the specified tolerances. The reconstructed
models fulfill the expectations on the shapes connections,
and fit well to the point cloud. The proposed method is meant
to favor the reliability of the results over the speed of con-
vergence. Each of the tested point clouds has several mil-
lions of points (from 1 to 20 millions), and the algorithm
takes hours to provide such results (from 20 minutes to 20
hours in the experiments that we have made). However, the
user can decide when to stop the computation: a great part
of the computation time in the whole process is spent on
slight improvements of the model, and some good results
can be obtained at the early stage of the reconstruction pro-
cess. However, the shape generation effectiveness could be
significantly improved by considering high order geometry
knowledge (e.g. curvatures and normals uncertainties) in the
points selection process, and thus increase the probability to
generate relevant shapes.
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