
Graphics Algorithms on

Field Programmable Function Arrays

Jaap Smit and Marco Bosma

University of Twente

Department of Electrical Engineering EF9250

POBox 217, 7500AE Enschede, The Netherlands

e-mail: jaap@nt.eLutwente.nl.

bosma@nLel.utwente.nl

Abstract
The amount of energy consumed in basic CMOS
building blocks, like external RAM, external
bus-structures, multipliers, local (cache) memory and
on chip bus-structures, is analyzed thoroughly to find
ways for substantial improvement of the power
consumption of high speed graphics algorithms: A
Field Programmable Function Array capable of
low-power execution of a wide range of algorithms is
introduced. Aspects of the compilation of the volume
rendering algorithm to this architecture are discussed.

1. Background

The amount oftime needed for the rendering of a dense
2563 volumetric dataset, using a O.5mm CMOS RISC
processor lies typically in the order of 2 minutes. The
power dissipated by such a processor is mostly at least
5 Watt. I.e. an amount of 600 Joule is needed, when
memory access, dissipation in the cache, and many
other similar issues are neglected, for the rendering of
one single image. This RISC processor architecture
consumes hence 15 KWatt for rendering speeds of 25
frames/sec. It is the objective of most. software
approaches to reduce this amount using conditional
code in order to obtain a speed-up when a sparse dataset
should be rendered. The availability of a low-power
graphics processor offers opportunities which are
frequently overseen. It can be shown that an amount of
energy of at least 2.26 J is needed in an Ij.tm CMOS
process to render a single image on a volume renderer
with an 8-bit accuracy. This figure includes all
fundamental aspects of the algorithm, like for instance
access to an external memory, on-chip caching etc. This
indicates that the whole rendering process can be
perfonned about 300 times Jaster in a I j.tm CMOS
process, when compared to a modern RISC-processor
realized in a O.5j.tm CMOS process, for a giNen power

budget. This speed-difference will be even greater when
memory-access and cache access would be taken into
consideration for the RISe processor and when both
realizations would use the same technology. Lack of
programmability and high price due to insufficient
market coverage are the major problems with dedicated
hardware" solutions. This is why.a true low power
alternative j'S introduced: the Field Programmable"
Function Array.

This FPFA can be used to solve the problem of dense
Volume Rendering [1], [2], [3], in real-time at extremely
Jow power levels. References [4] and (5] describe
dedicated systems and chips which are freely
programmable for a wide range of graphics
applications. A description of low power design from
the point of view of automatic synthesis is given in [6].
The material presented is heavily dependent on the
underlying energy consumption figures of the library.
Moreover, no attempt is made to find a universal lower
bound. Up to date information about low-power VLSI
design is given in (7]. It introduces the basic concepts
from technological concepts to circuit and system level
implications. Reference [8] shows that synchronous
\lLSI designs, like for instance adders, consume less
energy than their asynchronous variants. An up to date
comparison on the algorithmic level including higher
order, cubic spline-based, interpolation methods is
given in [9].

2. Introduction to low-power concepts
It is of fundamental importance to understand that there
exists a lower bound for the amount of energy needed
to execute a given algorithm in a given, say 1 j.tm 5V
CMOS process. This lower bound is the overall energy
complexity: 0tot- It equals the minimal value of the sum
of the energy consumed due to arithmetic 0 an wiring
0 wiring and data-storage 0RAM. Any technology can be
sufficiently calibrated as an energy reference for most

103

mailto:bosma@nLel.utwente.nl
mailto:jaap@nt.eLutwente.nl
http://www.eg.org
http://diglib.eg.org

.. _____ .. IX E"",I ~ -

ariThmetic applications through the calculation of the
average energy needed to perform the addition of the
three bits, a, b, and cin of a full-adder. One technique for
the description of larger arithmetic blocks, introduced
in (11] uses a ripple factor Q to represent any extra
energy due to ripples within an arithmetic element, like
an adderor a multiplier. The ripple factor depends on the
architecture of the arithmetic element. It takes values
between 1.5 .. 1.8 for adders ranging from 8 to 32 bits,
and 2 .. 2.5 for multipliers ranging from 8x8 to 32x32
bits. The formulas describing the minimal amount of
energy consumed by an adder and a multiplier are:

g_m_adder = m Qripple 0fa
g_mx.n_mul = m n Qmul (0fa + 0and)

With 0fa =2.41 pJ and 0 and =0.35 pJ for the 111m, 5V
CMOS process introduced earlier.

The energy needed for on-chip communication: 0wiring
is derived from the energy needed to switch a (metal-I)
wire of 1 m length:

§/m = 1.44 nJ, in the same process.

The energy needed for on-chip data-storage depends on
the length ffiRAM of the wires within the memory
system, the probability P t of a data transfer, the width CU~
ofthe databus, the relative efficiency 'I1ov corresponding

-:-'8 to the overhead associated to the presence of.A address
bits, and CW databits, llov =CU~ I (917' + .A + 2) and the
relative efficiency 'I1acc describing the energy­
overhead involved in th~ data transport within the
random access memory system. This results in an
amount ofenergy needed for one read or write operation
which equals:

gRAM= ffiRAM 917' Pt 0/m I ('I1ov 'I1acd

3. Energy Complexity Aspects

Volume rendering can be seen as a three step process: 1)
the calculation of gradients and opacity from
grey-values at the sample position, 2) the calculation of
the color at the sample position from the gradient and
the light position and 3) the composition of the final
color from color and opacity values along a ray. We refer
for reasons of brevity to [12] for a high quality algorithm
for the calculation of interpolated grey-values and
gradients and to [13] for a table-based algorithm for the
calculation of the color from the gradient and the light
position.

The most direct way to tackle the issue of energ
complexity of an algorithm is to estimate the amount c
energy for the most expensive operations whil
neglecting those parts which contribute less than sa
20% to the total amount of energy needed.

3.1 Energy Consumption of external RAMs

Let us take this approach and first concentrate on th
aspect of access to the dataset. The contents of on
selected row is written into a second level RAM on th
border of the chip as shown in Figure 1. This RAM i
read sequentially from the chips core to its pins at a rat
of I byte each 2ns over its IO-pins as indicated in th
figure.

s
8)RAM = 512 q,fcell

Fig. 1: Traditional VRAM architecture

Figure 2 shows the amount of energy needed for th
transfer of 4 to 512 bytes of data from a traditiOn<
R~, organized as 8 memories on one chip each 102
bits deep and 512 bits wide.

Su6

0[..1] •

S60n r;:::nara I".. *...... r

S6n L..- -I -r=,..

5n6 r ___ --¢ 1 1 ~. I <­

560 [......--'----"-------'----'----'---'- ­
P 4 8 16 32 64 128 256 512

Fig. 2: Energy cOll5umpliofl, RAM-core & fO

104

There are two contributions: gdata describes the amount
of energy needed to transfer the data from the
RAM-core to the la-interface, whereas geap and gzo

represent the amount of energy needed to transfer the
data over capacitive la-pins, using either a capacitive
load or a loaded transmission-line interface with a
500m V voltage swing. Two graphs are given for these
cases, one for VDD = 3V and one for VDD = 5V. Note
that §data depends hardly on the length of the burst, i.e.
almost all energy is taken by the row selection (RAS),
whereas the column select (CAS) takes negligible
energy. The most effective interface is apparently the
transmission-line interface with a 3V supply voltage.
The access efficiency used in the formula's is 118. This
is a value which can be built with some ease for most
RAMs.

3.2 Energy Consumption of Multipliers

The amount ofenergy for a single 8x8 multiplication is:

~_mul (8, 8) 	=8 x 8 Qmul (§fa + ffiand)

= 240pJ

in a 111m 5V process. I.e. one row-access to the external
RAM takes as much energy as 2290 8x8 multiplications
in a lilm 5V CMOS process. This amount will grow
rapidly when a better process, like for instance 0.5 Ilm
3V, is selected. One may however argue that this value
is indicative for many future processes as well as the
process used for the external RAM chips will evolve in
basically the same way as the process to be used for the
graphics chip.

3.3 Energy Consumption of on-chip RAMs

The process of front-to back composition demands that
gradients and grey-values are known at the sample
locations along a ray. This implies random access to at
least 8 surrounding voxels for the grey-value
interpolation and another 12 voxels for the calculation
of accurate gradients with the intermediate gradient
algorithm introduced in [12]. I.e. 20 RAM locations
should be loaded and 28 multiplications are needed to
calculate the grey-value and the gradient at the voxel
location. It is extremely important that the accesses to
the RAM are not made to an external RAM, as one
sbouJd at least make over 2000 multiplications before
the energy involved in the access to one single random
location in the external RAM comes in the same order
ofmagnitude as the multiplications. Hence we insert an

on-chip cache memory between the graphics chip and
the arithmetic part of the renderer to improve the overall
efficiency.

How many words may this cache memory have to be
energy efficient with respect to the arithmetic
operations?

70r--'--'---.--'---r--~--,-~
%
60~~---r--~--r-~---+~~~

10r--+---r--+---r-~---+---r~

L . RAM-size

00 16 32· 48 64· 80 96 112 128

The amount of energy dissipated by the access to an 8
x 64 bit RAM with l'Jacc =1/8 is:

~_ram (8,64) = 108pJ

This is about 45% of the amount of energy needed for
an 8x8 multiplication. Figure 3 shows the ratio of
~_ram/ffi _mul for ram-sizes ranging from 8 bytes to 128
bytes. I.e. the largest acceptable cache size to be used in
a low-power graphics engine in conjunction with one
multiplier, is at most 64. A tri-linear interpolation, to be
use~. for the calculation of the grey-value or a
component of the gradient, uses 7 multiplications and
8 random accesses to a memory. An efficient
configuration for such a tri-linear interpolator uses 8
interleaved RAMs with even-odd addressing which can
be read simultaneously to perform 4 linear
interpolations in x, followed by 2 linear interpolations
in y, followed by I linear interpolation in z. Such a
tri-linear interpolator uses 34% of the energy for
RAM-access and the remaining 66% for arithmetic.

3.4 Energy Consumption due to wiring

The wires connected to an arithmetic block have, by
definition, a length %pd when the amount of energy
dissipated in the wiring equals the amount of energy

105

dissipated in the arithmetic block. Hence, for a
multiplier, we have:

%Pd = g_mull (32 g/m) =5.21 mm

There will hence be 20~ overhead due to the wiring of
the hardware which executes the algorithm, when the
multipliers involved are connected to cells in their
environment with wires over which their operands are
supplied which exceed 1.04 mm in length.

4 The Field Programmable Function Array

The idea behind the Field Programmable Function
Array, which is currently designed at the University of
Twente, is to provide all the features for low-power
operation of an arbitrary algorithm in such a way that
minimal overhead is included. Hence, there will just be
a minimal controller. Instead, all instructions from an
inner-loop of the program are compiled into a graph,
which is' fm;med through the static application of
control-bits to many identical registered arithmetic and
logic units (RALUs) with two adders, boolean
functions, and a multiplication, as well as some
dedicated functions. The 64-words deep register banks,
are either controlled by an address generator or a RALU.
A total amouor of 100 .,. 500 RALUs will fit on a single
chip. They will be interconnected over short distances
with multiplexers connected to all four sides of a basic
RALU block. Moreover, long distance on-chip busses
are used to transfer interleaved data at a high (2ns)
transfer rate, using low-voltage (e.g. 0.5 V) differential
bus connections with the lO/interface, which includes
local RAM-storage, or with a direct connection to a
RAMBUS RAM. Figure 4 shows a possible floorplan
of the FPFA.

Fig. 4: Possible FPFA Floorplan

5 Programming the FPFA
There are so many RALUs on a single chip that it is
much more natural to interconnect them in such a way
that a single expression, or even a sequence 01
expressions, maps onto a small graph.

5.1 A tri-linear interpolator
Figure 5 shows how the technique of compilation inte
graphs works out for a tri-linear interpolator used tc
resample grey-values or calculate intermediate
difference gradients in a volume rendering or texture
mapping application.

A B~In~~
-+L~ !-,l:J h

I
X ~r/ L

y A\ ;;
B7F -......Y III­ I

>L~b---.
~~

5 Ii !H~i (a)
 (b)

Fig. 5: Tri-linear interpolator realization

In Figure Sa, 7 ALUs and 8 register banks are used tc
form one tri-linear interpolator. An additional
register-bank M8 may be used to collect the results or,
output. Figure 5b shows the functionality programmec
into each of the ID linear interpolators L The tri-lineal
interpolator is controlled from a 3D address with integel
part (X,Y,Z) which is used to address the memo!)
banks, whereas the fractional part (x,y,z) is fed into the
ALUs. The interleaved memories MO, .. , M7, art
located along the fast bus which can deliver inputs at 8,
the speed of these memories.

Important design issues for an FPFA are the location 0

the interconnect, the optimal amount of interconnect
the inclusion of rudimentary hardware to ease specia
functions, like bit-reversal primitives used to suppor
Fast Fourier Transforms, used in Fourier Volum
Rendering, simple functions to enable normalizatiol
operations etc.

The datapath will be pipelined at the level 0

RAM-access and ALU-operations. This has a
consequence that the tri-linear interpolator has a latenc
of4 clock-cycles for a write operation to M8 and 5 cloc

106

cycles for completion of the algorithm. A preferred
method to take this into account is to initialize the
counter which addresses M8 with the negative value of
the latency, or to propagate a busy bit, to be used as dn
on the address counter ofM8. The techniques proposed
make it possible to compile expressions in a
straightforward way into a graph, provided that there are
sufficient local busses within, c.q. between the ALUs to
provide the functionality.

5.2 Compilation of optimized code

In volume rendering it is not necessary to compute
gradients and colors when the opacity at the sample
location is zero, or when the accumulated opacity
reaches one. This issue is solved on a traditional
computer through the use of if~statements. On an FPFA
it is much more natural to generate all addresses along
the ray and to conditionally collect all locations at which
these operations should be executed in an output RAM.
Once this RAM is full, one may switch the
configuration of the graph and execute the remaining
algorithm on the desired address combinations only.

5.3 Random access to external RAM

One very effective technique in volume rendering uses
a collection of pre-specified 3D regions, stored together
with the local minimum and maximum of the
grey-value within the region. This technique can be very
well used in conjunction with an FPFA as well. The
main processor for which the FPFA acts as a service
processor can simply select those regions for which the
min- and max- grey-value give rise to a visible object
and issue a load command to the FPFAs IO-interface.
The FPFA will start rendering this region, by loading
the whole region in one burst, when it has finished
executing all previous tasks. The RALUs will be idle
during the burst data transfer, which takes, depending-
on the application, just a small fraction of the busy-time
of the RALUs.

5.4 Execution of arbitrary functions

Can the FPFA handle arbitrary functions like sin (x) or
1 / sqrt (x2 + y2 + z2) ? The answer is definitely yes.

Functions like sin (x) can be calculated at an arbitrary
x location using a table driven approach, in which 128
values of the function are stored in two memory banks.
The desired function value can be extracted at an
arbitrary location even in-between the samples using a
linear interpolator. The calculation of I / sqrt (x) is as
simple, provided that x is first normalized to [0.5, 1) to

avoid problems with the singularity at x :: O. This
normalization step involves the computation of a proper
power of 2 which scales x to the desired interval. The
hardware which can perform this operation is rather
simple. This is why this normalizationldenormalization
circuit which extracts an appropriate number from one
of the ALUs operands, will be included in all ALUs.
The actual scaling operation may be done either on a
(barrel-) shifter or on a multiplier. It is likely that most
applications will show a substantially higher demand
for multipliers than for shifters, hence it will be a
preferred technique to map the shift operation on any of
the multipliers available.

This discussion shows how important the selection of
additional arithmetic operations is for the construction
of a datapath which is optimal for a wide range of
applications.

6 Complexity issues
It takes from 8 to 12 RALUs to build one tri-linear
illterpolator including an address generator and an
output buffer. A total of 4 tri-linear interpolators is

needed to resample a 3D volume and to compute
volume-gradients using the intermediate difference
method described in [12]. It is on an FPFA preferred to
compute all intermediate differences in x, y, and z on a
local subvolume and to address these subvolumes with
an offset of0.5 voxel distance in the respective direction
of differentiation. A tri-linear interpolator can then be
used to compute the gradient with good frequency
response fidelity at the sample location. The use of 4
tri-linear interpolators connected to 4 banks of 8
memories makes it possible to calculate the grey-value
and the gradient at one sample location each
clock-cycle. The on-chip reflectance map technique
[] 3] can be mapped onto the FPFA as well. Its mapping

...... i's'however considered to be sub-optimal as a total of 24
memory blocks are needed for the 1.5 KByte reflectance
map. Moreover, just one bi-linear interpolator, which
needs 3 multipliers, is needed in that approach. For
reasons of routability one may use 6 bi-linear
interpolators, each connected to four memories. The
calculation of the light intensity can however be done in
a much more appropriate way using two 1 D tables,
which model the intensity ofthe highlight, which can be
addressed simultaneously with the proper angle.

A volume rendering application which applies a
step-function ranging from a to] as alpha-threshold
will visualize an iso-surface. This application can
always use early ray termination and it needs to

107

calculate just one gradient on each ray. It can be
programmed in a totally different way on the FPFA, to
take advantage of this fact.

It is a considerable advantage of the concept of the
FPFA that one can change its functionality on the fly.
Compare this with a dedicated engine. For instance a
surface renderer which can map textures needs the
presence of texture mapping hardware, even when this
feature is not used. In contrast, the texture mapping
functionality can be dynamically loaded on an FPFA
This gives the user the unique opportunity to use sheer
arithmetic power as needed, at extremely low levels of
energy dissipation and in the most optimal form.

7 Conclusions

The concept of the FPFA extends the ideas of the Field
Programmable Gate Array from logic functions to
arithmetic functions. It has been shown that there is a
high risk that on-chip memories and long interconnect
are dominating the performance of a dedicated graphics
chip. The energy models used in the introduction were
derived independent from any specific library. As a
consequence, the conclusions presented are
independent of specific design system constraints. A
study of a wide range of libraries and on-chip RAMs has
given raise to a lot of disappointment in the past, as the
on-chip memories, which are needed for most graphics
applications, showed to be worse than assumed. This
has as implication that not only the architecture should
be adapted to low-power, the library needs adaptation
as well. As long as this issue has not been settled by the
foundries, we will have to work either with sub-optimal
FPFAs or with partially full-custom designs. The high
regularity of FPFAs and their high performance for
graphics applications makes the extra effort however
worth-wile.

8 References

[J] 	 H.Pfister, A Kaufman and F.Wessels, "Towards
a Scalable Architecture for Real-Time Volume
Rendering", Proceedings of the 10th
Eurographics Workshop on Graphics Hardware,
volume EG95HW, pp 123-130. EuroGraphics
Workshop Proceedings Series, 1995.

[2] 	 G.Knittel, "A Scalable Architecture for Volume
Rendering", Proceedings ofthe 9th Eurographics
Workshop on Graphics Hardware, volume
EG94HW, pp 58-69. EuroGraphics Workshop
Proceedings Series, 1994.

[3] 	 J. Lichterman, "Design of a Fast Voxel Processor
for Parallel Volume Visualization", Proceedings
of the 10th Eurographics Workshop on Graphics
Hardware, volume EG95HW, pp 83-92.
EuroGraphics Workshop Proceedings Series,
1995.

[4] 	 S.E.Molnar, J. Eyles, and J.Poulton, "Pixelflow:
High-Speed Rendering Using Image
Composition", Computer Graphics, 26(2) pp.
231·240, July 1992.

[5] 	 TMS320C80 Multimedia Video Processor
(MVP), Texas Instruments, Digital Signal
Processing Products series, 1994.

[6] 	 AP. Chandrakasan and R.W. Brodersen, Low
Power Digital CMOS design, Kluwer Academic
Publishers, Norwell MA, 02061 USA and
Dordrecht the Netherlands.

[7] 	 A. Bellaouar and M. 1. Elmasr, Low Power Digital
VLSI Design, Kluwer Academic Publishers,

-Norwell MA, 02061 	 USA and Dordrecht the
Netherlands.

[8] 	 D.1. Kinniment, J.D. Garside, and B. Gao, "A
Comparison of Power Consumption in Some
CMOS Adder Circuits", Proceedings of
PATMOS, Eds C. Piguet, W. Nebel, pp. 106·118.
ISBN 3-8142-0526-X

[9] 	 M. Bentum, Interactive Visualization of Volume
Data, Phd. Thesis, University of Twente. ISBN
90-9008788-5.

[10] 	 M. Bosma and J. Terwisscha van Scheitinga,
Efficient Super Resolution Volume Rendering,
Masters thesis, University of Twente, August
1995..

[11] 	 1. Smit and J .H. Huisken, "On the energy
complexity of the FFT', Proceedings of
PATMOS, Eds C. Piguet, W. Nebel, pp.] 19·132.
ISBN 3-8142-0526-X

{I 2] 	 M. Bosma, lSmit, and J. Terwisscha van
Scheltinga, "Superresolution Volume Rendering
Hardware", Proceedings of the 10th
Eurographics Workshop on Graphics Hardware,
volume EG95HW, pp 117-122. EuroGraphics
Workshop Proceedings Series, 1995.

[13] 	 J. Terwisscha van Scheltinga, lSmit, and M.
Bosma, "Design of an on-chip reflectance map",
Proceedings of the 10th Eurographics Workshop
on Graphics Hardware, volume EG95HW, pp.
51-55. EuroGraphics Workshop Proceeding5
Series, 1995.

108

