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Abstract 
The amount of energy consumed in basic CMOS 
building blocks, like external RAM, external 
bus-structures, multipliers, local (cache) memory and 
on chip bus-structures, is analyzed thoroughly to find 
ways for substantial improvement of the power 
consumption of high speed graphics algorithms: A 
Field Programmable Function Array capable of 
low-power execution of a wide range of algorithms is 
introduced. Aspects of the compilation of the volume 
rendering algorithm to this architecture are discussed. 

1. Background 

The amount oftime needed for the rendering of a dense 
2563 volumetric dataset, using a O.5mm CMOS RISC 
processor lies typically in the order of 2 minutes. The 
power dissipated by such a processor is mostly at least 
5 Watt. I.e. an amount of 600 Joule is needed, when 
memory access, dissipation in the cache, and many 
other similar issues are neglected, for the rendering of 
one single image. This RISC processor architecture 
consumes hence 15 KWatt for rendering speeds of 25 
frames/sec. It is the objective of most. software 
approaches to reduce this amount using conditional 
code in order to obtain a speed-up when a sparse dataset 
should be rendered. The availability of a low-power 
graphics processor offers opportunities which are 
frequently overseen. It can be shown that an amount of 
energy of at least 2.26 J is needed in an Ij.tm CMOS 
process to render a single image on a volume renderer 
with an 8-bit accuracy. This figure includes all 
fundamental aspects of the algorithm, like for instance 
access to an external memory, on-chip caching etc. This 
indicates that the whole rendering process can be 
perfonned about 300 times Jaster in a I j.tm CMOS 
process, when compared to a modern RISC-processor 
realized in a O.5j.tm CMOS process, for a giNen power 

budget. This speed-difference will be even greater when 
memory-access and cache access would be taken into 
consideration for the RISe processor and when both 
realizations would use the same technology. Lack of 
programmability and high price due to insufficient 
market coverage are the major problems with dedicated 
hardware" solutions. This is why.a true low power 
alternative j'S introduced: the Field Programmable" 
Function Array. 

This FPFA can be used to solve the problem of dense 
Volume Rendering [1], [2], [3], in real-time at extremely 
Jow power levels. References [4] and (5] describe 
dedicated systems and chips which are freely 
programmable for a wide range of graphics 
applications. A description of low power design from 
the point of view of automatic synthesis is given in [6]. 
The material presented is heavily dependent on the 
underlying energy consumption figures of the library. 
Moreover, no attempt is made to find a universal lower 
bound. Up to date information about low-power VLSI 
design is given in (7]. It introduces the basic concepts 
from technological concepts to circuit and system level 
implications. Reference [8] shows that synchronous 
\lLSI designs, like for instance adders, consume less 
energy than their asynchronous variants. An up to date 
comparison on the algorithmic level including higher 
order, cubic spline-based, interpolation methods is 
given in [9]. 

2. Introduction to low-power concepts 
It is of fundamental importance to understand that there 
exists a lower bound for the amount of energy needed 
to execute a given algorithm in a given, say 1 j.tm 5V 
CMOS process. This lower bound is the overall energy 
complexity: 0tot- It equals the minimal value of the sum 
of the energy consumed due to arithmetic 0 an wiring 
0 wiring and data-storage 0RAM. Any technology can be 
sufficiently calibrated as an energy reference for most 
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ariThmetic applications through the calculation of the 
average energy needed to perform the addition of the 
three bits, a, b, and cin of a full-adder. One technique for 
the description of larger arithmetic blocks, introduced 
in (11] uses a ripple factor Q to represent any extra 
energy due to ripples within an arithmetic element, like 
an adderor a multiplier. The ripple factor depends on the 
architecture of the arithmetic element. It takes values 
between 1.5 .. 1.8 for adders ranging from 8 to 32 bits, 
and 2 .. 2.5 for multipliers ranging from 8x8 to 32x32 
bits. The formulas describing the minimal amount of 
energy consumed by an adder and a multiplier are: 

g_m_adder = m Qripple 0fa 
g_mx.n_mul = m n Qmul (0fa + 0and) 

With 0fa =2.41 pJ and 0 and =0.35 pJ for the 111m, 5V 
CMOS process introduced earlier. 

The energy needed for on-chip communication: 0wiring 
is derived from the energy needed to switch a (metal-I) 
wire of 1 m length: 

§/m = 1.44 nJ, in the same process. 

The energy needed for on-chip data-storage depends on 
the length ffiRAM of the wires within the memory 
system, the probability P t of a data transfer, the width CU~ 
ofthe databus, the relative efficiency 'I1ov corresponding 

-:-'8 to the overhead associated to the presence of.A address 
bits, and CW databits, llov =CU~ I (917' + .A + 2) and the 
relative efficiency 'I1acc describing the energy­
overhead involved in th~ data transport within the 
random access memory system. This results in an 
amount ofenergy needed for one read or write operation 
which equals: 

gRAM= ffiRAM 917' Pt 0/m I ('I1ov 'I1acd 

3. Energy Complexity Aspects 

Volume rendering can be seen as a three step process: 1) 
the calculation of gradients and opacity from 
grey-values at the sample position, 2) the calculation of 
the color at the sample position from the gradient and 
the light position and 3) the composition of the final 
color from color and opacity values along a ray. We refer 
for reasons of brevity to [12] for a high quality algorithm 
for the calculation of interpolated grey-values and 
gradients and to [13] for a table-based algorithm for the 
calculation of the color from the gradient and the light 
position. 

The most direct way to tackle the issue of energ 
complexity of an algorithm is to estimate the amount c 
energy for the most expensive operations whil 
neglecting those parts which contribute less than sa 
20% to the total amount of energy needed. 

3.1 Energy Consumption of external RAMs 

Let us take this approach and first concentrate on th 
aspect of access to the dataset. The contents of on 
selected row is written into a second level RAM on th 
border of the chip as shown in Figure 1. This RAM i 
read sequentially from the chips core to its pins at a rat 
of I byte each 2ns over its IO-pins as indicated in th 
figure. 

s 
8)RAM = 512 q,fcell 

Fig. 1: Traditional VRAM architecture 

Figure 2 shows the amount of energy needed for th 
transfer of 4 to 512 bytes of data from a traditiOn< 
R~, organized as 8 memories on one chip each 102 
bits deep and 512 bits wide. 

Su6 


0[..1] • 


S60n r;:::nara I".. .... *...... r 


S6n L..- -I -r= ... .,.. 

5n6 r ___ --¢ 1 1 ~. I .... <­

560 [......--'----"-------'----'----'---'- ­
P 4 8 16 32 64 128 256 512 

Fig. 2: Energy cOll5umpliofl, RAM-core & fO 

104 




There are two contributions: gdata describes the amount 
of energy needed to transfer the data from the 
RAM-core to the la-interface, whereas geap and gzo 

represent the amount of energy needed to transfer the 
data over capacitive la-pins, using either a capacitive 
load or a loaded transmission-line interface with a 
500m V voltage swing. Two graphs are given for these 
cases, one for VDD = 3V and one for VDD = 5V. Note 
that §data depends hardly on the length of the burst, i.e. 
almost all energy is taken by the row selection (RAS), 
whereas the column select (CAS) takes negligible 
energy. The most effective interface is apparently the 
transmission-line interface with a 3V supply voltage. 
The access efficiency used in the formula's is 118. This 
is a value which can be built with some ease for most 
RAMs. 

3.2 Energy Consumption of Multipliers 

The amount ofenergy for a single 8x8 multiplication is: 

~_mul (8, 8) 	=8 x 8 Qmul (§fa + ffiand) 


= 240pJ 


in a 111m 5V process. I.e. one row-access to the external 
RAM takes as much energy as 2290 8x8 multiplications 
in a lilm 5V CMOS process. This amount will grow 
rapidly when a better process, like for instance 0.5 Ilm 
3V, is selected. One may however argue that this value 
is indicative for many future processes as well as the 
process used for the external RAM chips will evolve in 
basically the same way as the process to be used for the 
graphics chip. 

3.3 Energy Consumption of on-chip RAMs 

The process of front-to back composition demands that 
gradients and grey-values are known at the sample 
locations along a ray. This implies random access to at 
least 8 surrounding voxels for the grey-value 
interpolation and another 12 voxels for the calculation 
of accurate gradients with the intermediate gradient 
algorithm introduced in [12]. I.e. 20 RAM locations 
should be loaded and 28 multiplications are needed to 
calculate the grey-value and the gradient at the voxel 
location. It is extremely important that the accesses to 
the RAM are not made to an external RAM, as one 
sbouJd at least make over 2000 multiplications before 
the energy involved in the access to one single random 
location in the external RAM comes in the same order 
ofmagnitude as the multiplications. Hence we insert an 

on-chip cache memory between the graphics chip and 
the arithmetic part of the renderer to improve the overall 
efficiency. 

How many words may this cache memory have to be 
energy efficient with respect to the arithmetic 
operations? 

70r--'--'---.--'---r--~--,-~ 
% 
60~~---r--~--r-~---+~~~ 

10r--+---r--+---r-~---+---r~

L . RAM-size 

00 16 32· 48 64· 80 96 112 128 

The amount of energy dissipated by the access to an 8 
x 64 bit RAM with l'Jacc =1/8 is: 

~_ram (8,64) = 108pJ 

This is about 45% of the amount of energy needed for 
an 8x8 multiplication. Figure 3 shows the ratio of 
~_ram/ffi _mul for ram-sizes ranging from 8 bytes to 128 
bytes. I.e. the largest acceptable cache size to be used in 
a low-power graphics engine in conjunction with one 
multiplier, is at most 64. A tri-linear interpolation, to be 
use~. for the calculation of the grey-value or a 
component of the gradient, uses 7 multiplications and 
8 random accesses to a memory. An efficient 
configuration for such a tri-linear interpolator uses 8 
interleaved RAMs with even-odd addressing which can 
be read simultaneously to perform 4 linear 
interpolations in x, followed by 2 linear interpolations 
in y, followed by I linear interpolation in z. Such a 
tri-linear interpolator uses 34% of the energy for 
RAM-access and the remaining 66% for arithmetic. 

3.4 Energy Consumption due to wiring 

The wires connected to an arithmetic block have, by 
definition, a length %pd when the amount of energy 
dissipated in the wiring equals the amount of energy 
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dissipated in the arithmetic block. Hence, for a 
multiplier, we have: 

%Pd = g_mull (32 g/m) =5.21 mm 

There will hence be 20~ overhead due to the wiring of 
the hardware which executes the algorithm, when the 
multipliers involved are connected to cells in their 
environment with wires over which their operands are 
supplied which exceed 1.04 mm in length. 

4 The Field Programmable Function Array 

The idea behind the Field Programmable Function 
Array, which is currently designed at the University of 
Twente, is to provide all the features for low-power 
operation of an arbitrary algorithm in such a way that 
minimal overhead is included. Hence, there will just be 
a minimal controller. Instead, all instructions from an 
inner-loop of the program are compiled into a graph, 
which is' fm;med through the static application of 
control-bits to many identical registered arithmetic and 
logic units (RALUs) with two adders, boolean 
functions, and a multiplication, as well as some 
dedicated functions. The 64-words deep register banks, 
are either controlled by an address generator or a RALU. 
A total amouor of 100 .,. 500 RALUs will fit on a single 
chip. They will be interconnected over short distances 
with multiplexers connected to all four sides of a basic 
RALU block. Moreover, long distance on-chip busses 
are used to transfer interleaved data at a high (2ns) 
transfer rate, using low-voltage (e.g. 0.5 V) differential 
bus connections with the lO/interface, which includes 
local RAM-storage, or with a direct connection to a 
RAMBUS RAM. Figure 4 shows a possible floorplan 
of the FPFA. 

Fig. 4: Possible FPFA Floorplan 

5 Programming the FPFA 
There are so many RALUs on a single chip that it is 
much more natural to interconnect them in such a way 
that a single expression, or even a sequence 01 
expressions, maps onto a small graph. 

5.1 A tri-linear interpolator 
Figure 5 shows how the technique of compilation inte 
graphs works out for a tri-linear interpolator used tc 
resample grey-values or calculate intermediate 
difference gradients in a volume rendering or texture 
mapping application. 
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Fig. 5: Tri-linear interpolator realization 

In Figure Sa, 7 ALUs and 8 register banks are used tc 
form one tri-linear interpolator. An additional 
register-bank M8 may be used to collect the results or, 
output. Figure 5b shows the functionality programmec 
into each of the ID linear interpolators L The tri-lineal 
interpolator is controlled from a 3D address with integel 
part (X,Y,Z) which is used to address the memo!) 
banks, whereas the fractional part (x,y,z) is fed into the 
ALUs. The interleaved memories MO, .. , M7, art 
located along the fast bus which can deliver inputs at 8, 
the speed of these memories. 

Important design issues for an FPFA are the location 0 

the interconnect, the optimal amount of interconnect 
the inclusion of rudimentary hardware to ease specia 
functions, like bit-reversal primitives used to suppor 
Fast Fourier Transforms, used in Fourier Volum 
Rendering, simple functions to enable normalizatiol 
operations etc. 

The datapath will be pipelined at the level 0 

RAM-access and ALU-operations. This has a 
consequence that the tri-linear interpolator has a latenc 
of4 clock-cycles for a write operation to M8 and 5 cloc 

106 



cycles for completion of the algorithm. A preferred 
method to take this into account is to initialize the 
counter which addresses M8 with the negative value of 
the latency, or to propagate a busy bit, to be used as dn 
on the address counter ofM8. The techniques proposed 
make it possible to compile expressions in a 
straightforward way into a graph, provided that there are 
sufficient local busses within, c.q. between the ALUs to 
provide the functionality. 

5.2 Compilation of optimized code 

In volume rendering it is not necessary to compute 
gradients and colors when the opacity at the sample 
location is zero, or when the accumulated opacity 
reaches one. This issue is solved on a traditional 
computer through the use of if~statements. On an FPFA 
it is much more natural to generate all addresses along 
the ray and to conditionally collect all locations at which 
these operations should be executed in an output RAM. 
Once this RAM is full, one may switch the 
configuration of the graph and execute the remaining 
algorithm on the desired address combinations only. 

5.3 Random access to external RAM 

One very effective technique in volume rendering uses 
a collection of pre-specified 3D regions, stored together 
with the local minimum and maximum of the 
grey-value within the region. This technique can be very 
well used in conjunction with an FPFA as well. The 
main processor for which the FPFA acts as a service 
processor can simply select those regions for which the 
min- and max- grey-value give rise to a visible object 
and issue a load command to the FPFAs IO-interface. 
The FPFA will start rendering this region, by loading 
the whole region in one burst, when it has finished 
executing all previous tasks. The RALUs will be idle 
during the burst data transfer, which takes, depending-
on the application, just a small fraction of the busy-time 
of the RALUs. 

5.4 Execution of arbitrary functions 

Can the FPFA handle arbitrary functions like sin (x) or 
1 / sqrt (x2 + y2 + z2) ? The answer is definitely yes. 

Functions like sin (x) can be calculated at an arbitrary 
x location using a table driven approach, in which 128 
values of the function are stored in two memory banks. 
The desired function value can be extracted at an 
arbitrary location even in-between the samples using a 
linear interpolator. The calculation of I / sqrt (x) is as 
simple, provided that x is first normalized to [0.5, 1) to 

avoid problems with the singularity at x :: O. This 
normalization step involves the computation of a proper 
power of 2 which scales x to the desired interval. The 
hardware which can perform this operation is rather 
simple. This is why this normalizationldenormalization 
circuit which extracts an appropriate number from one 
of the ALUs operands, will be included in all ALUs. 
The actual scaling operation may be done either on a 
(barrel-) shifter or on a multiplier. It is likely that most 
applications will show a substantially higher demand 
for multipliers than for shifters, hence it will be a 
preferred technique to map the shift operation on any of 
the multipliers available. 

This discussion shows how important the selection of 
additional arithmetic operations is for the construction 
of a datapath which is optimal for a wide range of 
applications. 

6 Complexity issues 
It takes from 8 to 12 RALUs to build one tri-linear 
illterpolator including an address generator and an 
output buffer. A total of 4 tri-linear interpolators is 

needed to resample a 3D volume and to compute 
volume-gradients using the intermediate difference 
method described in [12]. It is on an FPFA preferred to 
compute all intermediate differences in x, y, and z on a 
local subvolume and to address these subvolumes with 
an offset of0.5 voxel distance in the respective direction 
of differentiation. A tri-linear interpolator can then be 
used to compute the gradient with good frequency 
response fidelity at the sample location. The use of 4 
tri-linear interpolators connected to 4 banks of 8 
memories makes it possible to calculate the grey-value 
and the gradient at one sample location each 
clock-cycle. The on-chip reflectance map technique 
[] 3] can be mapped onto the FPFA as well. Its mapping 

...... i's'however considered to be sub-optimal as a total of 24 
memory blocks are needed for the 1.5 KByte reflectance 
map. Moreover, just one bi-linear interpolator, which 
needs 3 multipliers, is needed in that approach. For 
reasons of routability one may use 6 bi-linear 
interpolators, each connected to four memories. The 
calculation of the light intensity can however be done in 
a much more appropriate way using two 1 D tables, 
which model the intensity ofthe highlight, which can be 
addressed simultaneously with the proper angle. 

A volume rendering application which applies a 
step-function ranging from a to ] as alpha-threshold 
will visualize an iso-surface. This application can 
always use early ray termination and it needs to 
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calculate just one gradient on each ray. It can be 
programmed in a totally different way on the FPFA, to 
take advantage of this fact. 

It is a considerable advantage of the concept of the 
FPFA that one can change its functionality on the fly. 
Compare this with a dedicated engine. For instance a 
surface renderer which can map textures needs the 
presence of texture mapping hardware, even when this 
feature is not used. In contrast, the texture mapping 
functionality can be dynamically loaded on an FPFA 
This gives the user the unique opportunity to use sheer 
arithmetic power as needed, at extremely low levels of 
energy dissipation and in the most optimal form. 

7 Conclusions 

The concept of the FPFA extends the ideas of the Field 
Programmable Gate Array from logic functions to 
arithmetic functions. It has been shown that there is a 
high risk that on-chip memories and long interconnect 
are dominating the performance of a dedicated graphics 
chip. The energy models used in the introduction were 
derived independent from any specific library. As a 
consequence, the conclusions presented are 
independent of specific design system constraints. A 
study of a wide range of libraries and on-chip RAMs has 
given raise to a lot of disappointment in the past, as the 
on-chip memories, which are needed for most graphics 
applications, showed to be worse than assumed. This 
has as implication that not only the architecture should 
be adapted to low-power, the library needs adaptation 
as well. As long as this issue has not been settled by the 
foundries, we will have to work either with sub-optimal 
FPFAs or with partially full-custom designs. The high 
regularity of FPFAs and their high performance for 
graphics applications makes the extra effort however 
worth-wile. 
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