Efficient Free Path Sampling in Inhomogeneous Media

László Szirmay-Kalos, Balázs Tóth, Milán Magdics, and Balázs Csébfalvi Budapest University of Technology and Economics, Hungary

Ray marching:

Particle tracing:

- 1. Free path between scattering points Expensive in inhomogenous media!
- 2. Absorption or scattering
- 3. Scattering direction

Problem: many texture fetches when the voxel array has high resolution and the density is low

Woodcock tracking:

Random length with max density σ_{max} Accept with the probability of σ/σ_{max} Problem: many rejected scattering points if the density has high variation

New free path sampling:

- 1. Use a low resolution grid of macrocells
- 2. Assign its maximum density σ^{i}_{\max} to each macrocell
- 3. 3D DDA on the macrocell grid to locate the cell of the scattering point
- 4. Solution of a linear equation in the found macrocell to obtain the scattering point
- 5. Accept with probability $\sigma(s) / \sigma_{\max}^{i}$

Performance:

Average number of texture fetches to find the next scattering point of a ray in 512³ resolution volume:

Method	Texture fetches of the 512 ³ resolution original volume	Texture fetches of the 16 ³ resolution macrocell volume
Original ray marching	100	
New method	1.3	3.2

Much fewer number of texture fetches!

CUDA implementation provides interactive multiple scattering simulation.

Applications:

- Participating media rendering
- Radiotherapy treatment design

2.5 million photons

5 million photons

25 million photons

A photon is traced up to 5 scattering events