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Abstract

During the last decade, a significant attention has been paid, by the computer vision and the computer graphics
communities, to three dimensional (3D) object retrieval. Shape retrieval methods can be divided into three main
steps: the shape descriptors extraction, the shape signatures and their associated similarity measures, and the
machine learning relevance functions. While the first and the last points have vastly been addressed in recent
years, in this paper, we focus on the second point; presenting a new 3D object retrieval method using a new
coding/pooling technique and powerful 3D shape descriptors extracted from 2D views. For a given 3D shape, the
approach extracts a very large and dense set of local descriptors. From these descriptors, we build a new shape
signature by aggregating tensor products of visual descriptors. The similarity between 3D models can then be
efficiently computed with a simple dot product. We further improve the compactness and discrimination power
of the descriptor using local Principal Component Analysis on each cluster of descriptors. Experiments on the
SHREC 2012 and the McGill benchmarks show that our approach outperforms the state-of-the-art techniques,
including other BoF methods, both in compactness of the representation and in the retrieval performance.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [ Information storage and retrieval]: Information
Search and Retrieval—I.5.4 [Pattern recognition]: Applications —

1. Introduction

Databases of 3D models available in the public domain have
created the need for shape analysis and retrieval algorithms
capable of finding similar shapes in the same way a search
engine responds to text and image queries. State-of-the-art
3D model retrieval methods [TV08] often start by extracting
local features and descriptors, then aggregating the features
into compact signatures, and finally compare the signatures
with standard distances. Recently, Bag of Features (BoF)
representations, that have been widely adopted by the com-
puter vision community for image retrieval and scene under-
standing, are gaining popularity in 3D shape analysis and
retrieval [BBGO11, LGS10, TDVC10]. One of the advan-
tages of using BoF representations [JPD∗12] is that one can
benefit from the rich literature of powerful local descriptors,
such as SIFT [Low04], Histogram of Oriented Gradients
(HoG) [DT05], and many others [MS05]. Second, BoF rep-

resentations can be compared with standard distance mea-
sures. Third, although BoF vectors can have large dimen-
sions when used for retrieval in large databases [JPD∗12],
they are often sparse and inverted lists can be used to im-
plement efficient search [JPD∗12, SZ03]. BoF-based ap-
proaches start by building a dictionary of K visual words
from a set of training samples. The visual words are usu-
ally obtained by k-means clustering of the local features ex-
tracted from all the 3D models in the training set. Each 3D
model is then represented with the statistics of the distribu-
tion of the visual words in the 3D model. These vector repre-
sentations can be compared with standard distances, and be
subsequently used by robust classification methods such as
Support Vector Machines. Most of BoF-based 3D retrieval
techniques proposed so far in the literature represent a 3D
model with a vector of frequencies of occurrences of visual
words [LG09, OOFB08, LGS10, TCF10, BBGO11, Lav12].
This corresponds to 0-order statistics of the distribution of
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the visual words. In this paper, we explore the usage of high-
order statistics and show that this enables the computation of
compact descriptors while outperforming 0-order statistics
in terms of retrieval and classification performance.

Our approach starts with the extraction of dense features
from each shape. The advantage of using dense descriptors,
in contrast to few descriptors computed at sparse locations,
is well acknowledged by the computer vision community as
it enables efficient 3D model retrieval and classification. The
gain in performance comes at the expense of significant in-
crease in computation time and memory requirement. In this
paper we study and evaluate four descriptor aggregation pro-
cedures, namely: (1) the standard BoF approach based on 0-
order statistics, (2) the Vectors of Locally Aggregated Ten-
sors (VLAT) method [NPG12b], which sums tensor products
of the local descriptors, (3) Principal Component Analysis
(PCA)-based VLAT descriptors, which reduce the size of
the dictionary while improving further their discrimination
power, and (4) we propose to further increase the compact-
ness of the reduced-size signature by projection in a well
chosen sub-dimensional space. Our evaluation of these ap-
proaches on 3D generic shapes and on 3D non-rigid shapes
show that aggregation with high order statistics significantly
outperforms standard BoF approaches both in terms of re-
trieval performance and in terms of compactness of the rep-
resentation. The remainder of the paper is organized as fol-
lows. In section 2, the related works are presented. In sec-
tion 3, the method is detailed. Then, in Section 4 the exper-
iments are presented. Conclusions and future developments
(Section 5) end the paper.

2. Related work

While Bag of Features approaches are very popular in 2D
image analysis, few works have been introduced for 3D ob-
ject recognition. Most of them are straightforward extension
of the 2D approaches to 3D data. Existing approaches dif-
fer in the type of local features used in the construction of
the visual vocabulary, and in the way these features are ag-
gregated into signatures. Some of the approaches represent
a 3D model by a set of 2D views which are indexed using
bags of 2D SIFT features [OOFB08, LGS10]. Other tech-
niques use features extracted directly on the surface of 3D
shapes. Liu et al. [LZQ06] and Li and Godil [LG09] use
Spin Image descriptors computed on a dense set of fea-
ture points uniformly sampled on the surface of the 3D
model. Toldo et al. [TCF10] segment the shape into regions
and describe each region with several descriptors. A 3D
shape is then modeled as a histogram of sub-parts occur-
rences. Segmentation-based BoF have the advantage of cap-
turing some semantics of the shapes. Tabia et al. [TDCV12]
represent each 3D object as a vector of weighted occur-
rences of features. In all these works, spatial relationships
between features are lost in the construction of the signa-
tures. Lavoue [Lav12] and Bronstein et al. [BBGO11] add

spatial relationships to take into account the spatial infor-
mation between feature points. Most of BoF-based 3D re-
trieval approaches focus on the type of features and little
attention is given to the way these features are aggregated
into signatures. Consequently the BoF vector that results
from the representation is of very high dimension, partic-
ularly when dealing with large-scale databases. Our main
contribution in this paper is a new step for descriptor ag-
gregation into compact signatures, while improving the high
discrimination power of the descriptor. The challenge in us-
ing dictionary-based approaches is to find a good trade-
off between discrimination power, the size of the descrip-
tor, and the scalability to large object databases. First, most
of the methods used in 3D retrieval represent a 3D model
with a histogram of frequency of occurrences of the visual
words in the model. This is a direct adaptation from the
basic BoF approach used by the computer vision and pat-
tern recognition communities for image retrieval and cat-
egorization [SZ03]. To the best of our knowledge, other
variants of BoF approaches have never been applied to the
problem of 3D model retrieval. For example, these methods
have been generalized using coding/pooling schemes, and
achieve good performances in image categorization with the
same feature size, using Locality-constrained Linear Coding
(LLC) [WYY∗10]. Representing a 3D model with a vector
of frequencies of occurrences of the visual word corresponds
to 0-order statistics of the distribution of the visual words. In
this paper, we explore the usage of high order statistics. The
most popular method is the Fisher Vectors (FV) [PSM10].
FV describes how the set of descriptors deviates from an av-
erage distribution of descriptors, modeled by a parametric
generative model, usually a Gaussian Mixture Model. The
FV achieves better results than BoF approaches [CLVZ11],
but at the cost of a larger index and higher search time. Jerge
et al. [JPD∗12] proposed a set of approximation and com-
pression techniques so that FV can be used on large image
datasets. Negrel et al. [NPG12b] build efficient signatures
by linearizing the kernel function on bags. A Kernel func-
tion on bags aims at computing a similarity analog to vote-
based systems, but with respect to Mercer’s condition. Their
huge computational complexity can be highly reduced using
linearization techniques based on tensors, called Vectors of
Locally Aggregated Tensors (VLAT). VLAT performances
are comparable to Fisher Vectors [NPG12b]. The size of the
dictionary produced by VLAT can be significantly reduced
using Compact VLAT [NPG12a].

In this paper, we study for the first time the performance
of these different variants of BoF techniques on 3D model
retrieval tasks. We will show that Vectors of Locally Aggre-
gated Tensors (VLAT) and Principal Component Analysis-
based VLAT outperform significantly the standard BoF tech-
niques in terms of retrieval performance. We propose also
Compact VLAT, which reduces significantly the size of the
shape descriptor, and show that it achieves relatively good
performance which makes it suitable for broad classification
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Figure 1: Method overview: First we compute depth images of the model captured from cameras localized on the unit sphere.
Then, local features (e.g. HoG) are extracted from the images. Finally, we compute the VLAT signature using deviations between
covariance matrices of the codebook and covariance matrices of the descriptors.

of shapes. We evaluate the performance of these descrip-
tors on two different types of databases: the SHREC 2012
Generic 3D Shape Retrieval benchmark [LGA∗12] and the
Mcgill dataset [SZM∗08] for articulated 3-D models.

3. Method overview

Figure 1 gives an overview of the proposed method. First
in a pre-processing step, we normalize the models to ensure
that the extracted descriptors are invariant to translation and
scale. Then, we render depth maps of the object from n views
uniformly sampled on the surface of a bounding unit sphere.
We represent each depth map as a collection of dense His-
togram of Oriented Gradients (HoG) descriptors. HoG have
the advantage of being compact and easy to compute. We
then build a shape signature by aggregating the descriptors
using the BoF paradigm. In this paper we explore and evalu-
ate various BoF schemes, namely: (1) the standard BoF ap-
proaches, which describe a 3D shape as a vector of frequen-
cies of occurrences of the visual words, (2) the Vector of
Locally Aggregated Tensors (VLAT), which have been orig-
inally proposed for image analysis [NPG12a]. They have the
advantage of being compact and efficient for large-scale im-
age retrieval, (3) we further reduce the size of descriptors
constructed with VLAT, while improving further their dis-
crimination power, by using Principal Component Analysis
(PCA) on the VLAT vectors, and (4) finally, we proposed a
new version called compact VLAT, which builds a compact
vector and show that it is suitable for rough classification of
3D shapes. The methods proposed in this paper have several
advantages. They are invariant to rigid transformations and
some articulated deformations and are robust to geometrical
and topological noise. They are robust to the level of tessella-
tion of 3D models. They handle any type of 3D shape repre-
sentations as long as depth images can be rendered. The im-
portant deviation from the state-of-the-art is that they rely on
compact dictionaries (256 or 512 visual words) but achieve
significantly better performance than classical BoF methods.

3.1. Dense feature extraction

Prior to feature extraction, we need to proceed to a robust
normalization of pose and scale of the 3D objects in order to
remain invariant to two geometrical transformations (trans-
lation, scaling). Here, we do not perform the pose normal-
ization for rotation because the locations of local features
are completely ignored in our method. For the center and the
scale, we use the smallest enclosing sphere [LGS10]. The
use of the smallest enclosing sphere has several advantages:
it is fast to compute, it allows the maximization of the model
size inside the unit sphere. We represent a 3D object with
a set of depth maps captured by virtual cameras distributed
uniformly around the object, see Figure 2. In order to capture
all the important features of the object, we use a large num-
ber of views (80 in our implementation) and capture depth
images of size 256×256. From the depth images, we extract
a dense set of HoG descriptors on a dense regular grid. Every
two pixels we compute one HoG descriptor at four different
scales (16× 16, 24× 24, 32× 32 and 40× 40 pixels). We
then obtain a large unordered set of local descriptors.

Let Bi = {bir,r = 1 . . .n} be the set of descriptors ex-
tracted from the depth images of model i. Unlike [LGS10],
we do not maintain a separate set of descriptors for each
view. Instead, we put all the descriptors in a single bag and
use them to build our compact dictionary. This makes the de-
scriptor invariant to rotations of the 3D model. Also, given
a sufficiently large number of views and a densely sampled
HoG descriptors, we insure that the most important features
of an object are captured by the representation. One method
to map the set of descriptors into a single vector that can
be used for indexation is the Bag of Features (BoF) [SZ03].
It involves the construction of a visual codebook (visual
words) and the count of occurrences of these words in the
3D model. Applying in a straightforward manner the tradi-
tional BoF paradigm to 3D models that are represented with
a large and dense set of descriptors will result in large dic-
tionaries. We propose to use Vectors of Locally Aggregated
Tensors (VLAT) recently proposed in [NPG12a] for image
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Figure 2: Example of 3D models from the McGill (models in the two first rows) and the Shrec12 (models in the two other rows)
data-sets. The first column shows renderings of the models, while the other columns show depth images extracted randomly
from the corresponding models.

analysis to build compact yet very discriminative shape sig-
natures using a small dictionary size.

3.2. VLAT: Tensor based aggregation

Let Bi = {bir} and B j = {b jr},r = 1 . . .n, be two bags
of features representing the sets of descriptors in two 3D
shapes i and j. An effective method to compute the similar-
ity between two bags is based on kernel functions. Thanks to
mathematical properties like Mercer conditions, these kernel
functions on bags can be used with many powerful kernel-
based learning techniques. The novelty in this paper is that
we consider a kernel function on bags for each cluster c:

K(Bi,B j) = ∑
c

KB(Bic,B jc) (1)

with Bic = {bicr}r the descriptors of model i that belong
to cluster c. KB is a kernel on the bags Bic and B jc, which
we define as the sum of Gaussian kernels on each pair of
descriptors belonging to Bic and B jc.

KB(Bic,B jc) = ∑
r,s

e−
1

σ2 ||bicr−b jcs||2 (2)

Computing a Gaussian kernel on each pair of descriptors is
computationally prohibitive, especially for large bags (O(n2)
for a dictionary of size n). Thus our second idea is to lin-
earize the Kernel functions on bags. To do so, we first nor-
malize all the descriptors to have a unit length. Then we ex-
pand it using Taylor series, and finally linearize the kernel

function using tensor products:

KB(Bic,B jc) = e−
2

σ2 ∑
r,s

e
2〈bicr ,b jcs〉

σ2

= e−
2

σ2 ∑
r,s

∑
p

αp

σ2p 〈bicr,b jcs〉p

= e−
2

σ2 ∑
p

αp

σ2p 〈∑
r
⊗pbicr,∑

s
⊗pb jcs〉

with ⊗px the tensor product of order p of the vector x.

When stopped at p = 2, the expansion corresponds to the
second order statistics of the set Bic. To extends the range
of the similarity measure, we propose to center the obtained
tensors by the mean tensors of each cluster c. The mean and
tensors of the cluster have been learned during the dictionary
construction. We proceed as follows;

• First, we compute the mean descriptor µc and mean tensor
matrix Tc of each cluster c:

µc =
1
|c|∑i

∑
r

bicr (3)

Tc =
1
|c|∑i

∑
r
(bicr−µc)(bicr−µc)

T (4)

where |c| is the number of descriptors in cluster c and bicr
are the descriptors of model i that belong to c. The quan-
tities µc and Tc provide statistical summaries of the shape
cluster and capture the main variabilities.

• Next, for every 3D model i we compute one feature per
cluster c. We compute a tensor Tic as an aggregation of
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the centered tensors of centered descriptors:

Tic = ∑
r
(birc−µc)(bicr−µc)

>−Tc (5)

where µc is the center of cluster c. We flatten the matrix
Tic into a feature vector xic, the descriptor of the 3D shape
i with respect to cluster c.

• Finally, we concatenate all the vectors xic of object i to
form a single feature Xi = {xic},c = 1 . . .n, where n is
the size of the dictionary. Xi is called the VLAT signature
of model i.

For best performance, we perform a normalization step of
the Xi signature.

∀ j,X′i [ j] = sign(Xi [ j]) |Xi [ j] |α, (6)

Vi =
X′i∥∥X′i

∥∥ (7)

With α = 0.05 typically. VLAT performs very good re-
sults in similarity search and automatic indexing of 3D ob-
jects with linear metric, but leads to large feature vectors.
The size of VLAT features is n×d×d, where n is the num-
ber of clusters and d is the dimension of the descriptor.

3.3. PCA-based VLAT (PVLAT)

To reduce the dimension of the VLAT descriptor, we per-
form a tensor decomposition using Takagi’s factorization:

Tc =AcDcA>c (8)

Where Dc is a real non-negative diagonal matrix containing
the eigenvalues of Tc and Ac is unitary composed of eigen-
vectors of Tc. Then we project the centered descriptors be-
longing to c on the eigenvectors:

b′icr =A>c (bicr−µc). (9)

We can then deduce form equation 5 the new signature
called PVLAT of the model i in cluster c as the sum of ten-
sors of projected descriptors b′icr belonging to cluster c, cen-
tered by Dc:

Tic = ∑
r

b′icrb′>icr −Dc. (10)

Similar to VLAT, we concatenate and normalize each
cluster signature. The size of the final PVLAT signature de-
pends on the number of eigenvector selected in each cluster.

3.4. Compact PCA-based VLAT (CPVLAT)

We propose to further reduce the size of the PVLAT signa-
ture while retaining its discriminative power. Given a set S
of N 3D models, we compute the Gram matrix G of PVLAT
signatures:

Gi, j = V>i V j, i, j ∈ S (11)

Then, we compute the eigenvalues and eigenvectors of the
Gram matrix G. Then, we compute a low rank approxima-
tion of G. We denote by Lt the matrix with the t largest
eigenvalues on the diagonal:

Lt = diag(λ1...λt) , (12)

and we denote by Λt the matrix of the first t eigenvectors:

Ut = [Λ1...Λt ] , (13)

We can then define Gt as an approximation of G:

Gt = UtLtU>t (14)

Then, we compute the projectors of PVLAT signatures in
approximated subspace:

Pt = VUtL−1/2
t (15)

with V = [V1...VN ] is the matrix of PVLAT signatures.
This method is analogous to Kernel-PCA using a dot product
Kernel. For each 3D model, we compute the projection of
PVLAT in the sub-space as:

Yi = P>t Vi (16)

Yi contains an approximate and low dimensional version
of Vi. The subspace defined by the projectors preserves most
of the similarity even for very small dimension because the
PVLAT optimization has concentrated the information in a
small number of dimensions. One can notice that this pro-
cedure is analogous to that of a kernel PCA with a linear
kernel.

4. Experiments and results

In our method implementation, for each 3D shape in the
dataset, we capture a set of depth maps from different view
points. To generate this set of depth maps for a model, we
create 2D projections from multiple viewpoints. These view-
points are equally spaced on the unit sphere. In our cur-
rent implementation, we use 80 depth maps. Actually, each
model was normalized for size by rescaling it so that the av-
erage Euclidean distance from points on its surface to the
center of mass is 0.5. Then, all models were normalized
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for translation by moving their center of mass to the origin.
Then, for each depth map, we extract HOG features on a
dense grid, one HOG feature every two pixels, with four dif-
ferent scales 16× 16, 24× 24, 32× 32 and 40× 40 pixels.
For dictionary construction, we use the K-Means Algorithm.
To evaluate our method, we used two different 3D model
databases. The first one is the SHREC 2012 Generic 3D
Shape Retrieval benchmark [LGA∗12] which is a standard
shape benchmark widely used in shape retrieval community.
The dataset contains 1200 three-dimensional models, clas-
sified into 60 object categories based mainly on visual sim-
ilarity. We also present our results on a non-rigid database,
the Mcgill dataset provided by Siddiqi et al. [SZM∗08] for
articulated 3-D models. It contains 255 objects divided into
ten classes (Ant, Crabs, Hands, Humans, Octopuses, Pliers,
Snakes, spectacles, Spiders and Teddy). Each class contains
similar 3D shapes under a variety of poses. We conducted
four different experiments. In the first one (Table 1), we
evaluate the performance of the three proposed signatures
and analyze the effect of the dictionary size on their per-
formances. In the second experiment (Table 2), we com-
pare the performance of the proposed signatures to stan-
dard bag of features ones. In the Third experiment, we com-
pare our methods to state-of-the-art methods benchmarked
in SHREC 2012 [LGA∗12]. Finally, we investigate the ro-
bustness of the proposed PVLAT signature against non-rigid
transformations. The first three experiments were conducted
on the SHREC 2012 [LGA∗12] dataset. In the last experi-
ment we describe results on the McGill dataset. To objec-
tively evaluate our method we use a statistical tool provided
by the SHREC 2012 and the McGill datasets to compare 3-D
retrieval methods. Given a classification and a distance ma-
trix computed with any shape matching algorithm, a suite
of tools produces statistics and visualizations that facilitate
the evaluation of the match results. It includes five evalua-
tion metrics, namely: the Nearest Neighbor (NN), First-tier
(1-Tier), Second-tier (2-Tier), E-Measures and Discounted
Cumulative Gain (DCG). We also report the precision-recall
graph.

4.1. Generic shapes

We first show the contribution of the VLAT, PVLAT and
CPVLAT signatures to retrieval performance on generic 3D
shapes from SHREC2012 [LGA∗12]. From Table 1, we see
that our signatures have the same behaviour with dictionary
size change. Proposed signatures are fairly stable when mov-
ing from 256 to 512 visual words. We can also see from Ta-
ble 1 that the PVLAT based method performs the best, fol-
lowed by the PCVLAT and the VLAT one. We observe a gain
of 5.75% between VLAT and PVLAT which highlights the
improvements brought by the signature optimization. Note
that the size of the VLAT feature is n× d× d, with n the
number of clusters and d the size of descriptors. That means,
when d = 128 and n = 512, the size of the VLAT signature
is 8M. When using the PVLAT, the size of the signature is

reduced according to the number of eigenvector selected in
each cluster. For the CPVLAT, the size of the signature de-
pends on the low rank approximation of the Gram matrix.
Here, we drastically reduce its dimension by keeping only
128 dimensions. So that, the final CPVLAT size is set to
128. Table 2 shows the performance of our method com-
pared to standard BoF approach. We can clearly see that our
method achieves significantly better retrieval performance.
With only a dictionary of size 512 our method achieves 0.83
in the Nearest Neighbour measure against 0.68 for a standard
BoF with a dictionary of 16384 visual words.

Table 3 shows a comparative evaluation of our method
and five other methods presented in [LGA∗12]. As one
can see our method performs better than LSD-sum, 3DSP
and ZFDR. The DG1SIFT performs the best, followed by
DVD+DB. Note that DG1SIFT combines three different
methods for descriptor sampling: dense regular sampling,
random sampling, and one global SIFT descriptor. DG1SIFT
also uses the BoF paradigm, with a vocabulary size exceed-
ing 13k, which is much higher than the approach we pro-
pose in this paper. These experiments show that our ap-
proach achieves good retrieval performances on standard 3D
databases, while using a compact signature with few hun-
dreds of dimensions. This makes our approach suitable for
retrieval in web-scale databases. Figure 3 presents the Pre-
cision vs Recall plots of our method and the state of the art
methods from [LGA∗12]. It is interesting to notice that our
method and the ZFDR one present quite comparable perfor-
mances, however our method’s precision is slightly higher
for low recall values. Our method clearly outperforms LSD-
sum and 3DSP methods.

4.2. Articulated Shapes

In order to evaluate the performance of our 3D shape re-
trieval approach on non-rigid 3D models, we use the McGill
Articulated Shape Benchmark database. We have compared
the performance of the PVLAT method with three recent al-
gorithms on the McGill Database: Hybrid BoW approach
from [Lav12], the graph-based approach from Agathos et al.
[APP∗09] and the hybrid 2D/3D approach from Papadakis
et al. [PPT∗08]. Table 4 presents the retrieval performance
of the three algorithms compared to our PVLAT method.
From this table, one can notice that the graph-based algo-
rithm [APP∗09] performs the best. This is because of the
robustness of the structural representation used in the al-
gorithm against the articulation deformations. However, not
only the computation complexity of graph matching algo-
rithms, graph based representation have a limited discrim-
inating power when searching for generic shapes, because
only topology is taken into account. Moreover, for graph
based methods, minor changes in topology may result in
significant differences in similarity. So that, they cannot be
applied to arbitrary meshes, because topological problems
like holes disturb the computation of the effective structure
of the objects. Although the PVLAT method does not con-

c© The Eurographics Association 2013.

22



Tabia et al. / Compact Vectors of Locally Aggregated Tensors for 3D shape retrieval

Methods Dictionary size (n) NN 1-Tier 2-Tier e-Measure DCG
VLAT 256 0.7733 0.4088 0.5021 0.3467 0.7017
VLAT 512 0.7767 0.4074 0.5158 0.3654 0.7173
PVLAT 256 0.8125 0.4647 0.5953 0.4207 0.7661
PVLAT 512 0.8342 0.4844 0.6234 0.4421 0.7807
CPVLAT 256 0.8125 0.3474 0.4253 0.3017 0.6761
CPVLAT 512 0.8133 0.3628 0.4323 0.3105 0.6821

Table 1: Proposed method performances with respect to the dictionary size.

Methods Dictionary size (n) NN 1-Tier 2-Tier e-Measure DCG
BOF 256 0.3267 0.1591 0.2297 0.1560 0.4722
BOF 512 0.3392 0.1643 0.2431 0.1647 0.4814
BOF 4096 0.5908 0.2873 0.3889 0.2706 0.6109
BOF 16384 0.6858 0.3436 0.4637 0.3240 0.6688
VLAT 512 0.7767 0.4074 0.5158 0.3654 0.7173
PVLAT 512 0.8342 0.4844 0.6234 0.4421 0.7807
CPVLAT 512 0.8133 0.3628 0.4323 0.3105 0.6821

Table 2: Comparison with Bag of Features.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re
c
is
io
n

 

 

Bai(LSD_sum)

Li(ZFDR)

Redondo(3DSP_L2_1000_hik)

Tatsuma(DVD_DB_GMR)

Yanagimachi(DG1SIFT)

VLAT

PVLAT

CVLAT

Figure 3: Precision recall graph for our approach on the
SHREC 2012 dataset compared to state-of-the-art graphs.

sider the structural information of the shape, it obtains very
comparable results to the graph-based algorithm and slightly
better than the two other algorithms. The robustness of the
PVLAT under non-rigid shapes can be probably due to the
local HOG feature’s robustness against the small isometric
transformations.

5. Conclusion

We have presented a novel approach to generic 3D object re-
trieval using feature vectors constructed from local descrip-

tors of object depth maps. In our approach, the descriptors
are aggregated using Vectors of Locally Aggregated Tensors
technique which showed to be a good approximation of in-
sightful similarity measures between descriptors. We further
reduce their size using Principal Component Analysis (PCA)
on the VLAT vectors, while improving further their discrim-
ination power. We also propose to increase the compactness
of the reduced-size signature by projection in a well chosen
sub-dimensional space. This subspace is obtained by a low
rank approximation of the Gram matrix on a training set.
The approach has been evaluated on two standard 3D shape
retrieval benchmarks, demonstrating the method is suitable
for generic shapes and produces very high retrieval accuracy
even with presence of non-rigid transformations. A lot of fu-
ture work remains. As the proposed signatures are very pow-
erful and highly compacted, we plan to test it on web-scale
datasets.

Acknowledgements

This work has been partly supported by the Culture3DCloud project.
Hamid Laga is supported by the South Australian State Government
through its Premiers Science and Research Fund.

References
[APP∗09] AGATHOS A., PRATIKAKIS I., PAPADAKIS P.,

PERANTONIS S. J., AZARIADIS P. N., SAPIDIS N. S.: Retrieval
of 3d articulated objects using a graph-based representation. In
3DOR (2009), Eurographics Association, pp. 29–36. 6, 8

[BBGO11] BRONSTEIN A. M., BRONSTEIN M. M., GUIBAS
L. J., OVSJANIKOV M.: Shape google: Geometric words and
expressions for invariant shape retrieval. ACM Trans. Graph. 30
(2011). 1, 2

[CLVZ11] CHATFIELD K., LEMPITSKY V., VEDALDI A., ZIS-
SERMAN A.: The devil is in the details: an evaluation of recent
feature encoding methods. In BMVC (2011), vol. 76, pp. 1–12. 2

c© The Eurographics Association 2013.

23



Tabia et al. / Compact Vectors of Locally Aggregated Tensors for 3D shape retrieval

Methods NN 1-Tier 2-Tier e-Measure DCG
DG1SIFT [LGA∗12] 0.879 0.661 0.799 0.576 0.871
PVLAT 0.8342 0.4844 0.6234 0.4421 0.7807
DVD+DB [LGA∗12] 0.831 0.496 0.634 0.450 0.785
ZFDR [LGA∗12] 0.818 0.491 0.621 0.442 0.776
CPVLAT 0.8133 0.3628 0.4323 0.3105 0.6821
VLAT 0.7767 0.4074 0.5158 0.3654 0.7173
3DSP_L3_200_hik [LGA∗12] 0.708 0.361 0.481 0.335 0.679
LSD-sum [LGA∗12] 0.517 0.232 0.327 0.224 0.565

Table 3: Comparison with state-of-the-art methods as reported in the shape retrieval context SHREC 2012 [LGA∗12] .

Methods NN 1-Tier 2-Tier DCG
Graph-based algorithm [APP∗09] 0.976 0.741 0.911 0.933
PVLAT 0.969 0.658 0.781 0.894
Hybrid BoW algorithm [Lav12] 0.957 0.635 0.790 0.886
Hybrid 2D/3D algorithm [PPT∗08] 0.925 0.557 0.698 0.850

Table 4: Results on McGill dataset.

[DT05] DALAL N., TRIGGS B.: Histograms of oriented gradients
for human detection. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’05) - Volume 1 - Volume 01 (2005), CVPR ’05, pp. 886–
893. 1

[JPD∗12] JEGOU H., PERRONNIN F., DOUZE M., SANCHEZ J.,
PEREZ P., SCHMID C.: Aggregating local image descriptors into
compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34, 9
(2012), 1704–1716. 1, 2

[Lav12] LAVOUÉ G.: Combination of bag-of-words descriptors
for robust partial shape retrieval. The Visual Computer 28, 9
(2012), 931–942. 1, 2, 6, 8

[LG09] LI X., GODIL A.: Exploring the bag-of-words method
for 3d shape retrieval. In Proceedings of the 16th IEEE inter-
national conference on Image processing (2009), ICIP’09, IEEE
Press, pp. 437–440. 1, 2

[LGA∗12] LI B., GODIL A., AONO M., BAI X., FURUYA
T., LI L., LÓPEZ-SASTRE R. J., JOHAN H., OHBUCHI R.,
REDONDO-CABRERA C., TATSUMA A., YANAGIMACHI T.,
ZHANG S.: Shrec’12 track: Generic 3d shape retrieval. In 3DOR
(2012), Eurographics Association, pp. 119–126. 3, 6, 8

[LGS10] LIAN Z., GODIL A., SUN X.: Visual similarity based
3d shape retrieval using bag-of-features. In Proceedings of the
2010 Shape Modeling International Conference (Washington,
DC, USA, 2010). 1, 2, 3

[Low04] LOWE D. G.: Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision 60, 2 (Nov. 2004),
91–110. 1

[LZQ06] LIU Y., ZHA H., QIN H.: Shape topics: A compact
representation and new algorithms for 3d partial shape retrieval.
In Proceedings of the 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Volume 2 (2006),
CVPR ’06, IEEE Computer Society, pp. 2025–2032. 2

[MS05] MIKOLAJCZYK K., SCHMID C.: A performance evalua-
tion of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell.
27, 10 (Oct. 2005), 1615–1630. 1

[NPG12a] NEGREL R., PICARD D., GOSSELIN P.: Compact ten-
sor based image representation for similarity search. In ICIP (Or-
lando, Florida, USA, September 2012). 2, 3

[NPG12b] NEGREL R., PICARD D., GOSSELIN P.: Using spatial

pyramids with compacted vlat for image categorization. In ICPR
(Tsukuba Science City, Japan, November 2012). 2

[OOFB08] OHBUCHI R., OSADA K., FURUYA T., BANNO T.:
Salient local visual features for shape-based 3d model retrieval.
In Shape Modeling International (2008), pp. 93–102. 1, 2

[PPT∗08] PAPADAKIS P., PRATIKAKIS I., THEOHARIS T., PAS-
SALIS G., PERANTONIS S.: 3d object retrieval using an efficient
and compact hybrid shape descriptor. In 3DOR (2008), Euro-
graphics Association. 6, 8

[PSM10] PERRONNIN F., SÁNCHEZ J., MENSINK T.: Improving
the fisher kernel for large-scale image classification. In ECCV
(2010), pp. 143–156. 2

[SZ03] SIVIC J., ZISSERMAN A.: Video google: A text retrieval
approach to object matching in videos. In Proceedings of ICCV
’03 (Washington, DC, USA, 2003), pp. 1470–. 1, 2, 3

[SZM∗08] SIDDIQI K., ZHANG J., MACRINI D., SHOKOUFAN-
DEH A., BOUIX S., DICKINSON S.: Retrieving articulated 3-d
models using medial surfaces. Mach. Vision Appl. 19, 4 (2008),
261–275. 3, 6

[TCF10] TOLDO R., CASTELLLANI U., FUSIELLO A.: The bag
of words approach for retrieval and categorization of 3D objects.
The Visual Computer 26, 10 (2010), 1257–1268. 1, 2

[TDCV12] TABIA H., DAOUDI M., COLOT O., VANDEBORRE
J.-P.: Three-dimensional object retrieval based on vector quanti-
zation of invariant descriptors. SPIE Journal of Electronic Imag-
ing 21, 2 (April-June 2012), 023011–1–023011–8. 2

[TDVC10] TABIA H., DAOUDI M., VANDEBORRE J.-P., COL-
LOT O.: Local visual patch for 3D shape retrieval. In ACM Inter-
national Workshop on 3D Object Retrieval (in conjunction with
ACM Multimedia 2010) (Firenze, Italy, October 25 2010). 1

[TV08] TANGELDER J. W. H., VELTKAMP R. C.: A survey of
content based 3d shape retrieval methods. In Multimedia Tools
and Applications (2008), pp. 441–471. 1

[WYY∗10] WANG J., YANG J., YU K., LV F., HUANG T.,
GONG Y.: Locality-constrained linear coding for image clas-
sification. In CVPR (2010), pp. 3360–3367. 2

c© The Eurographics Association 2013.

24


