
EUROGRAPHICS 2013/ M. Chover, A. A. de Sousa Poster

On Depth-Testing Wide Outlines

László Szécsi, Balázs Hajagos and Tamás Umenhoffer

Budapest University of Technology and Economics, Hungary

Abstract
We investigate the visibility problem of crease outlines in stylistic and engineering rendering. We discuss why the
problem is ill-defined, and offer two different, consistent formulations that lead to artistic and technical drawing
styles. We propose real-time, flicker-free GPU algorithms for both problems.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction and previous work

Outlines are used in both artistic and technical depictions
to emphasize discontinuities. Drawn outlines include silhou-
ettes at image-space boundaries of object surfaces (separat-
ing front- and back-facing parts in object space), and creases
at discontinuities of the surface normal. Outlines often must
be rendered as wide, textured, semi-transparent strips with-
out seems, folds or flickering.

Outline detection can be performed in image space,
which is simple but inconsistent as it loses subpixel detail
[IFH∗03], or in object space. On manifold triangle meshes,
silhouettes can be found by processing all triangles [HZ00],
e.g. in a geometry shader. Creases form halfedge loops de-
limiting smoothing groups of triangles. These can be identi-
fied as a part of the triangle adjacency computation.

Compositing object-space outlines with surfaces in a 3D
scene is a major challenge. It can be seen as a hidden line
removal problem that can be solved geometrically in object
space [App67], which is expensive, even if accelerated by an
image-space lookup [MAH00], or using image space depth
testing [IHS02], where filtering must be used to alleviate
instabilities. One technique we propose is based on the lat-
ter approach. The outline, rendered as a wide strip, will be
considered visible in all its width where its centerline is not
hidden. This is similar to an artist painting strokes on paper,
lifting the brush roughly where outlines would go behind
objects. We will refer to this approach as the Wide Outlines
with Approximate Rendering Technique, or WO/ART.

In technical drawings, enhancing feature edges must not
modify shape contours or interfere with exact occlusion.
Drawing the polygon wireframe [BNGL08] only where the

object itself is visible—thus, practically, onto its surface—
is such a technique. We extend this from polygons to non-
planar, potentially self-occluding smoothing groups of arbi-
trary topology to get on-surface crease edge rendering. We
will refer to this approach as Wide Outlines with Precise
Rendering of Occlusions, or WO/PRO.

2. The wide outline visibility problem

Figure 1: Outline comparision (up) and two renders both
with WO/ART and WO/PRO (down).

A wide outline strip is a 3D surface itself. It has to be
aligned with the object outlines when projected onto the im-
age plane, but it does not have a well-defined depth, save
for its centerline. There is no universal method to orient the
strips so that depth compositing provides an acceptable im-
age. One option is to place all strips on the image plane, draw

c⃝ The Eurographics Association 2013.

DOI: 10.2312/conf/EG2013/posters/015-016

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2013/posters/015-016


L. Szécsi, B. Hajagos and T. Umenhoffer / On Depth-Testing Wide Outlines

them in an arbitrary order, but hide them where the center-
line is not visible, as in the WO/ART approach. This hides
inconsistencies behind artifacts that we accept as features of
brush art (Figure 1). Another solution, that of WO/PRO, is
to abandon the part of the strip extending over the surface,
and project the internal half onto it as a decal. This makes
outline geometry a subset of the original surface geometry,
making simple depth testing consistent. The projection of
the outline strip onto the surface, however, is far from triv-
ial, as self-occlusions present another ill-defined problem.
When is a surface point—coinciding with an outline strip in
image space—part of the outline, and when is it on a surface
occluding it? Intuitively, the strip should keep its topology
in object space, but its projected boundary in object space
is as topologically complex and prone to numerical inaccu-
racies as silhouettes themselves. Resolving these complex-
ities would be possible using object space processing, but
doing so in a temporally coherent way is difficult. Thus,
we propose a technique that computes the on-surface, but
screen-geometry-factor-scaled distance of a surface point to
the outline edge, and classifies it as part of the outline only
if the distance is below the desired outline width. This mod-
els a rubber band attached to the creases, which attempts
to stretch along the surface as far as to provide uniform
screen space width, but maintains its topology. To compute
on-surface distance, we first use a shortest path algorithm
on the edge graph to find the nearest creases for all mesh
vertices, then, for any surface point on a triangle, we can
evaluate distance to all creases stored in the three vertices.

3. GPU implementation

solid

frame

buffer

z

buffer

c
re

a
s
e

 h
a

lf
e

d
g

e
s

a
s
 4

-c
p

 p
a

tc
h

e
s

tr
ia

n
g
le

g
e

o
m

e
tr

y

HS

depth sampling

visibility

bitmask

Tess DS

mask

windowing

PS

texturing

alpha

Figure 2: WO/ART operation.

WO/ART can be implemented (Figure 2) as a two-pass
method. The first pass renders solid surface geometry, also
producing a depth buffer with a small depth slope bias.
The second pass renders crease halfedges—augmented with
adjacent vertices along the crease halfedge loop—as four-
control-point patches. The constant hull shader computes
and outputs crease normals at vertices, and samples visibil-
ity using comparison filtering along the three-segment line
strip, producing an output visibility bitmask. The number of
samples depends on the screen-space size of the halfedge,
but we limited it to 64 to fit the bitmask into two integers.

The tessellator is set up to convert the patch to a quad strip
with a linear tessellation factor along the v axis roughly cor-
responding to the sample density. The domain shader po-
sitions the strip vertices offsetting them along the interpo-
lated crease normals, at a distance proportional to their vis-
ibility. Vertex visibility is computed by averaging relevant
bits of the visibility mask. Completely hidden parts will have
zero width, the strip will taper off where visibility vanes, and
numerical inconsistencies are hidden by averaging multiple
visibility samples. The pixel shader applies texturing with
alpha-blending.

For the WO/PRO method, all vertices on creases store the
crease normals. In the first pass, we use a compute shader to
propagate these to non-crease vertices, so that all of them
store the nearest crease normals and the distance to the re-
spective crease edges. In the second pass, mesh geometry
is rendered using a geometry shader aggregating all crease
data for a triangle, and a pixel shader that evaluates crease
proximity.

4. Results and limitations

We have proposed two solutions to the outline visibility
problem, and described GPU implementations. These run at
200-300 FPS on a notebook GPU. Some artifacts with join-
ing silhouettes to creases remain to be resolved, just like
the parameterization, texturing and stylization of the out-
lines. Exploiting self-similarity [BCGF10] is promising for
WO/ART, but the WO/PRO case is more challenging.

This work has been supported by OTKA PD-104710.

References
[App67] APPEL A.: The notion of quantitative invisibility and the

machine rendering of solids. In Proceedings of the 1967 22nd
national conference (1967), ACM, pp. 387–393. 1

[BCGF10] BÉNARD P., COLE F., GOLOVINSKIY A., FINKEL-
STEIN A.: Self-similar texture for coherent line stylization. In
Proceedings of the 8th Symposium on Non-Photorealistic Anima-
tion and Rendering (2010), ACM, pp. 91–97. 2

[BNGL08] BÆRENTZEN J., NIELSEN S., GJØL M., LARSEN B.:
Two methods for antialiased wireframe drawing with hidden line
removal. In Proceedings of the 24th Spring Conference on Com-
puter Graphics (2008), ACM, pp. 171–177. 1

[HZ00] HERTZMANN A., ZORIN D.: Illustrating smooth sur-
faces. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques (2000), ACM
Press/Addison-Wesley Publishing Co., pp. 517–526. 1

[IFH∗03] ISENBERG T., FREUDENBERG B., HALPER N.,
SCHLECHTWEG S., STROTHOTTE T.: A developer’s guide to
silhouette algorithms for polygonal models. Computer Graphics
and Applications, IEEE 23, 4 (2003), 28–37. 1

[IHS02] ISENBERG T., HALPER N., STROTHOTTE T.: Stylizing
silhouettes at interactive rates: From silhouette edges to silhou-
ette strokes. In Computer Graphics Forum (2002), vol. 21, Wiley
Online Library, pp. 249–258. 1

[MAH00] MARKOSIAN L., ADVISER-HUGHES J.: Art-based
modeling and rendering. Brown Univ., 2000. 1

c⃝ The Eurographics Association 2013.

16


