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Abstract. We propose a modified Loop subdivision surface scheme for the ap-
proximation of scattered data in the plane. Starting with a triangulated set of scat-
tered data with associated function values, our scheme applies linear, stationary
subdivision rules resulting in a hierarchy of triangulations that converge rapidly
to a smooth limit surface. The novelty of our scheme is that it applies subdivi-
sion only to the ordinates of control points, whereas the triangulated mesh in the
plane is fixed. Our subdivision scheme defines locally supported, bivariate basis
functions and provides multiple levels of approximation with triangles. We use
our subdivision scheme for terrain modeling.

1 Introduction

Subdivision surfaces [4, 8] are widely used for modeling surfaces of arbitrary topolog-
ical genus. They are defined by polygonal control meshes that are recursively refined
analogously to knot insertion for B-spline surfaces [15]. This refinement process con-
verges to smooth limit surfaces that are in many cases piecewise polynomials. The
subdivision schemes by Catmull/Clark [7] and Doo/Sabin [9], for example, reproduce
uniform B-Splines on regular, rectilinear meshes.

The strength of subdivision surfaces is their ability to deal with irregular meshes
defining arbitrary two-manifolds. Extraordinary points, i.e., surface points correspond-
ing to vertices with other than four adjacent edges in a control mesh, are typically
surrounded by an infinite number of smaller and smaller polynomial patches satisfying
certain continuity constraints. Eigen-analysis of local subdivision matrices can be used
to compute surface normals and to evaluate a limit surface at arbitrary parameter values
[25,23,14].

Multiresolution modeling techniques, like wavelet transforms [26], are required
for real-time visualization of large-scale data sets. Subdivision surfaces and wavelet
transforms can be combined to a single, highly efficient multiresolution modeling tool
[20, 24,18, 3]. Subdivision-surface wavelets with finite filters have been constructed for
compression and multiresolution representation of functions defined on planar tessel-
lations and surfaces of arbitrary topology like isosurfaces [1-3]. Related multiresolu-
tion methods [12, 17] have been designed for completely irregular triangulated surfaces
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without subdivision connectivity. Wavelets and subdivision techniques are also suc-
cessfully being applied to computational fluid dynamics (CFD) and flow visualization
problems [27, 21, 6].

Despite of their simplicity and flexibility for modeling surfaces of arbitrary topol-
ogy, subdivision surfaces have never been used for an apparently simpler problem—
representing graph surfaces, i.e., modeling smooth functions defined on planar do-
mains. Instead, piecewise polynomial constructions like the Clough-Tocher and Powell-
Sabin interpolants [15] are frequently used, splitting every triangle into multiple macro-
triangles that may have bad aspect-ratios. Additionally, interpolation constraints may
cause unwanted variations that are not present in surfaces defined by control points
without interpolation, like B-Splines. Other approaches are based on multiquadrics [10,
11]. Some aspects of subdivision surfaces, however, have been exploited by a scattered-
data fitting method based on triangular B-splines [22].

Classical visualization problems, like terrain modeling, have not taken advantage
of subdivision techniques, in the past. In this paper we propose a simple and efficient
variant of Loop’s subdivision scheme [19, 26] for modeling scattered data in the plane.
We expect that our subdivision technique will successfully be used for applications like
terrain modeling and that trivariate constructions can be developed for volume modeling
data defined on tetrahedral grids, as well.

Fig. 1. Loop subdivision process. Starting with a triangulated control mesh (octahedron, left), a
hierarchy of triangulations converges to a smooth limit surface (right).

2 Loop’sSubdivision

We now review Loop’s subdivision scheme [19] generalizng quartic box splines [15]
to arbitrary triangular control meshes. The big deal about subdivision schemes is that
they generate smooth surfaces from irregular control meshes with extraordinary points.
Extraordinary points correspond to vertices that have other than four incident edges in a
locally rectilinear mesh and vertices that have other than six incident edges in a triangle
mesh. Thus, it is possible to define smooth surfaces of arbitrary topology by simple
control meshes.



Starting with a triangulated control mesh, Loop’s scheme splits every triangle into
four by inserting a new vertex on every edge. This subdivision step is recursively re-
peated, resulting in a mesh hierarchy that converges to a smooth limit surface, see
Figure 1. The coordinates of the control points are updated by linear, stationary subdi-
vision rules, i.e., the new points depend linearly on a local stencil of old control points
and the masks for the updates are the same in every subdivision step.
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Fig. 2. Local indexing for the subdivision masks.

To explain the subdivision masks, we consider a particular vertex v with valence

n (number of incident edges) and use a local indexing for the adjacent vertices v; in

some order (i = 1,2,...,n), see Figure 2. All indices are applied modulo n. The new

vertices located on triangle edges are denoted by e;. The first subdivision mask defines
these vertices as

e; = é(3v + 3v; + vi—1 + 'Uz'-',-l)- (2.1)

The second mask then updates the old vertices

v =apv+ (1 —a,)v, where

1n
T= — v; and
ng ’ (2.2)
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Splitting every triangle into four and applying these two masks results in a finer mesh
that is further subdivided using the same rules again and again.

Alternatively to the second mask we can update the old vertices v without duplicat-
ing their coordinates. Therefore, we replace equation (2.2) by the equivalent mask

v' = (1—Bn)v+ Bne, where

__1¢
e = Ezzzl €; and (23)

8, = 2(1 —ap).



In the case of a regular triangulation (without extraordinary points) using ag = g
Loop’s scheme reproduces quartic box splines. The choice of weights a,, (n > 3)
implies C*-continuity of the limit surface at extraordinary points [19]. The limit be-
havior of subdivision surfaces at extraordinary points can be computed from the eigen-
structure of a local subdivision matrix, which first was done by Doo/Sabin [9]. This
eigen-structure can be used to compute local control points of polynomial patches,
resulting in an efficient algorithm for computing a subdivision surface and its partial

derivatives at arbitrary parameter values [25].

3 Recursively Generated Graph Surfaces

We now consider the problem of constructing smooth graph surfaces f(z,y) for trian-
gulated scattered data in the plane. We start with a set of planar points v; = (z;,y;)
(¢ = 1,2,...,m) with associated function values vzf and a triangulation A of these
points. When applying Loop’s subdivision to the triangulated mesh with control points
(vi,vzf), the planar triangulation is deformed by piecewise quartic polynomials, see
Figure 3. Evaluating the surface at an arbitrary point (z,v) would be difficult since we
would have to estimate corresponding local parameters in a certain triangle. Hence, we
need to subdivide the triangles linearly and use Loop’s scheme only for computing the
function values. This, however, results in creases at the edges of A, see Figure 4. Only
in the case of a regular triangulation with congruent triangles Loop’s subdivision coin-
cides with linear subdivision in the plane, due to linear precision, and a smooth graph
surface is generated.

We want to modify the masks for Loop’s subdivision in equations (2.1) and (2.3)
such that they smooth out creases caused by the parametrization. Therefore, these masks
must take into account the shapes of adjacent triangles. Only if these triangles are con-
gruent, then the new masks should coincide with Loop’s.

We use the same indexing as in equations (2.1) and (2.3), see Figure 5. First, we

define the mask for the ordinates e{ at the new points e; that are now midpoints of the
corresponding edges. Therefore, we compute a parametric least-squares plane m(x,y)

[5] satisfying

2

3 (r(v) - vf)2 + 3 (W(Ui) - v{)z + (W(Ui_1) - sz,l) + (77(?11'+1) - U{H)Z

— man.
(3.1)

This plane, evaluated at e;, provides the new ordinate e{.

As we will show in the following, this mask is linear, stationary, and reproduces
equation (2.1) if both triangles are congruent, i.e., if the vectors v;; — v and v; — v;—1



a) b) c)

Fig. 3. Parametrizations for subdivision process. a) initial triangulation; b) linear subdivision; c)
Loop subdivision deforming the triangles (boundary points are fixed).

a)

Fig.4. Effect of parametrizations. a) initial control mesh based on the triangulation shown in
Figure 3.; b) Loop’s subdivision applied to ordinates causing creases at triangle edges; c) Loop’s
subdivision applied to all coordinates generating a smooth graph surface with deformed domain.
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Fig.5. Defining subdivision masks for the ordinates of e; and v.



are equal. The plane 7 can be defined as

3

m(z,y) = Y cifi(w,y), where

i=1
fO(way) = ]-5 (32)
filz,y) =z, and
folz,y) =y

The coefficients ¢; can be computed from a 3 x 3-system of equations

Ac = b, where
3fr(@) fi () + 3fe(vi) fj(vs)
+ fr(vi-1)fi(vi-1) + fr(vig1)fi(vig1), and
b = 3v fi(v) + 30! fr(vi) + vy fr(vii1) + vliy fr(vinn).
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(3.3)

For simplicity we chose a coordinate system with origin at e; and the first mask becomes
el =¢c =a-b (3.4)

where a is the first row of A—1, which always exists, since the four points v, v;, v;_1
and v;+1 can only be collinear in a degenerate triangulation.

This mask is linear and invariant under affine transforms in the planar domain. In
the special case of two equilateral triangles, the matrix A is diagonal and the mask
becomes ébo which is the same as for Loop’s subdivision. This result remains valid, if
both triangles are congruent, due to affine invariance.

Analogously, we generalize the second mask of Loop’s scheme, equation (2.3), by
fitting a least-squares plane 7. The ordinate v/ for a point v with valence n is updated
by computing 7, such that

n

(1 Bn) (n(v) —v%)” + gn% S (wten) - e{)Q — min,  (35)

i=1

and by evaluating this plane at the point v. Again, we construct a system of equations
for the coefficients ¢;, as defined in equation (3.2):

Ac = b, where

akj

(= AOGE) + by 3 fleli(e, d

(1= B! Ju0) + 3 el fuler).

i=1

by,

This system is solved analogously to the system for the first mask. The same arguments
hold for linearity, affine invariance, and existence of the solution. This second mask



reproduces Loop’s scheme only for a vertex » surrounded by six congruent triangles,
i.e, by triangles resulting from equilaterals when applying an affine map.

We note that these masks can be pre-computed. Due to affine invariance, there is at
most one different mask for every vertex and for every edge of the initial triangulation
A. Thus, our scheme is stationary. All vertices generated on the same edge of A use the
same mask. For the majority of newly generated vertices that are not located on an edge
or vertex of the initial triangulation A, we can apply Loop’s subdivision rules directly
to compute the corresponding ordinates.

'

a) b) c

Fig.6. Subdivision process and limit surface for our subdivision scheme. a) first subdivision
level; b) second level; c) resulting surface (sixth level).

4 Results and Future Work

Our linear, stationary subdivision scheme provides the following properties:

It is invariant under affine transforms in the plane.

It has linear precision.

Our scheme generates piecewise polynomial surfaces.

It coincides with Loop’s subdivision and with quartic box-splines on a regular grid
composed of congruent triangles.

Surface regions that are strictly located inside the triangles of A are eventually
determined by Loop’s subdivision rules, after applying a finite number of subdivision
steps. This implies that our subdivision surfaces are composed of quartic patches and
are C''-continuous in all points strictly inside the individual triangles of A. For the
remaining points a rigorous mathematical analysis of the limit-behavior considering
the eigen-structure of local subdivision matrices needs still to be done.

The subdivision process for a surface generated with our scheme using a control
mesh (Figure 4a.) composed of 13 vertices and 17 triangles is shown in Figure 6. This
surface appears to be much smoother than the one generated with Loop’s subdivision



masks applied to the ordinates, shown in Figure 4b. However, it does not look as fair as
the surface generated by Loop’s subdivision applied to all coordinates, see Figure 4c.
This is due to the constraints for the parametrization that do not allow the surface to
relax parallel to the plane. These constraints are useful, however, since they lead to
limit surfaces that better preserve the shape of the initial control mesh. Additionally,
these constraints imply that the vertices of the initial triangulation A are fixed in the
plane. Thus, we can easily interpolate certain ordinates at these vertices by solving for
the corresponding control points. Interpolating normals and surface fairing can also be
accomplished with subdivision surfaces [14, 16].

Figure 7. shows our subdivision scheme applied to the triangulated terrain model
“Crater Lake”, composed of 9890 vertices and 19380 triangles, courtesy of U.S. Geo-
logical Survey. To obtain a mesh that is irregular in nature, we have simplified the trian-
gulation to a resolution of 5000 triangles by collapsing edges. Our subdivision scheme
significantly increases the quality of rendered images when compared to a Gouraud-
shaded triangulation, see Figure 7.

We note that all levels of resolution obtained by subdivision represent the same
geometric information. It is possible to introduce additional surface detail at every sub-
division level by locally perturbing the control points of the subdivided meshes. These
perturbations can compactly be represented by wavelet coefficients, providing a sparse
and highly efficient multiresolution surface representation [20].

In this paper we have maotivated the use of subdivision surfaces for scattered data
approximation and presented a new subdivision scheme. We have demonstrated that
our method is well suited for terrain modeling. It is also possible to use our subdivi-
sion scheme for approximating bivariate functions with multi-dimensional ranges, like
planar tensor fields and color images. Future work will be directed at the construction
of trivariate subdivision schemes for volume modeling. Additionally, we want to im-
prove the fairness of our functional subdivision surfaces by incorporating variational
principles [13, 16] into our subdivision scheme.
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Fig.7. Modified Loop subdivision for “Crater-Lake” terrain model. a) Original model (19380
triangles); b) third subdivision (1240320 triangles); c) simplified model (5000 triangles); d) third
subdivision (320000 triangles); e) local view of c); f) Gouraud shaded; g) first subdivision; h)
fourth subdivision.



