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Abstract

The efficient generation of photorealistic images is one of the main subjects in the field of com-
puter graphics. In contrast to simple image generation which is directly supported by standard
3D graphics hardware, photorealistic image synthesis strongly adheres to the physics describing
the flow of light in a given environment. By simulating the energy flow in a 3D scene global
effects like shadows and inter-reflections can be rendered accurately.

The hierarchical radiosity method is one way of computing the global illumination in a
scene. Due to its limitation to purely diffuse surfaces solutions computed by this method are
view independent and can be examined in real-time walkthroughs. Additionally, the physically
based algorithm makes it well suited for lighting design and architectural visualization.

The focus of this thesis is the application of object-oriented methods to the radiosity prob-
lem. By consequently keeping and using object information throughout all stages of the algo-
rithms several contributions to the field of radiosity rendering could be made. By introducing a
new meshing scheme, it is shown how curved objects can be treated efficiently by hierarchical
radiosity algorithms. Using the same paradigm the radiosity computation can be distributed in
a network of computers. A parallel implementation is presented that minimizes communication
costs while obtaining an efficient speedup.

Radiosity solutions for very large scenes became possible by the use of clustering algo-
rithms. Groups of objects are combined to clusters to simulate the energy exchange on a higher
abstraction level. It is shown how the clustering technique can be improved without loss in
image quality by applying the same data-structure for both, the visibility computations and the
efficient radiosity simulation.



Zusammenfassung

Eines der Schwerpunktthemen in der Computergraphik ist die effiziente Erzeugung von foto-
realistischen Bildern. Im Gegensatz zur einfachen Bilderzeugung, die bereits durch gängige
3D-Grafikhardware unterstützt wird, gehorcht die fotorealistische Bildsynthese physikalischen
Gesetzen, die die Lichtausbreitung innerhalb einer bestimmten Umgebung beschreiben. Durch
die Simulation der Energieausbreitung in einer dreidimensionalen Szene können globale Effek-
te wie Schatten und mehrfache Reflektionen wirklichkeitstreu dargestellt werden.

Die hierarchische Radiositymethode (Hierarchical Radiosity) ist eine Möglichkeit, um die
globale Beleuchtung innerhalb einer Szene zu berechnen. Da diese Methode auf die Verwen-
dung von rein diffus reflektierenden Oberflächen beschränkt ist, sind damit errechnete Lösun-
gen blickwinkelunabhängig und lassen sich in Echtzeit am Bildschirm durchwandern. Zudem
ist dieser Algorithmus aufgrund der verwendeten physikalischen Grundlagen sehr gut zur Be-
leuchtungssimulation und Architekturvisualisierung geeignet.

Den Schwerpunkt dieser Doktorarbeit stellt die Anwendung objektbasierter Methoden auf
das Radiosityproblem dar. Durch konsequente Ausnutzung von Objektinformationen während
aller Berechnungsschritte konnten verschiedene Verbesserungen im Rahmen der hierarchischen
Radiositymethode erzielt werden. Gekrümmte Objekte können aufgrund eines neuen Flächen-
unterteilungsverfahrens nun effizient durch den hierarchischen Radiosityalgorithmus dargestellt
werden. Dieses Verfahren ermöglicht ebenso eine effiziente Parallelisierung des hierarchischen
Radiosityalgorithmus. Es wird ein parallele Implementierung vorgestellt, die unter Minimie-
rung der Kommunikationskosten eine effiziente Geschwindigkeitssteigerung erzielt.

Radiosityberechnungen für sehr große Szenen sind nur durch Verwendung sogenannter
Clustering-Algorithmen möglich. Dabei werden Gruppen von Objekten zu Clustern kombiniert
um den Energieaustausch zwischen Oberflächen stellvertretend auf einem höheren Abstrakti-
onsniveau durchzuführen. Durch Verwendung derselben Datenstruktur für Sichtbarkeitsberech-
nungen und für die Steuerung der Radiositysimulation wird gezeigt, wie das Clusteringverfah-
ren ohne Qualitätsverluste verbessert werden kann.
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CHAPTER 1

Introduction

1.1 Image Synthesis

The computer aided generation of images is still the core aspect of computer graphics research.
The application of heuristic methods, approximations, and physically correct simulation meth-
ods have led to a variety of rendering algorithms with very different properties. The most
important classification of these algorithms is the distinction between local illumination and
global illumination. This classification is based on the way how the interaction of light with the
environment is simulated in order to compute an image of the given scene.

This chapter gives an overview on digital image synthesis. The rendering pipeline will be
introduced to separate and explain all building blocks of a rendering algorithm from reading the
scene model upto the final picture. The terms local and global illumination will be discussed
and finally two different rendering algorithms will be summarized: ray tracing and radiosity.

1.2 The Rendering Pipeline

Although the lighting calculation is one of the most important steps to actually produce an image
it is just one step of a rendering pipeline that fully describes the process of image synthesis
[FvDFH90]. Depending on the rendering algorithm described by this pipeline, the building
blocks can be arranged in several ways. Figure 1.1 shows an example.

Scene
traversal

Modeling
transformation

rivial
accept/reject

Viewing
transformation

Clipping Map to
3D viewport

Lighting

Rasterization

T

Figure 1.1 Rendering pipeline.

The input to the pipeline is a scene description or scene database that has been generated
with a modeling tool. A scene is basically a collection of objects, light sources, and at least
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INTRODUCTION 1.2 THE RENDERING PIPELINE

one camera position to describe a view into the environment. Objects are defined by their geo-
metric parameters given as scalar values or three dimensional coordinates and by their material
properties. The geometric parameters (position, size, surface normals) can be given explicitly
or implicitly. An explicit representation is given when the objects’ surfaces are tesselated into a
collection of planar polygons consisting of a set of vertices and a set of connecting edges. The
resulting mesh thus only approximates the shape of curved objects. An implicit or parametric
representation however allows for the exact determination of the required geometric parame-
ters. The material properties of an object describe its basic color and the way how light reflects
off or transmits through the object. Colors are typically represented by 3 intensity samples of
the visible spectrum at the wavelength of red, green and blue. Finally, there are light sources
that can be defined by position and intensity or color but also with extended parameters like a
direction, a light cone or some geometric shape.

To render the scene into an image the scene database has to be traversed and transformations
that were added during the modeling stage must be resolved first. The modeling transformation
includes translation, scaling and rotation to transform each object from its model space or local
coordinate system into world space. The world space which is represented by the world coor-
dinate system is the common coordinate space where the lighting calculation and most other
parts of the rendering algorithm are performed. Using the camera position a first optimization
can be applied. Objects that are behind the observer can easily be ignored in further steps of the
pipeline unless the algorithm is able to take their influence on the final image into account (e.g.,
a mirror might reflect light back into the scene). The lighting step that follows tries to simulate
the effect of light illuminating the environment and reaching the eye. The way how this is done
greatly influences the quality of the resulting image and the time needed to achieve this result.
This will be discussed in more detail in the sections 1.3 and 1.4.

The following steps use the camera parameters to generate an image of the lit environment
in screen space. The viewing transformation performs the perspective transformation that maps
a 3D point onto a plane parallel to the screen1. The following clipping step eliminates vertices
that lie outside the viewing frustum, i.e. the volume defined by the eye position, the look-at
point and the viewing angles. Finally the resulting vertices have to be transformed onto the
window of the viewing device defining the 2D viewport (Figure 1.2).

eye

screen or viewport

viewing frustum

Figure 1.2 The camera model.

1The first occurrence of perspective transformations was found in the fifteenth century and greatly influenced
renaissance artists [Wat89].
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INTRODUCTION 1.3 LOCAL ILLUMINATION

The rasterization step now determines each device pixel covered by the transformed primi-
tive (typically a triangle) and fills it with the appropriate color. The color can be a result from
the lighting step or for example a color value retrieved from a texture map, i.e., a bitmap image
that was attached to the scene object.

Currently available graphics accelerators implement parts or all of the rendering pipeline in
hardware. Accelerators that only implement a part of the pipeline typically leave all transfor-
mations and clipping to the system processor but provide very efficient rasterizers. Highend
graphics workstations often provide a full implementation in hardware. With the rapid growing
of floating point power in modern microprocessors however, special chips supporting the 3D
calculation are questionable.

1.3 Local Illumination

The term local illumination refers to the simplifying assumption, that the illumination of a point
or a surface element only depends on the local material and surface properties and the incident
light sources. All that has to be calculated is the total amount of light reflected into the direction
of the viewer. Given the surface normal N and the direction to a (point) light source L the
diffuse reflection can be computed according to Lambert’s law. The amount of reflected light is
proportional to the cosine of the angle θ between the surface normal and the vector to the light
source (Figure 1.3). Note that the direction to the viewer is unimportant.

.

LN

θ

Figure 1.3 Lambert’s law.

An additional ambient amount of light avoids black objects if the angle exceeds 90 degree
(negative cosines are treated as zero). To obtain more realism the specular reflection which
is dependent on the viewing direction and is responsible for highlights should be added. De-
pending on the material properties a highlight with varying intensities can be noticed in a cone
surrounding the reflected light vector R (Figure 1.4). For perfect mirrors this cone reduces to a
single line.

The intensity cone can be calculated by an approximation developed by Phong [Pho75].
With the highest intensity of the highlight at the center a rapid falloff is determined by a cosn α
term, where α is the cone’s angle and n is a material property specifying the sharpness of the
highlight. Thus, summing over all light sources we get the following formula describing the
intensity of a surface point when seen from a given point:
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INTRODUCTION 1.4 GLOBAL ILLUMINATION

LN
R

α

θ θ

Figure 1.4 Specular reflection.

I = Iaka +
n

∑
i=1

Ii(kd cosθi + ks cosn αi) (1.1)

The coefficients ka, kd and ks specify the ambient, diffuse and specular material properties
respectively. Ii are the intensities of the light sources and Ia that of the ambient light. As men-
tioned above the ambient term is responsible for all illumination that is not directly coming from
a light source. This constant term is a very rough approximation of all possible interreflections
of light that might occur in the environment. Due to its simplicity formula 1.1 is also available
in hardware graphics accelerators.

1.4 Global Illumination

To achieve more realism a global illumination model must be used that accurately accounts for
interreflections of light between objects. In contrast to a local reflection model where only the
current surface point and the direction (without occlusion) of light sources is considered poten-
tially all scene objects have to be taken into account. In 1980 Whitted [Whi80] implemented a
first global illumination algorithm using the technique of ray tracing.

1.4.1 Ray Tracing

To simulate optical effects that can not be achieved with the simple rendering pipeline (shadow,
global reflection, transparency), ray tracing reverses the photographic process.

Film

Image

Pinhole

Object

Figure 1.5 The pinhole camera.

Instead of capturing the light directly it starts with the empty image plane subdivided into
a regular grid of pixels. Through each pixel a ray is traced into the scene using the modified
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pinhole camera model shown in Figure 1.2. A physical pinhole camera would have the eyepoint
and imageplane reversed and the eyepoint would actually be the pinhole while the imageplane
would be the film (Figure 1.5). For a simulation however, the modified model is more conve-
nient. Tracing rays this way, i.e. from the eye through the camera into the scene instead from
the light sources via the objects into the eye, gave this technique its complete name backward
ray tracing.

To find the image color at the pixel position the ray is checked against all objects or surfaces
in the scene to see if an intersection point exists. If there is no intersection the pixel’s color is
set to the background color and the next pixel is chosen. However, if there is an intersection
several components have to be summed up, corresponding to the visual effects that are to be
captured. The most important contribution is the direct light due to the visible light sources.
Starting from the intersection point at the object’s surface a new ray is cast into the direction of
each light source to determine its visibility. If the ray hits some opaque object before having
traveled the distance to the light source the surface point lies in shadow relative to that light
source. Therefore, these rays are called shadow rays. If no occlusion occurs the light source
directly illuminates the questionable point, classifying the corresponding ray as an illumination
ray.

I

N
R

T
n

n θ θ

θ′

sinθ

sinθ′

incident ray

transmitted ray

reflected ray

Figure 1.6 Snell’s law. Computing refraction and reflection rays.

Depending on the material properties of the surface hit reflection or refraction rays have to
be generated to account for specular reflection or transmission of light. To find the direction of
light incident to a surface point due to reflection the incident ray from the eye has to be mirrored
at the surface normal. If a ray emanating into that direction hits another surface, the color found
there additionally contributes to the illumination of the first point. Transparent surfaces are
treated analogically. The direction of the refraction ray however is determined by Snell’s law
(Figure 1.6) which takes into account the refraction indices of the two media touching at the
given point (typically air which is treated as a vacuum here and the object’s material).

With n and n′ being the refraction indices of the two media and θ and θ′ being the angles
between the surface normal and the incident and transmitted ray Snell’s law states:

n sinθ = n′ sinθ′ (1.2)
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INTRODUCTION 1.4 GLOBAL ILLUMINATION

Being able to compute reflection and refraction rays propagates the problem of finding the
illumination at a surface point to the next intersection of the ray with an object. The same
components contributing to the illumination have to be computed here to find the correct color
that contributes to the illumination of the first point. This defines a recursive process which
completes the ray-tracing algorithm (Figure 1.7). At each intersection point shadow rays and
depending on the material properties reflection and/or refraction rays are generated. The recur-
sion can be stopped if no more objects are hit, if the contribution of the current ray falls below
a threshold or if a maximum number of recursion steps is found, whichever occurs first.

reflection ray

illumination rays

refraction ray

image plane

eye point

Figure 1.7 Recursive ray tracing.

The illumination at each intersection point is calculated with an extension to Formula 1.1
which takes mirror reflection and transparency into account:

I = Iaka + kd

n

∑
i=1

Ii cosθi + Isks + Itkt (1.3)

The coefficients ks and kt are material properties defining the surface’s specular reflection
and transmission values. The terms Is (containing the Phong approximation) and It are the
intensities due to the recursive ray-tracing process following reflection and refraction rays.

This simple global illumination model generates images with typical characteristics. Shad-
ows are very sharp because neighboring points either completely ’see’ the (point) light source
or they are in shadow. There is no slight transition between light and dark. Another feature is
the look of surfaces due to Phong’s shading model, which often gives surfaces a ’plastic’-like
appearance.

The main computational effort involved with ray tracing is performing the intersection tests
between rays and objects. Typically simple shapes like bounding boxes or bounding spheres
are tested first. If no intersection is found further expensive tests can be avoided. To minimize
the number of objects that have to be tested scene structuring techniques were developed that
group scene objects according to their spatial distribution [Gla89].
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1.4.2 Radiosity

The radiosity method is a completely different way to compute the global illumination in a
scene. The main idea is to calculate the energy flow between diffuse surfaces which results in
realistically looking materials and (soft-)shadows. In 1984 results from the theory of radiative
heat transfer [SH92] were applied to the global illumination problem and resulted in the first
radiosity algorithms [GTGB84, NN85]. The term radiosity denotes the physical measure of
power radiated per unit area of a surface (radiant exitance) and was established as a synonym
for this category of global illumination algorithms.

The simplifying assumption that all surfaces are purely diffuse reflecting (i.e. Lambertian
reflectors) allows for calculating a view-independent solution. In contrast to ray tracing which
computes a single view-dependent solution in image space a radiosity solution is computed in
object space. After the energy exchange between all surfaces is determined arbitrary views of
the solution can be generated quickly. Graphics accelerators fully support this step because
it exactly corresponds to the rendering pipeline (Section 1.2) without the lighting step. The
lighting is precomputed by the radiosity algorithm. Walkthroughs are possible after the (time
consuming) radiosity solution is obtained which give the user a chance to virtually explore a
correctly lit and shaded environment in real-time.

To compute the energy flow the radiosity method uses an energy equilibrium illumination
model. The reflectivity and the emissivity of the surfaces are used to simulate the bounces of
light originating from the emissive surfaces (i.e. the light sources) through the environment until
an equilibrium is found. Thus, indirect illumination due to reflection from other surfaces can be
rendered correctly. Figure 1.8 shows a room with colored walls containig two white boxes. The
only light source is directly pointing towards the ceiling thus illuminating the room indirectly.

Figure 1.8 Indirect illumination: Radiosity vs. classical Ray Tracing.

The left image shows a radiosity rendering of the scene. The indirect illumination is cap-
tured very well and the interior of the room is lit correctly. Additionally the sides of the white
boxes are colored according to the nearby walls of the room. The light was reflected from the
ceiling to the colored walls and finally hit the boxes. This effect is often called color bleeding
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INTRODUCTION 1.4 GLOBAL ILLUMINATION

and is due to multiple interreflections of light. As a comparison the same scene was rendered
with ray tracing where only the directly illuminated parts of the scene are visible.

To find the energy equilibrium radiosity algorithms are typically formulated as finite element
methods. Instead of computing the illumination for each surface point of the scene only a
few representative points are considered. The scene objects are subdivided into planar surface
elements defining a mesh of patches. For each patch an average radiosity value is computed
that represents the radiosty at the center of the patch. Figure 1.9 shows a simple mesh. The
radiosity of patch p3 in object P is computed due to the radiosities of the patches of object Q
and R.

P

Q R

p1 p3 p5

Figure 1.9 Using finite elements for radiosity.

The radiosity of each patch (Bi) can be written as a sum of the patch’s own emissivity (Ei)
and the radiosities of all other patches (B j) weighted by the reflectivity of the receiver (ρi).
The energy exchange between two patches is determined by the form factor (Fi j), a geometrical
term that describes the fraction of the total energy that arrives from the sending patch Pi at the
receiver Pj.

Bi = Ei +ρi

N

∑
j=1

Fi jB j (1.4)

The form factor depends on the spatial position of the two patches. Most important for the
computation of shadows however is the mutual visibility of the patches. Due to the visibility
computation, which can be done by ray casting, the form factor calculation is the most time
consuming part of a radiosity algorithm. Most research, including parts of this thesis, focused
on reducing the number of form factors that have to be computed for a radiosity solution. If the
radiosity equation is written down for each patch of the scene, a system of N linear equations is
obtained. With the radiosities being the N unknowns the equations can be grouped to a matrix
and a linear equation solver is used to compute the radiosities.

Early radiosity methods set up the matrix of form factors first and solved the full matrix con-
taining N2 entries if the scene was meshed into N patches [GTGB84]. The quadratic memory
and time consumption extremely limited the scene complexity until the progressive refinement
method was introduced [CCWG88]. Instead of storing the full matrix only a single column was
used and form factors to other patches were computed on the fly. The most important contri-
bution over the last years however, was the introduction of the hierarchical radiosity algorithm
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[HSA91]. By modelling the energy exchange at different resolution levels of the mesh several
entries in the form factor matrix could be combined to blocks and represented by a single value.
This reduced the complexity of the radiosity method to be almost linearly in the number of mesh
elements. Extending this idea to building hierarchies above the element mesh led to radiosity
clustering algorithms [SAG94, Sil95]. Modelling interactions between objects and groups of
objects dramatically reduced the rendering times and allowed the computation of images from
scenes containing several hundred thousand patches [GH96].

More details on the derivation of the radiosity method and various ways to compute a ra-
diosity solution are given in Chapter 2.

1.5 Thesis Contribution

This thesis contributes to the field of radiosity rendering in several ways. First, a new approach
of incorporating curved surfaces in the hierarchical radiosity algorithm is presented. This ap-
proach combines ray-tracing techniques with the finite element method to obtain very accurate
solutions in less time. Curved surfaces play an important role in computer graphics because
most realistic models (e.g., parts of a car) are built using them. An approximation using a fixed
number of planar polygons to drive the radiosity algorithm either leads to visual artifacts or to
an excessive increase of running time due to the large number of very small polygons. The
method introduced here uses an adaptive object-based meshing that is able to refine the mesh
during the computation to an arbitrary accuracy. Because the mesh is only refined in regions
critical for the visual appearance solutions are obtained very quickly.

To further improve the efficiency of radiosity implementations a new distributed hierarchical
radiosity algorithm is presented. Because radiosity algorithms potentially model the interaction
between all pairs of surfaces efficient parallel implementations without a huge communication
overhead are hard to implement. The distributed algorithm introduced here combines object-
based techniques from our curved surfaces algorithm with an efficient load balancing scheme.
The algorithm runs in a network of computers and quickly adapts to stress conditions that appear
in a real world network. The biggest advantage, however, is that the need for a radiosity mesh
at the client computers could be eliminated. This results in very low communication costs and
efficient use of remote machines with limited memory capacities.

Finally, a new scene structuring algorithm originally developed for ray tracing is applied to
radiosity clustering. It makes use of an object-based cost function to drive the subdivision of
scene elements into a hierarchy of bounding volumes. This hierarchy naturally adapts even to
small details of the original objects. This can be efficiently used to simulate the energy transport
between objects and object clusters. To quickly achieve high quality radiosity solutions of large
scenes, an error driven clustering algorithm is used. Several optimizations are proposed that
allow the clustering algorithm to benefit from the deep bounding volume hierarchies that are
arranged in a binary tree.
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1.6 Thesis Outline

The outline of the thesis is as follows: in Chapter 2 the radiosity method is described, thereby
laying the theoretical foundation for the work presented here. Chapter 3 introduces our hier-
archical radiosity algorithm for curved surfaces and discusses some consequences following
this object based approach. In Chapter 4 the parallelization of radiosity is discussed and a
distributed hierarchical radiosity algorithm for heterogeneous networks is presented. Chapter
5 gives an overview of radiosity clustering techniques and describes a clustering method that
efficiently combines data structures for ray acceleration and clustering.
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CHAPTER 2

The Radiosity Method

The radiosity method serves as a tool to compute the interreflections of light between diffuse
surfaces. It combines the knowledge from several fields of physics (i.e. optics and radiative heat
transfer) with finite element methods to compute the energy balance in a closed environment.
Due to the assumption of pure diffuse reflectors photorealistic images from the solution can be
rendered quickly from arbitrary view points using graphics hardware.

This chapter describes the physical background of radiosity and the algorithms that were
developed in the last decades to efficiently simulate the light transport. After an introduction to
radiometry and photometry the energy balance equation is derived. The methods to solve the
equation are explained and recently developed algorithms to manage the complexity involved
with large scenes are presented. Further information on the radiosity method and the related
terms can be found by [CW93] and [SP94].

2.1 Radiometry

The frequency range of electromagnetic waves covers about 50 octaves1 from which only one
can be perceived by the human eye [Kuc88]. This range is the visible spectrum between 390
and 770nm that is typically referred to as light. Radiometry describes the transport of light
in an objective way, actually reflecting the physics behind it. Photometry, on the other hand,
describes how light is perceived by a human observer due to the eye’s sensibility. A detailed
introduction to the related terms is given by [Gla95].

To simplify the complex physical model of light transport typically some approximations
are made. The radiometric terms presented here are considered to be independent of time,
polarization and wavelength. These simplifications prohibit the simulation of several visual
phenomena like phosphorescence or luminescence but makes the presentation clearer. The only
remaining parameters to deal with are position and direction.

2.1.1 Solid Angle

The radiant energy exchange can be described as being dependent on the solid angle which
is the three-dimensional extension of the angle between two lines. The solid angle ω is the
quotient of a spherical area and its squared radius and is expressed in steradians (sr):

1Octave: frequency ratio 1 : 2
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THE RADIOSITY METHOD 2.1 RADIOMETRY

ω= A/r2, [ω] = sr =
m2

m2 = 1 (2.1)

As can be seen in Figure 2.1 the solid angle measures the area of the projection of an object
onto a unit sphere surrounding the point of interest. This exactly follows the definition in 2D
where the angle subtended by an object equals the arclength of the projection.

r = 1
projection

Figure 2.1 Solid angle.

For differential areas the solid angle can be approximated by the projection onto the tangent
plane instead of the sphere. Let the differential area be ∆A and let the distance be r then the
solid angle subtended is given by:

∆ω≈ ∆Acos θ
r2 (2.2)

The cosine term accounts for the orientation of the surface element relative to the direction
to the origin (Figure 2.2).

r

θ

∆A

∆ω

tangent plane

Figure 2.2 Differential solid angle.
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2.1.2 Radiance

The most fundamental quantity in image synthesis is radiance (L). It denotes the radiant energy
per unit volume and is determined by the photon density, i.e., the number of photons at a point
x moving in some direction ω:

L(x,ω) =
∫

p(x,ω,λ)
hc
λ

dλ, [L] =
W

sr ·m2 (2.3)

Here, p denotes the photon density at wavelength λ and hc
λ is each photon’s energy, which is

dependent on its wavelength and the two constants c (speed of light) and h (Planck’s constant).
Radiance is measured in power per unit projected area perpendicular to the direction of photon
movement and per unit solid angle. Radiance has the important property of being invariant to
the distance, which is expressed by its dependency from the solid angle. Due to the law of
conservation of energy, the amount of radiance leaving a point along a ray remains constant if
no scattering or absorbing media is in between.

2.1.3 Irradiance

To find the radiant energy arriving at some surface patch A as required by a finite element
method, the incoming radiance has to be integrated over the hemisphere above the patch. This
quantity is called irradiance (E) and is measured in power per unit area:

E =
∫

Ω
Li cosθi dωi, [E] =

W
m2 (2.4)

The term cosθi dωi denotes the projected solid angle and is the projection of the solid angle
(i.e., the differential area ∆ω in Figure 2.2) onto the base of the hemisphere. If the projected
solid angle is integrated over the complete hemisphere the projection covers the full circle, i.e.,
π. In contrast to radiance, irradiance drops off with the square of the distance.

2.1.4 Radiosity

The physical quantity that gave the algorithms and methods described in this thesis its name is
radiosity (B). Analogously to irradiance it describes the radiant energy leaving some surface
and is also called radiant exitance. It is measured in the same units as irradiance:

B =
∫

Ω
Lo cosθo dωo, [B] =

W
m2 (2.5)

Thus, radiosity is defined as the integral over the complete hemisphere. If we assume purely
diffuse reflection (see Section 2.3.2), the radiosity that is equally reflected in all directions can
directly be expressed in terms of radiance:

B = πLo (2.6)
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THE RADIOSITY METHOD 2.2 PHOTOMETRY

2.2 Photometry

Each radiometric term has a corresponding quantity in photometry, describing the eye’s respon-
siveness. Beside being sensitive to a limited range of wavelengths the response of the human
eye is also non-uniform. This behavior is captured in the luminous efficiency function plotted
in Figure 2.3.
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Figure 2.3 Luminous efficiency function.

Integrating the radiometric quantities against the luminous efficiency function yields the
photometric quantities with their own measures (Table 2.1). Global illumination algorithms are
typically formulated with radiometric terms, because the transport of light that is to be simulated
is independent from the visual system. When it comes to displaying a resulting image on an
output device like a monitor or a printer however, it is important to correctly map the results to
the limited displayable range. This tone-mapping process has to be carried out with photometric
quantities [TR93]. Another aspect is the optimization of global illumination algorithms with the
knowledge of the limited responsiveness of the eye. Perception-based rendering techniques try
to avoid computing optical effects that are hardly perceivable by the human eye. These methods
are topic of ongoing research and related work can be found by [GH97] and [Mys98].

Radiometry Photometry
Radiance [ W

sr·m2 ] Luminance [ cd
m2 ]

Irradiance [ W
m2 ] Illuminance [ lm

m2 ] (Lux)
Radiosity [ W

m2 ] Luminosity [ lm
m2 ] (Lux)

Table 2.1 Radiometric and photometric quantities.

2.3 Reflection

The appearance of a material can be characterized by its reflection properties, i.e., by the fraction
of light that is reflected off the surface at a specific wavelength. From the possible interactions
of light with a material only the effects occurring directly at the surface are considered here.
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THE RADIOSITY METHOD 2.3 REFLECTION

Light is not assumed to enter the material, which would produce effects like transmission or
absorption.

2.3.1 The BRDF

The ratio between reflected and incoming radiant energy at a surface point is expressed by the
bidirectional reflection distribution function or BRDF. It relates irradiance from an incident
direction ωi to radiance in an outgoing direction ωr by a proportionality constant (Figure 2.4):

fr(ωi,ωr) =
Lr(ωr)

Li(ωi)cosθidωi
, [ fr] = sr−1 (2.7)

N

θi

dωr dωi

cosθidωi

Figure 2.4 BRDF geometry.

The BRDF describes the directional distribution of reflected light and its value can range
from 0 to infinity. For physically based BRDFs the Helmholtz principle states that incoming
and outgoing directions can be reversed without affecting the BRDF. A BRDF is said to be
anisotropic if the reflection is dependent on the rotation of the material around the normal like
brushed metals. An isotropic BRDF describes a material who’s surface rotation does not change
the reflection properties.

Integrating the BRDF over the hemisphere of reflected directions results in the reflectance
ρ, a much more intuitive dimensionless quantity ranging from 0 to 1:

ρ(ωi) =
∫

Ω
fr(ωi,ωr)cosθr dωr (2.8)

Making the BRDF independent on the outgoing direction results in purely diffuse reflection.

2.3.2 Diffuse Reflection

Radiosity methods assume ideal diffuse reflectors to achieve view independent solutions. Ideal
diffuse means that the same amount of radiant energy is reflected in all directions of the hemi-
sphere. Due to the reciprocity principle the incident direction can also be neglected resulting
in a constant BRDF which in turn causes the reflectance to be constant. This constant is the
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diffuse reflectance and is the only material property used by radiosity algorithms. The general
reflectance equation (Equation 2.9) can now be simplified for the radiosity case:

Lr(ωr) =
∫

Ω
fr(ωi,ωr)Li(ωi)cosθi dωi (2.9)

= fr

∫
Ω

Li(ωi)cosθi dωi

Lr = frE (2.10)

Again, the proportionality factor between the BRDF and the reflectance in the radiosity case
is π, due to integration of the projected solid angle (see Section 2.1.3).

ρ = πfr (2.11)

2.4 The Rendering Equation

The reflectance equation (Equation 2.9) describes the outgoing radiance when reflected from a
surface. To derive an energy balance equation the incident light distribution at a surface point
must be specified. The sources of radiant energy influencing the illumination of a point are the
light sources and reflectors. Summing their contribution gives the following integral equation
describing an energy equilibrium:

L(x,ωr) = Le(x,ωr)+
∫

Ω
fr(x,ωi,ωr)Li(x,ωi)cosθi dωi (2.12)

Beside the incoming and reflected directions (ωi,ωr) the current surface point x is specified
in the radiance and BRDF terms. Le is the emissivity of the surface which is zero for all surfaces
except for the light sources. Equation 2.12 was introduced to computer graphics in a slightly
different notation by Kajiya [Kaj86] and is called the rendering equation. To solve this integral
equation where the unknown radiance L appears on both sides numerical methods are used, one
of them being the radiosity method described in this chapter.

To see that the rendering equation actually describes the interreflections of light Kajiya
proposes to write the equation using an integral operator acting on the radiance in the scene as
the reflection operator R:

L = Le +RL (2.13)

Inverting Equation 2.13 using a Neumann series delivers:

L = [I −R]−1Le

=
∞
∑
n=0

(R)nLe (2.14)

The physical explanation is that the contribution of all reflections is summed up, i.e., R0Le

yields the emissivity, R represents the first reflection, R2 the second and so on.
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With the results from the last sections Equation 2.12 can be simplified for the radiosity case.
The constant BRDF is expressed in terms of reflectance (Equation 2.11) and can be moved
outside the integral:

L(x,ωr) = Le(x,ωr)+
ρ(x)

π

∫
Ω

Li(x,ωi)cosθi dωi (2.15)

Omitting the dependency on the outgoing direction for the reflected radiance and the emis-
sivity results in purely diffuse reflection. Multiplying both sides of the equation by π(Equation
2.6) gives an expression for radiosity:

B(x) = Be(x)+ρ(x)
∫

Ω
Li(x,ωi)cosθi dωi (2.16)

Finally, the integral over the hemisphere can be converted to a surface integral, thereby
replacing the differential solid angle dωby dA′ cosθ′

r2 (Equation 2.2). Because the integration still
includes all surfaces in the scene, a visibility function has to take care of occlusion. V (x,x′)
denotes a binary visibility function that equals 1 if the surface points x and x′ are mutually
visible, otherwise it is zero. This yields the radiosity equation:

B(x) = Be(x)+ρ(x)
∫

S
B(x′)

cosθcosθ′

πr2 V (x,x′)dA′ (2.17)

Having derived the radiosity equation, i.e., the rendering equation for the special case of
pure diffuse reflectors, the next sections will describe methods for solving this equation.

2.5 The Finite Element Approach

In general, no closed form solution is available for Equation 2.17. As a result, the radiosity for
an infinite number of surface points had to be computed, which is impractical. A way to solve
this kind of integral equation is a further approximation using finite element methods [Zie89].
The idea is to project the infinite dimension of the function space defined by the radiosity
equation down to some finite dimension. The dimension of a function space is the number of
discrete values needed to specify the function. A function space of finite dimension is spaned
by a finite number of basis functions. A projection from a higher function space thus requires
to find coefficients for each basis function. The finite element approach for radiosity commonly
uses the simplest basis function i.e., the box function. The projection of the radiosity function
thus results in an approximation by a linear combination of piecewise constant basis functions.

The assumption behind this approximation is that the radiosity and reflectance of a sur-
face element or a patch is constant. This allows writing Equation 2.17 as a sum over discrete
patches. With the radiosity over a single patch being the area weighted average of the pointwise
radiosities:

Bi =
1
Ai

∫
x∈Pi

B(x)dx, (2.18)

Equation 2.17 then becomes:
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Figure 2.5 Finite element radiosity: original polygons, finite element mesh, patch radiosities and filtered
solution.

Bi = Bei +ρi

N

∑
j=1

B j
1
Ai

∫
x∈Pi

∫
x′∈Pj

cosθcosθ′

πr2 V(x,x′)dx′dx (2.19)

This is the discrete formulation of the radiosity equation. The double integral on the right
side describes the geometric configuration of the two patches Pi and Pj involved. It is indepen-
dent on radiometric quantities and thus often written as a single expression Fi j called the form
factor (see Section 2.6):

Fi j =
1
Ai

∫
x∈Pi

∫
x′∈Pj

cosθcosθ′

πr2 V (x,x′)dx′dx (2.20)

Now, Equation 2.19 can be written more compactly:

Bi = Bei +ρi

N

∑
j=1

Fi jB j (2.21)

In Figure 2.5 the finite element approach to solve the radiosity equation is illustrated. The
upper left image shows the original input scene shaded as wireframe. The algorithm subdivides
the input polygons in a number of discrete patches forming the finite element mesh. For each
patch a single radiosity value is computed as can be seen in the lower left image. Finally, as
seen in the last image, a filtering step can be applied to obtain a smooth solution.
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2.6 Form Factors

The form factor integral (Equation 2.20) describes the relative position and orientation of two
possibly interacting patches. Actually, the form factor Fi j measures the fraction of the total radi-
ant energy leaving patch Pi that arrives at patch Pj. Because the form factors are independent on
the illumination, different lighting conditions can be simulated once the form factors are known.
The kernel of the form factor integral is called the differential form factor and corresponds to
the form factor between two differential areas as illustrated in Figure 2.6.

FdAdA′ =
cosθcosθ′

πr2 dA′ (2.22)

Before introducing ways to solve the form factor integral, a few properties that can be de-
rived from Equation 2.20 are shown.

A

A′

N

N ′

θ

θ′

dA

dA′
V (x,x′)

r(x,x′)

Figure 2.6 Notation for the form factor.

2.6.1 Properties

Form factors have two important properties that allow computing an unknown form factor from
known ones. These properties are the reciprocity and the additivity. Both properties intuitively
follow the definition of the form factor and can easily be derived. If Equation 2.20 is multiplied
by Ai i.e., the area of patch Pi, a symmetric expression independent of the patch area is obtained:

AiFi j =
∫

x∈Pi

∫
x′∈Pj

cosθcosθ′

πr2 V(x,x′)dx′dx (2.23)

Reversing sender and receiver yields the same expression resulting in a reciprocity relation-
ship:

AiFi j = A jFji (2.24)

An application of this principle can be seen in the radiosity equation (Equation 2.21). If this
equation is written in terms of power instead of radiosity, the indices of Fi j can be reversed (re-
call from the definition that Pi is the sender). This makes the formula more clearer, because the
terms being summed up can now be recognized as the sending (i.e., emitting and/or reflecting)
patches:
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AiBi = AiBei +ρi

N

∑
j=1

Fji(A jB j) (2.25)

The additivity rule for form factors states that the form factor from one patch to the union
of two other patches equals the sum of the individual form factors. Because the form factor
measures the proportion of the energy arriving at the receiver from a single source, the power
received by multiple patches can be added directly. Considering three disjoint patches Pi, Pj

and Pk the additivity is expressed by:

Fi( j∪k) = Fi j +Fik (2.26)

To measure the energy received from multiple disjoint patches however, the individual form
factors must be area weighted. The same explanation as before can be used here. Summing up
multiple fractions to obtain a new fractional part makes no sense. Instead the fractions must be
related to the whole environment (normalization) which is done by area averaging:

F(i∪ j)k =
AiFik +A jFjk

Ai +A j
(2.27)

2.7 Computing The Form Factor

Finding an analytic solution for the integral in Equation 2.20 was possible only for very simple
geometric configurations. In the heat transfer literature [How82] examples with the known
solutions can be found. For arbitrary geometries that occur in standard 3D scenes however,
numerical methods have to be applied. By subdividing the interacting patches and summing the
differential form factors (Equation 2.22)) an approximation to the form factor integral can be
obtained.

2.7.1 The Hemicube

As noted in Section 2.1.3 the energy arriving at a surface patch is proportional to the projected
solid angle of the incoming radiance. Thus, the form factor from a point x to a patch P can
be interpreted as the projection of the solid angle subtended by P down to the base of the
hemisphere:

Fx,P =
1
π

∫
ωP

cosθdω (2.28)

The construction can be seen in Figure 2.7 and is known as Nusselt’s analogy [Nus28].
To quickly compute the projected solid angle, the hemisphere can be approximated by a

hemicube [CG85]. Each side of the hemicube is subdivided into discrete cells, each storing a
precomputed delta form factor. These delta form factors are the differential form factors cor-
responding to the solid angles subtended by the cells. The actual projection then is performed
with the rendering pipeline (see Section 1.2). The camera parameters have to be defined in
such a way, that the camera is located at the center of the patch and a viewing angle of 90 de-
gree is used. Rendering the whole scene onto each side of the hemicube results in the desired
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N P

x
r = 1

FxP

N P

delta form factors

Figure 2.7 From Nusselt’s Analogy to the Hemicube: The form factor corresponds to the projected solid
angle.

projection. Instead of color values however, unique identifiers are attached to each polygon.
These identifiers when read back from the frame buffer, indicate which polygon was visible
(the so called item buffer technique). The form factor to a polygon in the scene is obtained by
summing up the delta form factors covered by that polygon’s projection. Due to hardware im-
plementations of the rendering pipeline the algorithm performs very well, although it requires
the graphics accelerator to render the scene 5 times for each patch. On the other hand, this
directly computes the point-to-area form factors to all patches in the environment. The disad-
vantage of the hemicube however is the fixed subdivision of the hemicube sides, often resulting
in aliasing artifacts. Improvements to this technique were made by using different resolutions
for the top and the sides of the cube [MT93] as well as reducing the cube to a single plane
[SP89].

2.7.2 Monte Carlo Integration

A more generic method of solving the form factor integral is using Monte Carlo integration
with a ray-casting approach. This technique can easily be used to determine area-to-area form
factors by sampling the areas of two patches. Consider the form factor from a differential patch
to a finite element:

FdA,A′ =
∫

A′
cosθcosθ′

πr2 V(x,x′)dA′ (2.29)

Area A′ can now be subdivided into smaller elements, approximating differential areas.
Evaluating the kernel of Equation 2.29 at the center of these elements and accumulating the
area weighted results gives an approximation of the form factor.

Another possibility is the summation of form factors from a differential area to a parallel
disc with area A′. For this simple geometric configuration an analytic formula describing the
unoccluded form factor is known as:

FdA,A′ =
A′

πr2 +A′ (2.30)
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The orientation of the disc relative to the differential area can be taken into account by
multiplying Equation 2.30 with cosθcosθ′. The full area-to-area form factor of two patches
can now be computed. A number n of randomly distributed sampling points is chosen on both
patches. This effectively subdivides the patches in elements of smaller size. The sampling
points are connected with rays that are checked for occluders. If an occluder is found, the
corresponding differential form factor is zero. Otherwise, Equation 2.30 is evaluated, using the
subdivided area ∆A′ = A′

n . Formally, the approximation of the area-to-area form factor using n
discs is given by:

Fi j =
A j

n

n

∑
k=1

cosθk
i cosθk

j

πr2 + A j
n

V (xi,x j) (2.31)

The ray-casting approach to simultaneously determine visibility and form factors has several
advantages. Scene structuring techniques like bounding volume hierarchies or space subdivi-
sion can be used to accelerate the visibility test. The quality of the test can easily be influenced
by the number of sample points, thereby trading off between accuracy and speed. Additionally,
a ray tracer can typically deal with a variety of shapes. Intersection tests with spheres or cylin-
ders can be carried out more efficiently and accurately than with the corresponding polygons.

2.8 The Radiosity Matrix

In the last sections the radiosity equation was derived and it was shown how the energy exchange
between surfaces can be computed by evaluating the form factor integral. To obtain a radiosity
solution that accounts for all interreflections between the surfaces of a scene, Equation 2.21 has
to be computed for all patches. These n equations with n unknowns (i.e., the radiosities) form
the following system of linear equations that has to be solved:




B1

B2
...

Bn


 =




Be1

Be2
...

Ben


+




ρ1F11 ρ1F12 . . . ρ1F1n

ρ2F21 ρ2F22 . . . ρ2F2n
...

...
...

ρnFn1 ρnFn2 . . . ρnFnn


 ·




B1

B2
...

Bn


 (2.32)

which can be transformed to:



1−ρ1F11 −ρ1F12 . . . −ρ1F1n

−ρ2F21 1−ρ2F22 . . . −ρ2F2n
...

...
...

−ρnFn1 −ρnFn2 . . . 1−ρnFnn


 ·




B1
B2
...

Bn


 =




Be1
Be2

...
Ben


 (2.33)

More compactly, this system of linear equations can be written as a matrix operating on the
unknown radiosity vector:

MB = Be (2.34)

Solving Equation 2.33 is equivalent to inverting matrix M, which is often referred to as the
form factor matrix. The entries of the matrix can be computed with the techniques shown in the
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last section. The most important property of the form factor matrix is its diagonal dominance.
That means, that the sum of the entries in each row except the diagonal element is not bigger
than the value of the diagonal element:

n

∑
j=1
j �=i

∣∣Mi j
∣∣ ≤ |Mii| ,∀i (2.35)

The entries on the diagonal of matrix M in Equation 2.33 all evaluate to 1 because the form
factor from a planar patch to itself is zero. On the other hand the form factors from one patch
to all other patches in the environment must be equal to 1, otherwise energy would be created.
Thus, the sum of all off-diagonal entries in a row must be smaller than 1 which makes the form
factor matrix diagonally dominant. This property guarantees convergence of some iterative
relaxation methods like Gauss-Seidel iteration or Jacobi iteration, that can now be applied to
solve the linear system [CG85].

2.8.1 Relaxation Techniques

Linear systems like Equation 2.34 can be solved with different relaxation techniques. These
methods work iteratively by providing an initial guess to the solution and then using in each
iteration the approximation obtained in the previous step. For the radiosity matrix a good initial
guess is provided by the vector of emissivities. The unknown radiosities are initialized with the
emissive values of the patches and can be used as a first approximation. The goal of the iterative
process is to minimize the difference between the actual solution and the current approximation.
Because the solution is unknown, the residual r can be used as a measure:

r(0) = MB(0)−Be (2.36)

The superscript denotes the iteration count. If all entries in the residual vector are zero, the
exact solution is found. Each iteration step thus updates the current residual and the most recent
guess.

From Section 2.8 it is clear that the diagonal elements of the form factor matrix are strictly
positive, i.e., Mii = 1 for all i. This allows for computing an entry of the solution vector using
all other entries:

Bi =
Bei

Mii
−∑

j �=i

Mi j

Mii
B j = Bei −∑

j �=i

Mi jB j (2.37)

Jacobi iteration

The Jacobi iteration takes each element Bi in turn and computes the solution using the current
guess. When a full iteration step is finished the current guess gets updated and is used in the
next iteration. Using the superscript notation, Equation 2.37 then becomes:

B(m)
i = Bei −∑

j �=i

Mi jB
(m−1)
j (2.38)
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Due to the assumption that the vector containing the current guess remains constant during
one iteration all entries in the solution vector can be updated simultaneously. However, this can
become a costly process especially in the radiosity setting. Typically only a few patches like
the light sources or the primary reflectors, contribute essentially to the visual appearance of the
solution. Updating all patches of the scene in each iteration step thus is often not necessary.

Gauss-Seidel iteration

To obtain a faster convergence rate, updated entries of the solution vector can be used in the
same iteration to compute new entries. The Gauss-Seidel method does not update the current
guess at once, but permanently uses the same vector and updates each element in place as soon
as it is available. Thus, to compute the k-th entry of the solution vector the k−1 entries of the
current iteration and the n− k entries of the last iteration are used:

B(m)
i = Bei −

i−1

∑
j=1

Mi jB
(m)
j −

n

∑
j=i+1

Mi jB
(m−1)
j (2.39)

The Gauss-Seidel method can physically be interpreted as an energy gathering technique.
Each step of an iteration updates one patch with the radiosities received from all other patches
in the environment. As explained in Section 2.6.1 the radiosity equation actually describes the
radiosity of a single patch in terms of reflected radiosities from all other patches. Thus, stepwise
evaluation of Equation 2.17 in a loop over all patches directly corresponds to the Gauss-Seidel
relaxation scheme. Figure 2.8 shows pseudo-code for a radiosity algorithm using this method.

/* initialize starting guess */
for (each i)

Bi = Bei

while(not converged) {
/* loop over all patches */
for (each i)

Bi = Bei + ρi ∑n
j=1, j �=i Fi jB j

/* display current solution */
render(B);

}

Figure 2.8 Pseudo-Code: Gauss-Seidel relaxation.

The vector of emissivities is used as the first approximation of the solution. Each full it-
eration, i.e., each loop over all patches simulates at least one reflection of light through the
environment. While the Jacobi iteration always computes a single reflection, the Gauss-Seidel
scheme can simulate several reflections in a single iteration which is the reason for its improved
convergion speed. Thus, the first loop considers the emitters only, while each further loop in-
corporates subsequent reflections which corresponds to evaluating the Neumann series given in
Equation 2.14. A convergence criterion for the radiosity algorithm is given by the maximum
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gain of energy during one iteration. Before updating Bi the old entry must be compared to the
new value and the difference is saved if it exceeds a previously stored one. Once the maximum
gain drops below a user supplied threshold, the relaxation is considered to be converged.

In a single step of an iteration, the algorithm accesses one row of the form factor matrix
to compute a single entry of the solution vector. In a full iteration all O(n2) form factors are
used and, once computed, can be re-used in the subsequent iterations. Therefore, this kind
of radiosity algorithms is called full-matrix method, because it requires storing the complete
form factor matrix in memory. Two reasons make this approach very questionable: the size
and the sparsity of the matrix. A scene comprising 10,000 polygons would require about 380
megabytes just to store the matrix. Additionally, in realistic scenes many entries of the matrix
are zero due to occlusion or because patches are facing away. The algorithms that will be
introduced in Section 2.10 attack both problems, i.e., they do not store the full matrix and more
important they will avoid computing unnecessary form factors, thereby drastically reducing the
complexity of the radiosity method.

2.9 Reconstruction

Once a radiosity solution is obtained an image has to be created and rendered to the screen.
Recall the rendering pipeline from Section 1.2. If the lighting step is exchanged by a radiosity
algorithm the (possibly hardware accelerated) rendering pipeline can be used to display the so-
lution. Due to the assumption of a constant radiosity per patch the result will be flat shaded. The
single radiosity value per patch is only scaled to the luminance range of the monitor and then
directly used as the color. This approach exhibits strong discontinuities between neighboring
patches. The lower left image of Figure 2.5 shows a flat shaded image of a radiosity solution.
A smooth shading as seen in the lower right image is much more appealing and gives the image
a photo-realistic look.

Obtaining a smoothly shaded image from a standard radiosity solution requires the recon-
struction of the radiosity function at each visible surface point. This can be done by either
interpolating the computed constant radiosities or by exactly determining the radiance at each
visible surface point by recomputing the point-to-polygon form factors to the environment.

2.9.1 Bilinear Interpolation

The most commonly used approach to generate a continuous shading from the constant radios-
ity values is interpolation. It has the great advantage of being available in hardware graphics
accelerators and all standard graphics libraries and is known as Gouraud shading [Gou71]. A
Gouraud shader requires color values at the vertices of each polygon and interpolates linearly
(for triangles) or bilinearly (for quadrangles) the color values for the interior points. Thus, from
the patch colors obtained by the radiosity algorithm the corresponding vertex colors have to be
generated. Figure 2.9 illustrates the computation of vertex radiosities. For interior nodes the
radiosity is just the average of the radiosities from the adjacent patches. Nodes along the border
can be treated analogously, however, extrapolation can give better results. Using a virtual node
x between nodes b and e, the radiosity at x would be Bx = B1+B2

2 . The extrapolated radiosity at b

25



THE RADIOSITY METHOD 2.9 RECONSTRUCTION

then evaluates to Bb = Bx +(Bx −Be) = B1 +B2−Be. To obtain valid color values the resulting
radiosities must be clamped to zero when using extrapolation.

B = B1+B2+B3+B4
4

B = B1 +B2 −Be

B = B2 +(B2 −Be)

a b c

d e f

g h i x

1 2

3 4

Figure 2.9 Computing vertex radiosities.

Although radiosity images look better when smoothly shaded no additional information
was added. In fact the interpolation might introduce severe artifacts. The radiosity function is
in general not linear, which results in different gradients over neighboring patches. Due to the
eye’s sensitivity for first derivative discontinuities this can easily be noticed. The interpolation
of vertex radiosities should obviously be done in object space. Gouraud shading, however, is
a scanline technique which works in screen space. The interpolation is carried out after the
nonlinear projection of the vertices to the screen in horizontal scanlines. Thus, a perspective
correction should be applied during interpolation which is only available on some graphics
accelerators [CW93]. Further shading artifacts are introduced by T-vertices in the mesh. If
the radiosity mesh is subdivided adaptively the degree of subdivision between adjacent patches
can be different. The Gouraud interpolation over the coarse element will result in a different
color value at the T-vertex then the actual color value obtained from the radiosity algorithm. To
avoid T-vertices elements can be triangulated before rendering, thereby connecting T-vertices
with corners of adjacent patches [BMSW91] (see Figure 2.10). If the subdivision level of
neighboring elements diverges by more than one, additional elements must be created which
might degrade the rendering performance.

Figure 2.10 Eliminating T-vertices.

2.9.2 Radiosity Textures

Using a feature found on most modern graphics accelerators the draw-backs of bilinear interpo-
lation using Gouraud shading can effectively be reduced. Instead of the radiosity mesh a texture
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containing the same information is applied to the untesselated polygon which is then rendered
using texture mapping hardware.

Texture mapping belongs to the last step of the rendering pipeline and is performed during
rasterization. This allows for shading each pixel individually by looking up a color value in the
corresponding texture map. Exactly like Gouraud shading the process is carried out in screen
space. A perspective correction however, is standard on modern graphics adapters providing
texture mapping support.

In [BGB97] the authors give an algorithm that converts an adaptively subdivided mesh in
a texture map. The biggest advantage of this approach is the elimination of T-vertices. The
idea is to create a texture with a resolution corresponding to the finest subdivision level of the
polygon. Each entry of the texture map then receives the vertex color of the corresponding
vertex of the radiosity mesh. Entries without a corresponding vertex belong to regions of a
coarser subdivision. This is exactly where T-vertices occur. The empty texels can be filled
by interpolating from the neighboring entries, thereby eliminating the T-vertices. Figure 2.11
illustrates this process. Numbers correspond to computed vertex radiosities and letters represent
interpolated radiosities. The polygon was subdivided twice which results in a 5x5 texture.
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T-vertices

Figure 2.11 Constructing radiosity textures (after [BGB97]).

Once the textures are defined they are mapped onto the original scene polygons. This pro-
cess dramatically reduces the number of vertices that have to be processed by the graphics hard-
ware. A bilinear filter which corresponds to the Gouraud shading discussed above smoothly
’stretches’ the texture over the domain of the polygon. In Figure 2.12 radiosity textures are
compared to standard Gouraud interpolation for a mesh containing T-vertices.

To achieve smoothness not only in the value of the radiosity function (C0 continuity) but
also in its first derivative (C1 continuity) Bastos et al. propose a bicubic reconstruction and
filtering [BGB97]. The vertex radiosities are treated as control vertices of bicubic patches and
the missing colors are obtained by interpolating the bicubic patch. The display of the texture is
done using bicubic filtering available on high-end graphics hardware2.

Another reconstruction technique to generate radiosity textures has been proposed in [KSS97].

2The SGI RealityEngine2 provides an OpenGL extension that allows for bicubic filtering of texture maps.
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Figure 2.12 Reconstruction methods. The left image shows a Gouraud shaded image from a mesh
containing T-vertices. Notice the artifacts in the marked regions. In the right image the
meshes from the left wall and the bottom are replaced by radiosity textures, which results in
a higher visual quality.

The authors successfully apply binary subdivision schemes used for subdivision surfaces [Loo87]
to reconstruct the radiosity function over a patch with high visual quality.

2.9.3 Pixelwise Reconstruction

If the goal is to achieve a single high-quality image of a radiosity solution more effort can be
spent on the reconstruction. The interpolation methods described above are capable of rendering
multiple images per second, making them suitable for realtime walkthroughs. The time for
pixelwise reconstruction can easily exceed the time spent for computing the radiosity solution
but it can also enhance the image by view-dependent effects like mirror reflections.

Similar to the ray-tracing algorithm (Section 1.4.1) rays are traced through each image pixel
into the scene. If an object is hit, the form factors from the surface point to the environment
must be determined. To compute the correct radiosity for the given pixel, the radiosities from
all contributing surfaces is gathered and the radiance reaching the eye is determined (Figure
2.13). During the standard radiosity algorithm data structures associated with the patches can
be filled to allow quick access to the contributing patches. This process is also known as final
gathering. The Hierarchical Radiosity algorithm that will be explained in the next sections
provides a natural way to maintain the required data structures.

The pixelwise reconstruction method can also be considered as a second pass of the radiosity
algorithm. The first pass computes the view-independent global illumination due to diffuse
reflectors. In the second pass view-dependent effects like highlights or mirror reflections can
be incorporated [Rei92]. The shading model of the second pass uses the diffuse colors obtained

28



THE RADIOSITY METHOD 2.9 RECONSTRUCTION

Figure 2.13 Pixelwise Reconstruction. The left image shows severe artifacts at the edges and inside
of the triangle’s shadow. Pixelwise reconstruction in the right image done via ray tracing
completely eliminates these shading artifacts. Note the reddish color bleeding in the shadow
due to reflection off the triangle’s underside.

from the radiosity solution and spawns reflection rays to add the specular contribution. This can
easily be achieved by a standard ray tracer.

2.9.4 Textured Surfaces

To add more realism to a scene texture maps are often applied to object surfaces [JB76]. If a
radiosity solution of a textured scene is required the algorithm has to incorporate the texture
detail during the energy exchange and while performing the reconstruction step.

To account for the surface texture during the solution an average texture value is computed
for each patch [CCWG88]. This value is then used as the reflection parameter ρi to compute the
average radiosity of the patch. In the rendering step however, the original texture in its full detail
should be used. Using the entries of the texture map the irradiance of the textured surface can
be modulated to compute a correctly lit image of the texture map. Recall from Section 2.1 that
irradiance is reflected from a sending patch and converted to radiosity at the receiving patch.
This conversion is performed by multiplying the irradiance by the local reflection operator ρi:

Bi(x) = Bei +ρi(x)Ei ⇒ Ei =
Bi −Bei

ρi
(2.40)

Once the irradiance is obtained from a textured patch using Equation 2.40 the pixelwise
radiosities must be reconstructed. Again, this is done by multiplying with the reflectivity that
is actually stored in the texture map. Each pixel has to be multiplied with the irradiance of the
patch, an operation which is supported by texture mapping hardware3.

The method described above first computes an average radiosity for a textured patch which
is then converted to irradiance to avoid accounting for the reflectivity twice. A more straightfor-
ward way to incorporate textures in a radiosity solution is to store irradiances with each patch

3Texture mapping hardware typically supports two modes of operation: modulate and decal. In the modulate
mode each pixel of the texture is multiplied with the fragment’s color before rendering. In decal mode the texture
is directly applied, thereby overwriting the previous color.
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Figure 2.14 Radiosity with textures.

Figure 2.15 Closeup of Figure 2.14 with a high-resolution texture.
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instead of radiosities [GH96]. Additionally, the average reflectivity of a patch should be com-
puted after each subdivision which results in more accurate local reflection operators. Texture
maps can also be applied to emissive surfaces. The emissivity of the patch is replaced by an
average value like before in the case of textured reflectors. Because light sources are typically
modeled with a zero reflectivity this approach does not interfere with the described algorithms.
Figure 2.14 shows a radiosity solution of a textured environment. The monitor has an emissive
texture and the material of the desk and the floor is modeled by a reflective texture. A closeup
of the scene is displayed in Figure 2.15, showing the high-resolution texture that models the
paper on the desk.

2.10 Advanced Radiosity Algorithms

As pointed out, the full-matrix solution technique for the radiosity matrix presented in Sec-
tion 2.8.1 has several disadvantages and quickly becomes impractical when applied to realistic
scenes. The following sections describe radiosity algorithms that more efficiently solve the lin-
ear system in order to obtain correct images. The progressive refinement approach (Section
2.10.1) will use another relaxation technique that is superior to Gauss-Seidel iteration in terms
of memory consumption and convergence rate. The hierarchical methods described in Sections
2.10.3 and 2.10.4 will reduce the number of form factors that have to be calculated. Actually,
they isolate blocks of entries in the form factor matrix that can be approximated by a single
value.

2.10.1 Progressive Refinement

The Gauss-Seidel iteration could be used to solve the radiosity matrix due to its diagonally
dominance. To find a more efficient solution technique for the special case of the radiosity
setting it is important to note, that the form factor calculations influence the overall computation
time the most. A relaxation technique that probably reduces the number of form factors that
have to be computed is the Southwell relaxation. While the Gauss-Seidel technique could be
interpreted as an energy gathering technique, the Southwell relaxation actually reverses this
process. Instead of relaxing each residual in turn, the row with the largest residual will always
be selected. This can be interpreted as a shooting technique, where a single patch shoots its
energy to the rest of the environment (Figure 2.16).

In [CCWG88] this solution technique was used to implement the progressive refinement
radiosity algorithm: Additionally to the current radiosity estimate Bi, each patch maintains an
unshot radiosity ∆Bi, representing the residual entry ri. The algorithm then always selects the
patch with the greatest residual (i.e., unshot radiosity) as the current source. After computing
form factors from the source to the patches of the environment the radiosity is shot to the other
patches, thereby updating their radiosity estimates and unshot radiosities. The source’s unshot
radiosity is set to zero afterwards.

This algorithm has two advantages over the full matrix solution using Gauss-Seidel iteration.
Because each iteration updates the whole environment it makes sense to display the current
solution after each relaxation step. This gives the user a visual control over the simulation and
allows for an interruption if the quality of the current solution is already satisfactory. The other
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Figure 2.16 Gathering vs. Shooting. The left side shows the gathering process and the update of a single
entry of the solution vector. The shooting process shown in the right side updates the whole
environment at once.

advantage is the reduced memory consumption of this algorithm. The full matrix of form factors
need not be present in memory to perform an iteration step. Each step only requires the n form
factors from the source to all receiving patches, i.e., one column of the form factor matrix. This
column is computed in each iteration, and has to be recomputed if a source is selected to shoot
several times. Although this requires several form factors to be computed multiple times the
savings in memory clearly justify this approach. On the other hand, form factors to patches that
will never be selected as shooters, are not computed at all.

Ambient Correction

The improvement in convergence speed of the Southwell relaxation is due to always selecting
the ’brightest’ patch for shooting. However, in the beginning of the simulation the radiosities on
the receiving patches (which make up most of the scene) tend to be rather dark. It takes several
iterations until interreflections reach patches that are not directly visible from the primary light
sources. Cohen et al. [CCWG88] remedy this situation by adding an ambient correction term to
the radiosities for display. This additional term accounts for the interreflections of light in the
environment that have not been computed so far and it is reduced after each iteration.

The ambient term is computed by simulating the effect of future interreflections that depends
on the total unshot energy and the average reflection characteristic of the environment. The
average unshot energy, which is the area weighted sum of all residual terms is given by:

U = ∑N
i=1 ∆BiAi

∑N
i=1 Ai

(2.41)

The reflection characteristic of the environment is expressed by the sum of the area weighted
patch reflectivities:
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ρave = ∑N
i=1 Aiρi

∑N
i=1 Ai

(2.42)

Similar to the physical explanation in Section 2.4, the influence of the average reflectivity
drops off after each reflection, resulting in the following term for the reflection factor:

R = 1+ρave +ρ2
ave +ρ3

ave + ... =
1

1−ρave
(2.43)

Combining these equations gives an estimate on the total amount of radiosity a patch will
receive during the simulation, i.e., the average of the unshot radiosities multiplied by the average
reflection factor. This ambient correction term is added to the patch radiosities just for display
purposes (Equation 2.44). It must not be used to update the radiosities of the simulation which
are stored in the patches.

Bdisp
i = Bi +ρiRU (2.44)

After each iteration U gets updated and finally goes to zero while the radiosity solution
process converges.

2.10.2 Substructuring and Adaptive Subdivision

The quality of a radiosity solution based on a regular mesh heavily depends on the degree of
subdivision that is applied to the initial surfaces. The radiosity function has to be approximated
good enough by the constant elements to allow for a reconstruction step free of artifacts as
described in Section 2.9. A regular mesh has to be very fine to capture all shadows and other
variations in the radiosity function. In regions without shadows however, this high accuracy is
not needed but only increases time and memory consumption of the algorithm.

Reducing the size of a patch, and thereby increasing the total number of patches, should be
restricted to the receiving patches. The higher resolution is needed to capture the local details
of the illumination. When acting as a sender however, the higher resolution will not severely
change the illumination of a distant patch. In fact, an average value over several subdivided
patches will be accurate enough.

This observation led to an algorithm that uses a two-level hierarchy to distinguish between
the high accuracy needed when receiving energy and a lower accuracy when emitting or re-
flecting energy [CGIB86]. The scene is first subdivided into a mesh of patches. These patches
are then further refined to elements which are stored with each patch. When a patch is about
to receive energy, the finer resolution is used to increase the accuracy of the radiosity repre-
sentation. Because the initial patches and not the elements are used as senders, the number of
iterations that have to be performed is reduced. This was the first radiosity algorithm, that used
multiple (i.e., 2) levels of detail for the representation of the radiosity function. The hierarchical
radiosity algorithm (Section 2.10.3) extends this idea to a full hierarchy of multiple levels over
each input polygon.

The problem with the simple patch-element approach is that the mesh has to be created a
priori, i.e., in advance. An adaptive mesh refinement, that subdivides the elements of a patch
automatically as needed, results in a much better simulation. Changes in the radiosity function

33



THE RADIOSITY METHOD 2.10 ADVANCED ALGORITHMS

Figure 2.17 Adaptive subdivision. A cube is illuminated from above and casts a shadow on the floor and
the walls of a room. The shadow boundaries and the changes in the radiosity function are
captured by an adaptive subdivision scheme. The lower pictures show the floor polygon of
the simple scene.

over a surface can not be predicted in advance, thus the mesh of elements has to be refined when
more information of the radiosity function is available. A quadtree data structure can be used to
represent the subdivision of a patch into elements. This data structure also allows for a simple
error estimation of the radiosity function. Because the local neighbors are easily accessed in
a quadtree, the radiosity gradient over a patch can be determined and used as a subdivision
criterion [CGIB86]. As long as the radiosity gradient over any patch exceeds a given threshold
the patch is subdivided and a new iteration is started. Figure 2.17 shows a simple scene, where
the mesh has been created during the simulation by an adaptive subdivision scheme.

2.10.3 Hierarchical Radiosity

The combination of substructuring and adaptive subdivision led to one of the most important ra-
diosity algorithms called Hierarchical Radiosity [HS90, HSA91]. Inspired by ideas to solve the
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N-body problem, receivers and emitters are substructured into several levels of detail, resulting
in a multilevel hierarchy for each input polygon (Fig. 2.18).

Figure 2.18 Quadtree interaction. Polygons are substructured and interact at an appropriate level. The
corresponding quadtrees are shown below.

The N-body problem is the problem of computing the reaction of n objects or particles
to the gravitational forces that each of them excerts on the other n− 1 particles. In order to
avoid computing the O(n2) interactions, a clustering approach was made, that groups several
particles to a single object. This was motivated by the observation, that the accuracy to compute
distant forces was typically much higher than the accuracy of the representation of the model.
Because the gravitational force drops off with the squared distance (exactly as in form factor
computations), most of the n(n− 1)/2 possible interactions hardly influence the computable
solution and can be approximated using much fewer and coarser interactions.

The biggest similarity between the N-body problem and hierarchical radiosity is the use of
multiple levels of detail to compute interactions with a given accuracy. The construction of the
hierarchy, however, is quite different. Polygons are not clustered to bigger entities but large
input polygons are subdivided during the algorithm in a top-down manner. The extension to
a full clustering algorithm for radiosity was developed later and will be explained in Section
2.10.4.

The ideas of the N-body problem can easily be transferred to the radiosity setting as demon-
strated in the following example. Consider a room with a table and a small object like a book on
that table. To compute the shadow that is cast by the book on the top of the table, the resolution
of the table polygon must be very high to capture all details. The illumination of a distant wall
due to the table, however, will probably not change even when the book is moved. In this case
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the table polygons need only be represented by a coarse resolution. Thus, depending on the
distance and the direction of the interaction, several representations of the same polygon should
be used to accurately model the flow of light.

Hierarchical Refinement

In contrast to earlier radiosity algorithms, input scenes for Hierarchical Radiosity do not need
to be subdivided in advance. Starting point for the algorithm is the set of untesselated polygons
that describe the scene objects. The subdivision hierarchy associated with each input polygon
(Figure 2.18) is created during the solution process as needed. This is performed by comparing
all input polygons with each other and, due to some refinement criterion (the oracle), subdi-
viding them in a quadtree-like manner. The goal of the subdivision step is to establish links
between pairs of polygons that can be used for the energy transport in the radiosity solution
phase. The refinement criterion guarantees that the amount of energy that is transported over
each link is nearly the same for all links. This ensures that the accuracy of the solution is well
balanced.

The subdivision process can be formulated by a recursive procedure that is called for each
pair of input polygons. If a link can be established at the current level the function returns after
creating the link. If the refinement criterion requires a subdivision one of the input polygons
is subdivided and the function is called recursively, this time trying to establish links between
the other polygon and the new childnodes. A user supplied area threshold Aε guarantees that
polygons are only subdivided to a certain degree. Figure 2.19 shows pseudo-code for the hier-
archical refinement procedure.

refine(p, q)
{

if(oracle(p,q) == OK or
(area(p) < Aε and area(q) < Aε)) {

link(p,q)
} else {

if(subdiv(p,q) == p) {
// p was subdivided
for all children c of p

refine(c,q)
} else {

// q was subdivided
for all children c of q

refine(p,c)
}

}

Figure 2.19 Pseudo-Code: Hierarchical Refinement.

The link function computes the form factor from p to q by one of the methods presented in
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Section 2.7 and appends a link node consisting of the form factor and a pointer to the sender
to a list that is maintained by the receiver. Links that were established between leave nodes
of two hierarchies directly correspond to entries in the form factor matrix. They represent the
energy exchange between two single elements in the mesh. Links that connect arbitrary nodes
in the hierarchies therefore represent groups of interactions. These groups of interactions are
approximated by a single average value (i.e., the form factor stored with the link) and can be
interpreted as blocks in the form factor matrix. Figure 2.20 shows the result of the refinement
algorithm when applied to two perpendicular polygons.

Figure 2.20 Hierarchical subdivision and links at various levels. (after [HSA91])

The Oracle

The refinement criterion or oracle that decides if a link between two polygons should be estab-
lished at a certain level must be designed carefully. It is obviously responsible for the quality
of the solution and, as can be seen in Figure 2.19, it is called very often thereby influencing the
total running time of the algorithm. In order to balance the energy transport over all links, the
oracle proposed in [HSA91] computes an approximation of the form factor by evaluating the
geometrical expression inside the form factor integral (defined in Equation 2.20):

cosθcosθ′

πr2 (2.45)

The oracle is actually used in the algorithm as an error estimator. If the error induced by cre-
ating a link at a given level exceeds some user supplied threshold Fε the corresponding polygons
must be subdivided in order to reduce the error. The oracle given in Equation 2.45 computes a
rough approximation of the unoccluded form factor which is fast to evaluate but also inaccurate.
This value is then directly used as a measure of the error of the simulation. Because large form
factors do not always indicate large errors in the energy transport, unnecessary subdivisions
might be introduced.

Oracles that compute bounds on the error of the radiosity transfer have been successfully
used by [GH96] and [SSS96]. In section 2.10.4 the use of error bounds will be discussed and
its application in hierarchical clustering algorithms will be shown.

Solving the system

During the refinement procedure an element mesh and interacting links containing form factors
are created. The radiosity system can now be solved using the Jacobi or Gauss-Seidel iteration
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method. For each polygon the list of links is traversed and energy is gathered over the incoming
links. This gathering procedure is performed repeatedly until a convergence criterion is met.

When radiosity is gathered over a link the current radiosity approximation of the sending
element is multiplied with the form factor stored in the link and weighted by the receiving
element’s reflectivity. Because each element is part of a hierarchy representing a single input
surface however, the gathered radiosities can not directly be stored. Radiosities gathered at any
level of the hierarchy must be propagated through the complete hierarchy to guarantee that the
correct radiosity values are stored with each node. Because radiosity has units of power per area
the radiosities gathered at a certain level can directly be added to the nodes of the next level.
This pushes down the radiosities to the leave nodes of the hierarchy where the leave’s own
gathered radiosity and emissivity (if available) are added. To correctly update the inner nodes
of the hierarchy, the radiosities of the child nodes must be averaged on the way back to the root.
From the form factor properties derived in Section 2.6.1 directly follows, that the radiosity of
a parent node is the area average of its children radiosities. The upward way therefore pulls
radiosities from the leaves to the root which gives the complete traversal the name push/pull
process.

The hierarchical radiosity algorithm can now be formulated as follows: In an initial linking
step all pairs of input polygons are linked to create a starting point for the recursive link re-
finement procedure. Once a network of links is established the iterative solution process starts
gathering radiosity over the links and subsequently propagates the radiosities throughout the hi-
erarchy using the push/pull procedure described above. The gathering and push/pull procedures
are repeated until convergence. Separating gathering and propagation through the hierarchy cor-
responds to the Jacobi iteration where the solution vector is updated only after a full iteration.
Using the faster Gauss-Seidel technique for hierarchical radiosity is discussed below. Figure
2.21 shows pseudo-code for the full algorithm. The gathering and push/pull procedure is given
in Figure 2.22.

/* initial linking */
for (each polygon p)

for (each polygon q)
if(p ! = q)

refine(p,q);

/* solving */
while (not converged) {

for (each input polygon p) gather(p);
for (each input polygon p) pushpull(p, 0);

}

Figure 2.21 Pseudo-Code: Hierarchical Radiosity.
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gather(p)
{

p.Bg = 0 /* initialize gathered radiosity */
for (all incoming links l) {

p.Bg = p.Bg + l. f orm f actor ∗ l.q.Bs ∗ρp

}
for (each child c of p)

gather(c);
}

pushpull(p, Bdown)
{

if(p has children) {
Bup = 0
for (each child c of p)

Bup = Bup + Ac/Ap ∗ pushpull(c, p.Bg +Bdown)
} else {

/* p is leave node */
Bup = p.E + p.Bg + Bdown

}
p.Bs = Bup

return Bup

}

Figure 2.22 Pseudo-Code: Gathering- and Push/Pull-Procedure.

Analysis

To compute the complexity of the algorithm, the number of links must be counted. Each link
represents one interaction and requires the calculation of a form factor. For a full matrix solu-
tion this would result in a complexity of O(n2). The form factor matrix that results from the
hierarchical refinement, however, has fewer than n2 blocks. As can be seen in Figure 2.20, the
number of links leaving a patch is the the same for all subdivision levels. Due to the oracle,
which compares the form factor estimate for a link with a constant threshold, the form factor
stored with each link is bounded by Fε. The sum of all form factors associated with a leave el-
ement must equal 1 as pointed out in Section 2.8, thus the form factors for a leave node and all
its ancestors is approximately equal to the constant 1/Fε. Because each patch does not interact
with all other patches but a constant number dependent on Fε the number of blocks in the form
factor matrix is proportional to n. Thus, the complexity of the hierarchical radiosity algorithm
is O(n), which is asymptotically better than previous radiosity approaches.

It is important to note, that the above analysis relates the complexity of the algorithm to n,
the number of links which is proportional to the number of elements in the finite element mesh.
The initial linking step however, compares all pairs of input polygons before the solution process
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starts. This results in a total complexity of O(k2+n), with k being the number of input polygons.
From this observation it is clear, that scenes containing mainly large polygons are best suited for
the hierarchical radiosity algorithm. Polygons that are too small to be further subdivided quickly
turn the algorithm in a quadratic algorithm similar to the full matrix solutions discussed earlier.
This situation arises for examples when curved surfaces are part of the scene. To approximate
the geometry of a curved object, many small polygons are needed. These polygons typically
will never be subdivided by the refinement procedure, resulting in a ’worst-case’ input. A
solution to this problem will be presented in Chapter 3.

Improvements

BF-refinement The adaptive refinement induced by the oracle function results in high
subdivision levels in regions of large form factors. Due to the 1/r2 term in the form factor,
this is typically the case where polygons are close to each other or share a common edge. The
idea of the oracle function is to balance the energy transport over all links, i.e., the error should
be the same for all transport paths. A more accurate error estimate can be achieved when
the radiosity that is transported over a link is also considered. Thus, large errors in the form
factor can be tolerated if the amount of transported energy is small. The algorithm outlined
above must be changed slightly to incorporate this BF-refinement (radiosity times form factor)
strategy. Because the radiosity that will be transported over a link is not known in advance, a
progressive algorithm must be used. The initial linking now just links the input polygons but
does no hierarchical refinement. This can be achieved by using a temporary large area threshold
in the first pass to prevent polygons from subdivision. In the following loop energy transport
and refinement are performed alternately. The refinement procedure checks existing links for
the amount of transported energy and possibly refines them by deleting the current link and
creating finer links in the next level. After the next energy exchange all links are tested again
and so on until all links transport approximately the same amount of energy. Pseudo-code for
the modified main loop of the hierarchical radiosity algorithm is given in Figure 2.23.

Multigridding During the progressive BF-refinement, it is also possible to gradually
change the threshold BFε which is used by the oracle to determine if a link should be refined.
The algorithm starts with a large error threshold and once the system is solved, the thresh-
old is reduced and the system is solved again, using the links from the last pass and refining
them where necessary. This multigridding technique first computes a coarse solution and pro-
gressively refines the radiosity mesh to the desired accuracy. The result is a more balanced
mesh and the solution often converges more quickly because the coarse solution which can be
obtained in short time is a better starting point for a more accurate link refinement than the
original mesh.

Gauss-Seidel iteration The original Hierarchical Radiosity algorithm [HSA91] used the
Jacobi iteration to solve the linear system. Gathering and push/pull was formulated in two sep-
arate passes which requires more iterations to converge. In [Gib95] a single pass solution is
formulated that updates radiosities in place which corresponds to a Gauss-Seidel iteration. Ra-
diosities are gathered and directly pushed down the hierarchy from the current level. At the
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tmp = Aε
Aε = ∞
/* initial linking */
for (each polygon p)

for (each polygon q)
if(p ! = q)

refine(p,q);
Aε = tmp

done = FALSE;
while(done == FALSE) {

/* solving */
while (not converged) {

for (each input polygon p) gather(p);
for (each input polygon p) pushpull(p, 0);

}
done = TRUE;
/* refinement */
for all links l

if(refineLink(l) == FALSE)
done = FALSE;

}

Figure 2.23 Pseudo-Code: BF-refinement.

leave nodes the emittance is added and the radiosities are pulled up using the area averaging as
described for the push/pull procedure. The pseudo-code for the Gauss-Seidel gathering proce-
dure is given in Figure 2.24.

2.10.4 Clustering

The analysis of the hierarchical radiosity algorithm resulted in a time complexity of O(k2 +n).
Thus, if k2 is much bigger than n, the costs of the initial linking step are predominant which
makes the algorithm unusable for scenes containing many small polygons. By extending the
hierarchical radiosity algorithm to object hierarchies and allowing energy exchanges between
objects or clusters of objects to take place, the linking costs could be lowered dramatically
[Sil95]. Links that had previously to be established between all pairs of surfaces and that often
transported only a small amount of energy can be avoided by using cluster links. This is espe-
cially useful when objects are well separated. As soon as objects are close enough, the original
hierarchical radiosity algorithm is used and links are established between single polygons or
mesh elements to provide a sufficient accuracy. Figure 2.25 shows an example of cluster links
and polygon links between two objects.
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gather(p, Bdown)
{

for (all incoming links l) {
Bdown = Bdown + l. f orm f actor ∗ l.q.B∗ρp

}

if(p has children) {
p.B = 0
for (each child c of p) {

gather(c, Bdown)
p.B = p.B + c.B ∗ Ac/Ap

}
} else {

/* p is leave node */
p.B = p.E + Bdown

}
}

Figure 2.24 Pseudo-Code: Gathering procedure using Gauss-Seidel iteration. (after [Gib95])

Volume Form Factors

The idea of Sillion’s clustering algorithm is to treat object clusters as volumetric objects that
scatter light isotropically. An object that contains a number of polygons with arbitrary orienta-
tion can be seen as a volume with an extinction coefficient κ, that describes the reduction of light
when it travels through the volume due to absorption and scattering. The reduction of light due
to scattering alone is called the albedo. The transmittance of a medium along a path describes
the fraction of light that is neither absorbed nor scattered and is given by:

τ(s) = e−
∫ s

0 κ(u)du (2.46)

The power that is emitted by an isotropic volume element k can be computed using the
equivalent area of a volume [RT87]:

Pk = 4κkVkBk (2.47)

The term 4κkVk is used analogously to the area of a surface element when computing the
power emitted by a surface, thus it can be seen as the equivalent area of a volume element. On
the other hand, if a volume V is given that contains a number of polygons with the total area A,
the extinction coefficient κ can be computed by:

κ =
A

4V
(2.48)

Using volume scattering methods, the energy exchange between volumes and surfaces can
be computed very similarly by the standard radiosity formula:
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Figure 2.25 Cluster links and polygon links. Links for well separated objects can be represented by a
single cluster link that must be refined for closer objects.

Bi = Bei +ρi

N

∑
j=1

Fi jB j (2.49)

where ρi denotes the albedo for volumes and the reflectance for surfaces respectively. Form
factors between the possible combinations of volumes and surfaces can be calculated using the
formulas given in Table 2.2.

Frow−column Surface j Volume k

Surface i 1
Ai

∫
Ai

∫
A j

τ cosθi cosθj

πr2 dA jdAi
1
Ai

∫
Ai

∫
Vk

τκ kcosθi
πr2 dVkdAi

Volume m 1
Vm

∫
Vm

∫
A j

τ cosθj

4πr2 dA jdVm
1

Vm

∫
Vm

∫
Vk

τκ k
4πr2 dVkdVm

Table 2.2 Form factors between volumes and surfaces. (after [Sil95])

Monte Carlo integration as described in Section 2.7.2 can be used to evalute the form factor
integrals, where the sample points are distributed over the surface or inside the volume. Using
these formulas the hierarchical radiosity algorithm can be extended to volumes. Links are now
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established between volumes and/or surfaces to be able to transport energy between hierarchy
levels above the input polygons. Link refinement is also driven by an oracle function that
evaluates the current error of energy transfer.

Link refinement

In contrast to the surface algorithm where a polygon is never linked to itself, the clustering
algorithm uses self-links for clusters to represent the energy exchange that may occur inside the
cluster. In fact, the whole algorithm starts with a self-link of the top-level cluster enclosing the
whole scene geometry. This results in the most important advantage compared to the surface
based hierarchical radiosity algorithm: the quadratic initial linking phase is eliminated and
replaced by a single self-link that is refined when the algorithm proceeds. The refinement of a
self-link requires linking of all pairs of children inside the cluster, where child clusters receive a
self-link for future refinement (see Figure 2.26). The refinement of a self-link can be performed
in constant time, thus the complexity of the hierarchical radiosity algorithm using clustering
drops from O(k2 +n) to O(k +n) = O(n).

Figure 2.26 Refinement of self-links.

Hierarchy Creation

The clustering algorithm relies on a hierarchy above the input polygons. To automatically
group polygons into clusters that can be hierarchically refined, several techniques can be used.
In [Sil95] using an axis-aligned k-d tree or an octree is proposed. Hierarchies of bounding
volumes [GS87] are also possible but care must be taken to find the optimal place to insert new
surfaces into the hierarchy to minimize the overlap of bounding volumes [Gib95]. In Chapter
5 this topic will be discussed in more detail and the application of a new scene structuring
algorithm for radiosity clustering will be presented.

Related work

Several authors have worked on the subject of radiosity clustering improving its usefulness for
very large radiosity computations even more. Different linking techniques, the use of error
bounds and the extension to non-diffuse surfaces have been proposed.
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Linking Smits et al. [SAG94] developed their clustering algorithm simultaneously to
Sillion but without the ideas from the volume scattering method. They present a different link-
ing scheme that comes at a higher cost but may have a better accuracy than the isotropic volume
assumption. When linking two clusters which contain m and n surfaces respectively, the goal is
to avoid creating m∗n polygon links as required by hierarchical radiosity. Instead the transfer
from all source polygons is averaged by a single value that is distributed to the receiving poly-
gons. The averaging and distributing takes the orientation and visibility of each polygon into
account. This reduces the costs of linking to m+n operations and is called α-linking. A more
inaccurate and faster approach are β-links that are similar to Sillion’s method. By ignoring the
orientation of the polygons inside each cluster and assuming a constant distance between the
source and receiver polygons, linking between two clusters can be achieved in constant time
(Figure 2.27).

Figure 2.27 α-links and β-links between clusters. (after [SAG94])

Error bounds The BF-refinement strategy relies on the assumption that the size of the
error that occurs in an energy transfer is proportional to the product of radiosity and the form
factor. A larger value indicates a larger error and results in a subdivision of the sender or the
receiver. Computing bounds on the error can result in a better error estimate that leads to fewer
or more accurate subdivision. Lischinski et al. [LSG94] used an error bounding technique
for hierarchical radiosity that computed upper and lower bounds on the form factor and the
radiosity for each transfer. His gathering- and push/pull-procedures treat the upper and lower
bound of the radiosity exactly like the ’real’ radiosity value to ensure a correct propagation of
error bounds through the hierarchy. These ideas were applied by Gibson to radiosity clustering
[GH96]. In contrast to [LSG94] where only the variation of the kernel function is considered he
extends the computation of error bounds to the visibility term and to the varying reflectance of
surfaces due to texture maps. Stamminger used error bounds to efficiently compute the radiosity
for general reflectors [SSS97b] by incorporating bounds on the curvature of a surface.

Radiance The clustering technique has also been applied to non-diffuse surfaces. Com-
puting radiance solutions for large environments quickly becomes impractical, due to the com-
plexity of these algorithms. The extension of hierarchical radiosity to non-diffuse surfaces
resulted in an O(k3 + n) algorithm for the initial linking that only allows a few hundred input
surfaces to be used [AH93]. Clustering seems to be a promising approach for this problem. In
[SDS95] Sillion extends his radiosity clustering algorithm by storing with each surface or clus-
ter a number of directional distributions representing the radiant properties of the element. To
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efficiently store these distributions spherical harmonics are used4. Using these data structures
and a modified gathering and push/pull procedure leads to up to 3 times more computation time
for purely diffuse scenes when compared to the traditional approach. Thus, the integration of
non-diffuse reflectors in a clustering algorithm is possible at a moderate increase of costs.

In [CSS96] Christensen et al. combine their wavelet radiosity algorithm with the clus-
tering technique presented by Smits et al. ([SAG94]) to derive a radiance clustering algo-
rithm. Wavelets were successfully applied to the global illumination problem before ([SGCH93,
GSCH93, SH94]). The hierarchical nature of wavelet bases suggests the approximation of the
radiance function by linear combinations of a wavelet basis and using this representation in the
hierarchical radiosity environment. Christensen used a mapping of the directions of the hemi-
sphere to points on the unit square to be able to construct a wavelet basis for radiance using the
domain [0,1]4. This avoids the large storage costs induced by the spherical harmonics used by
Sillion. To achieve high quality solutions, images are rendered using the final gathering tech-
nique as described in Section 2.9.3. The illumination for each surface point is recomputed using
all the basis functions that contribute to the radiance solution at that point. The costs involved
with this technique however, easily exceed the costs of the radiance solution.

2.11 Summary

In this chapter, the radiosity method was introduced along with several improvements to achieve
faster solutions and to obtain a better visual quality. The most important step towards making
radiosity practical was the introduction of the Hierarchical Radiosity algorithm and its extension
to clustering which allow for the computation of a radiosity solution in linear time.

The algorithms presented here do not make any assumption on the input data. A list of un-
connected, arbitrarily oriented, and planar polygons (typically triangles) is used as a description
of the environment that is to be rendered. Although clustering algorithms group input polygons
to object clusters, no additional information is created.

If the radiosity algorithm had some knowledge of the original objects that were tesselated to
produce the input polygons, many operations could be implemented more efficiently. A single
object, or its description, can be used more easily than the corresponding polygons. If the
polygons are only needed at a certain stage of the algorithm it is useless to deal with a large
amount of polygons throughout the whole algorithm. If the access to the parent object is always
possible, information implicitly stored with the object can be used whenever it may be useful.

The next chapters will introduce radiosity algorithms that use object-based techniques to
improve the speed and accuracy of radiosity solutions. In Chapter 3 it will be shown how
curved surfaces can be efficiently rendered with the Hierarchical Radiosity algorithm using
object information. Due to the quadratic costs of the initial linking step curved surfaces that are
represented by many small polygons are impractical to render by the classical approach.

When scenes are too large to be computed in reasonable time on a single computer, paral-
lelization may be a possibility to reduce rendering times. Due to the network of links however,
the Hierarchical Radiosity algorithm induces a large communication overhead when distributed

4Spherical harmonics basis functions form an orthogonal basis of the set of distributions on the unit sphere and
allow the representation of any square-integrable function by a set of scalar coefficients.
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over a network of computers. Using object information during the computation can help to dras-
tically reduce the communication costs of the algorithm. An efficient distributed hierarchical
radiosity algorithm will be presented in Chapter 4 that scales very well in a local area network
of computers.

Finally, a solution to the previously mentioned hierarchy creation problem for clustering
algorithms will be proposed in Chapter 5. An optimized bounding volume hierarchy based on
a cost function will be used to compute both, visibility and energy transport. Combined with
an error driven refinement procedure accurate radiosity solutions can be generated quickly. The
curved surfaces algorithm of Chapter 3 will fit easily into this error driven clustering algorithm.
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CHAPTER 3

Hierarchical Radiosity on Curved Surfaces

3.1 Introduction

The development of the radiosity method as summarized in chapter 2 led to efficient global
illumination algorithms with a common property. Because the physical quantity radiosity can
also be computed by other means in order to generate an image, the application of finite ele-
ment methods clearly characterizes the radiosity method. The ability to render images from any
desired viewpoint without essential further computational effort, once a solution has been com-
puted, makes this approach so attractive. Walk-through applications can use the finite element
mesh produced by a radiosity computation to directly render images from the solution. The
polygons that represent the mesh elements are simply delivered to a hardware renderer where
the reconstruction of the radiosity function (Section 2.9.1) and the projection of the three dimen-
sional polygons onto a two dimensional viewing device is performed (Section 1.2). Therefore,
radiosity algorithms typically require a polygonal representation of the scene geometry that will
be the starting point for the finite element mesh, which in turn is finally rendered by a polygon
renderer. In this polygon-based approach, each polygon is dealt with independently, i.e., the
origin of each polygon and the connectivity to adjacent polygons is not used. Actually this in-
formation is unknown to the algorithm, although it was available when the scene was modeled.

The polygon-based approach works well if the initial tesselation of the scene objects is iden-
tical or at least very close to the objects’ shape. The advanced radiosity algorithms that employ
adaptive refinement further do subdivide the input polygons, but only to improve the represen-
tation of the radiosity function (Section 2.10). For lack of object information, errors due to
geometrical inaccuracies can not be reduced or eliminated. A polygon can only be subdivided
within its planar domain, thereby keeping its initial shape. As a result, the application of these
algorithms to curved objects is limited in several ways. Considering the hierarchical radiosity
algorithm, the classical way of using curved objects contradicts the idea of hierarchical refine-
ment, thereby destroying the main benefits of the algorithm and making its application useless.
This will be clear by revisiting the analysis of the algorithm’s time complexity.

The hierarchical radiosity algorithm can be separated in two parts: the initial linking stage
and the solution stage. The initial linking is basically a classical radiosity algorithm, where
form factors are computed between all pairs of input polygons. Thus, the time complexity is
quadratic in their number. The solution stage with its linear time complexity due to the hier-
archical refinement is the reason for the algorithm’s strength. However, the input data must be
chosen carefully to not loose the benefits induced by the hierarchical approach. The algorithm is
best suited for input data consisting of relatively few and large polygons compared to the num-
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ber and size of the elements of the solution. The polygonal approximation of a curved surface
however, is the opposite of this kind of input data. Many small polygons are required to tesse-
late a curved surface accurately. If too few polygons are taken, the real curvature of the object
will not become apparent. Additionally, shadow computations involving curved occluders will
be inaccurate due to the low resolution. To avoid these artifacts and because the algorithm can
not improve their geometrical approximation, the final quality of curved objects must be chosen
beforehand. This also includes the determination of the accuracy of the radiosity representation
over their surfaces, which contradicts the error-driven refinement. If the oracle function de-
mands the subdivision of a polygon that represents a part of a curved surface, the visual quality
of the solution will not be improved noticeably.

Thus, the application of hierarchical radiosity to curved surfaces results in the following
drawbacks:

• quadratic time complexity (many small input polygons)

• no hierarchical refinement (the polygons are too small or the subdivision is useless)

• no adaptive quality control (the mesh resolution is chosen in advance)

These problems can be eliminated if the algorithm deals with curved objects in the same
way as with planar objects. To be able to create a hierarchy of several levels of detail regard-
ing the representation of the objects, the shape of a curved object’s approximation must not be
fixed. The initial linking stage needs access to the coarsest representation to efficiently create
the top-level links of the patch hierarchies. Subsequent refinement steps then access finer object
representations to model the interaction of light with the surface more accurately. Provided that
the different levels of detail are given or that they could be generated on demand, there is the
problem of finding the proper place in the hierarchy to switch between them. The transition
from a coarse sphere to a more detailed one probably introduces too many polygons from one
hierarchy level to the next. Thus, in the same way as the hierarchical radiosity algorithm subdi-
vides polygons at nearly arbitrary positions (thereby ignoring the creation of T-vertices), curved
surfaces must be refinable locally.

A local refinement procedure for curved surfaces is only possible if the algorithm has a
knowledge of the underlying object’s geometry. If the object information created during the
modeling stage is conserved and provided to subsequent rendering algorithms, more efficient
image synthesis techniques can be developed. These improvements apply not only to the ren-
dering speed but also to the visual quality of the resulting image.

In this chapter, an object-based refinement scheme for Hierarchical Radiosity will be pro-
posed. Together with a topological data-structure and an object-oriented rendering environment,
curved surfaces can be rendered efficiently, bypassing the problems of the classical approach
outlined above. Modifications to the energy transport and visibility computations with an in-
herently high accuracy lead to an improved quality of the resulting radiosity solutions. An
object-based final gathering procedure allows for the generation of high resolution images and
can easily be combined with other shading techniques, like bump-mapping, that work in object-
space.

After giving a motivation to the application of object-based methods, the previous work on
rendering of curved surfaces in the global illumination context will be revisited. The remaining
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sections describe the chosen data-structure and the details of the new algorithm. Finally, the
results will be shown and the application to other global illumination algorithms as well as the
integration into a commercial rendering package will be discussed.

3.2 Motivation

As soon as radiosity algorithms are used to visualize realistic scenes, the simplifying assump-
tions inherent to the radiosity approach will become apparent. Scenes that were modeled in-
dependently of a special rendering algorithm and that contain objects and surfaces resembling
real things are not well suited for polygon-based rendering. The fact that most surfaces result-
ing from industrial design, like parts of airplanes and automobiles or cases of electronic devices
are curved, emphasizes the need for rendering algorithms that take these object properties into
account.

The foundation for an object-based rendering algorithm is a rendering framework that uses
abstract objects to encapsulate the geometrical properties and materials of the real objects. Most
rendering platforms that were developed for research purposes (MRT [Fel96], Vision [SS95],
MoCaRT++ [GMP96], ART1) follow the object-oriented paradigm and profit from inheritance
mechanisms, data encapsulation, and extensibility to integrate existing algorithms or to develop
new approaches. The decision to base a rendering system on an object-oriented design becomes
clear by looking at the ray-tracing method, which is one of the most powerful and popular
techniques for image synthesis. Computing the intersection of a ray with a sphere requires the
encapsulation of the sphere’s exact geometry in the intersection test routine. The same is true
for all other ray-surface intersection algorithms [Gla89]. Using an object-oriented programming
language like C++ [Str91], which is probably the most popular one, spheres would be imple-
mented as a single class derived from a base class. The base class forces all derived classes to
provide the implementation of an intersection method. Thus, an object of type sphere can be
asked if and where a given ray intersects this particular sphere.

Object-oriented design is also commonly used in commercial graphics applications. The
modeling, animation, and rendering software 3D Studio MAX from Kinetix uses the concept
of objects not only for the encapsulation of scene objects but also to provide easy third-party
extensibility [EM96]. Nearly every function is designed as a plug-in component that can be re-
placed and modified. Additionally, changes that are made to objects with the provided modeling
tools are kept in a stack of operations, making the original object always available.

From this situation, a promising concept to enhance Hierarchical Radiosity for the efficient
use of curved objects can be developed. If modeling and rendering are used in combination
and not separated in two distinct processes, an object-based meshing scheme can be realized.
With the knowledge of their parent object, curved surfaces can be refined locally to adaptively
improve a radiosity solution. The acceptance and broad availability of object-oriented design in
digital image synthesis suggests and supports this approach.

1http://www.cg.tuwien.ac.at/research/rendering/ART/
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3.3 Previous Work

Several papers in the radiosity literature have addressed the problem of rendering curved objects
by global illumination algorithms. Enhancements of form factor calculations between curved
patches have been proposed by Bao and Peng [BP93]. All surface patches are subdivided into
triangles and a variation of the radiosity function over the triangle is allowed, thus breaking
with the constant radiosity approach. After computing delta form factors to each vertex of
a source triangle a bilinear interpolation scheme is applied. The radiosities are computed at
arbitrary sample points, thereby taking the true patch geometry into account. Another approach
describes the direct evaluation of form factors from points to B-spline surface patches [BP94].
Here, spatial polygons are used instead of planar ones. The algorithm tries to find a subdivision
of the original curved patches into curved triangles that subtend the same solid angle as the
source patch. Form factors are then calculated to these pseudo-triangles by an analytic formula.
The subdivision of the curved patches is done by subdividing the boundary curve instead of
subdividing planar polygons that approximate the curved patch.

A similar approach has been presented by Nishita and Nakamae [NN93]. They assume
that all curved objects are represented by bicubic Bézier surfaces. Subdivision always results
in Bézier patches and not in planar polygons. The form factor itself is calculated by contour
integration whereas visibility calculation is done by a scanline algorithm using Bézier clipping.
The same scanline algorithm is used for the display step, resulting in high precision renderings.
Jones et al. [JCC+93] mainly focus on the image rendering step and can effectively reduce
the number of required subdivisions. They introduce an elaborate ray-casting algorithm that
computes the radiance for each pixel by sampling and adaptive anti-aliasing. This algorithm
only uses a coarse mesh and is able to render curved surfaces and shadows by accessing the
original scene geometry during form factor calculation and final rendering.

To even further reduce the meshing step or making it obsolete at all, results from the finite
element literature have been applied to solve the global illumination problem [Zat93, TM93].
The Galerkin radiosity method uses higher order polynomials instead of constant basis functions
to express the radiosity of a surface. A technique is presented which uses radiosity coefficients
instead of radiosities during energy transfer. Curved surfaces can directly be incorporated if an
object can compute its surface normal at any given intersection point during kernel sampling.
Shadows have to be represented by texture like shadow-masks, because high radiosity gradients
near shadow edges are difficult to represent by piecewise smooth basis functions. The final
rendering is done in a ray-casting step.

A similar approach to the one presented in this thesis was developed independently by Stam-
minger et al. [SSS97a]. By computing the cone of normals for a given object, which is an indi-
cator of the variance of the surface normals, curved objects could be integrated in hierarchical
radiosity computations. This technique also focuses on a strong object-oriented design and thus
can be considered most similar in spirit to this work. If an object is capable of efficiently com-
puting its cone of normals, it can be integrated in the radiosity algorithm. As will be shown later,
our approach requires no additional methods to be implemented for each object. In general, the
intersection test and the computation of the surface normal, methods which are the foundation
for any ray tracer, will suffice [Sch97].

All of the presented algorithms make use of the original underlying scene geometry to in-
corporate curved objects, thereby achieving high accuracy solutions. However, most of the
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algorithms require a view dependent rendering step based on ray tracing [Zat93, JCC+93] or
scanline processing [NN93] or they require the overall use of computationally expensive free
form surfaces [BP93, BP94]. The only hierarchical algorithm was introduced in [SSS97a].

This chapter presents a new approach for the incorporation of curved objects into hierar-
chical radiosity algorithms, thereby using advantages of the methods summarized above. The
key element will be a three-dimensional extension of adaptive meshing. By accessing the real
object geometry local improvements of the polygonal approximation of curved objects can be
made at any stage of the algorithm. The accuracy of the final solution is scalable and hardware
accelerated rendering can be used to speed up image display. This makes the method well suited
for walk-through applications. High quality still images can be generated by an object-based
reconstruction step using final gathering.

3.4 Topological Data Structures

To store the polygonal model of a geometric object, several data structures can be used. The
simplest form is to define a polygon by the coordinates of its vertices that are arranged in a list
of k entries. An object is then defined by a list of n polygons. Because the boundary of an
object is closed however, many vertices are shared by adjacent polygons. Thus, storing each
vertex separately wastes memory. If this data structure is used to directly render the object by
a polygon renderer, it is not only memory but also bandwidth that is used inefficiently. Each
vertex is sent multiple times through the rendering pipeline where computationally intensive
transformations and lighting calculations are performed. A simple way to reduce the unneces-
sary computations is the application of triangle strips [Sil93]. A triangle strip is a sequence of
adjacent triangles that belong to an object’s polygonal approximation. Because each triangle in
a strip is the neighbor of its predecessor it shares exactly two vertices with it. Thus, to define the
next triangle at any point in the strip a single vertex is sufficient. Inside of a strip, each vertex is
stored and sent only once. Hardware support for this data structure is available on most modern
graphics processors. Although this technique reduces memory and bandwidth limitations, there
are still vertices that are processed multiple times. In general, an object can not be represented
by a single triangle strip. As soon as more strips are used, the same vertices appear in neigh-
boring strips. Because no information about their adjacency is available, the vertices are treated
separately.

In a topological data structure full adjacency information is maintained for all vertices,
edges and faces (i.e. polygons) of an object’s polygonal approximation. This guarantees that all
edges leaving a vertex, or all faces that share a common edge or vertex can be found efficiently.
To define operations that work on the topology of a polyhedron a planar graph can be used.
This graph is obtained by embedding the polyhedron into a plane, which is accomplished by
extending a single face until all edges can be projected on that face without any intersection
(see Figure 3.1). This technique restricts the use of the data structure to polyhedra without self
intersections which are objects that are homomorph to a sphere.

Because an edge always connects two vertices but it also always separates exactly two faces,
vertices and faces are topologically equivalent. Thus, if the vertices and faces of the graph are
exchanged, the dual graph is obtained (Figure 3.1). As a consequence, operations that modify
the representation of the polyhedron always occur pairwise. In the same way as a face can be
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Figure 3.1 Embedding of a polyhedron results in a planar graph. The dual graph is obtained by exchang-
ing the roles of vertices and faces. (after [Ben97])

split by inserting a new edge, a vertex is split into two vertices that are connected by an edge.
The reverse operation to a split is the join-operation. Together, these operations can perform
any allowed modification of the graph that results in an object that is still homomorph to a
sphere. Thus, an implementation that creates and modifies polyhedra represented by a topo-
logical data structure need only support these four basic operations, that are known as Euler
operators [Män88]. Because these operators always result in a valid planar graph, their exclu-
sive use maintains the object’s topology and gives access to the full adjacency information after
any modification of the graph. This can be used to robustly implement various computer graph-
ics algorithms like point reduction to compress polygon meshes or the application of boolean
operations on two polyhedra (constructive solid geometry) which is a non-trivial task [Ben97].

The implementation of a topological data structure can be based on the winged-edge data
structure as proposed by Baumgart [Bau72]. The core of this data structure is an edge that con-
nects two vertices and that provides pointers to the two adjacent faces and to the four adjacent
edges leaving the edge’s endpoints. This allows for the enumeration of all vertices of a face in
clockwise and in counter clockwise direction. In Figure 3.2 the components of the data structure
connected to an edge are shown.

Figure 3.2 Winged-edge data structure. The introduction of half edges guarantees a unique representa-
tion of edges. (after [Ben97])

The representation of an edge in the data structure is ambiguous regarding its direction. The
same edge can be denoted by the two symmetrical expressions e =(v1,v2, f1, f2,e11,e12,e21,e22)
and e′ = (v2,v1, f2, f1,e22,e21,e12,e11). If the full edge e is split into two half edges h1 and h2
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(Figure 3.2), the representation becomes unique and an implementation will be more straight
forward. Basing the winged-edge data structure on half edges has an additional advantage when
the data structure is used for solid modeling. Normal vectors can be associated with half edges
to accurately model sharp object edges. If normals would be associated with vertices it would
be impossible to find the correct normal for the corner of the box, which is modeled by a single
vertex. The half edge approach enables the normal to be stored unambiguously for the only ad-
jacent face. As will be describe later the radiosity reconstruction step additionally stores color
values with each half edge to obtain better shading results.

Figure 3.3 Solid modeling using boundary representations. The spheres in the upper row show different
levels of detail generated by Euler operators from the initial model in the upper left. A more
complex application is the combination of different polyhedra according to boolean expres-
sions.

The winged-edge data structure combined with Euler operators is a powerful tool for solid
modeling. Once a valid polyhedron is defined from an object description, various modifications
can be applied easily. One application is the computation of different levels of detail. To main-
tain a constant frame rate in dynamic applications, the resolution of the displayed geometry
must be variable. Figure 3.3 shows in the upper row spheres in different levels of detail. For
performance reasons, the initial boundary representation (BRep) of the spheres is hard coded.
Once all vertices and edges are known, the topology is built. Any further modification is per-
formed by applying Euler operators that maintain the topology. In the bottom row an object
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modeled by different boolean expressions are shown. The boundary representation of two ob-
jects can be intersected, which inserts new edges. In a second step, the boundary representations
are cut along the intersection edges and combined to a single object. Each face is then visited
in turn to separate the representation in an intersection and a union. The final object can then
be composed according to the evaluation of the boolean expression.

3.4.1 Application to Hierarchical Radiosity

The availability of full adjacency information is very useful for radiosity applications [BFS96].
Many steps of the algorithm rely on the accessibility of neighboring vertices or patches. In the
subdivision step T-vertices can be detected and avoided and radiosity gradients can easily be
computed. Similar to the improvements achieved by using triangle strips for polygon rendering,
expensive vertex based radiosity operations can be optimized. Because vertex colors are needed
for the final display of a radiosity solution it is often useful to compute radiosities per vertex and
not per face. In this case, the form factor computation is restricted to point-to-patch form factors.
For vertices that are shared between adjacent planar patches the topological data structure helps
to compute the corresponding form factors only once.

The hierarchical radiosity algorithm as described in Section 2.10.3 is typically implemented
using a quad-tree data structure. Each initial polygon is associated with a quad-tree of which
the root node is the polygon itself. The hierarchical refinement generates additional quad-tree
levels by regularly subdividing the root polygon into four children. Further iterations will pos-
sibly subdivide the children as illustrated in Figure 2.18. This subdivision scheme is easy to
implement, but it favors the use of polygons with quadrilateral shapes. A quad-tree stores adja-
cency information implicitly. The four children of a node are always arranged in a fixed order
that directly defines the access to neighboring patches. These patches however, must reside in
the same tree. As soon as the boundary of the initial polygon is reached, the neighbors to a
patch can not be enumerated completely. This has an impact on the quality of the reconstructed
solution. When linear interpolation is used for the reconstruction (i.e., gouraud shading) only
the interior of a subdivided polygon provides all required radiosity values. In border regions
the values that are unknown have to be guessed. Although some heuristics like mirroring the
values from the interior of the polygon can provide reasonable results, the eye is very sensitive
to gradient changes. As a result, the boundaries of the initial polygons are still visible.

The operations performed by the hierarchical radiosity algorithm during energy exchange
and subdivision are independent of adjacency relationships. Because the oracle measures the
error of an interaction and not the error of the radiosity representation, radiosity gradients are
not used. Adjacency information is only used in the reconstruction step.

The application of a topological data structure thus can be limited to the lowest level of
the hierarchy. An hierarchical topological data structure, that would be difficult to maintain, is
not needed. Instead, a simple data structure that mainly stores the radiosity values is used at
each node. A pointer is provided that points to the next level if it is an inner node. The leaf
nodes of the hierarchy, i.e., the finest representation of the input polygons, are connected to the
corresponding faces of the winged-edge data structure (Figure 3.4).

Combining a light-weight hierarchy with a powerful data structure has several advantages.
The hierarchy is not limited in its branching factor. Any number of children can easily be main-
tained in any node, which supports the use of arbitrarily shaped input polygons. Because the
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Hierarchy Node

BRep Face

Adjacency
Information

Figure 3.4 Hierarchy on top of a winged-edge data structure. Adjacency information is only needed in
the leaf nodes.

subdivision of a patch can only occur in a leaf node, Euler operators that work on the winged-
edge data structure can be used. This helps to separate the geometrical parts of the algorithm
from the radiometric parts inside the hierarchy, which makes an implementation more robust
and easier to maintain. Additionally, the only step where adjacency information is actually
needed is now fully supported because all polygons of the original object’s boundary represen-
tation are directly accessible.

3.4.2 Meshing

The hierarchical refinement procedure subdivides patches to improve the representation of the
radiosity function. Although the refinement of links occurs in any level of the hierarchy, patch
subdivision is only performed in leaf nodes. Depending on the shape of the root polygon, differ-
ent subdivision schemes must be provided. Two levels of a regular subdivision for quadrangles
and triangles are illustrated in Figure 3.5.

Figure 3.5 Regular subdivision scheme for quadrangles and triangles.

Refinement of a leaf node is performed by subdividing the corresponding face from the
boundary representation. For each created face a new leaf node is attached to the hierarchy. The
child pointers of these nodes are initialized with pointers to the corresponding faces. The child
pointer of the original node is then redirected to point to the new child nodes.
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The face subdivision requires a split operation for each enclosing edge and the insertion of
edges to define the new faces. In a topological data structure splitting of an edge influences
both neighboring faces. Vertices introduced by earlier split operations should be used as anchor
points for new splits. The problem is how to decide quickly if the proper anchor point already
exists or if a new vertex must be inserted by splitting the edge. Just testing if the midpoint of
the current edge coincides with an existing vertex can lead to numerical problems and requires
some calculations. The quickest way is to tag each face and vertex with the current subdivision
level. Before the meshing starts, all tags are reset. If a face with subdivision level l has to be
split all vertices with level l +1 serve as anchor-points. New vertices of level l +1 are inserted
where two adjacent vertices of level ≤ l occur. The resulting faces have level l +1. Figure 3.6
illustrates this meshing scheme for a quadrilateral shape.

Figure 3.6 Meshing scheme using level tags.

By using this technique, a meshing scheme appropriate for hierarchical radiosity can be real-
ized. The problem of T-vertices however, which is common to any unrestricted meshing scheme
(Section 2.9.1), can occur at shadow boundaries. To achieve a smooth transition between a finer
subdivided illuminated region and a coarser subdivided shadow region, a T-vertex elimination
must be applied. Using adjacency information this can easily be achieved. By examining the
level tags, introduced during the meshing, T-vertices are detected and then connected to the
nearest corner of the adjacent face.

3.4.3 Weighted Reconstruction

The situation for a reconstruction step using Gouraud shading is slightly different when using
a topological data structure. Instead of well separated polygons that are independent on each
other, the winged-edge data structure describes the boundary of the complete object. During
the radiosity calculation, constant radiosity values per patch are assumed, i.e., each face of
the final boundary representation receives a single color. For the purpose of Gouraud shading
however, a color value in each vertex is needed that can be interpolated over the corresponding
polygons. A simple approach, which works well for planar environments, computes the vertex
radiosity as the average of the adjacent faces’ radiosities. This achieves good results inside
a subdivided polygon, but at the boundary no information about the neighboring polygon is
available. Vertices lying on the boundary thus can receive different color values depending on
the current polygon. If the approximated object is not planar but curved, the problem gets even
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worse. The different normal of a direct neighbor can result in a high gradient of the radiosity
function, which is probably missed.

An obvious method for computing vertex radiosities while making use of the underlying
topological data structure, is the adaption of the above algorithm. Because the boundary repre-
sentation is closed all vertices can be enumerated and the radiosities of all adjacent faces can
be averaged. Solids containing many input polygons thus receive better shading values. But
another problem arises. In the polygon based approach, a box for example would be modeled
with six independent polygons. Each interpolation would only consider the patches making
up one side. If the box is modeled as one consistent object however, the simple interpolation
scheme fails. Radiosity values would be smoothed over the corners and edges of the box, thus
introducing severe artifacts if one side lies in shadow and an adjacent side is lit.

The introduction of topological data structures above motivated the use of half edges to
store surface normals. To improve the quality of the reconstruction step for complex objects,
the same approach is taken here. Originally vertex based color values are stored with each half
edge. For all adjacent faces of a shared vertex, one half edge starts and one half edge ends
in that vertex. If the colors are stored in these half edges, different vertex colors for the same
vertex are possible. The calculation of vertex colors and the final rendering are thus edge based.
A face is always asked for all edges which in turn point to the shared vertex but contain the
vertex color for the current face. This technique is also used for storing the normals, which are
located in the edges for the same reason.

Using edge colors an algorithm can take into account the spatial position of adjacent patches
and store the vertex color in the corresponding edge. The average radiosity of all patches sur-
rounding a vertex must be weighted. By introducing the cosine of the angle between the current
edge’s normal and the normal of an adjacent edge, the corresponding face color can be weighted.
The weighted average radiosity from all neighbor faces is then stored in the current edge (Figure
3.7).

for all faces f {
for all edges e of f {

Be = 0
weight = 0
for all edges l leaving e {

weight = weight + max(0, �Ne · �Nl)
Be = Be + B f ace(l) ∗ max(0, �Ne · �Nl)

}
Be = Be

weight
}

}

Figure 3.7 Pseudo-Code: Weighted Reconstruction.

This mechanism is easy to implement and results in a smooth shading of curved objects and
preserves D0 discontinuities along boundary edges. Figure 3.8 shows the effect of the weighted
reconstruction in comparison to the normal reconstruction of vertex radiosities.
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Figure 3.8 Weighted reconstruction for solid objects. The left image shows the standard approach while
in the right image the patch orientation was taken into account.

Although the weighted reconstruction step leads to a better visual quality, rendering times
for curved objects are still high. The next section introduces a novel meshing scheme that,
combined with this reconstruction technique, improves speed and quality of the rendering of
curved objects.

3.5 Object-based Meshing

As pointed out earlier, the key to an efficient hierarchical radiosity algorithm for curved sur-
faces is a local mesh refinement. Similar to the planar approach, a mesh describing an object’s
complete boundary must be able to refine its representation at any location. As a result, the algo-
rithm can start with a coarse approximation of the scene geometry and refine the representation
in order to reduce the simulation error.

Local refinement A refinement procedure that adapts the mesh to the object’s shape
can be implemented in a two pass approach. The first step is a standard planar refinement
that basically refines the domain of the particular patch. For an underlying winged-edge data
structure this involves inserting several new vertices and updating the adjacency information
to reflect the new topological structure. In a second step, the coordinates of the new vertices
are adjusted which moves the vertices to a location on the original object’s surface. Figure 3.9
shows the result of this approach being applied to a sphere.

To properly adjust a vertex to its correct position, the knowledge of the underlying object’s
shape is required. This knowledge is implicitly stored in several methods that determine an
object’s behaviour in a rendering system. As a requirement for the implementation of an object-
based meshing scheme, each object must provide two functions:
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Figure 3.9 Polygon-based and object-based meshing. Curved objects can be refined adaptively like a
polygon that is represented by a quad-tree. The representation is improved by moving vertices
to the underlying object’s surface.

• surface normal computation

• ray intersection test

These methods belong to the core functionality of any rendering package that supports ray
tracing. Because ray tracing is also commonly used for visibility test in the computation of form
factors (Section 2.7.2), its availability in a radiosity system is very likely. Both functions can be
combined to a new generic function that, independently on the particular object, moves a vertex
to the real boundary. The computation of the surface normal is used to find the direction of the
object’s hull, whereas the intersection test gives the exact surface position. Thus, to adjust a
vertex that is the result of a planar subdivision, a ray is cast from the vertex position into the
direction of the surface normal. The result of the intersection test gives the nearest surface point
of the original object. Adjusting the coordinates of the vertex to that point moves the vertex
to the boundary. As a result, the object’s shape is improved and its representation is locally
refined.

If the intersection test did not succeed the ray has left the object without hitting its sur-
face. This situation indicates a non convex object and requires the direction of the ray to be
reversed. The reason for this behaviour is the way in which the winged-edge data structure
is initially filled. All vertices of the data structure are initialized with exact surface points of
the geometrical object. These points are then connected with edges to build the faces of the
boundary representation. For convex objects, these faces always reside completely inside the
object boundary. During vertex adjustment, the faces move outwards. Due to this construction
a non convex object has faces outside of the boundary. To approach the refined faces towards
the real boundary, the opposite direction of the normal must be used. In Figure 3.10 C++ code
for a generic adjustVertex()-Function is given. Implementing this method in a C++ base
class will provide the functionality of local mesh refinement for all derived objects that support
surface normal computation and an intersection test.
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Object:: adjustVertex(Vertex& v)
{

Ray ray;

ray.origin = v.point;
ray.dir = normal(v.point);

// intersect(ray,pos) stores the first
// intersection found in pos
// if no intersection is found it returns NULL
if( intersect(ray, v.point) == NULL) {

ray.dir = -ray.dir;
intersect(ray, v.point);

}
}

Figure 3.10 The adjustVertex method in C++ syntax. This generic implementation moves vertices onto
the real object’s boundary.

Optimization The above method can be optimized in several ways and should be re-
garded as the default implementation for an object class. If the objects provide more function-
ality, the test for reversing the ray’s direction can be improved. The default implementation
requires two intersection tests for non convex objects which might be inefficient. A method that
directly tests if a given point lies inside of the object is often found in ray-tracing environments
to speed up the rendering of boolean or CSG-expressions. According to this method, the di-
rection of the ray can be chosen in advance to eliminate the need for a second intersection test.
Once a vertex has been moved to its final position it should be tagged. All vertices that make
up the initial boundary representation provide the same tag. This avoids multiple adjustments
of the same vertex or the adjustment of vertices that are already in the correct place. Because
all vertices are shared in a winged-edge data structure this is very likely to occur.

The most obvious optimization is the definition of an object specific version of adjustVer-
tex(). For objects that are not curved the implementation is empty and does not even check
the tags introduced earlier. In order to generate a surface point, the u,v-parametrization of an
object can also be used. The intersection test for parametric surfaces is typically much more
expensive than just evaluating the corresponding equation. Thus, the subdivision is performed
in parameter space and the resulting vertices are directly computed at the correct position.

For objects with discontinous surface normals the direction in which to shoot the ray might
be ambiguous. The result of the surface normal computation might not be defined if the given
point does not already coincide with the object’s surface. Objects like cylinders or cones consist
of curved and flat regions that, when using a winged-edge data structure, are direct neighbors
and thus are sharing common edges and vertices. This helps to detect the necessity of adjusting
a vertex. If the vertex lies on the flat part of the boundary no adjustment is needed. Traversing
the half-edges that are leaving the vertex in the data structure and checking if they store the
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same normal, identifies flat parts of the boundary. A winged-edge data structure should use
references to normal vectors to save memory and to avoid numerical errors when comparing
them. The test just described thus will only compare memory pointers which is much faster and
more reliable than comparing coordinate values. If the test fails, the vertex belongs to a curved
part of the boundary and the ray-casting algorithm described above can be used.

Flatness test The hierarchical radiosity algorithm drives its planar subdivision scheme
by an oracle that enforces subdivision in regions of large error. To prevent patches from endless
subdivision due to conservative error thresholds or due to numerical problems, an area threshold
has to be supplied. Patches are only subdivided if their area still exceeds an area threshold
Aε. If curved objects are subdivided with the object-based meshing scheme, using the same
area threshold often leads to unsatisfactory results. The area of a patch is not suited as an
error measure that describes the quality of a curved object’s approximation. Instead the local
curvature must be used. An easy way to compute the local curvature of the approximation
is to look at the normals stored in the winged-edge data structure for each (half-)edge. The
more an object is refined the less the normal vectors around a face diverge. Thus, regarding the
normals, the face’s flatness increases. To compute the local flatness of the surface covered by
the approximating face, the minimal dot product between all adjacent normals can be used. This
corresponds to the largest deviation of all considered normal vectors and measures the quality
of the approximation. This test is always possible because the original surface normal of an
object is stored after each vertex creation or adjustment. An optimization similar to the one
proposed above is a separate implementation for non-curved objects. By returning the constant
1.0 they always indicate perfect approximation regarding their local curvature without the need
of computing dot products. To speed up frequent access to the flatness value it can be stored
during the polygon creation after any subdivision step. Figure 3.11 illustrates the use of the
flatness test to subdivide curved objects.

By introducing a new user supplied threshold Cε ∈ [0;1[ to the hierarchical radiosity algo-
rithm, the subdivision of curved objects can be influenced by an error measure. A flatness test
that evaluates the local quality of the approximation is used in analogy to the area threshold
for planar objects. This completes the object-based meshing scheme to fit seamlessly in the
refinement procedure of Hierarchical Radiosity.

3.6 Energy transport

To guarantee the correct energy balance throughout the whole subdivision hierarchy, the hierar-
chical radiosity algorithm uses a push/pull procedure (Section 2.10.3). Energy that is gathered
at different hierarchy nodes is propagated accordingly in the tree. Because radiosity is mea-
sured in power per area child nodes receive the same value as their parent node, whereas parent
nodes receive the area averaged values of their children. The object-based meshing scheme
however, violates the implicit assumption that a node in the hierarchy is the direct union of its
children. Due to the adjustment of vertices, the geometry actually changes during the solution
of the radiosity system. In general the orientation of the polygons representing the child nodes
does not coincide anymore with the orientation of the input polygon. In this case, the radiosity
of a node can not be computed using the area average of the child nodes. Instead, the projected
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Figure 3.11 Curvature driven subdivision. The upper row shows three superquadrics with different pa-
rameters that were subdivided regularly. In the bottom row, the flatness test was applied
during subdivision.

area of the child nodes in the direction of the parent must be used. Figure 3.12 illustrates the
relationship between parent and child nodes after the application of object-based meshing. The
original object is a sphere that is approximated by few large polygons. During the radiosity
solution the parent node is subdivided due to a link refinement from patch q. New links are
established from q to the children that now have a different orientation than the parent node.

The projected area of a child node can be computed by multiplying the area with the cosine
of the angle between the normal and the direction to the parent. This direction is given by the
surface normal of the parent. Thus, with the radiosity B, the area A and the normal vectors �n,
the correct propagation of radiosity in the tree can be computed by:

Bparent = Bparent +
(�nchild1�nparent)Achild1Bchild1 +(�nchild2�nparent)Achild2 Bchild2

Aparent
(3.1)

3.7 Form Factors

The accurate computation of form factors has a great impact on the visual quality of a radiosity
solution. Missed shadows let objects seem to float in the environment instead of being fixed to
the ground. Correct shadows help the observer to easily recognize the spatial relationship be-
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Figure 3.12 Geometry of object-based meshing. Subdivision of a parent patch results in two children
of different orientation. The energy received by the parent due the children is computed by
projecting the child nodes onto the parent node.

tween objects. In Section 2.7.2 the use of ray casting to determine the visibility and to compute
the form factor kernel between two patches was discussed. By extending this technique to an
object-based method, accuracy and speed of form factor computations for curved objects can
be improved.

The object-based meshing scheme introduced above allows the hierarchical radiosity algo-
rithm to start with very coarse approximations of curved objects. This reduces the time needed
for the initial linking step and, because objects can be refined locally, should improve the quality
of the solution. However, this approach renders the application of a polygon-based ray-casting
technique useless. The coarse approximation of a curved object will lead to several errors in
the form factor computation. Because the polygons are mainly located inside or outside of the
original object’s surface their use as sources or targets of rays will lead to wrong form factor
results. The following problems will occur:

• wrong or missing shadows because objects are not hit

• wrong form factors because the patch normal is used

• wrong form factors because the patch-to-patch distance is used

Figure 3.13 illustrates these cases using a simple 2D geometry. Each ray exhibits one of the
possible errors.

Basing the ray-casting process on the underlying objects avoids these problems. Because
the algorithm still uses finite elements to represent the radiosity values, again a combination of
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wrong distance

wrong normal

missed occluder

Figure 3.13 Form factor computation with curved objects. A coarse approximation of curved objects
results in form factor and visibility errors. Instead of using the patches all calculations must
be based on the real objects.

patches and objects is used. It is assumed, that the ray tracer is not aware of the radiosity mesh,
i.e., patches do not belong to the scene as active geometry. Because an object is responsible
for its own boundary representation, this should be an obvious design decision. Evaluating
the form factor integral using Monte-Carlo integration normally works by randomly selecting
sample points on the source and on the receiver patch. The same approach is taken here. Rays
are cast from the sample points on the source into the direction of a sample point on the receiving
patch. Because the ray tracer does not ’see’ the patches it only checks if an intervening object
exists between the source and the receiver. If both patches belong to planar objects the results
can be used directly. If curved objects are involved, start and end point will never be exactly
on the object’s boundary. Thus, in case of an intersection, it must always be checked if the
source or receiver patch belongs to the hit object. Typically, the first encountered intersection
when launching a ray from a convex object’s patch is the object itself. In this case a new ray
is launched, emanating from the last intersection point. For non-convex objects the situation is
different. The object might cast a shadow on itself, in which case an intersection must not be
ignored. For a correct decision the surface normal at the intersection point must be checked.
If it points towards the origin of the ray, the receiver patch is invisible and the object partially
occludes itself. Checking the surface normal at each intersection point imposes an additional
effort to the form factor computation. However, it solves the second problem listed above. In
the unoccluded case, the real surface normal at the intersection points of the interacting objects
is automatically obtained. Thus, the real angle between the surface normal and the direction of
transfer can be computed. Together with the correct distance between the two intersection points
formula 2.31 can now be solved exactly, thereby avoiding all inaccuracies of the polygon-based
approach.

3.8 Reconstruction

The reconstruction of a radiosity solution depends on the application’s needs. For a walk-
through application an accurate polygon mesh must be provided whereas high-resolution still
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images have to be rendered with a final gathering step. Both techniques must be tuned for the
use of a radiosity solution obtained by the algorithm described so far.

3.8.1 Remeshing

The use of an oracle in the polygon-based meshing scheme guarantees that the representation
of the radiosity function is refined if the energy transport can not be computed accurately. The
mesh is only responsible to store the constant radiosities. For curved objects however, the mesh
has to store the object’s shape as well.

Consider the BF-refinement procedure that tries to balance the energy transport over all
links (Page 40). Regions that are directly lit by primary light sources tend to get heavily subdi-
vided. Dark regions that are in shadow or that do not face any light source however, keep their
coarse representation. This can lead to severe artifacts for curved objects. When the radiosity
solution has converged, the geometry can still be in an unsatisfactory state. Regions of curved
objects that are in shadow were probably not refined at all, which leads to a very irregular mesh
representing that object. Similar to T-vertices in the planar case, non-planar polygons result
in regions where the degree of subdivision changes abruptly, e.g., at shadow boundaries over
curved objects.

As a solution, another application of the object-based meshing scheme together with the flat-
ness test is used. After a radiosity solution has been obtained, all curved objects are remeshed
locally until the curvature is within the earlier introduced error threshold Cε. This guarantees
homogeneous polygon meshes, because the radiosity algorithm used the same error threshold
during subdivision. The new patches that are generated by the remeshing step need a radiosity
value to be rendered properly. Because the radiosity representation in these regions already
satisfied the oracle (otherwise further refinement had taken place), the radiosity values from
their parent nodes can be copied directly. This technique improves the shape of the correspond-
ing object without increasing the simulation error and, most importantly, without the need for
additional iterations.

Once the remeshing step is finished, the weighted reconstruction for color interpolation
introduced in Section 3.4.3 is applied. The resulting mesh containing vertex colors and planar
polygons can then be rendered by any polygon renderer or stored in a 3D file format like Open
Inventor [Wer94].

3.8.2 Final Gathering

In Section 2.9.3 final gathering was introduced as a pixelwise reconstruction technique that is
capable of generating high-quality renderings. A ray tracer is used to find the first intersection
point of a ray from the eye with a scene object. At each visible point in the scene the radiance
outgoing towards the eye is computed. Using this technique arbitrary radiosity gradients can
be visualized. To compute the radiance value all surfaces that contribute to the illumination of
a particular surface point must be visited. For each surface the point-to-patch form factor and
visibility is then evaluated to obtain the exact solution. The hierarchy of links that were built
by the hierarchical radiosity algorithm during its iterations can be used efficiently to enumerate
all contributing patches. Starting from the lowest level, the gathering process is recursively
performed for all ancestors in the hierarchy.
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In this section an object-based final gathering technique is proposed, that was successfully
applied to hierarchical radiosity, wavelet radiosity and wavelet radiance [Bül99]. It fits into the
object-based framework developed in this chapter and further enhances the rendering of curved
surfaces.

The problem that must be solved is the correct identification of the corresponding patch for
a given surface point. As mentioned above, the patches of the radiosity mesh are invisible to
the ray tracer. Only the original scene objects are checked for intersection. The links however,
are connected to the patch hierarchies. In Section 3.5 the ray tracer was used to move the
vertices of a patch to the closest point on the object’s surface, now, the problem is reversed.
The corresponding patch to a surface point is a leaf node of the hierarchy associated with one
of the input polygons. For planar objects the corresponding patch can be found easily, because
the root node of a subdivision tree exactly coincides with the object surface. The tree is then
traversed from the root node, until the leaf node is determined that contains the intersection
point.

For curved objects the root node of the hierarchy is not a part of the object’s surface. Thus,
the patch closest to the intersection point must be found. Additionally, this patch’s normal
should be similar to the surface normal. If the faces of an object’s boundary representation are
regarded as a scene of polygons, ray casting can be used to find the proper patch. This does
not contradict the object-based approach, where only complete objects are regarded by the ray
tracer. The object intersection is used for the exact surface normal and distance calculations.
Additionally, the coordinates of that point are later used for further visual enhancements like
texture mapping or bump mapping. These rendering techniques are based on an inverse map-
ping of a 3D point into a 2D map that stores additional parameters. Thus, both intersection
points (object and patch) are needed to achieve an optimal result.

The following test were performed to find a reliable assignment of surface points to hierar-
chy nodes [Bül98]:

1. Find the closest patch by casting a ray into the direction of the surface normal.

2. Like 1. but additionally the patch hierarchy is used as a search tree.

3. Select from several patches with the minimal distance the one with a normal that is closest
to the real surface normal.

4. Like 3. but additionally the patch hierarchy is used as a search tree.

A combination of methods 1. and 3. was found to be the most promising approach. Only
if method 1. is not successful, method 3. is applied. Method 1. fails if the approximation does
not cover all parts of the object, e.g., at the boundary of the disc shaped bottom of cylinders or
cones. Although these methods are the most expensive ones, the total running time of the final
gathering process is dominated by the visibility tests when traversing the links.

Using this technique results in high-quality images with accurate interreflections and per-
fectly curved objects. Because the direct illumination has the greatest impact on the visual
quality of shadows it can be useful to treat the direct illumination separately. Very coarse ap-
proximations of curved objects tend to provide too few links to primary light sources. Gathering
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light directly from all primary light sources thereby ignoring the link hierarchy remedies the sit-
uation.

Still, final gathering is an expensive rendering technique. Due to the overall use of ray trac-
ing it can be optimized by applying ray-acceleration techniques like bounding volume hierar-
chies or space subdivision. Stochastic methods have also been applied to improve the method’s
efficiency [UT97]. If high-quality renderings of curved objects are required, the object-based
methods introduced so far can be combined very efficiently. The pixelwise reconstruction re-
quires only a coarse radiosity solution that is normally obtained after very few iterations. Due to
the object-based meshing scheme, the first iterations that include the initial linking step, could
be improved essentially. Thus, the final gathering process has a minimal ’preprocessing’ time.
Additionally, its quality is improved by accessing the original scene objects.

3.9 Results

The object-based methods developed in this chapter have been implemented in a rendering
system to illustrate their general applicability. The modified hierarchical radiosity algorithm
was used to compute radiosity solutions for various scenes containing curved surfaces. The
images presented here will show the progress of the algorithm, the quality and speed of its
solution, its application to complex objects and its combination with other rendering techniques.

Object-based meshing. To visualize the object-based meshing scheme, snapshots of
several stages of the algorithm are used to illustrate the progress of the algorithm. The im-
age sequence of Figure 3.14 shows an urn that was modeled as a solid of revolution. A coarse
approximation of only 176 polygons was used to initialize the algorithm. Proceeding from the
upper left image to the right and from top to bottom, two things can be noticed. The shape of
the urn improves from a crude approximation to an object of accurate curvature. Simultane-
ously, the global illumination in the scene gets updated and lighting effects and shadows appear
until a satisfactory result is obtained. In the initial linking phase 30800 potential links had to
be checked. Due to many backfacing pairs of polygons 6108 links were actually established.
On a MIPS R5000 processor running at 150MHz initial linking took 61 sec. If the object is to
be rendered with the standard hierarchical radiosity algorithm to the same accuracy, the input
model must consist of 1160 polygons. This results in 232112 potential initial links, which is 40
times more than for the object-based approach.

Form factors and remeshing. Figure 3.15 shows another simple scene, where a sphere
is directly lit by two light sources. The sphere model started with 20 triangles that were adap-
tively refined during the radiosity solution. Because the back side of the scene is hardly il-
luminated, only few polygons had to be refined. In directly illuminated regions however, the
sphere’s mesh was refined to a high degree which results in very sharp highlights on the sphere.
Trying to achieve the same quality with a standard radiosity algorithm would require an enor-
mous effort due to the extremely fine tesselation. The severe artifacts at the shadow boundary
on the sphere’s surface could be eliminated by applying the remeshing step discussed earlier.
The curved shadows on the floor are an indicator of the correct form factor evaluation. Because
the sphere and not the coarse mesh were used, the visibility computation is accurate.
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The corresponding mesh to the solution and its correction can be seen in Figure 3.16. The
reason for the artifacts is obvious in the lower region of the sphere (left image), where the initial
tesselation is still apparent.

Reconstruction. In Figure 3.17 two reconstruction schemes are compared. The medium
sized scene contains a superquadric, a cylinder and several spheres and is lit from the small
quadrangle to the right. Another light source illuminates the picture on the wall. The left
image shows the solution reconstructed by the weighted reconstruction technique described in
Section 3.4.3 and was rendered with gouraud shading. The right image was obtained after
applying the object-based final gathering process, that could be started after only 3 iterations
of the radiosity solution. A closeup of both images can be seen in Figure 3.18. Due to the
object-based approach, all curved surfaces are rendered exactly. The solution took 4 min to
complete with an additional 83 min for the final gathering step (R4400/200MHz) at a resolution
of 600x600 pixels [Bül99].

Complex objects. Figure 3.19 documents the applicability of the algorithm to a wide
variety of curved objects. The museum scene contains a sphere flake of 91 spheres, 6 cylinders,
4 superquadrics, several Bézier patches, another sphere and the urn model from Figure 3.14. All
objects started with their coarsest approximation available (e.g., 8 polygons for the superquadric
in the front). The number of polygons that had to be compared in the initial linking stage could
thereby be reduced from about 15000 to only 2500. The scene is illuminated homogeneously
from the large white quadrangles below the ceiling. Note the shadows of the light sources on the
ceiling as a result of light being reflected back from the floor. Due to this kind of illumination,
no remeshing step was required. Gouraud shading was used in the reconstruction step.

The advantages of combining the new algorithm with a topological data structure can be
seen in Figure 3.20. The cup is modeled by a boolean expression combining a torus with the
difference of two cylinders. The whole cup is represented by a single (CSG-)object. The mesh
was created with the technique described in Section 3.4. Curvature and shadows are rendered
accurately. The adaptive object-refinement due to the single light source is illustrated by the
wireframe view. Parts of the cup that were exposed to the light source, even inside the cup,
were subdivided accordingly.

Further applications. The object-based hierarchical radiosity algorithm could success-
fully be integrated in a commercial rendering package. Figure 3.21 shows a snapshot of the
modeling and rendering software 3D Studio MAX from Kinetix, where the algorithm was imple-
mented as a plug-in [Thi99]. The top-most window contains the radiosity solution of the scene
that was previously modeled in the viewports behind. The plug-in accesses the internal scene
graph and converts all objects into data structures used by the radiosity algorithm. Currently,
only unmodified objects can be used. As soon as an object’s boundary is transformed (bended,
twisted, etc.) this information must be taken into account by the meshing scheme. Future work
will use the stack of transformations that is kept internally, to improve the applicability of the
algorithm to this extended class of objects.

The combination of the final gathering approach for curved objects with other rendering
techniques is illustrated in Figure 3.22. Bump mapping is typically used by ray tracers to
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visually increase the complexity of a model. At each surface point hit by a ray, the original
surface normal is slightly modified according to an image map. Although the geometry is not
changed, surface structures appear like a carving in the object. Because the final gathering
approach used here is based on ray tracing of the original objects, this technique can easily be
used. The result is a global illumination solution with perfectly curved objects and a high visual
complexity.

The object-based meshing scheme is not restricted to the radiosity case. To illustrate its ap-
plicability to other classes of finite element global illumination algorithms, it was incorporated
in a radiance algorithm using wavelet bases [Chr95]. The higher complexity of the radiance
case, in contrast to radiosity, is due to the variation of the reflected radiant energy at a surface
point depending on the outgoing direction. The incorporation of curved surfaces can be seen
analogously to the radiosity case. Starting with highly tesselated approximations of curved
objects results in an excessive computational effort and prohibits an adaptive refinement that
actually improves the quality of the simulation according to the user’s needs. Reducing the
complexity of this algorithm while avoiding to predetermine the final mesh quality obviously
could enhance radiance computations. Figures 3.23 and 3.24 show a glossy reflecting cylinder
that is lit by a single light source. The images show the same radiance solution from different
viewing angles. Note that in contrast to the radiosity case, the highlight moves over the surface
when the viewing position changes. The solution was obtained by a wavelet radiance computa-
tion using the object-based meshing scheme [Bül99]. The algorithm started with the roughest
approximation of the cylinder containing only five polygons (two triangles for top and bottom
and three quadrangles for the cylinder coat).

3.10 Summary

In this chapter it was shown, that using modeling information during the whole rendering pro-
cess can efficiently improve hierarchical radiosity computations. Accessing the original objects
during refinement, for visibility and form factor computations and in the reconstruction step
leads to better results in terms of speed and quality. Thus, curved objects could be efficiently
incorporated in the hierarchical radiosity algorithm. Combined with a powerful data structure
that provides full adjacency information, the presented algorithm is applicable to scenes con-
taining a wide variety of complex objects. The final display of the solution benefits from both,
the underlying data structure and the object-based approach, depending on the chosen recon-
struction method. Due to the combination of ray tracing and radiosity, rendering techniques that
require the pixelwise evaluation of surface points are directly available to further enhance the
quality of the solution.

The requirements for the new algorithm are small and should be available in any rendering
software providing ray tracing. As a proof of concept the algorithm was incorporated in a
commercial rendering package.
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Figure 3.14 Hierarchical radiosity on curved objects. During the radiosity simulation the object’s shape
improves. The object-based meshing scheme allows for a very coarse input model with-
out degrading the quality of the solution. These snapshots were taken after 1, 2, 3 and 9
iterations of the modified hierarchical radiosity algorithm.
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Figure 3.15 The remeshing step. The left image shows an adaptively refined radiosity solution. The
inhomogeneous refinement causes severe artifacts in shadow regions of the sphere. After
a remeshing step the sphere’s shape is correct. Note the sharp highlight on the sphere and
the curved shadows.

Figure 3.16 These two images show the corresponding meshes to Figure 3.15. On the left side, the
sphere’s coarse start approximation is still visible in the lower region of the sphere.
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Figure 3.17 Final gathering. On the left image reconstruction was done by gouraud shading, whereas for
the right image the object-based final gathering step was used. The radiosity solution was
computed by a wavelet radiosity algorithm. (from [Bül99])

Figure 3.18 These images show a closeup of the solution in Figure 3.17. Note the high quality of the final
gathering reconstruction scheme when compared to polygon-based bilinear interpolation.
(from [Bül99])
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Figure 3.19 A museum of curved objects.

Figure 3.20 Hierarchical radiosity on CSG-objects. The cup is represented as a single object, being the
union of a torus and the difference of two cylinders.
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Figure 3.21 Integration in 3D Studio MAX [Thi99]. The object-based hierarchical radiosity algorithm is
well suited for integration in object-oriented rendering packages.

Figure 3.22 Radiosity with bump-mapping. During the final gathering process, the surface normals of the
sphere were perturbated according to a 2D map.
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Figure 3.23 Radiance solution for a glossy cylinder lit by a red lightsource. The cylinder started with a
mesh of 5 polygons.

Figure 3.24 The radiance solution of Figure 3.23 seen from another viewing position. Note the different
position of the highlight. Both images were extracted from the same solution by an interactive
viewer [Bül99].
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CHAPTER 4

Distributed Hierarchical Radiosity

4.1 Introduction

With the increasing size of input scenes, radiosity computations get more and more imprac-
tical. Rendering times and memory consumption clearly limit the usability of finite element
algorithms. A possible way to reduce rendering times is the parallelization of these algorithms.
Due to the large amount of interactions between mesh elements however, communication costs
quickly become a new bottleneck. In this chapter, a new approach to the parallelization of
Hierarchical Radiosity will be introduced. By further exploiting the object-based techniques
developed in the last chapter an algorithm is formulated that minimizes communication costs
and scales very well when the number of processors is increased.

The design of a parallel algorithm heavily depends on the target platform addressed. Special
purpose hardware typically provides the best support for parallel solutions, however their ac-
cessibility is often limited and their acquisition and maintenance is expensive. A much cheaper
and widely available resource for parallel computing are workstations and PCs that are inter-
connected by a local area network (LAN). These machines are easily accessed and often have
enormous computational power that is unused most of the time. Algorithms targeting this en-
vironment must deal with two problems that make their design rather specific. The bandwidth
provided by a LAN is very small when compared to explicit parallel architectures, which in-
creases the demand for efficient communication. Additionally, processors are often idle but
during a lengthy computation they can probably not be used exclusively. A load balancing
comparable to scheduling techniques found in operating systems must be applied.

The distributed hierarchical radiosity algorithm presented here is designed to run in a net-
work of workstations. Together with an efficient communication protocol a load balancing
scheme is introduced that adapts to the changing availability of CPU time in a typical LAN.
Due to minimal changes to the original algorithm, its integration in existing hierarchical radios-
ity systems is easy to accomplish [FSZ98].

This chapter is structured as follows. After discussing previous work on distributing hier-
archical radiosity computations a new object-based parallel algorithm will be presented. The
scheduling scheme that led to an efficient load balancing is explained in Section 4.4. Finally
results regarding the efficiency of the algorithm will be presented. A summary concludes this
chapter.
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4.2 Previous Work

Several successful approaches have been made to improve the hierarchical radiosity algorithm
by parallelization.

In [SHT+92] and [SGL94] Singh et al. describe their implementation of hierarchical radios-
ity on the Stanford DASH multiprocessor system. The DASH machine has a shared address
space and is equipped with 48 MIPS R3000 processors. As the basic computational task a
patch and all its interactions (including the interactions of its children) or a single patch-patch
interaction is chosen. Task queues are provided for each processor that are initially filled with
the top level polygon interactions. New interactions are added to the processor’s queue that
subdivided the patch. Load balancing is performed using task-stealing: if a queue is empty,
tasks from another queue are transferred to the empty queue. New tasks are always created
at and dequeued from the head of a queue, whereas task-stealing only occurs from the tail.
This algorithm resulted in good speedups for a simple scene of about 150 polygons. The good
speedup is the result of exploiting the coherence of subsequent visibility tests using a BSP tree.
Because the same part of the tree can be reused, the processor caches work efficiently. The
communication costs of the task stealing process however, prevent its application in a network
of workstations.

In order to achieve a better load-balancing the overall costs involved with a patch were
investigated by the same authors. Although they found that the costs decrease during a radiosity
computation, using it as a hint for the scheduling algorithm on how to distribute new tasks did
not succeed.

Zareski describes in [Zar95] an implementation similar in spirit to the one that will be pre-
sented in this chapter. The author also uses a client-server model in a network of workstations
to distribute ray-patch intersection tests. The server uses the results to compute form factors
and performs the refinement steps. The scheduled tasks however, are very fine grained, thereby
resulting in high communication costs. As a result, the algorithm suffers from a bad scalability.

Bohn et al. describe an implementation that uses the parallel supercomputer ConnectionMa-
chine 5 [BG95]. They use a very fine grained parallelism by allowing each stage of the radiosity
algorithm to be computed in parallel. This is achieved by distributing all patches and links over
the processors. If some required data is missing at a processor, a request is sent. These requests
are kept in a local stack to be able to proceed with other tasks while waiting for the requested
data. Due to the massive communication costs, the achievable speedup is sublinear.

Funkhouser was the first author who presented a parallel hierarchical radiosity algorithm
based on a group iterative approach [Fun96]. Using a BSP technique, the master processor
partitions the scene into cells and constructs a visibility graph. Using this graph, clusters that are
mutually visible are distributed to the clients, where local radiosity computations are performed.
The results are recombined by the server, using a step of a group iterative approach of which the
convergence is mathematically proved. Load balancing is performed by the master processor
that distributes clusters to the clients. Using an estimate of the task size depending on the
number of form factor evaluations and gathering steps, tasks are distributed with decreasing
size to the available clients. The algorithm is implemented in a client-server environment and
runs in a network of workstations.

An implementation that can be used in a network of workstations or by parallel computers is
presented in [MB98]. It targets large architectural environments and applies graph partitioning
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to the visibility graph to break the scene into clusters. These clusters are distributed to the clients
where the gathering of energy and patch refinement is performed. All data is kept on a shared
disk, using one file per cluster. When all the processors have performed gathering for all their
clusters, the current iteration of a global iterative resolution method is completed. Although this
concept is similar to the approach presented by Funkhouser, it does not depend on expensive
client-server communication.

An improved implementation of the one developed by Singh et al. (described above) has
been published in [PRR98]. Using a special parallel hardware, the SB-PRAM which is a shared
memory machine that provides uniform memory access times, an impressive scalability could
be achieved. In contrast to other shared memory machines, locality is not an issue here. By
exploiting the facilities of the execution platform a speedup for up to 2048 processors was
obtained. The main differences to the original implementation is the parallel construction of the
BSP tree and a parallel loop over the input polygons to perform the initial linking. Additionally
the granularity of visibility and form factor computations could be refined, due to the advantages
of a uniform memory access.

Most of the algorithms summarized above try to distribute all stages of the hierarchical ra-
diosity algorithm. Due to the high dynamic of a radiosity computation, communication costs
play an important role in an efficient implementation. Therefore, the algorithms greatly differ
from their sequential counterpart which makes a robust implementation difficult and which re-
quires a complete rewrite of existing (sequential) code. The algorithm presented in this chapter
is a novel approach in two aspects. First, the object model developed in the last chapter is
used as the base of the algorithm. Besides the efficient support for curved objects it provides
the key to keep communication costs very low. The second aspect is the reuse of existing and
stable code. The modifications to the sequential algorithm are minimal. Of course, code for the
scheduler must be added.

4.3 The Parallel Algorithm

4.3.1 Execution Platform

The algorithm presented here is designed to run in a computer network. The workstations may
be single or multi-processor architectures of different computing power. A shared file system
(e.g., NFS) is used to store the scene database although it is possible to transport the geometric
description directly over the network. Bidirectional communication is done via TCP-stream-
sockets that provide fast and synchronized communication channels. The design of the algo-
rithm will follow the client-server principle, therefore a server machine that is equipped with
enough RAM to store the complete radiosity solution is required. As will be described later, the
client processors have much lower memory requirements. Their processor speed however, will
significantly influence the execution time of the distributed radiosity computation.

4.3.2 Choosing Computing Tasks

To parallelize a sequential algorithm it must be decomposed into independent tasks that can be
computed simultaneously without interfering each other. An essential decision is the choose of

79



DISTRIBUTED HIERARCHICAL RADIOSITY 4.3 THE PARALLEL ALGORITHM

a proper granularity that ensures a partitioning of the problem into well sized subproblems. In
the best case, all subproblems are of the same size. This would allow for a simple decompo-
sition of the algorithm into evenly distributed tasks. Typically, an algorithm consists of very
different subproblems that have arbitrary and probably changing computational demands. The
synchronization of these tasks requires high communication efforts to schedule new tasks to
the otherwise idle processors. Additionally, small tasks, i.e., tasks that can be computed very
quickly, result in a bad ratio of communication time to processing time. Especially in a client-
server environment where each task must be scheduled separately by a central server, small
computing tasks have a severe impact on the total execution time. Thus, similar sized and
computing intensive tasks are best candidates for an efficient distributed computation.

The hierarchical radiosity algorithm consists of a variety of differently sized computing
steps. In the starting phase the input polygons are compared and the initial links are established.
During the solution, an unknown number of new patches is generated by subdividing the input
polygons. These patches unpredictably interact with each other, thereby requiring access to the
other patches for visibility computations. Especially due to the increasing number of geometry
data, task sizes vary and permanently increase the communication load of the system. To find
one or more tasks that can be distributed efficiently the various steps must be compared in
terms of their computational size and locality. A task has a high locality if its execution does
not require the access to other processors.

Subdividing a polygon is a very local and simple process, where no other patches are in-
volved. Gathering energy over one or more links requires visiting a number of other patches.
Due to the hierarchical approach, gathering is a local operation to a certain degree because only
a subset of the environment has to be accessed. Compared to the few arithmetic operations
(addition and multiplication) that are performed in a gathering step however, the communica-
tion costs are rather high. Distributing energy in the hierarchy once the gathering is completed,
requires access to all patches of the same input polygon. Depending on the storage scheme
(polygon- or patch-based) the degree of locality can be very different. The most time con-
suming task that remains is the computation of form factors and visibility, which is typically
performed simultaneously (Section 2.7.2). Actually, the visibility computations in complex
scenes need up to 90% of the total execution time of a radiosity solution.

Detecting an independent part in the algorithm that clearly dominates the overall execution
time makes it a preferred candidate for distribution. The locality of visibility computations is
typically very low, because any patch in the scene is a potential occluder. Using ray-acceleration
structures effectively improves the situation. However, visibility computations from or to sub-
divided patches still requires their expensive distribution to all processors.

The next sections describes a parallel algorithm that is based on the distribution of form
factor and visibility computations but that avoids the increase in communication costs described
above. The key to minimizing the communication costs will be the object-based form factor
computation method developed in Section 3.7.

4.3.3 The Data Flow

The standard hierarchical radiosity algorithm must be slightly reformulated to separate the form
factor computation from the other tasks. Consider the original algorithm described in Section
2.10.3 using BF-refinement. Form factors are calculated in the initial linking stage and during
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further mesh refinement. This is directly coupled with the creation of new links that are estab-
lished if the error in transport exceeds a given threshold. Because the form factor is stored in
the link data structure it is computed whenever a new link is created. The pseudo-code given in
Figure 2.23 shows the context of this procedure. An iteration is performed over all links in the
system and checks them for refinement.

If the form factor computations would be distributed directly, the whole communication
with the clients had to be integrated deeply into the algorithm. The responds of the clients
that are sending back their results would permanently interrupt the refinement process thereby
requiring additional synchronization effort.

The pseudo-code in Figure 2.19 illustrates the standard hierarchical refinement procedure. It
can be seen that all further refinement, once a link was established, is independent of that link.
Especially the form factor stored with the link has no influence on the further subdivision of
other mesh elements. Therefore, to isolate the form factor computation it can be moved outside
the loop. All links are established as before, but with a place holder instead of the real form
factor.

Keeping in mind that the functions refine() and refineLink() now create empty
links, i.e., links with an invalid form factor of −1, the pseudo-code of the algorithm’s inner loop
is illustrated in Figure 4.1. Changes to the original code of Figure 2.19 are set in bold.

The changes to the original algorithm are minimal and the most time consuming steps are
now isolated in a central function call. The efficient parallel computation of the form factors
and their integration in the server’s main loop is the next step.

4.3.4 Distributed Form Factor Computation

Using a patch based form factor computation in a parallel implementation typically requires
the replication of large parts of the radiosity mesh to the clients. As mentioned earlier, the
resulting communication costs will reduce the gain from distributing the most expensive part of
the algorithm over multiple processors.

The approach presented here is based on the same object-based form factor computation
that was successfully used to render curved surfaces with the hierarchical radiosity algorithm
(Section 3.7). Although it is based on the mesh elements to select the sample points, the evalu-
ation of distances, angles and, most important, visibility only needs access to the original scene
objects. Once the sample points are determined, form factors are computed by casting rays
through the untesselated scene. This suggests the following setup of the proposed client-server
environment:

The server machine is responsible for the communication and solves the radiosity system.
The main loop illustrated in Figure 4.1 runs exclusively on this central machine. The client
computers are ’only’ ray tracers and they do not load a radiosity program. Instead, they load
the same scene description as the server but never tesselate the scene into polygons. During the
simulation ray-tracing tasks are sent to the clients that can be evaluated without a mesh. This
setup results in several advantages:

• The mesh is never sent over the network.

• Accurate object-based form factor computation.
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tmp = Aε
Aε = ∞
/* initial linking */
for (each polygon p)

for (each polygon q)
if(p ! = q)

refine(p,q); /* creates empty links! */
Aε = tmp

/* fill empty links with form factors */
distributeFormFactors();

done = FALSE;
while(done == FALSE) {

/* solving */
while (not converged) {

for (each input polygon p) gather(p);
for (each input polygon p) pushpull(p, 0);

}
done = TRUE;
/* refinement */
for all links l

if( refineLink(l) == FALSE ) /* creates empty links! */
done = FALSE;

/* fill empty links with form factors */
if(done == FALSE)

distributeFormFactors();
}

Figure 4.1 Pseudo-Code: Delayed form factor computation.

82



DISTRIBUTED HIERARCHICAL RADIOSITY 4.3 THE PARALLEL ALGORITHM

• Support for curved surfaces as described in Chapter 3.

• Ray-acceleration structures to speed-up ray tracing need to be initialized only once. (The
scene is static for the clients.)

The amount of data that has to be transported over the network depends on the formulation
of the ray-tracing tasks. To avoid any dependencies of the mesh elements, each sample ray
could be regarded as a task. With the knowledge of the mesh geometry, the server would
determine the sample points on both interacting patches to let the clients launch the connecting
rays. Assuming 16 samples per patch, which is a typical count, 32 3D-coordinates had to
be transferred for each form factor. The floating-point representation would require 32 ∗ 3 ∗
4 bytes = 384 bytes if single precision numbers (4 bytes) are assumed. This large amount can
be reduced by letting the clients choose the sample points.

Recall the point-to-disc form factor approximation that is used in the Monte Carlo integra-
tion approach described in Section 2.7.2:

FdA,A′ =
A′ cosθi cosθ j

πr2 +A′ (4.1)

The parameters to specify a disc to be used in this approximation are the disc’s area A′, the
center and the normal. This sums up to a scalar value and two 3D-coordinates for each patch
or 2 ∗ (1 + 2 ∗ 3) ∗ 4 bytes = 56 bytes per form factor task. Once these parameters are sent to
the client, sample points over the corresponding patch can be generated there. The reduction in
communication costs is about a factor of seven.

Thus, the distributeFormFactors() call in Figure 4.1 can be formulated as follows.
All links in the hierarchy are visited and checked if their form factor field is empty. For all empty
links the corresponding patch data for sender and receiver (area, center, normal) is collected and
put in a list. Finally the list is traversed and the form factor tasks are sent to the clients.

The clients execute the form factor calculation as described in Section 3.7. One important
detail of this method is the identification of a patch’s parent object when launching a ray. To
avoid regarding the object itself as an occluder, each hitpoint must be checked carefully as
discussed earlier. A sequential implementation can base this test on a pointer comparison. In
a parallel implementation this is not possible due to different address spaces on the clients.
Instead an additional ID must be transmitted that uniquely identifies the parent object of each
patch. This ID increases the data volume by 4 bytes per form factor (two 16 bit integers) to a
total of 60 bytes.

Once all clients have finished their tasks and have sent back the form factors, the server fills
the empty links and starts the radiosity simulation.

4.3.5 Compacting Form Factor Tasks

The iteration over all links to collect the form factor tasks can be optimized. Because all gath-
ering links must be stored or be accessible from within the patch, the loop should iterate over
all patches. At each patch, all gathering links define form factor tasks with the same receiver,
i.e., the patch itself. This can easily be used to compact a list of form factor tasks by sending
the receiving patch’s parameters only once, followed by the parameters of all sending patches.
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Together with the number of links (a 32 bit integer), this list defines a collection of tasks that
can be solved by a single client.

For medium and large scenes this technique essentially reduces the amount of data that has
to be sent. Without compacting, each form factor task requires 60 bytes or 2 ∗ n ∗ 30 bytes for
a list of n form factors. Sending the receiver only once plus the length of the list results in
30+4+n∗30 bytes. For large n the size of the sending patch’s data can be neglected and the
required amount of data is approximately n ∗ 30. This effectively reduces the communication
costs to 50%.

4.4 Scheduling

In the client-server architecture proposed above, the server is responsible for the efficient distri-
bution of rendering tasks, i.e., form factor computations, to the clients. A scheduling algorithm
has to decide which jobs (or how many) should be scheduled to which client.

This scheduling algorithm should minimize the total running time of the application. The
arising load balancing problem has to comply with some conditions: all clients start simulta-
neously, they work without breaks and nothing is computed twice. If all clients finished their
last job at the same time (i.e., without idle-time), optimal execution time would be achieved.
However, job execution times are unpredictable. Even under less strict assumptions, the load
balancing problem is NP-complete [GJ79]. Every client workstation has different (and prob-
ably changing) performance (due to varying workload) and jobs are not preemptable without
some cost. Therefore a simple heuristic for dynamic load balancing is applied here, which was
subsequently improved to achieve good results in “real world” environments. “Real world”
means, that the scheduling algorithm is applicable to networks that are not dedicated to the ren-
dering task. The client computers connected by the network may be concurrently used by other
processes.

A situation that has to be avoided is to have some clients still working on their last job
while others are already finished and are idling. This idle-time is bounded by the maximal
job execution time. The only assumption about job execution times that can be made is that
smaller jobs will take less time. Therefore the first approximation to an optimal schedule is to
use many (small) jobs and to distribute them using a first-come first-served algorithm. In the
proposed distributed radiosity algorithm, the problem of idle-time reappears periodically. After
each refinement step, a parallel computation takes place, thereby accumulating performance
losses due to potentially idle processors.

Unfortunately a higher number of jobs causes more communication, which degrades the
overall performance. This is even more important in LAN environments with high communica-
tion costs compared to explicit parallel architectures. Empirical tests can be used to find a good
jobsize to meet both requirements. Measuring rendering times of various example scenes (real
world as well as artificially constructed, simple and complex) revealed that five to eight times
the number of clients is a reasonable number of jobs (see Figure 4.2 for an example).

A typical LAN connects workstations of varying performance characteristics. By taking the
estimated performance of each client workstations into account, improvements regarding the
reduction of idle-time can be made. Generally, a computer with twice the computational power
will take half the time on the same job than its counterpart with “normal” power. By using
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Figure 4.2 These Gantt charts show the positive effect of increasing the number of jobs on a problem.
The left one uses one job per client while the right one uses eight. The distinct horizontal bar
segments represent the jobs that each of the five clients has computed.

a single speed index to describe the relative speed of each computer, jobsizes can be adjusted
accordingly. The result is a decrease in the number of jobs (less communication overhead)
without an increase of maximal job execution time and thus idle-time.

To find the appropriate jobsize for a given client, a normalized jobsize can be computed that
is weighted by the client’s speed index [Zen97]:

JSnorm =
PS

NS ·∑n
i=1 SIi

(4.2)

where PS is the total problem size (i.e., the number of form factors), NS the number of
scheduled jobs per client, and SI the speed indices of the clients. The individual jobsize for
client i is then given by:

JSi = JSnorm ·SIi (4.3)

The scheduling algorithm described so far schedules more than one job to each client (con-
stant NS in Equation 4.2). Obviously, the last job of any client will be scheduled with a higher
probability in a later part of the total radiosity computation. As only these last jobs are re-
sponsible for idle-times it seems reasonable to make them small and increase the size of earlier
jobs instead. The tests mentioned above showed that throughout the scheduling process job-
sizes could be decreased linearly by a factor of five, i.e., the first job was five times bigger than
the last one.This effectively reduces idle-times without increasing the number of jobs (and thus
communication overhead) compared to static jobsizes.

Due to the assumption that the network may be concurrently used by other processes, it
is never known how much computing performance will actually be available from any client.
Some user could probably start a computational intensive process on a computer that is currently
working on its last job of the radiosity algorithm. This job will take much more time than
expected and make the server wait while the other clients are idling. Thus, the speed index
introduced earlier must be made dynamic to control a client’s jobsize. The ratio between real-
time and actual cpu-time for the last job has proven to be a good measure for the available
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amount of a workstation’s computational resources. Therefore it is used to compute the actual
speed index:

SIn
i = D ·SIn−1

i +(1.0−D) ·SI0
i ·

tcpu

treal
(4.4)

The constant D is used to damp the current speed index SIn
i , using the previous speed index

and the initially specified speed index SI0
i . A value of D = 0.25 has found to be reasonable

[Zen97].
Despite these efforts, in a “real-life” environment the situation can still arise where some

clients are working and others waiting, thereby wasting resources and increasing total computa-
tion time. To reduce this effect (as it can not completely be avoided) a rescheduling mechanism
is used. Jobs from the list of currently active jobs are subsequently rescheduled to clients that
have finished their last job and would idle otherwise. This is done again using a simple first-
come first-served scheme. The last scheduled job is rescheduled first and only once, at least as
long as there are other jobs which are not yet rescheduled. The first result of multiple instances
of such a job is saved and all other instances are aborted. With this technique, the last job can
possibly be computed in less time by a faster client which would result in a reduction of total
computation time. For a successful application of rescheduling see Figure 4.3.
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Figure 4.3 These figures show the effect of rescheduling. The left computation has a high idle-time
because client #1 worked very long on its last job. On the right, this job was rescheduled and
finished quicker by client #2, reducing idle- and total-time. The dotted line-segments denote
aborted job-instances.

Additionally, this algorithm is very useful if some clients fail completely (e.g., they crash)
before finishing their last computation. Because the failed job is rescheduled and another client
can finish it, the algorithm will terminate correctly – a point of robustness.

4.5 Results

Using the empirically obtained scheduling constants from above, the distributed hierarchical
radiosity algorithm was applied to several test scenes. All tests were performed using the im-
plementation described in [Zen97]. The tests were run in a network of up to eight Silicon

86



DISTRIBUTED HIERARCHICAL RADIOSITY 4.5 RESULTS

Graphics Indy Workstations with MIPS R4600 processors running at 100 MHz. The machines
were equipped with 32MB of RAM and they were connected by a 10 MBit network. The server
machine was a SUN UltraSPARC equipped with 240 MB of RAM. Following the premise that
a parallel computation is only efficient when the computing time of the distributed tasks clearly
outweighs the communication time, scenes of different complexity were tested. Here, complex-
ity does not only mean the size of the scene. Form factor computations of complex objects take
longer than those for simpler ones, because the objects’ ray-intersection routines dominate the
object-based form factor computation.

The museum scene (Figure 3.19), that was already used for the curved-surfaces-algorithm in
Chapter 3, can be regarded as a complex scene. Thus it should be well suited for the distribution
of form factors. As is illustrated by Table 4.1, applying the parallel algorithm resulted in a nearly
linear speedup.

# of processors 1 2 3 4 5 6 7 8

total time [s] 32695 16548 11402 8373 7550 5676 5215 4650
speedup 1.0 1.98 2.9 3.9 4.3 5.8 6.3 7.0
max. comm. time [%] 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
max. idle time [%] 0.4 2.9 3.2 3.3 4.9 4.2 6.8 9.4

Table 4.1 Statistics for the museum scene. The complex form factor computations result in a nearly linear
speedup and neglectable communication costs.

During the computation, 57.3 MB of data were sent to the clients and 7.1 MB of data
were sent back to the server. Thus, the communication time of 0.3% can be neglected. The
moderate idle time of about 10% contains the time of distributing the energy at the server
and the complete mesh refinement. With an increasing number of processors, the percentage
grows because more processors are waiting for the server at the same time. The scheduling for
the case of 3 processors is visualized in Figure 4.5. It can be seen that the total jobsizes are
decreasing towards the end of the computation. This is a result of the hierarchical refinement
of the radiosity algorithm. Most refinement steps occur at the beginning of the algorithm where
the overall error in transport is still very large. After further refinement steps, fewer links have
to be refined, thereby requiring a decreased number of form factors to be computed for the next
iteration.

A moderately complex scene is the office scene displayed in Figure 4.4. It shows two
office rooms with some furniture, that are modeled using differently sized boxes. The scene
complexity is thus lower than the museum scene and contains about 1000 polygons. In Table
4.2 the corresponding statistics are given. For 8 processors a good speedup of 6.9 was obtained.
The server sent 26.8 MB to the clients and received only 3.3 MB of form factor data. Due to
the simpler geometry, the idle time is about 12% which is slightly worse than for the museum
scene.

Finally, a very simple scene was constructed. It contains some boxes and spheres, that can
be ray traced very efficiently which improves the object-based form factor computations. The
communication overhead should be obvious. Figure 4.4 contains a rendering of the scene.

The results are given in Figure 4.3. Good speedups are only achievable for up to 4 proces-
sors. Using more than 7 processors for a scene of this complexity results in a performance loss
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# of processors 1 2 3 4 5 6 7 8

total time [s] 4240 2190 1483 1134 926 782 681 609
speedup 1.0 1.94 2.9 3.7 4.6 5.4 6.2 6.96
max. comm. time [%] 0.99 1.3 1.3 1.2 1.3 1.5 1.4 1.6
max. idle time [%] 1.4 4.2 5.8 7.3 9.1 9.7 10.1 11.6

Table 4.2 Statistics for the medium sized office scene. Even simpler form factor tasks can lead to a nearly
linear speedup.

# of processors 1 2 3 4 5 6 7 8

total time [s] 2697 1456 1052 852 714 627 546 553
speedup 1.0 1.9 2.6 3.2 3.8 4.3 4.9 4.9
max. comm. time [%] 3.8 4.2 5.2 4.9 5.3 5.2 5.4 6.5
max. idle time [%] 4.5 13.0 19.2 23.6 26.4 25.8 31.0 33.9

Table 4.3 Statistics for the simple spheres scene. A good speedup is only possible for up to 4 processors.
Note the high fraction of idle time when compared to the more complex scenes.

due to the high idle time of more than 30%. The amount of data that was transferred from the
server was 69.3 MB while only 8.2 MB were sent back. This is also indicated by the highest
communication costs of the test scenes, ranging at more than 5%. The Gantt-chart in Figure
4.5 visualizes the communication and idle time of the processors. The empty spaces denote the
computing intervals and reflect the lower bound of a useful problem size for this algorithm.

A summary of the different speedups and their scalability together with renderings of the
test scenes is displayed in Figure 4.4.

4.6 Summary

In this chapter a novel approach to the distributed implementation of Hierarchical Radiosity
was presented. It is based on distributing the most time consuming part of the algorithm over a
network of workstations. By exploiting an underlying object-model, form factor computations
could efficiently be parallelized without the enormous communication costs typically found
in client-server approaches. Additionally, scenes containing curved surfaces benefit from the
quality and speed improvements presented in the previous chapter.

A scheduling algorithm was developed that has found to be well suited for the target envi-
ronment, i.e., a workstation cluster of unpredictable and changing CPU load. By dynamically
changing jobsizes, incorporating an adaptive speed index and rescheduling of jobs at the end
of each computation cycle, idle times could be minimized. As a result linear speedups for a
moderate number of processors could be achieved.
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Figure 4.4 Renderings and speedups of the test scenes. From left to right and from top to bottom: mu-
seum, office and spheres. The speedups for museum and spheres are plotted in the diagram.
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Figure 4.5 The left Gantt-chart shows the scheduling for 3 processors computing the museum scene.
The right chart shows communication and idle times while computing the spheres scene.
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CHAPTER 5

Efficient Clustering

5.1 Introduction

The extension of Hierarchical Radiosity to the use of object clusters greatly improved the ef-
ficiency and thus usability of radiosity computations. Due to the quadratic starting phase and
excessive memory consumption of the original polygon based approach, large scale radiosity
simulations for scenes containing hundreds of thousands of polygons were not feasible. In
Section 2.10.4 a clustering algorithm based on isotropically scattering volumes was presented.
Although this method can efficiently be applied to very complex scenes, the quality of the solu-
tion is not always satisfactory. The result is directly influenced by the structure of the employed
hierarchy and the oracle that drives the refinement process. The cluster hierarchy must adapt
very well to the underlying geometry to justify an approximation of many fine interactions by
a single, coarser one. Additionally, the quality of the hierarchy has an impact on the execu-
tion time of the radiosity simulation. Because visibility computations between patches are too
inaccurate when using the volume scattering method, ray casting must be used. The object hi-
erarchy therefore should efficiently improve ray-surface intersection tests. Often, an additional
data structure is used for this purpose, thereby increasing the algorithm’s memory consump-
tion. The second prerequisite for an accurate solution is an error-driven refinement strategy.
The oracle function should incorporate error bounds on all components involved in the energy
transfer.

In this chapter a new clustering strategy will be applied to Hierarchical Radiosity and its
implication on visibility computations and energy transfer will be discussed. The hierarchy is
built using a hybrid structuring algorithm that combines an optimized bounding volume hier-
archy together with uniform spatial subdivisions for regions with regular object densities. The
hierarchical subdivision is driven by a cost function, that assures the efficient use of the resulting
data structure for visibility computations. The hierarchy of bounding volumes will be stored in
a binary tree.

When aiming at high quality radiosity solutions an error-driven refinement strategy must
be combined with a more elaborate energy transfer. Object clusters typically do not reflect
light isotropically, therefore more hierarchy traversals are needed to account for the individual
orientation of the clustered polygons. These quality improvements require an additional com-
putational effort. Due to using a binary tree however, the accumulated hierarchy traversal costs
may quickly become overwhelming. In order to reduce the required number of full traversals
an efficient single pass gathering will be used.

The chapter is structured as follows: after presenting the clustering strategies used in the
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literature so far and discussing the properties of a ’well-suited’ hierarchy, the use of error bounds
in radiosity clustering algorithms will be revisited. The subsequent sections describe the new
clustering strategy and its advantages for radiosity clustering. Finally, it will be shown how the
hierarchy can efficiently be used for radiosity computations and results obtained from rendering
several large industrial scenes will be presented.

5.2 Clustering Strategies

Several different clustering strategies have been used in the context of hierarchical radiosity.
They differ in the underlying data structure and in the way, how objects are inserted in the
hierarchy. Often, these strategies are based on ray-tracing acceleration methods that early intro-
duced hierarchical data structures to reduce the complexity of the ray-tracing approach [Gla89].

After describing the most often used data structures and hierarchy creation algorithms, a
guideline to evaluate clustering strategies will be given.

5.2.1 Data Structures

The use of hierarchical bounding volumes reduced the time complexity of the ray-tracing al-
gorithm from linear to logarithmic in the number of objects [RW80]. Once a larger volume is
found to not being intersected by a given ray, the enclosed bounding volumes do not need to be
tested anymore. For ease of use the bounding boxes are aligned to the main coordinate axis.

Another hierarchical acceleration technique is the use of octree data structures [Gla84]. An
octree is built using a recursive subdivision process. Rectangular volumes are split into eight
subvolumes or octants until some criterion is met. The criterion can be that a given object most
tightly fits into an octree cell or that no more than a specified number of objects is contained in
each cell. If a list of intersecting objects is attached to an octree cell, it can be used to quickly
determine the object which is intersected by a given ray. Only a short list of candidates has to
be traversed for each octree cell intersected by the ray.

To circumvent the strict cubical subdivision of an octree, k-d trees use planes with no fixed
position to subdivide space. The position is chosen depending on the distribution of objects.
This results in more tightly fitting cells, both for the objects and for the empty space between
them.

The described data structures can be filled in several ways. Hasenfratz et al. classify the hi-
erarchy construction algorithms in top-down approaches and bottom-up approaches [HDSD99].
Top-down approaches are typically very fast, because objects are inserted subsequently based
only on a local decision. Bottom-up approaches however, optimize the process of insertion by
using all existing objects.

5.2.2 Algorithms

In [Sil95] Sillion uses a k-d tree that is filled in a top-down approach. Starting with a single cell,
objects are inserted in the lowest level of the hierarchy that contains them entirely. New cells
are created by subdivision as needed to find the appropriate hierarchy level. Because objects are
always completely enclosed by their cell no intersections between objects and cell boundaries
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occur. This is important for the later energy transfer, because objects that are spread over more
than a single cell contribute multiple times to the solution. However, if scenes contain many
large objects they all tend to be inserted at very high levels in the hierarchy.

A top-down approach that uses an octree to store the hierarchy is presented by Christensen
et al. [CLSS97]. They start with the bounding volume of the entire scene as the root cluster
which is split into eight octants. Each patch that has a smaller extent than the size of an octant
is inserted into the octant containing its centroid. Otherwise it is attached as a child to the
current cluster. The same procedure is recursively performed for each octant. Once the number
of patches in a cluster is sufficiently small, the process terminates. As a result, each patch is
assigned to a single cluster and a hierarchy of bounding volumes is created.

The following clustering strategies (as well as the one used in this chapter) are based on the
bounding volume algorithm of Goldsmith and Salmon [GS87]. In order to predict the quality
of a bounding volume hierarchy for ray tracing, they use a cost function to find the proper
insertion level for an object. This cost function is based on the observation, that the conditional
probability of a ray hitting a given node if it hits the root node can be approximated as the area
of the given node’s bounding volume divided by the area of the root node’s bounding volume:

Pr(r hits B|r hits A) =
S(B)
S(A)

(5.1)

where r denotes a random ray, bounding volume B is enclosed by bounding volume A and
S(V ) is the surface area of volume V . Using this cost function the construction algorithm works
as follows: All objects are subsequently inserted into a tree. To find a node’s suitable subtree
for insertion, the subtree chosen is determined by the smallest increase in surface area of the
current node’s bounding volume if the object would be inserted. If, due to equal costs, multiple
subtrees are possible they can be searched individually for the best location. At each node of a
subtree, the same cost function is evaluated to find the optimal insertion level.

The order in which the objects are inserted into the tree can have a great impact on the quality
of the resulting hierarchy. The authors tested several data orders and found, that simply shuffling
the data before insertion resulted on average in the best quality. Due to the fast hierarchy
construction time, when compared to the actual rendering process, several seeds can be tried for
shuffling. The best hierarchy according to the cost functions is finally chosen.

Smits et al. applied the Goldsmith-Salmon algorithm in their radiosity clustering approach
[SAG94]. The bounding volumes are directly used as clusters and for the ray-casting based
visibility tests. Without giving further details, however, they made few modifications to the
bounding volume data structure.

Gibson et al. note, that the proposed shuffling method not necessarily results in optimal
hierarchies suited for radiosity computations. Instead, surfaces should be inserted in order of
spatial location and decreasing size [GH96]. Their bottom-up approach uses a hierarchy of grids
with decreasing cell sizes. Each level is subdivided into 2i, i ∈ [0;n[ voxels and each surface is
inserted into the level whose voxel size fits its bounding box. Finally, the grid is traversed top
down and each level’s objects are inserted into the final bounding volume hierarchy as described
above.

Hasenfratz et al. introduced two new clustering strategies by extending the k-d tree approach
to allow for overlapping cells [HDSD99]. Thus, depending on a user parameter, large objects
are not always inserted at high levels of the tree. In order to get rid of the empty clusters, they
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finally arrange the bounding volumes of the non-empty cells in a hierarchy of bounding vol-
umes. Because the distribution of polygons among the resulting clusters can often be rather
unbalanced, a second algorithm is proposed. It uses the output of the first algorithm and ap-
plies a bounding volume optimization based on the Goldsmith-Salmon algorithm to clusters
containing more than a dozen polygons.

5.2.3 Evaluation of Clustering Strategies

In order to evaluate and compare clustering strategies for Hierarchical Radiosity, Hasenfratz et
al. recently presented a thorough analysis of the algorithms described above [HDSD99]. Their
evaluation of clustering strategies is based on investigating the following requirements: those
affecting the quality of the simulation and those affecting the overall efficiency.

Simulation Quality The quality of the light transfer is mainly influenced by the approx-
imation quality of the clusters. Because clusters represent the enclosed geometry during the
energy exchange, they should be as close to the individual original objects as possible. To
avoid objects to contribute to a cluster twice, overlapping clusters must be avoided. Small ob-
ject detail should be detected and enclosed by separate clusters, otherwise large empty space
is contained. This contradicts the central idea of clustering, that clusters should represent the
’average’ of the enclosed geometry. Thus, an optimal cluster is filled with a random distribution
of similarly-sized objects.

Efficiency In order not to loose the performance gains obtained by radiosity clustering,
the hierarchy creation phase must be relatively short. The preprocessing step of sophisticated
optimization processes like bottom-up techniques that compare all objects with each other might
take too long to justify the achievable acceleration. Depending on the application (e.g., dynamic
environments) a cluster hierarchy must probably be rebuilt (at least partially) for every new
frame, thereby making the time complexity of the creation step much more critical.

During the radiosity simulation, the applicability of the hierarchy to visibility computa-
tions is a very important requirement. Most visibility tests are performed using ray casting as
described in the Monte-Carlo approach in Section 2.7.2. The efficiency of the hierarchy with
respect to ray tracing thus greatly influences the overall performance of the radiosity simulation.
The authors find that good ray-tracing hierarchies often are bad suited for radiosity clustering.
The Goldsmith-Salmon algorithm [GS87], that is driven by a ray-tracing cost function tends to
produces elongated bounding boxes that enclose too much empty space. This is contradictory to
the requirements regarding the simulation quality as discussed above. The use of an extra ray-
acceleration structure is considered to be too expensive. Large model radiosity computations
already have an enormous demand on memory, therefore a single hierarchy should be sufficient.

Finally, the branching factor of the hierarchy greatly influences both, the efficiency of the
simulation and the efficiency of the ray acceleration. As soon as a link to a cluster is refined,
new links have to be established to all of its children. A large branching factor therefore may
result in long computational times. The same is true for the accelerated ray-casting process,
where branches of the hierarchy are pruned as soon as an intersection with the corresponding
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nodes becomes impossible. To generate as many tree-pruning operations as possible, the tree
should have a small branching ratio [GS87].

Evaluation The presented clustering strategies were applied to several large test scenes
comprising hundreds of thousands of polygons. Analyzing the results with respect to the above
requirements, the authors make the following observations: Clustering schemes based on hier-
archical bounding volumes typically behave the most predictable but do not always result in best
performance. Due to the tight fitting clusters, they generally model the approximative energy
transport very well. The combination of a k-d tree with a local bounding volume optimization
in densely populated inner nodes gives good ray-acceleration results, thereby improving overall
performance (but not necessarily image quality). Finally, bottom-up construction methods (i.e.,
those with an optimization pass) generally produce better object hierarchies although the costs
for the creation step can easily become quadratic.

In Section 5.4 a new clustering algorithm will be presented that combines an efficient ray
acceleration with a tight bounding volume hierarchy in the same data structure. Thus, most of
the requirements for both, the simulation quality and the overall efficiency can be met. Because
the clustering strategy is applied to an error driven radiosity algorithm, the use of error bounds
will be revisited in the next section.

5.3 Error Bounds

In Section 2.10.4 the use of error bounds was mentioned to improve the quality of hierarchical
radiosity solutions. The adaptive mesh refinement examines the error in energy transfer to
decide if an interaction at a given level is accurate enough. Due to the finite element approach
however, the radiosity method only computes an approximation of the radiosity function, thus
the exact error of an interaction is unknown. By exploiting the geometric and radiometric
properties of the interacting objects reliable upper and lower limits on the energy transfer can
be computed. These limits can be used to bound the error of an interaction, thus arriving at a
more accurate mesh refinement and representation of the radiosity function.

In this Section several methods to compute upper and lower bounds on the energy transfer
will be presented.

Error bounds can be classified into conservative and non-conservative error bounds [LSG94].
Conservative error bounds guarantee to always contain the exact error everywhere, which might
be too pessimistic. Non-conservative error bounds on the other hand are cheaper to compute
and provide tighter error bounds – with the drawback of not being always totally reliable.

5.3.1 Kernel Bounding Techniques

Lischinski et al. present a radiosity bounding algorithm for Hierarchical Radiosity that uses
conservative error bounds [LSG94]. The exact radiosity B(x) is bound from below and from
above by two piecewise constant functions B(x) and B(x), such that for all surface elements Si:

Bi ≤ B(x) ≤ Bi (5.2)
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To actually compute these bounds, variations on the kernel function expressed by the form
factor are considered. Upper and lower bounds on the form factor are computed by storing the
maximum and the minimum of the unoccluded point-to-polygon form factor while sampling
the receiving patch. During energy exchange, these values are used to maintain upper and lower
bounds of a patch’s radiosity. The bounds are treated similar to the standard patch radiosities,
i.e., they are gathered and propagated through the hierarchy. While gathering upper bounds
however, care must be taken to guarantee convergence of the solution process. The sum of the
upper form factor bounds must never exceed 1, otherwise the corresponding form factor matrix
would not necessarily be diagonally dominant (Equation 2.35). Thus, only the brightest sources
should be considered which might require an additional sorting step while updating the bounds
at a leaf node.

Assuming that the values of B(x) over a surface element are uniformly distributed between
Bi and Bi the L1 norm can be used to express an upper bound on the local error of an element:

||B(x)−Bi||1 ≈ Ai(Bi −Bi)/4 (5.3)

The L1 norm corresponds to a bound on the total power and can be computed for any inner
node as the sum of its children’s error in L1 norm.

The original hierarchical radiosity algorithm uses a brightness-weighted refinement, i.e.,
a link is refined if the product of radiosity B and form factor F exceeds a given threshold
(BF-refinement, see Page 40). As a result, all links transport roughly the same amount of
energy [HSA91]. Using error bounds however, links can be detected and refined that have the
greatest effect on the total solution error. Lischinski et al. compute the error in transferred
energy as (Ki j −Ki j)B j, where Ki j denotes the form factor between the two corresponding
surface elements including visibility [LSG94]. If this error exceeds a threshold, the patch that
contributes to the error the most must be refined. To decide whether to refine the receiving or
the sending patch, the following heuristic is suggested: the receiver i is refined if the form factor
error is too large and the sender j is refined if the error in radiosity is too large. More formally,
receiver node i is subdivided if:

(Ki j −Ki j)B j ≥ Ki j(B j −B j) (5.4)

In [SAG94] Smits et al. describe two strategies for computing non-conservative bounds on
the energy transfer in a clustering algorithm. Again, only variations of the kernel function are
considered. The algorithm uses the two linking strategies (i.e., α-links and β-links) that were
already introduced on page 45 in Section 2.10.4.

To bound the energy transfer between clusters using α-links, the maximum value of the
kernel function (i.e., the unoccluded form factor) between all pairs of enclosed patches can be
used to find an upper bound. This would require O(mn) operations if m and n are the numbers
of the surfaces contained in the corresponding clusters. By splitting the kernel function k(x,y)
into a source related term ks and a receiver related term kr, these bounds can be computed more
efficiently:

k(x,y) = ρ(x)cosθ1 cosθ2
||x−y||2 ⇒
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kr(x,y) ≡ ρ(x)cosθ1, ks(x,y) ≡ cosθ2
||x−y||2

Thus, when computing the maximum value of ks over the sending cluster and then com-
puting the maximum value of kr over the receiving cluster only O(m + n) operations must be
performed. Assuming zero as a pessimistic lower bound, the energy transfer can be bound from
below and from above.

A much simpler and less expensive bounding technique is achieved using β-links. If the
kernel function is approximated without taking the orientation of the surfaces into account, it
can be written as a function kd:

k(x,y) ≤ kd(x,y) ≡ 1
||x− y||2 (5.5)

Thus, kd can be used to compute an upper bound on the transfer by bounding the cosines
from above by 1.

Gathering energy using both link types works by maintaining minimum, maximum and
average values of the functions ks, kr and kd over each cluster. The function values are obtained
by sampling each cluster’s bounding volume. Link refinement between clusters works by first
examining the β-bound. If it is too inaccurate, the more expensive α-bound is checked. If it
is still not accurate enough, the larger cluster is refined. If both cluster hierarchies reach the
surface level the standard hierarchical radiosity refinement is performed.

The following subsection describes more complete error bounding techniques that take
bounds on all components into account that influence the error in radiosity transfer. This in-
cludes bounds on the visibility, on the reflectance and on the irradiance of a surface. Addition-
ally non-zero lower bounds can often be computed which results in tighter error bounds.

5.3.2 Bounds on the Radiosity Transfer

Gibson et al. [GH96] propose storing irradiance with each element instead of radiosity to have
a better control on the error incurred by varying reflectance values on both sides of a link. The
use of texture maps as reflectors and as emitters suggests this approach. Because the local
reflectance operator converts irradiance at the receiver patch into radiosity (Section 2.9.4) the
approximated radiosity B̃ over a patch can be written as:

B̃i = ρi(Fi jVi j)(ρ jE j) (5.6)

where ρ is the reflectivity, F the unoccluded form factor, V the visibility term and E the
irradiance of the source. In the following, non-conservative upper and lower bounds on all
components of Equation 5.6 will be computed.

Bounds on the unoccluded form factor can be obtained by sampling source and receiver and
storing minimum and maximum values as described above. Form factors between clusters and
between clusters and surfaces are computed using the methods proposed by Sillion [Sil95] as
described in Section 2.10.4. This approach is based on the extinction coefficient that depends
on the density of surface patches in a cluster. To arrive at a better form factor approximation
and thus better error bounds, the orientation of the surfaces in a cluster must be taken into
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account. This can be achieved by using the projected area (i.e., the area weighted by the cosine
between the normal and the direction of transfer) instead of simply the area as in [Sil95]. Thus,
the directional extinction coefficient must be recomputed for each transfer by enumerating all
surfaces in the source cluster and computing the cosine values.

If source and receiver are partially occluded, the conservative visibility bounds zero and
one can always be used. Due to the visibility sampling approach however, a large error would
also be reported if only a single ray was occluded. Because this will later drive the refinement
process, unnecessary subdivision might occur. To force subdivision of interactions that are
occluded at about 50%, which typically occurs at shadow boundaries, Gibson et al. propose the
following lower visibility bound:

|v− (1− v)| = |2v−1| (5.7)

where v denotes the partial visibility of a patch. Actually, Equation 5.7 corresponds to the
difference of the visible and invisible fractions. For performance reasons this technique is only
applied to visibility computations between surface patches because it requires more rays to
accurately compute v. For visibility between clusters a lower bound of zero can be used.

Reflectance bounds can be computed by precomputing a reflectance map for each texture
applied to a surface. The texture is sampled at appropriate levels of decreasing resolution to
find minimum, maximum and average reflectance values that can be used in the energy transfer
between surface elements.

Bounds on the irradiance are computed during the gathering step as explained above ([LSG94])
by using the upper, lower and average values of the form factor.

Having computed upper and lower bounds on the transfer error according to Equation 5.6
it must be decided if the source or the receiver has to be refined in order to decrease the error.
Similar to the approach of Smits et al. [SAG94] an expression of the receiver-related error εr

and one for the source-related error εs can be used:

εr = (�ρ�i�F�i j −�ρ�i�F�i j)ρ jE j

εs = ρiFi j(�ρ� j�E� j −�ρ� j�E� j)

where the notation �x�,�x� denotes the upper and lower bounds respectively.
Thus, the variation of the receiver reflectance and the unoccluded form factor are compared

to the source’s reflectance and irradiance bounds. Subdivision of the source occurs if εs ≥ εr,
otherwise the receiver is subdivided.

A general framework to compute tight conservative bounds on the light transport is given
by Stamminger et al.[SSS98]. All nodes in the cluster hierarchy are considered as objects that
must provide a common set of methods. These methods are used to query the various geometric
and radiometric properties needed to actually compute the error bounds. Therefore, no further
distinction between clusters and surfaces is needed and optimized versions of these methods are
possible to support arbitrary objects.

A basic requirement for each object is the computation of its bounding box, that can be used
to bound several geometric values. The distances and directions of rays between two objects
can be bound by using the union of both bounding boxes. The projected area, that influences the
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amount of energy received from a sender, can be bound by using the projected bounding box.
Using these bounds, the solid angle of the sender can be bound by the quotient of the bounds
for the projected area and the distances.

In contrast to other error bounding techniques Stamminger et al. take the possible self-
interaction of non-convex objects into account. By assuming a closed scene, that can always be
guaranteed by enclosing the whole scene by a sphere, form factors from a non-convex object
that do not sum up to 1 indicate self-interaction. Thus, form factors from an object to itself can
be approximated by Fii = 1−∑ j Fi j.

To decide if a link has to be refined, the authors propose to use a measure similar to the
L1-norm (Equation 5.3). To better support arbitrary objects however, the radius of the object’s
bounding sphere is used instead of the area.

Earlier error bounding techniques always computed non-conservative error bounds on vis-
ibility due to the inaccurate sampling approach. Sampling a cluster in several directions and
using the resulting transparency value ([Sil95]) can be arbitrarily wrong. Two small patches
that have a cluster in between might be considered occluded although the patches in the clus-
ter are not uniformly distributed and thus no occlusion takes place. To obtain better visibility
bounds, the approximated visibility due to the sampling approach may only be used, if the size
of the cluster is smaller than the cross section of the set of all rays between the objects.

5.4 A New Clustering Strategy

In this Section a new clustering strategy for Hierarchical Radiosity will be presented that con-
forms to most of the requirements discussed in Section 5.2.3 [MSF99a, MSF99b]. The tech-
nique is based on an optimization of the Goldsmith-Salmon algorithm [GS87] but evaluates the
cost function in a different way [MF99]. It takes all locally possible orders in which to insert
objects in the hierarchy into consideration while still having a time complexity of O(n logn).

5.4.1 Overview

The clustering algorithm creates a hierarchy of bounding volumes which define the individual
clusters for the radiosity process. It examines the existing objects and their mutual spatial
relationship. This yields very high quality hierarchies with structures which are often called
intuitive or natural. The cluster hierarchies adapt well to the spatial distribution of objects:

• Spatially separated geometry is identified and placed into separate clusters.

• Overlaps between clusters are reduced and tight bounding volumes are built by finding
bounding volumes with minimal surface areas.

The basic idea behind the construction scheme is close to the median cut scheme described
in [Grö95, KK86] which recursively computes partitions of the objects in two equally sized
subsets based on their spatial location relative to a coordinate axis. This scheme is extended by
introducing a cost function similar to [GS87] to gain significantly better scene partitions. It will
be shown that the data structure can be built very efficiently.

98



EFFICIENT CLUSTERING 5.4 A NEW CLUSTERING STRATEGY

5.4.2 Construction

The hierarchical bounding volume optimization method recursively subdivides the set of scene
objects into two disjoint subdivision entities. Each node of the corresponding binary tree repre-
sents a specific subscene of the whole scene. At each subdivision level, the individual objects
are assigned to exactly one subdivision entity of that level. No objects are split, hence no new
objects (e.g. polygons, triangles, etc.) are created by this method.

Starting from the root node, the objects are sorted along all major coordinate axes, where
the center of an object’s bounding box serves as sorting key. Based on these sorted lists, the
potential partitioning positions along each axis for each entry in the respective list are evaluated
by splitting the sorted list of objects into a left and right part. In contrast to the median cut
scheme applied in [Grö95], no predefined partitioning position is used. Instead, a cost function
is used that describes the approximated costs computing the ray/scene-intersection for a specific
subdivision position. By minimizing the cost function over all partitioning positions, an optimal
subdivision position is obtained which generates two new subdivision entities; one containing
the left objects, one containing the right objects (Figure 5.1). The subdivision process terminates
for subscenes which contain only a single object.

Figure 5.1 Possible object partitions along a single coordinate axis for a simple example scene contain-
ing 5 objects. The partition with minimal costs according to function C will be used in the
subsequent recursion step.

The cost function used has already been successfully applied in a ray-tracing environment
and has shown its superiority compared to other bounding volume schemes [MF99]. The costs
of a subdivision entity H , with children Hle f t and Hright, is given by:

CH(axis) =
S(Hle f t)

S(H)
· |Hle f t|+

S(Hright)
S(H)

· |Hright| (5.8)

where |H| is the number of objects within hierarchy H , S(H) is the surface area of the
bounding box associated to scene H and axis is one of {X ,Y,Z}.

Applying hierarchies based on this cost function to radiosity clustering is a direct conse-
quence of the requirements discussed in Section 5.2.3:

• An efficient ray-acceleration scheme is needed for fast visibility computations based on
ray casting.

• Results in [MF99] show that this algorithm generates hierarchies that adapt well to the
distribution of objects in the scene. E.g., polygons of individual objects are detected and
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Figure 5.2 Visualization of bounding volumes of the aircraft test scene at tree levels 10, 12, 14, 16, and
18. The image at bottom right shows the Gouraud shaded original scene model.

clustered together, and overlaps of bounding volumes are minimized (although overlaps
are still possible).

Construction Costs

Many previously proposed bounding volume schemes fail for large scenes because of the high
computational complexity involved in the respective construction method. Their complexities
easily become quadratic by checking mutual spatial relationships, thereby making them unus-
able for large geometries composed of many objects. The method proposed here, will need
only time O(n logn) in the average case while guaranteeing hierarchies of very high quality
comparable to bottom-up methods.

When performing a subdivision step at an inner node of the hierarchy, the cost function has
to be evaluated for all potential subdivision positions and coordinate axes. This can be done in
time linear in the number of objects by incrementally unifying bounding volumes assigned to
the elementary objects. The sorting should be done in a pre-process for each coordinate axis,
since the mutual relative object positions will not change throughout the construction algorithm.
For the analysis of run-time complexity, randomly chosen split positions are assumed for object
partition, which leads to an overall run-time complexity of O(n logn) in the average case. The
actual subdivision position is determined by the cost function, though.
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Figure 5.3 Visualization of bounding volumes of the vrlab test scene at tree levels 10, 12, 14, 16, and 18.
The image at bottom right shows the Gouraud shaded original scene model.

Quality of Hierarchies

Figure 5.2 illustrates the resulting bounding box hierarchy when the bounding volume opti-
mization is applied to a test scene (aircraft) containing more than 180,000 triangles. Even at a
very low level of hierarchy (level 10) individual basic structural objects like seats and overhead
compartments emerge. At level 12 details of the individual objects appear like armrests, back-
rests, or headrests. The total number of boxes at level 12 is less that 212, which is only about
2% of the total number of scene objects.

Figure 5.3 shows the results for an architectural scene containing more that 36,000 polygons.
Again, close fitting bounding volumes emerge at a relatively low level of the hierarchy. At level
12 details of the scene like chairs, tables, cubicles, monitors, and keyboards are detected at a
very abstract but informing degree. At level 14 smaller details like a ladder to the second floor
or book shelves emerge.

The clustering scheme even detects inhomogeneous detail at a very early level of hierarchy
and is thus suitable for a vast range of scene arrangements.

5.4.3 Optimizing Ray Acceleration

Besides the quality of the cluster hierarchy the performance of the radiosity algorithm is mostly
influenced by the efficiency of the underlying ray-acceleration scheme. Although bounding
volume hierarchies deliver acceptable performance in many cases, these schemes involve high
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tree traversal costs which can often be reduced by using hierarchical grid approaches. To answer
visibility queries, a novel hybrid ray-acceleration scheme has been presented in [MF99] that
combines the advantages of bounding volume hierarchies with uniform grid approaches. It
could be shown that the performance is at least equal to similar schemes like [CDP95] and
[KS97]. In the following, the major subdivision algorithm will be summarized.

Given a bounding volume hierarchy, the goal is to detect inner scene nodes that are suitable
base nodes for a local space subdivision. To achieve this goal, scene nodes are recursively
classified based on the

• surface area of neighbor hierarchy nodes

• volume of neighbor hierarchy nodes

• average size of elementary objects below a hierarchy node

An inner scene node is classified as a suitable base node for a uniform space subdivision
if the surface area and the volume of the node are not significantly larger than respectively
summed values of its child nodes. Also, the elementary objects below each child node must
have similar size to justify a locally uniform space subdivision for this sub-scene. The involved
threshold constants were determined empirically.

Additionally, all scene nodes hold a counter representing the number of uniform classified
sub-nodes which will be used in the actual space subdivision phase. In the next phase, uni-
form space subdivisions are built for sub-scenes marked in the previous step. This is efficiently
achieved by recursively subdividing the bounding box of a scene node along the dominant co-
ordinate axis. The node counter is used to determine the number of voxels or subdivisions. The
available bounding volume hierarchy can be used to speed-up the voxel initialization signifi-
cantly by applying hierarchical voxel membership tests.

Figure 5.4 Combining bounding volume hierarchies and space subdivisions.

Figure 5.4 shows an example of a resulting data structure. A scene is partitioned into two
(possibly distant) subscenes using a bounding volume hierarchy. One subscene contains many
subscenes uniformly distributed in space, thus we are building a uniform spatial subdivision to
represent the subscene. Note that highly inhomogeneous detail contained in one of the resulting
voxels, could again be modeled using a hierarchy of bounding volumes.
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Construction Costs

Because run-time complexity and space complexity of the space-subdivision approach is linear
in the number of scene objects, the overall complexity of the cluster construction is dominated
by the time to build the bounding volume hierarchy. This is a remarkable fact, because it
implies, that the whole scene voxelization can be done in a very short time, provided the scene
hierarchy from section 5.4.2 is available. The scene hierarchy could be computed once, and
the result could be saved to an external storage medium. A fast voxelization based on the
precomputed scene hierarchy could then be computed whenever using the scene.

5.5 Radiosity with Optimized Clusters

In order to achieve accurate radiosity solutions of very large scenes in short time, an efficient
clustering strategy must be combined with an error driven solution process. The use of er-
ror bounds as discussed in Section 5.3 has led to severe improvements in simulation quality
of the hierarchical radiosity algorithm and gives more predictable results than the simpler BF-
refinement. Thus, its integration in a radiosity clustering algorithm is mandatory. The possible
increase in execution time due to additional computing steps however, especially when comput-
ing very large solutions, must be addressed. The clustering algorithm of the previous section
produces very deep binary trees. In order not to waste the effort of finding a good cluster hier-
archy, the number of expensive tree traversals during the energy transport and while computing
error bounds must be minimized. This will be the topic of this section.

5.5.1 Overview of the Implementation

The clustering algorithm has been combined with the error bounding technique of Gibson et al.
that was presented in Section 5.3.2. It computes non-conservative bounds on the form factor,
visibility, reflectance and irradiance, thereby taking the orientation of clustered polygons into
account. When compared to standard BF-refinement, the error driven approach leads to fewer
links in favor of more subdivisions at the element level. This improves the detection of shadow
boundaries and thus enhances the overall visual quality of the radiosity solution [GH96].

An important detail that was not discussed in Section 5.3.2 is the way how energy is trans-
ferred from and to clusters. Energy received by a cluster is directly deposited on the contained
surfaces obeying their orientation with respect to the source. An iteration process that pushes the
energy down the tree is started once the top level surfaces are reached. When energy is gathered
from a cluster, surface orientation inside that cluster also plays an important role. To account for
the non-diffuse reflection property of a surface cluster, the reflection of each contained surface
is weighted by its orientation to the receiver.

Visibility calculations between patches or between patches and clusters are done via ray
casting. Only if visibility between two clusters is needed, the approximative visibility approach
based on a voxel grid with extinction coefficients [Sil95] is used.
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5.5.2 Using the Cluster Hierarchy

The algorithm described in section 5.4.2 builds a binary tree containing a bounding volume
hierarchy. If the algorithm detected regions of regular object densities inner nodes encapsulating
these regions are specially marked. Inside these regular nodes, however, the bounding volume
hierarchy still persists. This is important, because the algorithm might find regular regions
quite early, thus probably resulting in no hierarchy at all. Because the same hierarchy should
be used for ray tracing (i.e. visibility checks) and for clustering both data structures have to
be combined. Ray tracing can benefit from regular regions whereas the radiosity algorithm
needs the full hierarchy. Using object oriented programming, nodes with a regular structure can
be derived from standard inner nodes. The method performing a ray-intersection test is then
overloaded to exploit the local data structure. Instead of just propagating the test to their child
nodes, regular nodes use a local voxel array created during the construction of the hierarchy.

When applying the radiosity clustering algorithm using this data structure to very large
scenes, the time spent during gathering energy over the links and propagating it through the
hierarchy dominates the execution time. The refinement steps consisting of form factor calcu-
lations, visibility checks, and subdivision of links however, only uses a fraction of the gathering
time. The reason for both observations lies in the nature of the employed hierarchy. The sub-
division of links is very fast due to the branching factor of two in a binary tree. The visibility
checks are performed either approximatively or based on ray casting which greatly benefits
from the tight fitting bounding volumes and the local voxel arrays. The problem encountered in
the gathering step however, is the depth of the binary tree.

Optimizing the Directional Transfer

As mentioned above, propagation of energy in a cluster is performed by depositing energy
directly to the inner surfaces. This means traversing the hierarchy below a cluster to enumerate
all leaves and computing a dot product of each surface normal with the direction of transfer.
Thus, performing this step for each link and at all levels of the hierarchy results in an excessive
number of partial sweeps through the hierarchy. Because the same traversal has also to be
done for the sending cluster, deep hierarchies degrade the performance of this process. To
optimize the number of iterations on both sides (sender and receiver) the gathering step for
clusters first loops over all links. While visiting each link, the sender’s weighted radiosity is
computed once and pushed on a stack together with the direction of transfer. After all links
are visited, the receiving cluster’s resembling surfaces are enumerated and the saved radiosities
are accumulated on these children, again weighted by their orientation. This results in only
two traversals for each link. This approach is similar to the α-links proposed by Smits et al.
[SAG94] that were discussed in Section 5.3.1. In the implementation proposed here however,
the direction of transfer for each individual contribution to the receiver’s radiance is taken into
account. Smits computes a single average value for the sender and uses it to update all patches
of the receiving cluster which can be wrong if most patches are oriented sideways regarding
the direction of transfer. Using the technique described above a higher accuracy is obtained
without increasing the complexity. Figure 5.5 illustrates the need for a more sophisticated
energy transfer between clusters. The local transfer direction typically diverge essentially from
the averaged transfer direction.
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transfer direction

cluster transfer
Receiver

Source

Figure 5.5 Directional transfer. The mutual orientations of the interacting surfaces must be accounted for
during the energy transport between clusters.

Efficiently Solving the System

The original hierarchical radiosity algorithm [HSA91] and subsequent clustering algorithms
[Sil95, SAG94] split the solution process in two passes. In a gathering step the energy is trans-
ferred across the links, which is done for all links of all nodes. In a second pass the radiosities
must be swept to each object’s parents and children to obtain the proper amount of energy at all
levels of the hierarchy. The radiosity received by a parent node is pushed down the hierarchy to
the children and on the way up the parents receive the area-weighted average radiosities from
their children. The separation of a gathering and a push-pull pass corresponds to the Jacobi
iteration, where the solution vector is only updated after a full iteration step [SP94].

In Section 2.10.3 it was shown how the faster converging Gauss-Seidel iteration can be
used to speed up the surface based hierarchical radiosity algorithm. See Figure 2.24 for the
corresponding pseudo-code. As noted in [SSSS98], for radiosity clustering algorithms this
technique can not be used directly. The surface based approach assumes convex initial surfaces
that can not gather energy from itself. Thus, the push-pull step can be performed whenever
needed, i.e., after visiting all links at the current hierarchy level. In the clustering approach, this
would result in an inconsistency of the energy balance. To always keep the hierarchy consistent,
the gathering of energy at all levels of the hierarchy has to be finished before the radiosity can
be propagated through the hierarchy.

To benefit from the faster convergion rate of the Gauss-Seidel iteration, which is crucial
to minimize the number of full tree traversals, the push-pull step must be modified slightly
[GH96]. Instead of propagating the gathered radiosity through the hierarchy of clusters, only
the surfaces are considered. This can be achieved by immediately storing radiosity gathered by
a cluster together with the direction of transfer onto the surface children, thereby skipping all
cluster nodes in between. As soon as the gathering process reaches the surface level (i.e., the
leaves of the cluster hierarchy), the stored radiosities are pushed down the surface hierarchy.
Area averaging is used on the upward pass to compute an average radiosity value for each
cluster. Thus, energy can be propagated in a single sweep without an additional push-pull step
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as required for Jacobi iterations.

5.6 Results

To test the overall behavior and efficiency of the new clustering algorithm radiosity solutions
for several large scenes containing up to 180,000 polygons were computed (see Figure 5.6).

The scenes chosen cover a broad range of features that are typically not found in ’syn-
thetic’ test scenes. The aircraft is a highly tesselated model of the interior of an aircraft with
mainly curved surfaces1. wichmann is an architectural model of an office building containing
moderately subdivided furniture and many large light sources. Most surfaces of the scene are
textured. The vrlab scene has lower overall complexity than the former one but here the chairs
are highly tesselated. The atrium scene has the lowest complexity of the test scenes, but it is
rather irregular due to several trees on the ground floor.

Solution times and additional statistics are given in Table 5.7 (all tests were run on a
250MHz R10k with 2GB RAM). The hierarchy creation time is the time that was used to
construct the optimized bounding volume hierarchy. This step has to be regarded as a pre-
process. To measure the quality of the clustering algorithm, the error threshold was chosen to
not subdivide more than about 20% of the initial polygons. This ensures that the timings re-
flect the quality of the bounding volume hierarchy as well as the ray-tracing speed. Finer error
thresholds shift the main computational effort towards ray tracing.

A problem that can be noticed in the rendering of the airplane model is the overlap of
bounding volumes in the cluster hierarchy. The result is an inhomogeneous illumination of
nearby small patches.

Solutions of higher quality were computed for scene wichmann (see Figure 5.8) and for
another architectural scene (see Figure 5.9). The architectural scene comprises about 20,000
polygons that are completely textured. Rendering time was about 15 min. All images were
rendered using bilinear interpolation provided by graphics hardware.

The successful application of the new algorithm to these large scenes confirms the results
regarding the quality of the bounding volume hierarchy documented in Figures 5.2 and 5.3.
Beyond these observations the new clustering strategy closely matches several requirements
found to be useful in clustering algorithms as discussed in Section 5.2.3: The creation phase of
the hierarchy is very time efficient and tightly fitting bounding volumes are generated. These
bounding volumes are stored in a binary tree, which allows for fast link refinement steps. Ad-
ditionally, the pure ray-tracing speed of the bounding volume hierarchy combined with voxel
grids has been shown to be superior to most other approaches [MF99], that have typically been
used previously for radiosity clustering.

5.7 Summary

In this chapter the application of the radiosity method to scenes containing hundreds of thou-
sands of polygons has been discussed. The use of clustering methods has been proven to be

1The aircraft model was kindly provided by LightWork Design Ltd.
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a possible way of dealing with these large scenes that were impossible to handle by the sur-
face based hierarchical radiosity algorithm. The grouping of surfaces or objects to a hierarchy
of clusters that efficiently supports the needs of the radiosity algorithm is a non trivial task.
The structure of the hierarchy has a great impact on both, the quality and the efficiency of the
solution. Additionally, these properties are influenced by the refinement strategy that should
incorporate error bounds to most accurately approximate the error in energy transport.

The requirements of a hierarchy well suited for radiosity clustering were presented. This
includes an accurate adaptation to the expected energy flow and the efficient support for visibil-
ity computations based on ray casting. Following these guidelines, an algorithm was developed
that closely meets these requirements. In order to achieve solutions of high visual quality, error
bounding techniques were presented and combined with the new clustering strategy. The addi-
tional computational effort could be reduced by optimizing the energy transport with regards to
the presented data structure, that uses in very deep hierarchies. The number of full tree traver-
sals could be minimized which resulted in short solution times even for scenes containing up to
180,000 polygons.
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Figure 5.6 Renderings of the four test scenes. From left to right and from top to bottom: aircraft (Light-
Work Design Ltd.), wichmann, atrium, vrlab

aircraft wichmann atrium vrlab

number of polygons 183,114 59,844 13,558 36,337
max. hierarchy depth 26 27 25 27
bvol hierarchy creation [min:sec] 0:53 0:22 0:03 0:12
solution time [min:sec] 14:37 7:01 3:29 6:55

Figure 5.7 Solution times and statistics for the rendered test scenes.
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Figure 5.8 High quality solutions of the scene wichmann (47 min)
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Figure 5.9 High quality solutions of an office scene (15 min)
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CHAPTER 6

Conclusion

In this thesis we have presented several methods to improve hierarchical radiosity computations.
In contrast to other approaches, the work of this thesis was led by the paradigm of using object
information wherever possible. Most classical approaches, including the hierarchical radiosity
algorithm ignore the origin of the polygons that are used to approximate a scene and that are
the input to finite element algorithms. If the origin of the polygons is considered, additional
information that was created during the modeling stage can be exploitet at no extra cost. As a
result, the speed and the quality of rendering algorithms can be improved effectively.

6.1 Thesis Summary

By using object information several contributions to the field of hierarchical radiosity rendering
could be made. The development of an object-based meshing scheme drastically reduced the
time complexity of Hierarchical Radiosity when rendering curved surfaces. By providing an
additional parameter that controls the curvature of the radiosity mesh, quality improvements
of the solution can be obtained with linear costs. In contrast to the original algorithm, mesh
refinement of curved surfaces can be performed at any stage of the algorithm. This avoids
the need to define the final mesh quality in advance which suffers from the quadratic starting
phase of Hierarchical Radiosity. The basic idea to efficiently support curved surfaces was the
use of ray tracing to adjust mesh vertices after a planar subdivision. With the knowledge of
the underlying object, the mesh can always follow the object’s shape, thereby improving the
approximation while simultaneously computing the radiosity solution.

The use of parallel processing has always been proposed as a valuable tool to speed up scien-
tific computations. The hierarchical radiosity algorithm however, mainly consists of computing
tasks that are dependent on each other. Computing the energy balance in a scene requires for
each surface to consider most other surfaces’ incfluence. This results in high communication
costs, that often prohibit a performance increase linear in the number of emplyoed processors.
Therefore, most researchers used special purpose hardware to implement their parallel algo-
rithms. A parallel computer typically provides fast data paths, that effectively support high
bandwidth communication. A more economic approach is to use workstations that share a
common network like Ethernet that can be found in most computing environments.

We have developed a distributed hierarchical radiosity algorithm that runs in a network of
workstations. By exploiting object information communication costs could be minimized which
is even more important in a comparable slow network. The algorithm distributes form factor
calculations that can be computed by client computers. In contrast to earlier approaches, the
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clients have no knowledge of the radiosity mesh but use the analytic description of the scene
objects to compute accurate form factors. This reduces communication costs and improves the
quality of the solution. Using a scheduling algorithm that takes care of the special requirements
of a network of workstations that is not dedicated to the radiosity computation, a linear speedup
for a moderate number of processors could be achieved.

The computation of large radiosity solutions for scenes of hundreds of thousands of poly-
gons requires a clustering approach ontop of the hierarchical radiosity algorithm. Nodes in the
hierarchy of clusters represent geometry collections and can be used to model the exchange of
energy at a very coarse level. The structure of the cluster hierarchy has a great impact on the
quality and performance of the radiosity solution. The clusters must approximate the enclosed
geometry very well to accurately simulate the energy flow. To reduce the memory consumption
of the algorithm, the cluster hierarchy should efficiently support visibility computations based
on ray casting. This avoids the need for an additional data structure whose size depends on the
size of the input scene.

We have presented a new clustering strategy that is based on a construction algorithm that
was developed to speed up ray tracing. It uses an optimized hierarchy of bounding volumes. By
minimizing a cost function that takes the ray intersection costs of the scene objects into account,
objects are inserted at an optimal place in the hierarchy. Local grids in nodes of homogeneous
object density are used to improve the ray-tracing performance when using this structure. The
algorithm has been proven to create a hierarchy well suited for radiosity clustering. The result-
ing bounding volumes are very tight and the structure explicitly accelerates ray casting. Due
to the deep binary tree resulting from the construction algorithm, the traversal costs can eas-
ily dominate the performance of the radiosity algorithm. Several techniques to minimize the
number of full tree traversal have been proposed. Especially the use of error bounding tech-
niques that require a more sophisticated gathering procedure can lead to additional traversal
steps. We have shown that radiosity simulations for large industrial and architectural scenes can
be computed at low costs while still using error bounds to achieve solutions of high quality.

6.2 Future Work

The distributed hierarchical radiosity algorithm presented in Chapter 4 is currently limited to
the surface based approach. An extension to clustering would be an interesting research topic.
If the same setup is chosen, i.e., a client-server architecture, the clients could be activated as
soon as the refinement procedure reaches the surface level. Visisbility computations between
clusters however, would probably not benefit from distributed computing. Especially when
using approximative visibility based on extinction coefficients, communication costs would be
too high.

The clustering strategy developed in Chapter 5 opens several perspectives for future re-
search. The reliable detection of almost arbitrary scene details, even at moderate hierarchy
depths could be further exploited. Rapid prototyping applications using the tight bounding
boxes as an approximation of a scene could improve the efficiency of various algorithms. A ra-
diosity computation could be performed on only a fraction of the number of the original scene
elements. Projecting the results obtained by this method onto the real scene polygons (i.e. us-
ing texture mapping hardware) would deliver high-speed approximative solutions, applicable to
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dynamic environments.
The problem of overlapping bounding volumes should also be addressed in future research.

Although the data structure is well suited to speed up radiosity and ray-tracing tasks, the quality
for scenes containing many small polygons suffers from the same geometry contributing to
different clusters. A simple approach could be to detect an overlap during the creation phase
and to mark the corresponding clusters. The radiosity algorithm then would not subdivide a
cluster if the resulting clusters will have an overlap. Instead, the enclosed surfaces would be
used as the next hierarchy level. The ray acceleration, however, would still use the complete
bounding volume hierarchy.
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