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Abstract

Inthe past few years, there have been key advances in the three main approachesto the visualization of volumetric
data: isosurfacing, slicing and volume rendering, which together make up the field of volume visualization.

In this report we set the scene by describing the fundamental techniques for each of these approaches, using this
to motivate the range of advances which have evolved over the past few years.

Inisosurfacing, we see how the original marching cubes algorithm has matured, with improvementsin robustness,
topological consistency, accuracy and performance. In the performance area, we look in detail at pre-processing
steps which hel p identify data which contributesto the particular isosurface required. In slicing too, there are per-
formance gains from identifying active cells quickly.

In volume rendering, we describe the two main approaches of ray casting and projection. Both approaches have
evolved technically over the past decade, and the holy grail of real-time volume rendering has arguably been
reached.

The aim of this Eurographics 2000 STARis to pull these devel opmentstogether in a coherent review of recent ad-
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vances in volume visualization.

1. Introduction
1.1. Theproblem and its applications

One of the enduring challenges in scientific visualiza-
tion is the display of three-dimensional data on a two-
dimensional display surface. By three-dimensional data, we
mean dataval ues obtained at samplelocationswithin athree-
dimensional space - such as temperature readings within an
enclosed volume. We shall usethe term volume visualization
to describe this field of study.

The importance of the problem derives from the many ap-
plications in which this type of data occurs, and for which
there is a need to gain insight through visualization. As the
size of datasets continues to increase, so the importance of
visualization asatool grows, and so too the need to find more
effective and efficient techniques. Volume datasets come
from two main sources: firstly, from measurement or obser-
vation, such as in medical imaging through MRI, CT and
other modalities, and from the use of high power micro-
scopes; and secondly, from numerical simulations such asin
Computational Fluid Dynamics where the aim is to under-
stand (and predict) the behaviour of natural processes.

Thefield of volume visualization is now extremely large,

(© The Eurographics Association 2000.

and so any review is necessarily asel ective process. Our hope
is to be able to describe the fundamental techniques, and
some of the developments from these that have occurred in
recent years. For amorethorough study, the reader is encour-
aged to consult the original references listed in the bibliog-
raphy at the end. There are useful overview papers aso: the
survey by Elvins 19, although now quite old, remains a very
clear introductory exposition; and the chaptersby Bajaj et a
3 and Yagel & together cover much of the field. The book by
Lichtenbelt et a “® provides a very readable introduction to
the volume rendering part of volume visualization.

1.2. Reference M odél

It is useful to pose the problem (and its solution) in terms
of areference model. We assume that we are given a set of
data values at specified locations within athree-dimensional
space. These data values are samples of some underlying
phenomenon - which we might call reality - and it isthe chal-
lenge of visualization to provide insight into this unknown
reality. Mathematically, we are given values f; at a set of
points(x;,Y;, ), = 1,2,..N, which are sampled valuesfrom
some underlying continuous function f(x,y,z). There can
be different arrangements of the data: structured or unstruc-
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tured. Animportant distinction in structured gridsis between
rectilinear and curvilinear. Rectilinear grids are common in
medical applicationsasthe output from scanners; curvilinear
and unstructured grids are common in numerical simulations.
These grids areillustrated in Figure 1.

{
S

s

Figurel: Grids- A) Rectilinear, B) Curvilinear, C) Unstruc-
tured

Note that in medical applications the data returned is not
strictly point-based, but the average value over the grid cell -
or voxel. Thisreflects the way in which scannerswork. Thus
papers which are aimed towards medical applicationsare of-
ten written in this context - sometimes called voxel-based.
Although there is a single value per voxel, it is recognised
that avolumefeature may only occupy part of the voxel - this
isknown asthe partial volume effect. In this report, we shall
work in termsof apoint model - sometimescalled cell-based
- wheredatavaluesare given at theverticesof thegrid and the
behaviour inside a cell is assumed to be estimated through
an interpolation process. (Unfortunately this is only one of
many variationsin the underlying assumptionsand terminol-
ogy of the subject, which can makeit difficult to gain an over-
all picture)

Data

Enrichment >

Mapping |—® Render

Figure 2: Haber and McNabb reference model

The process of transforming datainto pictureisfundamen-
tal toal scientific visualization. The classical paper by Haber
and McNabb 27 remains the clearest exposition of this pro-
cess. They model visualization as a sequence of three funda-
mental steps (see Figure 2):

Data Enrichment In this step, we reconstruct an estimate,

F(x,Y,z), of the unknown f(x,y,z). This step is present,
explicitly or implicitly, in any visualization, and can be
thought of as a modelling operation. In the case of three-
dimensional data considered here, data enrichment is usu-
ally an interpolation process.

For rectilinear data, piecewise trilinear interpolation is
much the most common - providing a useful compromise
between the greater speed, but lesser accuracy, of nearest
neighbour interpolation, and the greater accuracy, but less
speed, of tricubicinterpolation. Thuswithin each grid cell,
atrilinear interpolant of the form

F(X,y,z) = a+ bx+cy+dz+eyz+ fzx+ gxy+hxyz (1)

isfitted to the eight datavalues at the cell vertices. An effi-
cient way of computing trilinear interpolantsis described
by Hill 31. An example of the use of tricubic interpola
tion in volume visualization can be found in 14, where the
higher order interpolation is used to gain a smooth model
of abinary dataset.

For unstructured data, it is usual to form atetrahedral de-
composition of the data points. Within each tetrahedron, a
linear inter polant can be created, of the form:

F(xY,z) = a+bx+cy+dz 2

fitted to the four data values at the tetrahedron vertices.

A general discussion on the research issues in volumetric
modelling is given by Nielson %6. An earlier paper by the
same author 3 is also avery useful reference for unstruc-
tured data interpolation.

Mapping The next step is to choose some geometric inter-
pretation of thisfunction F(x,y, z), that can provide some
useful understanding of its behaviour. Thisgeometric rep-
resentationwill typically bean object in three-dimensional
space that can be rendered on a two-dimensional display
surface. The capabilities of graphics hardware devicesin-
fluence the choice of technique here, as it is important to
generate representations that can be rendered fast.

In volume visualization, there are three distinct ap-
proaches to the mapping step. These are:

Surfaceextraction A surface shell is extracted from the
data, containing points with a common value of F.
Here we are visualizing the set of points (x,y, z) such
that

F(X’y’ Z) =k 3

for some threshold value k. We can see this as a sub-
set in the space of the dependent variable, and is com-
monly called isosurfacing. The surface istypically ap-
proximated asatriangul ar mesh which can be passed as
geometry to arendering process. For apiecewisetrilin-
ear interpolant, the isosurface proves to have interest-
ing properties: it is a piecewise conic surface with of-
ten complex topology. For efficient rendering on con-
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ventional graphics display devices, this has to be ap-
proximated by a triangular mesh - a problem which
has proved a challenge throughout the last decade, as
we shall see in section 2. If time is used as an ad-
ditional display dimension, then we can visualize the
entire dataset by sweeping the threshold through the
range of the data.

Slice A two-dimensiona dlice is taken through the data
(often parallel to one of the co- ordinate planes), a-
lowing a two-dimensional technique such as coloured
image or contouring to be applied. We can see this as
a subset in the domain of the independent variables.
Thus we are visualizing:

F(X’y’ Z) | (X’y’ Z) € P(X’y’ Z) =0 4

where P(x,y,z) = O isaplane. Again using time as an
additional display dimension, we can sweep the dlice
plane through the datain order to gain a visualization
of the full dataset. We look at slicing in section 3.

Volumerendering a3D model of the datais created, us-
ing colour and opacity to reflect datavalues. The effect
isto create atranslucent gel material that can be passed
to arenderer for display using computer graphicstech-
niques. This is the most ambitious approach in that it
aimsto display all the data, not just a subset. We study
volume rendering in section 4.

Rendering Thisis the final step in the pipeline, where the
geometry created by the mapping step isrealised asanim-
age onthedisplay surface, using standard computer graph-
ics techniques. Conceptually, Haber and McNabb are cor-
rect to see this as a separate stage but as we shall see the
mapping and rendering stages in practice are closely in-
tertwined. For example, in surface extraction we have de-
scribed how the mapping stage for rectilinear grids pro-
duces a triangular mesh which only approximatesthe iso-
surface of thetrue piecewisetrilinear interpolant F (X, y, z).
In the rendering stage we can compensate for this approx-
imation by clever shading which gives the illusion of a
more accurate geometric representation.

In the dicing approach, the rendering is straightforward -
the display of a coloured plane.

Volume rendering until recently has been regarded as sig-
nificantly more expensive at the rendering step, but aswe
shall see later, this is changing - both through new ap-
proaches, and new hardware technologies.

The rest of the report is structured by the mapping step
which is the key discriminator. We look at recent develop-
ments in each of the three areas in turn: surface extraction;
dicing; and volume rendering. The majority of thework has
been in the surface extraction and volume rendering areas,
but dicing is included because it is a very commonly used
approach. In each case we begin with a brief review of the
classical approaches, to motivate and set the scenefor the de-
scription of the new developments.
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2. Surface Extraction
2.1. Theclassical approach

The classical approach to surface extractionisthe M arching
Cubes agorithm, proposed by Lorensen and Cline %8, witha
similar suggestion from Wyvill et al 8. Thisassumes datais
on arectilinear grid, and conceptually it processes each grid
cell, or cube, independently, one after the other - hence the
term marching cubes. The method is quite ssimple. Each ver-
tex of acube can be either greater than or lessthan the thresh-
old value, k say, giving 256 different scenarios. An estimate
F(x,Y,2) can be constructed as a trilinear interpolant of the
valuesat the cubevertices. Theintersectionsof theisosurface
F(x,Y,z) = k with the edges of the cube are easily and ac-
curately calculated by inverse linear interpolation. As men-
tioned earlier, the behaviour of F(x,y, z) = kinside the cube
isnon-trivial andisaconic surface. However asimplistic es-
timate of F within the cube can be made by joining intersec-
tion pointsinto aset of triangles. Lorensen and Cline argued
that for reasons of symmetry and complementarity there are
only 15 canonical configurations, and proposed correspond-
ing triangul ationsof theisosurface (see Figure 3). For agiven
configuration (from the set of 256), they provide alook up
table to give the corresponding canonical configuration and
hence itstriangulation.

This algorithm has been much used over the years since
1987, and has proved very effective in combination with fast
triangle rendering hardware as provided on Silicon Graphics
workstations, and more recently on PC graphics boards sup-
porting OpenGL.

There are two major aspects of the algorithm which have
received attention in recent years:

Surface representation Theclassical marching cubesalgo-
rithm has a naive approach to forming the interior repre-
sentation. It was discovered quite quickly (see Durst 17)
that holes can appear when two adjacent cellshave certain
configurations. Much work has goneinto making the algo-
rithm more robust. | n addition, there has been recent atten-
tion to the issue of accuracy, and gaining a more faithful
representation of the true isosurface within each cell. We
discussthisin section 2.2.

Performance Ascomputing power and measurement tech-
nology haveincreased, so hasthesizeof datasetsthat users
wish to analyse. The marching cubes agorithm can be
rather slow - both in terms of locating cells which contain
segments of the isosurface, and also in terms of rendering
thelarge number of triangleswhich may result. Recent de-
velopmentsin performance are discussed in section 2.3.

When the datais on a tetrahedral mesh, the case is sSim-
pler in terms of robustness. The isosurface of the linear in-
terpolant F(x,y,z) = k is aplane and so there is no approx-
imation involved in the triangulation. The method is known
as Marching Tetrahedra - for obvious reasons (see Doi and
Koide 16).
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Figure 3: The 15 Marching Cubes configurations

2.2. Surface Representation

In this section we look at recent efforts to make the march-
ing cubesisosurface algorithm give an improved representa-
tion of the surface - in terms of robustness, topological cor-
rectness and accuracy. We also look at how the rendering and
representation areintertwined - seefinal section on rendering
issues. For simplicity, we shall assume the isosurface value,
k, is zero.

2.2.1. Robustness

The original marching cubes algorithm reduced the 256 pos-
sible cases to one of 15 canonical configurations. This en-
abled a small look up table and efficient coding, but caused
inconsistent matching of surfaces between adjacent cells, so
that ‘holes’ could appear. A remedy isto return to afull 256
case table of triangulations, and this is used for example in

the vtk implementation of the algorithm (see Shroeder et a
67), and discussed by Bartz et al 4.

2.2.2. Topological Correctness

The isosurface of atrilinear interpolant isthe surface:

F(xY,z) = a+ bx+cy+dz+eyz+ fzx+gxy + hxyz=0
©)

F islinear along edges of the cube, bilinear acrossthefaces
of the cube and trilinear in the interior. The marching cubes
algorithm in its basic form is happy to live with correctness
along the edges. Nielson and Hamann 55 showed that faces
where one pair of opposite vertices have datavalues of dif-
ferent sign from the other pair are ambiguous, in the sense
that the contour line (marking intersection of isosurfacewith
face) could bedrawn so asto cut off either the positive-val ued
corners, or the negative-valued corners. As away of resolv-
ing the ambiguity, they proposefollowing the topol ogy of the
bilinear interpolant on the face - which is easily determined
by looking at the asymptotes of the hyperbolic contours. Of
the 15 canonical configurationsin the marching cubes algo-
rithm, six have a number of ambiguous faces. Nielson and
Hamann show how subcases can be constructed to cover the
alternative topologies that may result. The asymptotic de-
cider approachisrobust in the sense that no holes areleft, in
addition to being topologically consistent across faces. The
interior triangulation strategy is one of simplicity, and does
not concern itself with interior topology.

N
— <l
.
.
.

Figure 4: Two internal configurations for the Marching
Cubes configuration 5

By contrast, Natarajan 33 studies the exact shape of thein-
terior surface, and finds that further ambiguities can occur.
For example, consider acube where one pair of oppositever-
tices are positive, the remaining six vertices negative (this
is configuration 5 in Figure 3. A simple triangulation will
cut off the positive verticeswith single triangular pieces, but
these approximate a curved surface which bows out towards
the centre of the cell. Imagine the data values all increasing
uniformly so the zero isosurface pieces move towards each
other - the simple minded triangular approximation remains
separated as two pieces, but the true trilinear surface pieces
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will come into contact with each other, and as that happens
they mergeinto asinglesurfacewithatunnel. Thisisaninter-
nal ambiguity, rather than the face ambiguity treated by Niel-
son and Hamann. Thisisillustrated in Figure 4 where we see
the two situations (A and B) that can occur internaly for a
single vertex configuration. We show the exact isosurface of
the trilinear interpolant. Natargjan shows that a key to iden-
tifying tunnelsis the value at the body saddle point which is
the 3D equivalent of the saddle point whose value was ex-
ploited by Nielson and Hamann to determine face ambigui-
ties. Thebody saddleislocated wherethetransition from one
to two piecesoccurs. Inthefigure, A showsthe situation with
two pieces, and the small spheremarksthe body saddle point.
In B, the pieces have merged with a tunnel appearing. (The
body saddle is still shown - the other small spheres will be
explained later).

A definitivetreatment of topological correctnessin isosur-
facing on rectilinear grids is presented by Chernyaev °. He
identifies some 33 canonical configurations, covering both
face and interior ambiguities. Thisis alittle known, but sig-
nificant, paper which subsumes the previous work by Niel-
son and Hamann, and Natarajan. Chernyaev takes each of the
fifteen original canonical configurations, which are based on
vertex values. The cases which involve face ambiguity are
then subdivided into subcases; and of these, those that aso
involve internal ambiguities are further subdivided.

More recently, Cignoni et al 2 have made asimilar study,
working from the Natargjan paper. They show that ambigu-
ities extend the 256 cases to some 798 different cases, but
only 88 of these are distinct configurations. Work isneeded to
unify the Chernyaev and Cignoni papers, and then this matter
may (possibly) be put to rest.

2.2.3. Accuracy

Some recent work has attempted to develop beyond the ro-
bustness and topological correctness, in order to increase
the accuracy of the internal representation of the isosurface
within the cell. If the cell size is very small relative to the
display size, then simpleinternal triangulation is quite suffi-
cient. However as we zoom into the data, or if the dataitself
is of lower resolution, then more carein representing thein-
terior isjustified. The expense of courseisthat moretriangles
are created.

One approach is by Hamann et al 2. They approximate
the surface of the trilinear interpolant by triangular rational-
quadratic Bezier patches. Whilethisbetter reflectsthe curved
interior of the true isosurface, there is no guarantee that any
interior points of the approximating surface lie on the true
isosurface.

The starting point for Lopes46 is 2D visualization by con-
touring. Lopes and Brodlie 47 propose a more accurate con-
touring method for 2D visualization. Within agrid cell, the
unknown f(x,y) can be approximated by abilinear function
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Figure 5: Shoulder Point

F(x,y). The contour of a bilinear function within a grid cell
isan hyperbolicarc, but it isusual to approximate thiswith a
single straight line joining the intersection points of the con-
tour with the cell edges (the equivalent of using trianglesin
isosurfacing). They show that a better approximation to the
hyperbolic arc can be obtained by calculating the shoulder
point of the conic section - thisis the point on the conic par-
allel to the chordjoining the end-points. Thisgivestwo-piece
linear approximation to the conic arc. The shoulder point is
an optimal point to choosein forming this approximation, as
itisthefurthest point onthearcfromthechord. Thisisshown
in Figure5: P and Q are the end-points of the hyperbolic arc,
and R isthe shoulder point of thearc. Risquite easy to calcu-
late asit liesonthelinejoining M, the mid-point of the chord
PQ, and S, the saddle point of the bilinear interpolant.

In his thesis 46, Lopes extends this to isosurfacing. He
takes the intersection points of the isosurface with cell edges
toform aninitial polygonal outline of the isosurface - thisis
exactly as done in the classical approach. The edges of the
polygon lie on the cell faces, and are approximations to the
isocontour lines on the faces. We can extend this polygon
by adding shoulder points, exactly as in the 2D contouring
case. Thisimprovesthe accuracy on the faces. In theinterior
Lopes definestwo special classes of pointswhich help define
the internal behaviour of the surface. One classis called bi-
shoulder points which are 3D analogues of shoulder points;
the other is called inflection points which are generalisations
of the Natarajan body saddle point. Lopesis ableto usethese
pointsto generate efficient triangul ationsthat correctly repre-
sent the interior topology, as well asincreasing the accuracy.
In Figure 4 the Lopes inflection points are shown as small
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spheres surrounding the body saddle in B. As can be seen,
they nicely delineate the shape of the tunnel.

Lopes work aimsto create agood internal representation
by adding a minimal number of carefully chosen extrapoints
- so that aminimal number of extratriangles are created. Re-
cent work by Cignoni et al 12 and Bailey 2 are both based on
theideaof progressive mesh refinement: themesh is continu-
ally subdivided until it approximatesthe isosurface to a spec-
ified tolerance. Cignoni et al propose the following refine-
ment strategy. Each triangleis considered in turn: firstly, the
midpoints of each side are evaluated for their distance from
the true isosurface; and secondly, the centre point of the tri-
angleissimilarly evaluated. The distance is measured in the
direction of the estimated gradient vector at the points. If this
distance exceeds a tolerance, then the mesh isrefined.

The work of Bailey is motivated by the application of iso-
surfaces in a manufacturing process, where accuracy is ev-
erything and efficiency (in termsof number of triangles) is of
less importance. The approach is similar to that of Cignoni:
each midpoint of the sides of a triangle, and its centroid,
are checked for their difference to the true isosurface, and
if necessary, these points are moved along a gradient direc-
tion to lie on the isosurface and used in a refined mesh. A
difference to Cignoni is that the ‘distance’ measurement is
made in the dependent variable space - ie the value of the
interpolant at a candidate point is compared with the isosur-
face value - rather than being measured in the independent
variable space. Cignoni discusses the merits of the two ap-
proaches.

Thereis probably scope for some future research in com-
bining the Lopes approach of choosing optimal refinement
points at the first level, and the Bailey and Cignoni pro-
gressive refinement approaches at subsequent levels (indeed
Lopes hints at thisin histhesis).

2.2.4. Rendering |l ssues

In isosurfacing usually (but not always) the interface to the
renderer is a triangular mesh, often in the form of triangle
strips for efficiency. In the simplest form, these triangles are
passed on to the renderer without specific normal vectors at
thevertices. Therenderer will then apply either flat, Gouraud
or Phong shading - the latter two techniques having a visua
smoothing effect on the surface.

However it is possible to incorporate visual accuracy in
the rendering by supplying normal vectorsat thetrianglever-
tices that reflect the normal direction of the true isosurface.
Thiscanbeseenasatrompel’ oeil of the same nature asbump
mapping in computer graphics. The normal ismanipulated so
asto deceive the eye into thinking the geometric representa-
tion is (in this case) more accurate than it really is- or more
positively, so asto economise on the number of trianglesren-
dered while still reflecting the true isosurface.

The normal is equal to the gradient vector of the isosur-

face. For rectilinear meshes the gradient vector iseasily cal-
culated by central differences at each vertex, and then linear
interpolation givesthe gradient, ienormal, vector at thetrian-
gle vertices. For unstructured meshes, the gradient vector at
amesh point is typically calculated by looking at the differ-
encesalong all edgesconnected to that mesh point, and carry-
ing out aleast squares estimate. Note that thisprocessisquite
sengitiveto therel ative distances to neighbouring points, and
some weighting in the least squares estimation can be bene-
ficial.

There is a quite different approach to isosurface render-
ing in which there is no intermediate approximation of the
isosurface by atriangular mesh. Instead the isosurface is di-
rectly rendered using a ray casting approach. This was pro-
posed by Jones and Chen 3* - who termed it direct surface
rendering - and later by Parker et al 59, 60 - who termit in-
teractive ray tracing for volume visualization. The quality of
imageisvery high since the exact isosurface is rendered, not
an approximation, and Parker and colleagues show that this
technique can be competitive in performance because it par-
allelises readily. With a number of intelligent optimizations
they areabletorender datafrom the VisibleHuman Project at
interactiverates (10 frames per second, for a512x512 image
on 64 processor SGI Reality Monster, on a dataset of 1734
dlices of 512x512 16bit data). There are strong argumentsin
favour of thisapproach if you have the compute power avail-
able - for example, all thetopological issuesdiscussed earlier
areirrelevant. The only possible drawback isthat thereis no
intermediate triangul ar mesh representation availablefor fur-
ther computation, but thisis probably arelatively uncommon
reguirement.

2.3. Performance

Algorithm performance has become increasingly important
as our ability to capture or create data has grown at a rate
that has outstripped the rate of improvement of computing
technology. A number of strategies exist for improving the
performance of isosurfacing extraction from large structured
and unstructured data sets.

2.3.1. Presorting - Introduction

The classic algorithms for isosurface extraction, Marching
Cubes and derivatives such as Marching Tetrahedra, operate
by inspecting every cell of the data set looking for cells that
contain the isosurface. We call these the "active cells'. Gen-
erally a selected isosurface will only intersect a small subset
of the overall dataset and so being able to locate these active
cells efficiently will give improved performance. Presorting
methods create extradatastructuresto allow efficient search-
ing of the data set to find active cells. A nhumber of presort-
ing approaches have been published which can be classified
based on whether they sort by data value or by spatial loca-
tion.

(© The Eurographics Association 2000.
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2.3.2. Presorting - Value Partitioning

Value partitioning methods are generally used for unstruc-
tured data sets where connectivity between nodes is not
implicity provided by location but must be specified. This
meansthat the memory requirementsfor thistype of datarep-
resentation are large when compared to structured grids and
hence the number of nodes represented is typically smaller.
Therelative overhead of the associated search structure com-
pared to the memory requirements of the actual data set is
less for an unstructured grid than for a structured grid and
hence these methods are generally used in conjunction with
unstructured data. Cignoni et al 13 however do offer auseful
technique for applying value partitioning to structured data,
seeinterval trees below.

Extrema Graphs

Itoh and Koyamada 33 proposed an algorithm for acceler-
ated isosurface extraction which first preprocessed the data
set to alist of extremum points (local minima and maxima)
connected by a graph whose arcs contain the IDs of cellsin-
tersected by the graph. Additionally, two boundary cell lists,
sorted according to the minimum and maximum data values
of the cells, are generated. The cellsin the boundary lists are
intersected by an open isosurface, while the cells contained
within the arcsof the extremagraph areintersected by closed
isosurfaces. Using the cells contained within the lists as seed
points for a surface growing algorithm, all possible isosur-
faces can be generated.

The extremagraph is constructed by searching the datafor
minima and maxima, but since this would be overly expen-
sivethe extremum pointsare approximatedto thenearest grid
point. This reduces the search to examining the datavalue at
each grid point and comparing it with all its neighbours and
marking it as either a local maxima, local minima or nei-
ther. Once this is done al the grid cells marked as neither
are discarded. Any local clouds of extremum points, caused
by neighbours having the same value, arereduced to asingle
point. Thisfinal set of points are then connected to form the
graph.

The graph is generated by selecting one extremaas a start
point and anumber of extrema points closeby asgoal points.
The nearest goa point is selected and the vector between
the start and goal points generated. The arc between the
two points along the vector is traversed by moving between
neighbouring cells that lie on this vector. If the goal point is
reached without leaving the volume then the IDs of all the
visited cellsareplaced in the cell list associated with the arc,
andtheoverall maximum and minimum valuesof all thecells
in the arc are stored. If the vector between the two selected
points |leaves the volume, then another goal point is chosen
and traversal startsagain. If there are no goal points that can
be reached by traversing along the vector, then a polygonal
arcisusedtojointwo points. Polygonal arcsare ableto move
off the straight vector and hence avoid leaving the volume,
but they are more expensive to compute since the distance
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value of each face of a visited cell to the goal cell must be
calculated.

Onceall the extremum points are connected, the boundary
cell listsare generated as two sorted lists using the maximum
and minimum data values of the boundary cells. A boundary
cell isdefined as acell which has at |east one unshared face.

To find an isosurface of a given value, starting cells are
searched for by traversing the arcs of the extrema graph.
The given value is compared to the maximum and minimum
value of the overall arc: if it lies within that range then each
cell inthelistisvistedinturn, otherwisethenext arc istested.
Once all the arcs have been tested, the boundary cell lists
are traversed. All active cells that are found are used as seed
point cellsfor asurface propagation algorithm such asthat of
Speray and Kennon 70.

Performance is estimated at ©(n?/3) at best, but can be
O(n) inworst case for noisy data

Kd-Trees

Livnat, Shen and Johnson # propose an agorithm that
utilises the kd-tree designed by Bentley 5 as a data struc-
ture for efficient associative searching. Essentialy, the kd-
tree acts as a multidimensional binary tree with the nodes at
each level holding one of the data values and a connection
to two subtrees. The two subtrees are constructed such that
theleft subtree holdsvalues that arelessthan the value at the
parent, theright subtree holds valuesthat are greater. Unlike
abinary tree, however, the next level of the tree down holds
adifferent datavalue, with its children being partitioned rel-
ative to that data value. This continues cyclically down the
tree, swapping data values at each level.

Thisdatastructureisideal for creating asearch treefor the
cells of an unstructured mesh where each cell has an asso-
ciated minimum and maximum data value. The treeis con-
structed by examining each cell in the data set to calculate
its minimum and maximum data values. Thefirst nodein the
tree then containsthe cell 1D and the min and and max value
of themedian cell ascal culated based on the minimumvalues
of al thecells. Thiscan easily bedone by partially sortingthe
cells on the minimum value using a median sort algorithm.
The head of the tree then has pointers to the two subtrees
made up from the remaining cells to the left and right of the
median cell. For each subtree the above processis repeated,
but thistime the cells are partially sorted by their maximum
value. Using the median value cell causes the creation of a
balanced tree, and because one cell is left at each node the
size of thetreeis directly related to the size of the dataset.

Oncethetree has been constructed it can then be searched
to quickly find active cells. Given an isosurface value k, the
active cells are found by first comparing k to the minimum
value of the first node in the tree. If it is less than the mini-
mum value, then the cell at that node isignored and we can
guarantee that all cells in the right subtree are not required
and hence we have aready eliminated half the cells in the



Ken Brodlie and Jason Wbod / Recent Advances in Visualization of Vblumetric Data

dataset. We move on to compare k to the maximum value of
the left child of the top node only. If k lies between the min-
imum and maximum values of the cell at the node then we
know that it is an active cell and is used in generating the
isosurface; we must then go on to test both sub-trees. If k is
greater than the maximum then we must test both subtrees
but we do not have an active cell. When we compare k to a
node that is sorted by maximum values, if it is greater then
the maximum value at that node then we can discard all val-
uesto the left and just test cellsto the right. This processis
repeated until the bottom of the tree is reached.

Livnat et al go on to suggest some further searching opti-
misations, it can be noted that (considering a node sorted by
minimum value) when k is greater then the minimum value
we must search both subtrees and seemingly have gained
nothing. Thisistruefor the right subtree, but for the left sub-
tree, we know that we have satisfied the minimum condition
and hence may skip that test.

Performanceis O(,/n+ K) for search, with preprocessing
estimated at O(nlogn). Here K is the size of the output, ie
number of cells selected.

Interval Trees

This method is designed to answer the following query
"givenaset| = {ly,..Im} of intervalsof theform[a, b;], with
a; < b; onthereal line, and aquery valuek, find al intervals
of | that contain k" as away of finding a set of active cells
from which to construct an isosurface. Each cell can be re-
ducedtoaninterval of theform[a;, bj] by examining the data
values at each vertex to find the min and max. Cignoni et al
13 usetheinterval tree defined by Edel sbrunner 18 as an opti-
mally efficient datastructure when solving thisquery, and the
algorithm for constructing and searching is outlined bel ow.

For eachi = 1,2,..mwhere misthe number of cells, con-
sider the sorted sequence of values X = (X, ..,Xy) corre-
sponding to the unique set of intervals (i.e. each range a;, b;
isequal to somex;). Theinterval tree for I consists of abal-
anced binary searchtree T whose nodes correspond to values
of X, plus astructure of lists of intervals attached to nonleaf
nodesof T. Theinterval treeisdefined recursively asfollows.
Theroot of thetree T hasadiscriminant & = Xr = X7}, and
| is partitioned into three subsets as follows:

h={liel|b<d} (6)
F={licl|a>&) (7)
I, ={liel|a <& <bi} 8

The intervals that fall into the node are sorted into two lists,
AL and DR asfollows:

AL containsall elements of |5 sorted into ascending order
by their |left extremes (that is by their minimum value)

DR containsall elements of |5 sorted into descending or-
der by their right extremes (that is their maximum value)

The left and right subtrees are defined recursively.

To perform a search on the tree T, given a query k, isa
recursive process starting from the head of the tree

if k < & thenlist AL isscanned until aninterval I; isfound
such that g > k; all scanned intervals are reported; the left
subtreeis visited recursively;

if k> & thenlist DR isscanned until aninterval |; isfound
such that b; < k; al scanned intervals are reported; the right
subtreeis visited recursively;

if k = & then the whole list is reported.

This aternative and more optimal approach to the kd-tree
is calculated to have aworst case time complexity of O(K +
logh) whereK isthe output size and histhe number of nodes
inthetree.

As mentioned above, these search structures are generally
used with unstructured data due to the relatively high over-
head associated with using them for structured grids. Cignoni
et al, however present a useful observation that potentially
makes their overheads with uniform grids no worse than that
of octree subdivision (discussed in Space Partitioning). They
observe that rather than building an interval tree with anin-
terval for every cell in the data set, it is possible to reach al-
most the entire dataset by encoding just approximately one
in four carefully chosen cells. The cells chosen form a 3D
chesshoard where the black cells are encoded into the tree
(A 2D example can be shown in Figure 6). The neighbour-
ing white cells will be found if required since al of their
edges touch a black square. For example, the square marked
A touches 2 white sguares, one to the right and one in front,
cell B touches four, one behind, one to the right, one to the
left and one to the front.

Figure 6: Using Interval Treesfor regular gridded data.

Thiscan be extended to a3D volume (see Figure 6). When
searching, performance can be gained by considering each
layer with black cells as aseparate interval tree since shared
edge intersections and normals that are normally accumu-
lated and stored over thewhol e data set can be discarded once
asingletree has been searched. When atreeissearched and a
black cell detected asactive it isasimple matter to find cells
that share the intersected edges. Once all the trees have been

(© The Eurographics Association 2000.
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searched a small number of cells around the edge of the that
may not be linked to ablack cell, cell C for examplein Fig-
ure 6, need to be tested.

2D L attice Subdivision of the Span Space

Lattice Min
Element (1,1)

Figure 7: Partitioning the Span Space

Further work by Shen et al 66 |ooks at using the span space
but instead of using a kd-tree asthe search structure, they de-
compose the space into a 2D LxL lattice of cells (see Fig-
ure 7). Thelattice elementsare spread acrossthewholerange
of the data set, and the division points are chosen such that an
even number of cellsfallsinto each division. Thisobviously
reguires the elementsto be of varying size.

Searching for a particular value k where k lies in the ele-
ment (p, p) , it is possible to classify the lattice elements to
one of five cases (see Figure 8) based on their indices (i, j)
asfollows:

e case 1:if i > por j < pthenthere are no active cellsin
these elements asthey have either aminimum value above
k or amaximum value below k;

e case2:ifi < pand j > pthenall cellsin these elements
are active cells.

e case 3 if i < pand j = p then &l elements in this re-
gion have the potential to contain active cells and must be
searched, but we know that their minimum values are be-
low k so need only test their max values.

e case4: ifi=pandj> ptheinverse of case 3

e caseb:i=p,j = pWemust test both min and max values
of all cellsin this element

The authors report that the search phase has an average
performance of O(log(n/L) + +/n/L + K) where K is the
number of active cells and L is the number of chosen sub-
divisions. The value of L isreported to be best between 200
and 500.

(© The Eurographics Association 2000.

Lattice Element (p,p)

Figure 8: Searching the Span Space

2.3.3. Space Partitioning

This approach offers the simplest method to gain improved
performance, but unfortunately isonly suitablefor structured
data. Wilhelms and Van Gelder & use a branch-on-need oc-
tree which allows the creation of uneven sized sub-volumes
unlike the standard even-octree subdivision. Using an octree
(of any sort) allows the search algorithm to skip unrequired
sub-volumes when fitting an isosurface based on the range
of each sub-volume. If the required isovalue does not lie in
therange of ahigh level volume, then all subvolumeswithin
it can be skipped. An aternative approach based on a pyra-
mid datastructureis proposed by Criscioneet al 15 which has
similar efficiency and overhead to Wilhelmset al butiseasier
to implement. Space partitioning techniques cannot easily be
applied to unstructured data as they rely on the regular struc-
ture of the underlying data set.

2.3.4. Multiresolution

Algorithms such as marching cubes inevitably produce a
large number of polygons to represent a surface since every
active cell in the data set contributes one or more triangles.
The advantage of the multiresolution approach isthat it pre-
processes the data into a hierarchy of lower resolution vol-
umes which means that triangle reduction effectively occurs
at isosurface extraction time (rather than after when using
mesh simplification). Theresolution of the surfaceisnot uni-
form across the volume and can be controlled by an error es-
timate which forces higher resol ution where the data changes
rapidly 8. Alternatively, the resolution can be controlled by
auser selected point and radius of focus 2L

There is a growing literature on this area - the paper by
Gerstner and Rumpf 2* includes a good review of thefield.
2.3.5. Exploiting parallelism and distributed processing

The marching cubes algorithm operates on individua cells
within adataset without referenceto or altering of any global
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information. For thisreason itisan ideal candidatefor use as
a parallel agorithm to speed up isosurface extraction from
large data sets as long as the data can be suitably partitioned.
One example of this type of work is that presented in a case
study paper by Painter et al 58 from the Mantle project which
uses a parallel implementation of the kd-tree of Livnat et &
from above. Other more recent work has been presented by
Lombeydaand Rajan %> wherethey havetakenthevtk march-
ing cubescode and created aparallel implementationusing p-
threads, with IRIS Explorer as a front end for rendering and
user interface. This has been applied to a data set generated
by anumerical simulation of the Rayleigh-Taylor instability.
Shen et a (2D Lattice Subdivision of the Span Space above)
give results of using their algorithm on a parallel machine.
They suggest passing each | attice el ement from the half space
abovethex = yline, column by column, to adifferent proces-
sor using a round-robin method to give an even distribution
of cells of al values. Their results give aload imbalance of
just 2%. Other work in this area has been by Gerstner et al 24.

Another way of isosurfacing large datasetswhileonly hav-
ing access to a desktop workstation isto make use of remote
resources through distributed processing. Work done by En-
gel et al 21 haslooked at theideaof visualizing dataacrossthe
network with particular focus on using the world wide web.
They propose a6 stage model for isosurface extraction, start-
ing at data storage and ending with the displayed image, that
places a different number of stages on the client and server
machines. They then go on to briefly evaluate the relative
strengths and weaknesses of different placement strategiesfi-
nally focussing on 3 scenarios. Two scenariosarerejected be-
cause they are view dependent and would require data trans-
mission whenever theviewpointisaltered, andthey reject the
option of simply using the remote resource as a data server
sincethe sizeof the datasetsare considered too large. Having
identified the three remaining scenarios, sending triangles,
sending interpolation values and the Marching Cubes cases
with client side triangle setup or sending active cells for lo-
cal triangulation, as possibilities, they then offer some mech-
anismsto help reduce network usage. These include combin-
ing trianglesin individual cellsinto triangle strips to reduce
the number of indices sent to the client, aswell asamultires-
olution approach taking into account a user specified point
and radiusof interest. Other work by Engel et al 2° haslooked
at progressiveisosurface transmission across the web from a
server calculation of the isosurface.

2.3.6. Out of coreisosurface extraction

The methods described above in presorting seek to gain per-
formance improvements by providing efficient search struc-
turesto use alongside the data set to quickly find active cells.
The construction time and memory requirements of these ad-
ditional data structures needs to be considered when imple-
menting such systems. Thetime factor may effectively beig-
nored asa'run-time" cost sincemany of the above datastruc-
tures can be pre-generated and stored to disk as aone off pro-

cessing step and loaded along with the data when isosurface
extraction is to be performed. This, however, still leavesthe
issue of memory requirement.

Out of core algorithms of al types are designed for sit-
uations where the amount of data to be processed is sim-
ply too large to fit in main memory. These algorithms avoid
the time wasted by disk thrashing by employing unique data
structureson disk that offer optimal 1/0 performanceand also
seek to exploit locality. Work done by Arge and Vitter * pro-
vided an optimal external memory data structure for the stab-
bing query problem which can be used for 2D range search-
ing. Chiang and Silva 10 use this and ideas from the inter-
val trees of Cignoni (above) to create an I/O optimal inter-
val tree which they then go on to demonstrate using vtk. Re-
sults from their paper show that the time taken to generate
the isosurface from the active cells is actually greater than
the time taken to search for these cells. These same authors
then go on to provide improved data structures to reduce the
amount of disk space required to build and store the search
structures. This new work (presented in 1) uses meta cells
which contain a group of neighbouring cells, and it is these
metacells that are then built into an interval tree. Depending
on the number of cellsin ametacell thereisadirect tradeoff
of disk overhead (themore metacellsthelarger thedisk over-
head) to query time (themore metacellsthe quicker the query
time). Work by Sulatyckeet al 7 takesnote of thefact that the
seach for active cells is quicker than the time taken to gen-
erate the isosurface. To take advantage of this they have de-
veloped amultithreaded system that usesasingle 1/O thread
for finding and reading the active cells and anumber of com-
putational threads for isosurface generation. They work asa
producer-consumer system with the 1/0 thread placing ac-
tive cellsinto a buffer and the computational thread remov-
ing cellsfrom the buffer when they havefinishedtheir current
processing. If no datais ready then the computational thread
blocks until data arrives. The authors report speedups over
the vtk out-of-coreimplementation by an order of magnitude
or more. Other work on parallel out-of-core visualization has
been done by Bajaj et al 3.

2.4. Time Varying | sosurfaces

There is increasing interest in finding efficient methods for
the construction of isosurfaces from time varying data. An
early paper by Weigle and Banks 7® constructed an isovol-
ume of the set of isosurfaces of level k over aperiod of time;
a second pass can be used to extract the isosurface at a par-
ticular time.

Papersby Shen ©, and by Sutton and Hansen 72, introduce
some of the presorting ideas described in the previous sec-
tion, in order to increase efficiency. In particular, Sutton and
Hansen extend the Wilhelms and van Gelder branch-on-need
octree method of spatial partitioning.

(© The Eurographics Association 2000.
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3. Slicing

Slicing is the least glamorous of the three fundamental ap-
proaches, perhaps becauseit reduces the problem to a 2D vi-
sualization problem, or sequence of such. Thusit makes use
of techniques that have been studied from the early days of
scientific visualization - in the 1960s. However it remains
a very valuable technique and many users are better able
to comprehend 2D information than 3D. Every visualization
package will include a slicing modul e!

The naive approach to dicing is to do an exhaustive ex-
amination of all the cellsto test for intersection with the dlic-
ing plane. Some obvious speedups can be achieved for struc-
tured gridded datawhen the dlicing planeisorthogonal to one
of the principle axes. For unstructured gridsthisis not possi-
ble, but an approach similar to those used above in presort-
ing can be used. A number of the presorting methods reduce
the problem to a 2D range search, but unstructured grids are
made up of arange of element types from tetrahedrato hex-
ahedra all of which are 3 dimensional and hence produce a
6D range search. It is, however, possible to reduce the prob-
lemtoa2D rangesearchif the orientation of thesliceplaneis
known. The rotational component of the slice plane from the
xy-planeis calculate and itsinverseis applied to each cell in
turn and its minimum and maximum z-component recorded
along with the cell ID. Once al cells have been inspected a
search tree can be constructed as described above, e.g a kd-
tree, based on the minimum/ maximum z-values of the cells.
The query value, k, then is ssimply the distance from the ori-
gin to the dicing plane. The tree can be used to quickly find
dicesat any distance from the origin aslong asthey keep the
original orientation. This allows planes to be rapidly swept
through the data to give a good impression of the structures
within. This method can be used for planes of arbitrary ori-
entation on any unstructured grid.

4. VVolume Rendering
4.1. Introduction

Volume rendering offers amore compl ete solution to the vol -
umevisualization, in that it aimsto picture the entire volume
rather than a subset. It has been traditionally thought of as
more computationally expensive than surface extraction, but
thisview hasrecently been challenged by exciting new hard-
ware developments.

The techniqueis based on modelling the data as a translu-
cent gel, and so a fundamental first step isto assign material
propertiesto correspond to the data values. Classification is
the process by which we assign acolour and opacity valueto
agiven datavalue. The opacity transfer function will take as
input certainly the dataval ue, but perhapsal so other informa-
tion such as gradient estimates, and return an opacity value.
The gradient value is used when interior structure (such as
anatomical featuresin medical imaging) isto be highlighted:
the opacity is scaled down in areas of low gradient, and up
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where the gradient is high - thus emphasising boundaries be-
tween features. Colour transfer functionsdo asimilar jobin
assigning RGB values to datavalues. The transfer functions
may also use information from a prior segmentation process
which haslabelled dataas belonging to aparticular featurein
the volume. Lichtenbelt et al 43 discuss segmentationin rela
tion to volume rendering.

Classification remains something of an art. Kindlmann et
al 37 suggest ways of automating the process.

4.2. Classical Approaches
4.2.1. VolumeRendering Integral

Thebasis of most volume rendering techniquesisthe volume
rendering integral in its low-albedo form, as derived by Ka-
jiyaand von Hertzen 36 and by Max 4°. A very clear exposi-
tion isgiven by Mueller et a 5 and we follow this here. We
imaginethe volumeasaset of particleswith certain densities
M, and fire rays through each pixel on the image plane into
this volume. For any ray, the amount of light of wavelength
A received at the image planeis given by:

b= [ Crlsu(se B4 s ©

where L is the length of the ray, and C,(s) is the light of
wavelength A reflected at s in the direction of the ray. The
calculation of C, (s) can be based on the standard Phong re-
flection model, given specification of light sources, the ma-
terial colour from the classification process and the normal
direction (which as we have seen isthe gradient vector). The
weighting by p(s) reflectsthe density at the point - the greater
thedensity, the greater theintensity of reflected light. Thein-
tegral accumulates this intensity over the length of the ray,
but attenuatesit according to the density of material through
which it passes. This attenuation is represented by the expo-
nential term. Max #° calls 1 the light extinction coefficient; it
defines the rate at which light is occluded per unit length due
to scattering or extinction.

In practice, the integral given by equation 9 hasto be eval-
uated numerically. Using a very simple Riemann sum ap-
proximation, we have

n i—1
Iy = _Z)CA(iAs)u(iAs)AsrLexp(—u(jAs)As)) (10)
i= J=
where nisthe number of steps along theray at which sample
values are taken.

We can simplify thisby anumber of approximations. The
exponentia term in equation 10 can be replaced by the first
two terms of its Taylor expansion, ie

exp(—H(iAs)As)) = 1— p(iAs)As (11)
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Define the transparency t(iAs) as:

t(iAs) = exp(—H(iAs)As)) (12)

so asto give:

H(iAs)As= 1—t(iAs) = a(iAs) (13)
wherea = 1—t isopacity.

This approximation converts equation 10 into the com-
positing formulathat iscommonly used in volumerendering,
namely

i—1

I = _iCA(iAs)a(iAs) rL(l—a(jAs)) (14)
i= |=

The values of C and a are only known at data points and
SO an interpolation process is required in order to calculate
the values at the sample pointsiAs. It is possible to interpo-
late datavaluesand then classify, but the above derivation as-
sumes that the classification and shading are done at the data
points, and the resulting colours and opacities used for inter-
polation.

If we use unit spacing, equation 14 simplifiesfurther to:

b= iiq(i)ox(i) ;lj:(l— a(j)) (15)

In practice, thecomputationis donefor R, G, B separately,
and from now on we remove the A suffix. Basically, it isa
sum over intensities of individual samples, each intensity at-
tenuated by the product of transparencies accumulated asthe
light passes from sample to observer.

The calculation can be done recursively by processing
one sample at atime, accumulating colour and opacity sepa-
rately:

Cout = Cin+ (1—ajn)aiCi (16)

for each samplei, and

Oout = jn + 0i(1—ajp) (17

This corresponds to the Porter and Duff image composi-
tion operator over 8. Thisisafront-to-back ordering. Infact,
the order can be reversed to work back-to-front, in which
case only the colour needs to be accumulated:

Cout =Ciatj 4+ Cin(1—q) (18)

Itisworth noting that the compositing stepsare associative
but not commutative. This has two important implications:
associativity means that we can composite groups of sam-
ples, then composite the groups, as long as we retain the or-
der - thisisimportantin developing parallel applications. The
lack of commutativity means that the order of compositing
isimportant, and we shall seethat this problem has proved a
significant computational geometry challengein volumeren-
dering.

4.2.2. Different Approaches

Volume rendering techniques can be broadly classified into
two approaches: image order and object order. In the image
order approach (also called backwar drendering), we process
from the image plane to the volume. In the object order ap-
proach (also called forward rendering), we processfrom vol-
ume to image. Note however that as the subject has devel-
oped, this broad classification is now less distinct, as hybrid
methods have evolved to take advantage of both approaches.

The classical image order method is ray casting, and the
seminal paper isthat of Levoy 4. The Levoy paper isareal-
isation of the volume rendering integration described in the
previous section. The order of compositing is back-to-front.
Thereareattractionshowever in doing the compositing front-
to-back, even though there is the extra work of accumulat-
ing opacity. Thisextrawork provesvery useful becauseonce
the accumul ated opacity value reaches athresholdthereisno
point in continuing and so work is saved - thisis known as
early ray termination.

In section4.3 welook at recent improvementsto image or-
der methods. Thesefall into a number of categories:

Volume Rendering Equation The classical approach com-
putes the volume rendering integral as a Riemann sum.
Greater accuracy can be achieved by working harder on
theintegration; greater speed can be achieved by ignoring
the composition of samples entirely, and simply locating
the maximum intensity along the ray and using that value
for | - thisis known as maximum intensity projection.

Interpolation The classical approach requires the calcula-
tion of colour and opacity values at sample locations that
will generally not coincide with data points - so interpo-
lation is needed. Recent work has explored the options of
interpolating before classifying, against interpolating after
classifying.

Curvilinear and Unstructured Meshes The classica ap-
proach of Levoy was targetted at medical data which oc-
curstypically on rectilinear grids. Recent work has|ooked
at approachesfor curvilinear grids and unstructured grids,
both of which occur routinely in CFD applications. Indeed
unstructured datais of growing importancein medical ap-
plications through hand-held ultrasound scanners.

Fast Traversal A time consuming aspect of the Levoy
method isthetraversal of raysthrough the volume dataset,
and recent work has looked to optimize this traversal.

(© The Eurographics Association 2000.
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Hardware Advances A major advance in the last year has
been the devel opment of commercial hardwarefor volume
rendering, allowing real time volume rendering on a PC
platform. This has suddenly made volume rendering af-
fordable.

The object order approach is characterised by the splat-
ting technique proposed by Westover 78, 79, This essen-
tially projectsvoxelsonto theimage plane, forming so-called
splats, and composites the splats in the image plane. As
Mueller et a 5! explain, splatting essentially re-orders the
volume rendering integral so that each voxel’s contribution
is separated out.

The agorithm works as follows. Find the face of the vol-
ume nearest the observer, and consider the volume as a set
of dlices parallel to that face. Order the voxelswithin adlice
in terms of distance to observer, nearest first. Classify and
shade each voxel. Now project each voxel in turn into im-
age space, using a circular Gaussian filter to determine the
coverage of the splat in the image plane. The projection of
thekernel into theimage plane can be pre-calcul ated and this
gives the method its speed - the projection is called a foot-
print. The colour and opacity valuesare blended into theim-
age buffer at every pixel that falls within the footprint - the
values scaled by the value of the Gaussian at the particu-
lar pixel. The blending is done using the usual compositing
rules.

In section 4.4 welook at recent improvementsto object or-
der methods. These fall into anumber of categories:

Better Splatting In a series of papers, researchers at Ohio
have steadily improved the original Westover splatting
method.

Shear Warp Rendering A hybrid approach, known as
shear-warp rendering, has becomeincreasingly popular. It
achievesits speed by first aligning (using a shear) the vol-
ume and the viewing direction so that aline of voxels can
project directly to apixel, and secondly compensating for
thefirst transformation by an image warp transformation.

Unstructured Grids As in the image order approach, re-
searchers have looked at efficient techniques for unstruc-
tured grids.

Texture Mapping The emergence of texture mapping hard-
warehasfostered anew object order approachinwhichthe
volumeisseen asa3D texture, and slicesare projected and
composited using this hardware.

4.3. Advancesin Image-based Techniques
4.3.1. VolumeRendering Equation

The classical volume rendering equation 9 is a complex in-
tegral which cannot be evaluated analytically. The usual ap-
proachisto compute numerically using Riemann sums, lead-
ing to the simple formulation of equation 10. Novins and
Arvo 57 experimented with other numerical integration meth-
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ods, including the trapezoidal and Simpson’srule. More re-
cently, Jung et a 3° showed how a semi-analytical solution
can befound. They use anumerical approximationto the ex-
ponential termin equation 9 and replace the term g(s) by the
trilinear interpolant. Within any cell thisis apolynomial and
so can be integrated exactly. They are able to show that this
approach enablesfine detail to be observed that is not appar-
ent in the classical Levoy discrete approach.

For some applications, the effort of compositing samples
is simply not worth it. For example, in angiography, the vi-
sualization requirement is to highlight blood vessels in the
volume and perfectly good results can be obtained by locat-
ing the maximum intensity along the ray and using that in-
tensity value as|. ThisMaximum Intensity Projection (MIP)
approach has been studied by a number of authors recently,
with akey aim being to traverse the data quickly to reach the
significant cells. For example, if the dataval ues at the vertices
of acell are each less than the current maximum, then there
isno need to calculate any sampleinsidethe cell using trilin-
ear interpolation - the resulting value will be automatically
bounded by the vertex values. There is a nice description of
thistechniquein Heidrich et a 2°. Parker et a 6 extend their
fast ray casting of isosurfacesto provideafast MIPalgorithm
for shared memory architectures.

4.3.2. Interpolation

There are many trade-offs in volume rendering that are of-
ten hard to resolve. An interesting issue involves whether to
classify then interpolate, or to interpolate then classify, when
calculating the colour and opacity at a sample point. Thisis
discussed in detail by Gasparakis 2, following on from dis-
cussion in Lichtenbelt et al 43. Gasparakis concludes that a
smoother image results from first classification then interpo-
lation. However careisneeded intheinterpolation. Theclas-
sical approachisto trilinearly interpolate colour valuesin or-
der to get the colour of a sample to use in equation 16. Wit-
tenbrink et al 83 show that this can produce unexpected ef-
fects: suppose one vertex value hasred col our, but zero opac-
ity (ieistransparent). Thisisincluded in the colour interpo-
lation process, even though its contributionisnull when aray
passesdirectly throughit. Thisis correctedif the coloursused
in the trilinear interpolation are weighted by their opacity -
thisis known as opacity-weighted colour interpolation. Gas-
parakis 23 gives a rigorous proof that thisis the correct way
to carry out the interpolation.

Other authors favour interpolation then classification, see
for example Lichtenbelt et al “3. The argument for this or-
der isthat fine detail within avoxel can sometimes be picked
out. On the other hand, since the sample points are view-
dependent (pointsalong aset of raysindirection of view), the
classification itself is then view dependent. Indeed the clas-
sification process moves from being a pre-processing step to
being a necessary step in each rendering. Furthermore the
shading calculation is carried out at the sample point, not the
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vertex - thus the approach is analogous to Phong shading,
rather than Gouraud. Note that an interpolation of the gradi-
ent isalso needed. For adiscussion of how to do this, seethe
papers by Moller et al % and Bentum et al 6.

Wittenbrink et a 83 give a thorough comparison of the
above issue.

Some of the highest quality medical volume rendering
has been carried out in Hamburg by Hohne and his research
group. They have created detailed segmentation of medical
images to create an anatomical atlas. We include mention
of them in this section through their recent work on accu-
rate identification of partial volume effects in medical vol-
ume rendering. See the paper by Tiede et a 7 for this work,
and for pointers to other work by this group.

4.3.3. Curvilinear and Unstructured Grids

Many problems in computational science involve non-
rectilinear grids, and there has been much recent work on
extending the classical ray casting approach to handle these
grids.

The two common types are: curvilinear grids and unstruc-
tured grids. One option of courseisto resamplethe dataonto
arectilinear grid and use the classical approach. Thisis un-
satisfactory for many reasons: the grid will reflect the nature
of the problem and a very finerectilinear grid may be needed
to capture al thedetail. Curvilinear grids can be converted to
unstructured, by decomposing each hexahedral cell into five
tetrahedra, but this then destroysthe connectivity implicit in
the curvilinear grid. Hence special methodsboth for curvilin-
ear and unstructured grids have emerged.

For curvilinear grids, there is a mapping from the curvi-
linear grid in physical space (P-space) to a corresponding
rectilinear grid in computational space (C-space). Fruhauf 2
showshow itispossibleto traverseand interpolatealong rays
in C-space and transform back to P-space for rendering using
the Jacobian matrix. Hong and Kaufman 2 argue that there
isaloss of accuracy in this process.

Hong and Kaufman 32 themselves propose a different ap-
proach. The basic algorithm for ray casting into a curvilinear
volumeis presented as follows:

1. Cast ray from pixel (x,Y)
2. Find first intersection with acell-face
3. Repeat

a. Find exit cell face, and exit point

b. Interpolate to get value s at exit point

¢. Accumulate colour and opacity using s and depth of
cell

The repetition terminates when the opacity is 1 or the
ray leaves grid. The key to Hong and Kaufman’s work is to
project cell faces onto the image plane in order to reduce the
complexity of the algorithm. The exterior faces are projected

and bucket-sorted to get a depth ordering. Each hexahedral
cell is described as a set of 12 bounding triangles, two per
face - given the entry triangle, the determination of the exit
triangleis also accelerated by projection of the 11 candidates
onto the image plane. We shall see later in this section other
instances of complexity of a 3D problem being handled by
reduction to 2D.

For unstructured grids, the major issue is again computa-
tional complexity. Whereasfor rectilinear grids we know the
ordering of cellsalong aray and thus can process them with-
out sorting, this is not the case for unstructured grids. The
challenge for ray casting unstructured grids isto identify the
cellswhich areintersected by aray, and order these front-to-
back so that compositing can be carried out. The naive ap-
proach is to compute (for an NxN image and a mesh with n
edges) the intersection of all N? rays with all O(n) facets,
and sort the intersections along each ray. This has complex-
ity upper bound of O(Nznlog n). There has been significant
progress in recent years on lowering this complexity bound.

The seminal paper was by Giertsen 2> who introduced the
idea of a sweep plane. Imagine a viewing co-ordinate sys-
tem in which the xy-planeisthe display, with they-axisin an
up direction, and rays being fired into the volume parallel to
the z-axis direction. Now imagine a scanline on the display,
with agiven y-value, and consider a plane through this scan-
line and in theviewing direction (ie orthogonal to the display
plane). This is a sweep plane, and for a parallel projection
will contain all the rays through the scan line. If we can find
the intersection of the cells with this sweep plane, then we
have reduced the sorting problem from 3D to 2D, with corre-
sponding saving in complexity. Giertsen transforms the ver-
tices of themesh to the standard viewing system, ordersthem
by y-valueand then proceeds scanline-by-scanline, maintain-
ing an active set of cells intersected by the current sweep
plane. By exploiting coherence between scanlines, Giertsen
is ableto make efficiency gains.

This basic idea has been developed throughout the last
decade with steady improvements in efficiency. In a series
of papers, Silva and colleagues have worked to improve
the complexity measure mentioned earlier. The Lazy Sveep
Ray Casting Algorithm 8 avoids some of the transformation
and sorting required by the origina Giertsen method. This
achieves a worst case upper bound of O(k+ n+ nlogn +
Nnlogn) wherek = O(N?n) isthe size of output (ie number
of facets crossed by all rays).

Westermann and Ertl 77 exploit polygon rendering hard-
wareto construct the projection of cellsonto the sweep plane
(taking a view from above the volume and using clipping to
isolate the correct cells). Thisis stored in a buffer, with the
cellsinlineof sight order. In asecond pass, the buffer istra-
versed in order to carry out the volume rendering integration.

(© The Eurographics Association 2000.
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4.3.4. Fast Traversal

Performance of volume rendering by ray casting has been
an active area of research throughout the last decade as the
search has gone on to bring the process down to interactive
speed.

An early development was template-based ray traversal
proposed by Yagel et al 86. Thiswork isbased on the observa-
tion that, with parallel rays, the path through the voxel struc-
tureis common to al rays, ie atemplate for the path can be
used.

Another approach isto pre-process the volume so that the
regions of significance are identified, and volume rendering
integration is begun from the intersection with thefirst object
rather than the intersection with the volume boundary. This
can be done by using ahierarchical data structure such as oc-
trees (used by Parker et al 59, €0 and by Levoy 42). An dter-
native, suggested by Wan et a 74, isto record the boundary
voxelsin the volume, and to project these cells onto the im-
age plane, storing information in two projection buffers- one
giving the nearest distance to a boundary cell, the other the
furthest distance, for each pixel. In the ray casting process,
only rayswhich intersect boundaries need be considered, and
for those which do intersect, the traversal need only proceed
from nearest boundary to furthest boundary. In afurther pa-
per 75, the authors show how the algorithm may be easily par-
allelised and they report 20 frames per second rendering on a
16 processor SGI Challenge, for a 256x256x225 dataset and
256x256 grey scale image.

4.3.5. HardwareAdvances

The holy grail of volume rendering for many years has
been rea-time, interactive visualization of moderate-sized
datasets. Kaufman over many years has led the research into
hardware architectures which seek this prize. His series of
Cube architectures progressively got closer to the holy grail,
culminating in the Cube-4 architecture described by Pfister
and Kaufman %2. Research on volume rendering hardware
has a so been very active in Germany, where two machines
have been implemented: VIRIM described by Guenther et al
2% and VIZARD described by Knittel and Strasser 38. All fol-
low theray casting approach. For ageneral overview, seethe
paper by Ray et al 5.

There has been a very exciting development in the last
year, showing the holy grail to be fully in sight. Mitsubishi
Electric have enhanced the Cube-4 architecture, and created
a commercial product, as a PC-board which can fit into a
standard PC. The VolumePro system is fully described in a
landmark paper by Pfister et al 61. The system is based on a
ray casting approach but with many important acceleration
techniques, such as the use of shear-warp transformations to
improve speed of data access (see later).

(© The Eurographics Association 2000.

4.4. Advancesin Object-based Techniques
4.4.1. Better Splatting

The research group at Ohio, and others, have continued
throughout the last decade to improve the Westover splat-
ting algorithm. Recent work has addressed aperceived weak-
ness of splatting inthat theimageappearsrather blurred. This
problem can be traced to the issue of shading before or after
interpolation. The original splatting algorithm shades, then
interpolates, which has a smoothing effect. Mueller et a 51
re-order the splatting computation so that shading takesplace
after interpolation. In thisway edges are more clearly picked
out.

In another recent paper, Mueller et a 52 continue devel-
opment of a sheet-buffer approach, in which all the splats
from one dlice are added into a colour and opacity sheet
buffer - and then the resulting sheets are composited either
back-to-front, or front-to-back. This gives a smoother ap-
pearancein animated viewing. The original sheet buffer pro-
posed by Westover 79 used axis-aligned sheets, but this new
work shows improved results are achieved by working with
sheets aligned with the image plane.

4.4.2. Shear Warp Rendering

Theidea of shear warp rendering isto pre-transform the data
into an orientation from which rendering can be fast. Based
on earlier work by, among others, Cameron and Undrill &,
the idea was developed into a very effective algorithm by
Lacroute and Levoy 0. It isillustrated in Figure 9. Instead
of projecting voxels from the volume at an angle to the im-
age plane, we shear the volume by translating each slice, and
resampling along the direction shown. Projectionisnow triv-
ial: thedlicesare composited front-to-back using the standard
operation, creating an intermediateimage. Thisintermediate
imageisthen corrected by an affine 2D warp. The algorithm
exploits coherencein the volumedataby using run-length en-
coding, and the overall algorithm has proved highly compet-
itive.

viewing rays

volume A
slices

—>

project

plane

Figure 9: Shear Warp

The agorithm can be parallelised and analysis of its per-
formance is covered in the paper by Lacroute 3°.
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4.4.3. Unstructured Grids

As mentioned earlier, there are many applications where the
data is on an unstructured grid. A common approach is to
project cells on to the image plane, and for all pixels cov-
ered by the projection, a compositing operation is performed
to build the image. Because compositing is not commuta-
tive, the cells need to be ordered before projection and this
is a challenging computational geometry problem. A series
of papers have developed progressively better sorting meth-
ods. A seminal paper was published by Williams82. Anim-
portant recent paper by Williams et a 8! describes a highly
accurate rendering system based on this approach, and using
adetailed treatment of optical modelswithin thevolumeren-
dering integral.

Research continuesto try to improvethe original Williams
algorithm. For example, see the paper by Silvaet a ©.

4.4.4. TextureMapping Techniques

Traditional approachesto volume visualization are very ex-
pensiveto perform with respect to cpu usage. Toimprovethis
situation specialist hardware has been developed to acceler-
ate many of the standard operations, but it is expensive and
not generally found on the desktop. For thisreason an alter-
native approach has been devised that attempsto make use of
more generic computer equipment, using hardware accelera-
tion where possible. Modern graphics workstations and PCs
now come with texture mapping hardware, for acceleration
of 2D and 3D texture operations, as part of the basic graphics
system. Work has been presented by Cabral et al 7 that rep-
resents the volume using 2D or 3D texture maps exploiting
any available hardware.

2D Texture Mapping

If a machine has only 2D texture mapping hardware then
this can be used for volume visualization of regular struc-
tured data if the datais prepared in the right manner. Slices
are taken through the volume orthogonal to each of the prin-
cipal axes and the resulting information for each dliceisrep-
resented as a 2D texture which is then pasted onto a rectan-
gle of the same size (see Figure 10). The texture hardware
can then be used to quickly manipulate the 2D dlices, doing
the appropriate bilinear interpolations, when the viewpoint
is changed. The reason for making 3 sets of dices is that if
just one set istaken, say in the xy-plane, as the viewpoint is
moved around to theyz-planethen the user will belooking di-
rectly along the slice and henceit will seem to disappear. Us-
ing the 3 sets of dlices means that this cannot happen since,
in the example above, the yz-plane would be directly in the
viewing direction. There is one further consideration, how-
ever, with the three sets of orthogonal slicesvisible, the ends
of dlicesnot aligned to theview direction cause visual clutter.
To remedy thisonly the set of slicesmost aligned to the view-
ing direction are "turned on", the other two setsareinvisible.
Astheviewpoint movesthe underlying system selectsthe ap-

Figure10: Using 2D texturesfor Volume Rendering: A) Rep-
resents a volume of binary data containing a solid cone; b)
shows the volume being sliced in the XY planewith a texture
map being pasted onto each rectangle; ¢) shows the same
process, but inthe XZ plane

propriate dices to be visible. Transparency is used to make
internal information visible.

A nice application of thisapproach to volumerendering is
given by Hendin et al 30. They describe a web-based visual-
ization system for medical imaging,using a combination of
VRML and Java. It aso allows the incorporation of isosur-
face geometry within the displayed volume.

OpenGL Volumizer

Silicon Graphics have developed an API for volume vi-
sualization, called Volumizer, which uses the techniques de-
scibed above. It provides a set of classes that allow an ap-
plication to query the underlying hardware at run time to get
optimal parameters for best performance. The user’s datais
stored as a set of 3D tiles called bricks which are sized to
a power of 2 depending on the amount and type of texture
memory available. If the data is not naturally a power of 2
in size then the user can pad the data to fit before loading, or
the system offers 3 options (some of which are only avail-
able on certain hardware). It will either truncate the data to
the nearest power of 2 below the data size (e.g a 343 vol-
ume would be clipped to a323 vol ume), augment the datato
the next size up (64°) or create bricks of different sizes (323
plusanumber of 23). Thisallowsfor maximum performance
when paging them into memory. The system represents the
volume as a series of texture mapped polygons, the advan-
tage being that it all ows the combination of both volume data
and geometricaly represented objectsin the same scene. Vo-
lumizer uses a 3D geometric representation made up from

(© The Eurographics Association 2000.
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tetrahedra and/or pyramids to define the region of the vol-
ume that will be visible. The system clips the texture poly-
gons to the bounds of the tetrahedra (and/or pyramids). For
example, to volumerender a cube of data, 5 tetrahedra could
be defined that cover the space of the entire volume and the
system would clip the textured polygons to the 5 tetrahedra.
Using a geometric description allows applications to create
shapes that are not necessarily cubic, it can create doughnut
shapesfor instancethat |eaves ahol ethrough the centre of the
volume due to the textured polygons being clipped. Material
properties such as colour and opacity can be added before or
after the texture volume has been | oaded using lookup tables.
Itismoreinteractiveto use a post lookup table, but its avail-
ability is hardware dependent.

5. Conclusions

The subject of volume visualization has come a long way
over the past fifteen years. The main approaches of isosur-
face rendering through marching cubes, and volume render-
ing through ray casting and splatting were all crystallised
during the late 1980s, but the past decade has seen these ap-
proaches develop a maturity - in terms of robustness, accu-
racy and performance.

There are strong advocates of the surface extraction ap-
proach, arguing that it gives excellent definition of features
within adataset, and exploits polygon rendering hardware to
give fast performance. There are equally strong voices ar-
guing for the volume rendering approach, and their case is
strengthened by the new hardware developments. Thereisa
useful comparison of thetwo approachesby Bartzand Meiss-
ner 4. The truth is probably that both approaches are useful
and the winner in all the competition between researchersis
the user - who now has a battery of very powerful techniques
to apply to any volume visualization problem.
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