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1. Introduction 
The area of computational geometry deals with the study of algorithms for 

problems concerning geometric objects like e.g. lines, polygons, circles, etc. in the 
plane and in higher dimensional space. Since its introduction in 1976 by Shamos 
the field has developed rapidly and nowadays there are even special conferences 
and journals devoted to the topic. A list of publications by Edelsbrunner and van 
Leeuwen [6J collected in 1982 already contained over 650 papers. And this number 
has rapidly increased since then. 

Clearly, a large number of problems in computer graphics deals with 
geometric objects as well. Examples are hidden line elimination, windowing prob­
lems, intersection problems, etc. Hence, computer graphics can benefit from the 
techniques developed in computational geometry. 

In computational geometry many new sophisticated data structures and algo­
rithms have been designed for dealing with geometric objects. These geometric data 
structures normally work in object space, i.e., objects are stored in a structural way 
rather than being broken down to e.g. pixels. In computer graphics many data 
structures work in image space. 

Storing and treating objects in object space normally gives much more flexibil­
ity. Hence, people in computer graphics should be aware of the existence of such 
object space data structures. 

On the other hand, in many practical situations in graphics objects are taken 
from some bounded domain or can be rounded to some bounded domain. Hence, 
it seems useful to study problems fFom computational geometry in a bounded 
universe, Le., on a grid. To state this more formally, let U be some integer. We 
assume that all points, endpoints of line segments, vertices of polygons, etc. have 
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integer coordinates between 0 and U - 1. In other words, the points are choosen 
from [O.. U -Ir, also denoted as Ud where d is the dimension. We call U the 
universe size. For example, when the points are pixels on 1024* 1024 screen, 
U 1024. Note that, with appropriate scaling and translation, Ud can approximate 
any bounded region of the real d-dimensional space. Note that in this framework 
e.g. line segments are still real line segments that might intersect in some point that 
is not on the grid. We do not break objects down to pixels. 

Computational geometry on a grid has recently been ~tudied by a number of 
researchers (See e.g. [8,11-14,16,19]). In this paper we will describe a number of 
the results obtained so far, showing that on a grid many problems from computa­
tional geometry can by solved more efficiently and, often, in a much simpler way 
than in arbitrary real space. This is mainly due to the fact that we can use table 
look-up rather than searching in a number of applications and that there often is 
no need for rebalancing structures. Efficient solutions will be presented for prob­
lems like windowing, finding intersections between geometric objects and hidden 
surface elimination. 

We do not present hardware solutions for the problem. But, due to the simpli­
city of the algorithms presented we claim that they can be implemented in 
hardware in a much more easy way than general object space methods without 
sacrificing too much of the generality of the solutions. Further study of these new 
algorithmical techniques might be important for the developement of computer 
graphics and might lead to new approaches, both in hardware and in software. 

This paper is organised as follows: 

In Sections 2, 3 and 4 we treat two basic problems: sorting and searching. 
Most algorithms use sorting and searching as basic steps and, hence, it is important 
to investigate their complexity on a grid. We give efficient, simple methods for lexi­
cographical sorting on a multi-dimensional grid and demonstrate some search struc­
tures, especially the vanEmdeBoas tree [3,4]. 

In Section 5 we treat the classical problem of finding the convex hull of a set of 
points on a planar grid. Moreover we look at related problems like finding maxi­
mal elements. We show that on a grid these problems can be solved in linear time. 

In Sections 6, 7 and 8 we treat intersection problems. First of all we look at the 
problem of finding all intersections in a set of axis-parallel rectangles. This is espe­
cially relevant in computer graphics applications where objects are surrounded by 
bounding boxes. Finding intersections between bounding boxes is the first step in 
finding intersections between the objects themselves. Secondly, we look at intersec­
tions in a set of line segments. Finding such intersections can be a first step in hid­

den line removal algorithms [25]. 


Most of the contents of this paper has been copied from [20]. 
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2. Sorting 


In this section we will shortly recall two well-known results on sorting. 


Theorem 2.1 Given a set of n keys with a value between 0 and U -1, they 
can be sorted in time O(n +Uj using O(n +Uj storage. 

Proof. We make an array of U buckets and initialise them to be empty. 
Next we put each element in the set in its bucket using the key as array 
index. Finally we walk along the buckets in order, reporting the key 
when a bucket is not empty. The bounds follow trivially. D 

On a two dimensional grid it is often important to sort the points lexicographical, 
i.e., p =(p 1,P2)<P'=(P I',P2') if P 1<P I' or p I =p I' and P2 <P2'· To sort a set of 
points lexicographical we can use a simple version of bucket sort: 

Theorem 2.2 Given a set of n points in U2, they can be sorted lexicographi­
cal in time O(n +Uj using O(n +Uj storage. 

Proof. We create two arrays of U buckets, but this time each bucket will 
contain a list of points. First we sort the points by second coordinate, 
using one of the arrays of buckets. If more points have the same second 
coordinate we put them in the list in the corresponding bucket. Next 
treating the points ordered by second coordinate we put them in the other 
array of buckets using their first coordinate as an index. When more 
points have the same first coordinate they will be put in the list in the 
bucket. Because we treat the points by increasing second coordinate, 
such a list corresponding to a particular first coordinate will contain the 
points in the order of their second coordinate. Hence, walking along the 
buckets and reporting the points in the order in which they appear in the 
lists will give the points in lexicographic order. The bounds follow trivi­
ally. D 

On a d-dimensional grid we can use a similar technique. First we sort all points 
with respect to the dth coordinate. Next, treating the points in this order, we sort 
them with respect to the d lth coordinate, next on the d - 2th coordinate, etc. 
This immediately leads to the following result (noting that we need only two arrays 
of buckets): 

Theorem 2.3 Given a set of n points in Ud, they can he sorted lexicographi­
cal in time O(d(n +U)) using O(n +Uj storage. 
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These results are, in fact, not optimal. Kirkpatrick and Reisch [16] have shown 
that a set of n keys in U can be sorted in time O(n (1 +loglo&! U) using O(n +l.;) 
storage. Their result can easily be extended to sort a set of points in Ud in time 
O(dn (1 + JoglO&! U) using O(n + U) storage. On the other hand, when U is rela­
tively small, this result is not any better and the method is more complicated. 

3. Simple searching 

Let V be a set of n keys in U. We often need to store V such that questions 
like: Is K E V, which keys in V lie in between A and B, what is the rank of a key K 
in V, etc., can be answered efficiently. In arbitrary real space search trees, like e.g. 
A VL-trees, are used for answering such questions. On a grid we can solve these 
problems much more efficiently. 

Theorem 3.1 Given a set V of n keys in U, we can store V using O(n + U) 
storage such that given a key K we can determine in 0(1) time the largest 
key in V that is ~K. 

Proof. The method is trivial. We make an array KEY of length U. In 
KEY[i 1we store whether i E V and we store a pointer to the largest j < i 
such that j E V. Clearly, this takes O(n + U) storage and queries can be 
answered in time 0(1). The structure can be built in time O(n +U). 0 

A similar structure can be used to solve the ranking problem that asks how many 
keys are ~K in time 0(1) and the range searching problem that asks for all keys in 
[A :B] in time 0(1 +k) where k is the number of reported answers. 

The structure is static, i.e., it is hard to insert or delete keys in the set V. For 
dynamic structures, see the next subsection. 

The structure works fine when U is not much larger than n but when U is 
much larger the amount of storage required becomes too large. Fredman et al. [7} 
describe a technique, based on perfect hashing, that can answer queries of the 
form: is K E V, in time 0(1) using only O(n) storage. Unfortunately, their structure 
has a very high preprocessing time of 0(n 3)ogU). Moreover, as it is based on hash­
ing, it cannot answer questions like: what is the largest ,key ~K 

Willard [26] designed a structure, based on [7], that can answer such questions 
in time 0(1og1ogU) using O(n) storage. Unfortunately, also his structure has a very 
high preprocessing time. 

4. The vanEmdeBoas tree 

The vanEmdeBoas tree [3,4] is an efficient dynamic data structure for storing 
a set of keys in a one-dimensional grid U, as long as U is not too large. Here we 
will describe a variation of the structure that obtains exactly the same time and 
space bounds but is easier to describe and implement. We will call it a vanEmde­
Boas tree anyhow. 
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Let V be the set of points and let U be the universe. We construct a complete 
balanced binary tree T of depth logU on the universe. (For convenience we assume 
that U =2i for some i.) Now you can think of this tree as having the following 

form. It consists of a top tree To of depth rIO~U1having about ro leaves and 

about ro bottom trees T I, T 2, ... also of size about ro. To is a tree with a 
universe of size ro being the indexes of the bottom tree. Also the bottom trees 
have a universe of size about ro. Each of the trees Ti is in the same way subdi­
vided in a top tree Ti, 0 and bottom trees Ti, I, Ti,2, ... , each of size Vu, etc. See 
figure 1 for the partition obtained. 

TO 

Figure 1: The partition of the tree. 

Keys will be stored in the tree T in the following way. We split V in subsets 
V I, V2, .. " corresponding to the subtrees T I, T 2, .... Each Vi we store in Ti in the 
following way. At the root of Ti we store the size of Vi. If Vi is empty, nothing 
else will be stored in Ti (although the subtree will be there). If Vi contains 1 or 2 
keys, we store them at the root of h If Vi contains more than 2 keys we store at 
the root the largest and smallest key in Vi' the other keys we store in Ti recursively 
in the same way. (I.e., we split Vi in subsets Vi, 1, Vi,2, ... corresponding to Tj, 1, 
Ii,2, ..., etc.) When Vi is not empty, we insert i in To. Finally, we link all keys in 
T in a double linked list such that, once we find a key, we can always find its two 
neighbors. 

Clearly, the main T has O( U) nodes and at each node at most 2 keys and the 
size are stored. Hence, the structure uses O(U) storage. (Note that it will require 
n(U) storage, even when V is very small.) 
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The vanEmdeBoas tree is used for so-called neighbor queries that ask for some 
neighbor of a given query key K (Le., the first key larger or smaller, or equal to K). 
Of course, because we linked the keys in a double linked list, once we have a neigh­
bor we can always in 0(1) time find the other neighbor. This also allows us to find 
e.g. all keys between Kl and K2 in time 0(1) per answer once we found a neighbor 
of K\. 

To perform a neighbor query with key K we proceed in the following way. 
Determine the tree Tj K comes in. Because T is a complete binary tree this can be 
done in time 0(1). When Ti contains 1 or 2 keys (indicated with the root) one of 
the 1 or 2 keys stored at the root must be a neighbor and we are done. When Tj 

contains more than 2 keys, we first check whether one of the two keys stored at the 
root is a neighbor. (This can be done in 0(1) time by looking at them and their 
neighbors in the double linked list.) If so we are done. Otherwise the neighbor must 
be stored in Ti and we continue our search there recursively in the same way. (Le., 
we look at the appropriate 1j,j' etc.) When Ti is empty, we search for a neighbor j 
of i in To. This means that Tj is the first non-empty subtree to the left or to the 
right of Tj • Assume j <i. In that case the largest key stored at the root of Tj is a 
neighbor of K. Similar, when j >i, the smallest key stored at '0 is a neighbor. 

To estimate the time required, note that after 0(1) work we are left with a 
subtree of size Vu. Hence, if Q(U) denotes the query time over a tree of size U, 
we get Q(U) = 0(1) + QCfih which leads to Q(U) = O(loglogU). 

To perform an insertion of a key K we proceed in the following way. First we 
search for a neighbor K' of Kin T. Next, determine the subtree Tj K must come 
in. Increase the size of Ti with 1. If Ti is empty store K at its root and insert i in 
To. If T j contains 1 key just store K at its root. If Tj contains 2 or more keys, let 
A and B (with A <B) be the keys stored at its root. If K <A store K at the root 
and insert A in Tj • If K >B store K here and insert B in Tj • Otherwise insert K in 
Tj • Finally, using K' insert K in the double linked list. 

To delete a key K determine the subtree 1j K is in. Decrease the size of Tj • If 
the subtree contains 1 key, it must be K and K is stored at the root. Remove K 
here and remove i from To. If the subtree contains 2 keys, K is stored at the root 
and we can just remove it. Otherwise, if K is not stored at the root of Tj • delete K 
from Tt. If K is stored at the root, locate its neighbor in Ti (there must be such a 
neighbor). This can be done in time O( 1) using the double linked list. Replace K 
by its neighbor, and delete the neighbor from Tt. Finally. delete K from the double 
linked list. 

The insertion and deletion time is bounded by O(loglogU) follo""~ng the same 
arguments as in the query time. We conclude: 

Theorem 4.1 Let V be a set of keys in U. There exists a dynamiC structure 
for storing V, requiring O(U) storage such that insertions, deletions and 
neighbor queries take time O(JoglogU). 
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A number of improvements over the vanEmdeBoas tree have been suggested. 
Johnson (10] describes a modification to reduce the initialisation time and to per­
form some queue operations more efficiently. Willard (27] and Karlsson (11] 
describe dynamic structures on a grid that use only O(n) storage. To obtain this 
lower Jace requirement, the update and query time of their methods is increased 
to O( logU). We won't go into details of their solutions because the methods are 
more complicated an unneccessary in the case U is of the same order as n. 

It should be noted that, although the method might look complicated, it is in 
fact very simple to implement. Because the tree is a complete binary tree, it can 
easily be implemented in the form of an array. Because keys are never stored at 
the leaves this array will have lenght U - 1. Calculating where a particular node is 
in the tree is a very simple operation on the bits of the key we are searching for. 
Hence, implementing the structure in hardware (for some fixed U) should be rea­
sonably easy. 

5. 	 Convex hulls and related problems 

As an example of how the fact that our points have integer coordinates can 
help us in deriving efficient algorithms we will consider the convex hull problem. 
Given a set of points (or a polygon), the convex hull is the smallest convex polygon 
containing all the points (or the polygon). A convex hull of a polygon is often a 
good first estimation for computing e.g. intersections or visibility. Computing the 
convex hull of a set of n points can be done in O(nlogn) time (see e.g. 
[1,9,17,23]). For a simple polygon there exists a quite complicated method for 
computing the convex hull in linear time. We will show that on a grid there exists 
a very simple linear time solution to both problems. We will only treat the prob­
lem of finding the convex hull of a set of points. The convex hull of a polygon is 
the same as the convex hull of the set of vertices of the polygon. 

Theorem 5.1 Given a set V of n points in U2, the convex hull of V can be 
computed in time O(n + U). 

Proof. The method is based on [9J. First we sort all points by x­
coordinate. This can be done in O(n +U) time using Theorem 2.1. 
Clearly, the leftmost point PI and the rightmost point P, belong to the 
convex hull. The convex hull now consists of an upper chain UC that 
runs from PI to pr having all points below it, and a lower chain LC hav­
ing all points above it. (See figure 2.) 

We will only show how to compute Uc. LC can be computed in exactly 
the same way. We will describe the method without much details. For 
detail see [9]. We walk from PI to pr- We will take care that when we are 
at some point Pi we found a convex arc from PI to Pi with all points in 
between below it. Assume we have reached some point Pi- Now look at 
the angle Pi 1 Pi Pi 71 . If this angle is convex we can continue with 



10 

i :=i +1. Otherwise, Pi will not belong to the upper convex hull and can 
be removed. We backup and continue with i: i l. It is easy to see 
that is this way, in O(n) time, we find the upper convex chain. 0 

<> 

<> <> 

PI <> 
Pr 

Figure 2: Convex chains. 

In fact, the only place where we use the property that the point lie on a grid is 
when sorting the points. After the sorting the algorithms runs in O(n) time 
independent of the fact whether the points lie on a grid. 

Theorem 5.2 A convex polygon (hull) on n points on a grid can be stored 
using O(U) storage such that for a given point p one can determine in 0(1) 
time whether p lies inside or outside the polygon. 

Proof. Scanning from left to right over the polygon, we store for each 
vertical grid line the two intersection points of this line with the polygon. 
To search with a point p (not neccessarily on the grid) we determine the 
two vertical grid lines in between which plies (or the one on which plies. 
With the intersection points stored there we can easily determine whether 
p lies inside or outside the polygon. This clearly takes 0(1) time. 0 

The structure above can trivially be built in time O(n +0). 

As a second example let us consider the maximal elements problem. Given a 
set V of n points in the plane, a point p (P I ,P2) in V is called maximal if there is 
no point in V with x-coordinate larger than p I and y-coordinate larger pz. See 
figure 3. 

To find the maximal elements we sort the points by decreasing x-coordinate. 
Now we walk along the points in this order, keeping track of the point with largest 
y-coordinate found so far. Let y this y-coordinate. In the beginningy = 00. When 
we come at a point p I,P2) we check whether P2 >y. If so we report p as a 
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o oo 

o 

Figure 3: Maximal elements. 

maximal element and set Y =P2. And we continue with the next point. This can 
easily be done in 0(1) per point. Hence, the time for sorting dominates the run 
time of the algorithm. 

Theorem 5.3 Given a set of n point in U2, the maximal elements problem 
can be solved in time O(n + U) using O(n + U) storage. 

When U is large, the results in this section are not very good. U sing the sorting 
method of [16] we can improve the bounds in such cases. See also [15]. 

6. The interval trie 

Let V be a set of n intervals in U, that might intersect or overlap. We want to 
store V such that we can perform stabbing queries, that ask for those intervals con­
taining a given query point, efficiently. When the intervals have arbitrary real coor­
dinates, this problem can be solved using a so-called interval tree using O(n) storage 
in a query time of O(k +logn) where k is the number of reported intervals (see 
e.g. [24] for a description). In this subsection we will describe a solution on a grid, 
called the interval trie, that has slightly better assymptotic time complexity but 
might behave much better when the intervals are relatively small. 

Let F(U)=lotU for some £>0. We split the set V in subsets VI, V2, ..., 
where Vi contains all intervals of length between F(U)i-1 and F(U)i. Clearly, 
there are at most O(logU /logF(U)) = O(logU IloglogU) sets Vi. We will treat each 
Vi separately. For Vi we divide the universe in equal parts of size F( U)i -I . 
Hence, each interval in Vi has its left endpoint in one part, overlaps at most F(U) 
parts and has its right endpoint in another part. See figure 4. No interval can 
have its two endpoints in the same part. For each part we have three lists: B 
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containing all the left endpoints, E containing all the right endpoints and 0 con­
taining all the overlapping intervals. See figure 5. Both B and E we store as 
vanEmdeBoas trees, making it possible to insert and delete endpoints in time 
O(loglogU). 0 we store as a double linked list. Moreover, in B we store for each 
interval where it is stored in 0 lists. 

,,;;;; F(U) 

U 

F(U) i-1 

Figure 4: Parts overlapped by an interval. 

E ,.. 
E ,.. 

E 

E 

E 

"" 
"" ,.. 

Figure 5: Intervals stored at a part. 

To perform a stabbing query with point p we query each Vi separately. In Vi 
we determine the part p lies in in time O( 1). We report all intervals in the 
corresponding 0 list. In B we start at the leftmost endpoint. If it lies left of p we 
report it and continue with the next endpoint. If not there are no answers in B. 
Similar in E. It is easy to see that in this way we find all answers in Vi in time 0(1) 
plus the number of answers found. As we have to query O(1ogU /loglogU) sets the 
query time is bounded by O(k +logUIloglogU) where k is the number of answers 
found. 

To insert or delete an interval we determine the set Vi the interval belongs to 
(looking at its length). We insert or delete the interval in the appropriate Band E 
structure. Moreover we have to add it to at most F(U) O-lists. It is easy to see 
that this takes time O(loglogU +F( U» O(log< U). 
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Theorem 6.1 Given a set of n intervals on a grid U, for each f>O there 
exists a dynamic structure for solving the stabbing problem, that can be 
updated in time O(lotn), with a query time of O(k+logU /loglogU), where 
k is the number of reported answers. 

Although this is only a minor improvement in query time, in practical situations 
the structure might perform much better. When all intervals are short, only for 
small i, Vi will contain intervals. As the query time is, in fact, bounded by the 
number of non-empty sets Vi in such situations it will be much lower. 

7. 	 Intersections between rectangles 

Intersection problems are very important in computer graphics. For example, 
many hidden-surface and hidden-line removal algorithm are based on finding inter­
sections of geometric objects. In this section we will consider intersections between 
axis-parallel rectangles. Axis-parallel rectangles occur especially when working with 
bounding boxes. Only those objects whose bounding boxes intersect need to be 
considered further. In the next section we treat the more general problem of 
finding all intersections in a set of line segments. 

To solve the intersection problem for axis-parallel rectangles efficiently on a 
grid we will use the vanEmdeBoas tree and the interval trie described above. 

We will first consider the following subproblem: Let V be a set of n horizontal 
and vertical line segments, report all intersections between them. To solve this 
problem we use a plane sweep approach. We sweep a scanline from left to right, 
stopping at each endpoint of a line segment. With the scanline we keep a vanEmde­
Boas tree T, storing all horizontal line segments that are intersected by the scanline. 

So we start by sorting all endpoint of the line segments in left to right order. 
When more endpoint have the same x-coordinate we first store the left endpoints of 
horizontal line segments, then the vertical line segments with this x-coordinate and 
finally the right endpoints of horizontal line segments. We initialise T to be empty. 

For each endpoint p belonging to a segment s we do the following: If p is the 
left endpoint of s we search with p in the tree to see whether it lies on any other 
horizontal line segment. If so we report it. Next we insert s in the vanEmdeBoas 
tree. If p is a right endpoint we delete s from T. Finally, if s is a vertical line seg­
ment (X,YI)(X,Y2) we search with YI in T and walk along the list of stored seg­
ments, reporting all segments that lie between y 1 and Y2. 

It is easy to see that the operations take time O(loglogU) each (plus the 
number of answers reported). 

Theorem 7.1 Given a set V of n horizontal and vertical line segments in U2, 

all k intersections between them can found in time O(k +U +nloglogU). 
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Two axis-parallel rectangles intersect if either they intersect in the boundary, or one 
lies completely inside the other. Given a set V of rectangles we can find those pairs 
that intersect in the boundary by considering each rectangle as four line segments 
and finding the intersections between the line segments in the way described above. 
So we are left with the problem of finding all pairs where one is completely con­
tained in the other. Clearly, if a rectangle is completely contained in the other, its 
leftbottom comer lies in the other rectangle. So we can as well formulate the prob­
lem as follows: Given a set of points and a set of axis-parallel rectangles, report all 
pairs (P,R) where p lies in R. 

To solve this subproblem, we again use a plane sweep approach, sweeping a 
scanline from left to right over the grid, but this time we store with the scanline an 
interval trie T (as described in the previous section) storing the projections of the 
rectangles intersecting the scanline. We sort all points and left and right boun­
daries of the rectangles by x-coordinate. When more have the same x-coordinate we 
store first the left boundaries, then the points, and finally the right boundaries. We 
initialise T to be empty. If we reach a left boundary, we insert the interval in the 
interval trie. If we reach a right boundary, we delete it. Finally, if we meet a point, 
we perform a stabbing query with the point. Using the results from the previous 
section, noting that log" U 0 (JogU / loglogU), we conclude 

Theorem 7.2 Given a set of n points and axis-parallel rectangles in U2, all k 
pairs (P,R) with p contained in R can be found in time 
O(k +U +nlogU IloglogU). 

Combining Theorems 7.1 and 7.2 we obtain: 

Theorem 7.3 Given a set of n axis-parallel rectangles in U2, all k intersect­
ing pairs can be found in time O( k +U +n logU IloglogU). 

As noted in Section 6, the time will, in practise, often be much better. 

8. Intersections between line segments 

In this subsection we determine intersections among n line segments which are 
arbitrary oriented, but still are defined by endpoints at integer coordinates between 
o and U -1. Until recently, the best algorithm to find all intersections required 
O(k +n)logn) time where k is the number of reported intersections (see Bentley 
and Ottmann [2] or Preparata and Shamos [24]). Chazelle [5] was the first to pro­
vide a solution with a running time of the form O(k +f (n », where f (n) is a 
subquadratic function of n. In [5] f(n)=nlog2n lJoglogn. 

The line segment intersection problem is important in a number of Computer 
Graphics applications. For example, Schmitt [25] uses the line segment intersection 
problem as an important step in a hidden line removal algorithm. The complexity 
of the line segment intersection problem is dominant in his solution. Hence, any 
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improvement on the intersection problem improves his hidden surface removal 
algorithm. Also other hidden surface removal algorithms use line segment intersec­
tion as an important step. 

We will show that, in the case the line segments have endpoints on an integer 
grid, all intersections can be found in time O(k + U +nlogn) using O(n + U) space. 
To this end we will adapt the technique in [2] to work on a grid, replacing search 
trees by table lookup. 

For each x-coordinate x we store three unordered bags of points. BEGIN(x) 
contains all line segments with a left endpoint with x-coordinate x. END(x) con­
tains all line segments with a right endpoint with x-coordinate x. INTER(x) con­
tains all intersections found so far with x-coordinate in the interval [x,x +1) (inter­
sections can have coordinates in between grid points). When a line segment is vert­
ical with x-coordinate x, we store it in both the BEGIN(x) and the END(x) bag. 

To initialise the structures, each line segment is stored in the appropriate 
BEGIN and END bag (by using table lookup) and all INTER bags are made 
empty. 

Next we move a scanline from left to right stopping at each x-coordinate. 
With the scanline we keep a balanced binary search tree T (e.g. an AVL-tree) stor­
ing all line segments that are intersected by the scanline in the order of intersection 
in the internal nodes. We will take care that the INTER bags always contain 
exactly the intersections between neighboring segments in T. At each stop position 
x we perform the following three actions: 

1. 	 Insert all line segments that are stored in BEGIN(x) in the tree T. For each 
such line segment s we locate its two neighbors S1 and S2 in T. We compute 
the intersection between s and s 1 and (if any) insert it in the appropriate 
INTER bag. Similar, we compute the intersection between sand S2 and store 
it. Finally, we compute the intersection between s 1 and S2. Because these seg­
ments are no longer neighbors, we have to remove the intersection from the 
INTER bag (if there was an intersection). Keeping with each two neighbors in 
T a pointer to their intersection in the INTER bag this intersection can be 
removed in time 0(1). It is easy to see that the total operation takes time 
O(logn) per segment inserted. 

2. 	 Delete all line segments that are stored in END(x) from T. For each such seg­
ment s we locate its two neighbors SI and S2 in T. As these segments now 
become neighbors we compute their intersection and, if it exists and lies to the 
right of x we store it in the appropriate INTER bag. This takes time O(logn) 
per segment deleted. 

3. 	 For each intersection in INTER(x) we do the following. Let the intersection be 
between s 1 and s2. SI and s2 must be neighbors in T. Let So be the other 
neighbor of SI and S3 be the other neighbor of S2. See figure 6 for the situa­
tion. First of all we report the intersection. Second1y, we switch S 1 and S2 in 
T. As So and s I are no longer neighbors, we remove their intersection (if any) 
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from the appropriate INTER bag. Similar for S 2 and S 3. We also remove the 
intersection between Sl and S2. As So and S2 have now become neighbors we 
compute their intersection and, if it exists and HAS NOT BEEN TREATED 
BEFORE, put it in the appropriate INTER bag (which might be INTER(x». 
Similar for s 1 and s3. When we keep a pointer from each intersection to the 
appropriate place in T and the other way round, this total operation can be 
carried out in time 0(1) per intersection. 

,.,1< ")<81 
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Figure 6: Intersection of line segments. 

The main problem with the above method is that intersections between x and 
x +1 are NOT treated in left to right order but in the order in which they appear 
in INTER(x). Therefore it is very important that we only insert intersections in the 
INTER bags if they have not been treated before. Otherwise the algorithm could 
loop forever, reporting the same intersections over and over again. To avoid this we 
have to check whether the intersection has indeed not been treated before. To this 
end we use an idea of Myers [18]. Assume we want to add an intersection between 
So and S2 to INTER(x) (when it has to be added to another INTER bag this is 
alway correct). Now look at the order in which So and S2 have to be at position 
x +1. If they already are in this order we must have treated their intersection 
before. Otherwise we can insert it in INTER(x). This test will take only 0(1) time. 

We still have to prove that the method correctly reports all intersection 
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between x and x + 1 and that T will have the right shape afterwards. This follows 
from the following two observations: (i) When an intersection is reported it does 
exist and has not been reported before. (li) When INTER(x) is empty this means 
that each two neighbors in T either do not intersect between x and x +1 or that 
their intersection has been treated. For details see [13]. 

Theorem 8.1 Given a set of n line segments on u2, we can report all inter­
sections between line segments in time O(k +U +nlognj using space 
O(n +Uj, where k is the number of reported intersections. 

Proof. The tree T uses only O(n) storage. The bags need storage 
O(n +U) because there are 3U bag that store 2n endpoints and at most n 
intersections. 

The query time follows from the above observations. Each insertion and 
deletion takes time O(1ogn), each intersection takes time 0(1) and we have 
to spend at least 0(1) time for each bag. 0 

When U is large, this method is not very good. In [13] a second method IS 

presented that takes time 0« k +n)IogIogU +nlogn). 

9. 	 Conclusions and extensions 

In this paper we have demonstrated that techniques from computational 
geometry, combined with the property that objects have integer coordinates, can 
lead to simple but efficient solutions for many geometric problems that are related 
to computer graphics. We believe that these techniques should be applicable in 
computer graphics applications and can lead to powerful, simple methods that are 
also very efficient. 

Although the presentation of the algorithms does not go into implementation 
details we think that, because of the simplicity of the solutions, it should not be 
much work to come to efficient implementations. We realise that in practise, prob­
lems normally are not as simple as stated in this paper. Still we believe that the 
techniques presented will be useful. 

It might be an interesting area of further research whether special hardware 
could be constructed that deals with problems on a grid. For example it should be 
possible to construct hardware implementations of bucket sorting and of the 
vanEmdeBoas tree for some fixed U. Such hardware would be independent of 
screen resolution and could considerably speed up the execution of the algorithms 
proposed in this paper. 

This paper only lists a number of example problems with their solutions. 
Similar methods can be used to solve other geometric problems on a grid as well. 
For example, Karlsson and Munro [12] consider the problem of finding nearest 
neighbors on a grid and Muller [19] discusses the point location problem on a grid. 
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In Overmars [21, 22] the range searching problem on a two-dimensional grid is 
solved in a (theoretically) very efficient way. Also multi-dimensional problems can 
be treated in an efficient way. See e.g. Karlsson and Overmars [14] and Gabow 
e.a. [8]. 

Theoretical, the techniques presented are not optimal. For example, as men­
tioned, sorting can be done more efficiently using a method of Kirkpatrick and 
Reisch [16]. Although this gives assymtotically faster results, in practise, due to the 
complexity of the methods, this will not improve the efficiency. Moreover, these 
complicated techniques tend to be hard to implement in hardware. Therefore we 
have choosen to present the methods using the more simple techniques. 
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