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________________________________________________________________________ 
Abstract 
Modern desktop PCs are capable of taking 2D Geographic Information System (GIS) applications into the realm of 
interactive 3D virtual worlds.   In prior work we developed and presented graphics algorithms and data management 
methods for interactive viewing of a 3D global terrain system for desktop and virtual reality systems.   In this paper we 
present a key data structure and associated render-time algorithm for the combined display of multi-resolution 3D terrain 
and traditional GIS polyline vector data.  Such vector data is traditionally used for representing geographic entities such 
as political borders, roads, rivers and cadastral information. 
 
Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Display Algorithms 

________________________________________________________________________ 
 
 
1. Introduction 
GIS and 3D visualization are intimately related; one can 
empower and enlarge the other. This was our premise several 
years ago when we started a project to merge interactive 
visualization with GIS. This merger enlarges and empowers 
GIS because it offers a fully 3D GIS that can be interactively 
explored and displayed, which was our goal from the 
beginning. The merger enlarges and empowers interactive 
visualization because it gives visualization concrete and 
meaningful applications. Ultimately our work resulted in VGIS 
[2][3][6][7][8], a global geospatial system with scalable, 
multiresolution data organizations that permit one to explore 
comprehensive terrain (elevation and imagery), urban areas and 
3D objects, orthorectified maps, 3D dynamic weather, and 
other geospatial data within the same framework. Among the 
GIS features in VGIS are its efficiently queryable geospatial 
databases and its ability to embed GIS annotations [2] (e.g., 
names, contents, and maps of buildings) in its structure for 
access through the visual interface. The queryable database is 
of significant use, for example, in providing terrain data for 
mesoscale weather models or determining the extent of 
flooding in an area. The GIS capabilities of the system would 
be significantly extended if vector data could be efficiently 
stored, displayed, and queried. Vector data include type, shape, 
and display properties for roads, state or county boundaries, 
rivers, property lines, and countless other features that enable 
GIS systems. Vector data enable, for example, the proper 
drawing of roads at all resolutions and the visual decorations 
that distinguish between road types. Since the vector data are 
also queryable, they permit quantitative measurements (e.g., 
road lengths between selected points) and attachment of 
identifying information (e.g., road names and characteristics). 

The addition of traditional vector data to the VGIS multi-
resolution rendering capability and the methods required to do 
this are the subject of this paper. 

Traditional Geographical Information Systems (GIS) display 
and compute with 2D geometric representations of geographic 
data. These data are typically organized as either raster data or 
vector data (perhaps more precisely called “coordinate data”) 
[10]. Raster data are analogous to a bitmap or a regular 2d array 
where each array element contains a data value for a 
corresponding rectangular cell in the 2D plane. Vector data 
represent geometry as lists of coordinates that define points, 
lines and polygons.  A key issue in both the computer graphics 
community and the GIS and computerized cartography 
community is eliminating unnecessary or unwanted geometric 
detail from the displayed image. This is done for both 
perceptual and computational efficiency. The computer 
graphics literature refers to this process as level-of-detail 
(LOD) management. In the GIS and cartography literature the 
term is “geometric simplification” [10]. GIS geometric 
simplification is one aspect of the more general methods of 
“generalization”, which are methods for visually representing a 
given geographic entity or set of entities using different visuals 
when displaying the entities at different map scales.  

This paper presents a key data structure, the triangle 
clipping DAG (direct-acyclic graph) and associated algorithms 
for overlaying traditional 2D polyline GIS data on a global, 3D 
terrain visualization system. Displaying 2D polyline data on top 
of global 3D terrain becomes challenging in our global system 
for several reasons. First, the terrain’s 3D geometry data, image 
data and the 2D polyline data are too large to fit into primary 
memory. This requires dynamic paging of all three data types 
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based on the current 3D view of the database. For a number of 
reasons to be discussed shortly, we believe that 2D polyline 
data should be treated independently from the image data and 
therefore should be rendered as separate geometry by the 
graphics pipeline. This presents a challenge because modern 
terrain LOD algorithms render a 3D mesh whose constituent 
triangles are changing at nearly every frame. In order for the 
polyline data to appear overlayed on the 3D mesh, the rendered 
polyline geometry must therefore also change at each frame. In 
this paper, we describe the many challenges in developing a 
complete and scaleable algorithm for the combined display of 
polyline data and global 3D terrain. This paper then presents a 
data structure and algorithm optimized for the render-time 
component of a complete algorithm. We present performance 
results of the implemented algorithm. We also outline our 
current efforts to develop efficient secondary storage formats 
and to better balance the computation/memory trade-offs 
between the preprocessing-time and data-page-time algorithm 
components. 

2. Prior Work 
The combined display of traditional GIS vector data and global, 
multiresolution 3D terrain builds upon work published in both 
the computer graphics and GIS communities. This section 
briefly reviews the basics of terrain rendering, line 
simplification, and the complexities of combining them. 

2.1. Terrain LOD Algorithms 
LOD algorithms for 3D terrain rendering are an active area of 
research [5][7][9]. In this paper, we use the classic algorithm of 
Lindstrom et al. [7] for terrain rendering. Briefly, the Lindstrom 
terrain mesh algorithm partitions the height-field via a quadtree 
structure. The quadtree elements are quadnodes.  Each 
quadnode has a block of 256x256 triangles (129x129 vertices). 
Later the algorithm was extended to global data through the use 
of a set of 32 linked quadtrees to represent the earth’s spheroid 
[3]. 

Generally each triangle in the triangle block can be 
coalesced with a partner triangle into a single lower resolution 
triangle and conversely lower resolution triangles can be split 
into two higher resolution triangles. This defines a finite binary 
relation between triangles which induces two trees on the 
quadnode’s mesh. This binary relation is called the triangle-
split relation and the trees are the triangle-split trees. The top 
two nodes in the tree pair correspond to the lowest resolution 
triangle pair that could be rendered for the quadnode’s mesh. 
Triangles deeper in the tree are of higher resolution. Triangles 
shallower in the tree are of lower resolution. Figure 2A 
illustrates the highest resolution mesh using, for illustration, a 
9x9 vertex block. Figure 4 illustrates a small subset of the 
possible triangles the LOD triangulation algorithm may 
produce. This type of triangulation is variously referred to as 4-
k meshes, right-triangulated meshes or restricted quadtree 
triangulations (RQT). The basic concept of our paper’s 
algorithm assumes such a RQT triangulation. Certain details of 
our tc-DAG algorithm are specific to the Lindstrom mesh 
algorithm [4] and would have to be changed if one wanted to 
use recent generalized approaches such as that of Lindstrom 
and Pascucci [9]. 

2.2. Line Simplification Algorithms 
Quite likely the notion of geometric simplification methods 
originated with cartographers as they represented a physical 
world of infinite detail on a map that can only usefully present 
a finite amount of detail. Cartographic simplification is one 
aspect of the more general concept of cartographic 
generalization that aims to address the general problem of 
complexity and detail through operations such as 
simplification, smoothing, aggregation, exaggeration and 
displacement [10]. Cartographers apply these techniques 
because simple photographic reduction of a map (i.e. image 
scaling), typically yields highly cluttered and incomprehensible 
maps. In this paper, however, we only focus on GIS line 
simplification, which simplifies geometric detail. 

2D line simplification algorithms in digital cartography and 
GIS date back to the Douglass-Peucker algorithm presented in 
1973 [10,p129]. In addition to generalization’s main goal of 
representing important details clearly, when using computer 
systems we also want to avoid the computational cost of 
rendering unnecessary pixels. Chapter 10 of Longley et al. [11] 
reviews the GIS literature regarding line generalization through 
the mid-1990’s. Line simplification and generalization continue 
to be an area of research [1]. However, to our knowledge this 
body of work continues to focus only on 2D polylines since 
GIS applications are traditionally 2D graphics applications. 

2.3. Complications of Polyline-Mesh Combination 

2.3.1. Texture Versus Geometry 
There are two general approaches to rendering polyline vector 
data on a 3D mesh. One option is to convert the polyline data to 
a texture image layer and combine this polyline image layer 
with the primary terrain image layer (e.g. from a satellite/aerial 
photograph). The second option is to render the polyline data as 
separate 3D geometric primitives. Both techniques present a 
number of complications. This paper pursues the latter 
technique only, but the following paragraphs point out some of 
the complications of both of these approaches.  

A naïve polyline-as-texture solution is to rasterize the 
polylines into the primary terrain texture image at the image’s 
highest resolution and then render the terrain in the standard 
way using mipmaps or other suitable filtering. However, this is 
a poor solution because when zoomed out on the 3D terrain, the 
user will find much of the polyline vector information filtered 
away especially if single pixel lines were used for the rasterized 
vector data. This could cause state borders to be nearly 
completely filtered away when zoomed out to view an entire 
country.  Additionally, it would be undesirable to zoom into a 
region of low primary image resolution and then to see not only 
the individual texels of the primary image data but also the 
individual texels of the texture-rasterized polyline vectors. The 
basic GIS semantics of a polyline line segment is that the 
represented geographic entity is defined by a line between two 
points in the real-valued Cartesian plane. The abstract line’s 
accuracy is independent of the resolution of the primary 
imagery and we would not want to limit its visual 
representation’s accuracy to the texel resolution of the primary 
imagery.   For example, imagine the system displays a home 
owner’s property line on top of the primary imagery. This 
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imagery might be either 50 M satellite imagery or 1 cm aerial 
imagery. In either case, the accuracy of the property line 
information does not vary. If we simply rasterized the property 
line into the primary terrain image layer under these two 
different conditions, each condition’s visual results would 
convey very different notions of property line accuracy due to 
the large variation in texel resolutions of the texture-rasterized 
property line.  Further, this native polyline-as-geometry 
approach does not allow the flexibility in polyline rendering 
expected in a GIS.   These systems provide interactive enabling 
and disabling of the display of different subsets of polyline data 
and interactive adjustment of line styles such as line color, 
width and stipple patterns in order to distinguish and highlight 
different geographic data.  

A 3D GIS needs a solution that can control the polylines’ 
screen image independently from the primary texture. This 
indicates using either the polyline-as-3D-geometry solution or 
an adaptive polyline-as-texture solution. An adaptive polyline-
as-texture solution would need to treat the primary texture 
imagery and the polyline rasterized texture as separate image 
layers of differing resolutions and would store the polyline in 
the original 2D geodetic coordinates. The polylines rendered 
via textures should have the same flexibility as if the polylines 
were rendered as 3D geometric OpenGL primitives 
(GL_LINES) allowing line color, stipple and width to be 
varied.  The polyline-as-texture approach requires on-the-fly 
generation of the polyline-texture image because a-priori there 
is no limit on the zoom levels a user might choose and hence 
the maximum polyline-texture resolution needed avoid polyline 
texel enlargement is unknown. If we cache the textures, a 
cached invalidation policy is needed.  Generating polyline-
textures on the fly requires polyline simplification.  We aim to 
explore an image-based polyline simplification scheme but this 
requires information on the polyline’s structure in 3D space 
(i.e. how it exists as a 3D line on the terrain).  This 3D 
information is not available in the polyline-as-texture approach 
because this approach explicitly avoids computing the 
polyline’s 3D structure.  For these reasons, we made a strategic 
decision to explore the polyline-as-3D-geometry approach first.  
Ultimately a comparison of two complete, scalable, and global 
implementations of both techniques should be performed. 

2.3.2. Other Polyline-as-geometry Work 
IMAGINE by Erdas is a traditional 2D GIS package that has 
added a separate 3D terrain visualization module called 
“IMAGINE VirtualGIS” [4]. This module is a simplified 
version on the algorithm of Lindstrom et al. [7]. The module, 
does not provide a global terrain database and the VirtualGIS 
LOD algorithm does block-based LOD but does not perform 
lower level triangle LOD.  These facts can be easily verified by 
running VirtualGIS in wireframe mode. VirtualGIS can display 
polyline vector data. The method appears to be a polyine-as-
geometry approach. The fact that only block-based LOD is 
performed, however, simplifies the polyline-as-geometry 
problem because once a given block is chosen for rendering the 
set of rendered triangles within that block never changes. In 
contrast, in the more sophisticated RQT triangulation 
algorithms, the set of rendered triangles change in a much more 
arbitrary way from frame to frame. 

3. Methods 
LOD algorithms with dynamic paging, split computation over 
three phases: preprocessing, data-load-time and render-time. A 
preprocessing step computes LOD information such as edge-
collapse tolerance values, performs re-meshing and coordinate 
system transforms and constructs some LOD data structure, 
typically a tree or DAG. These data are stored in secondary 
storage. During interactive viewing there is data-load-time 
computation and a render-time computation. The data-load-
time computation loads and unpacks the data from disk into 
primary memory. A typical example is transforming geodetic 
height field data stored in secondary memory into easily 
rendered Cartesian coordinates in primary memory. Finally, at 
render-time for each frame or iteration of the LOD algorithm, 
the primary memory data structures are examined to determine 
what geometry to send to the graphics pipeline. 

The triangle clipping DAG structure and associated 
algorithms are a key element in combining traditional 2D GIS 
line simplification methods with 3D terrain LOD rendering. 
The presented algorithms provide an efficient solution to many 
of the render-time issues.  In the following sections, we discuss 
these in detail and point out where further work is needed 
regarding aspects of the preprocessing algorithm and regarding 
the computation/storage balance between the data-load-time 
and preprocessing components. 

3.1. Data Structures 
 

struct quadnode 
    { 
    /* terrain and object data members */ 
                …… 
    /* polyline level of detail */ 
    polyline_LOD_t polylineLODs []; 
    } 
struct polyline_LOD_t 
    { 
    /* graphical attributes */ 
              …… 
    /* quad clippings */ 
    quad_clipping_t quadClippings[]; 
    } 
struct quad_clipping_t 
    { 
    triangle_clipping_t triangleClippings[]; 
    } 
struct triangle_clipping_t 
    { 
    point3D_t points[]; 
    triangleID_t ID; 
    vertex_index_t decisionVertex; 
    triangle_clipping_index_t  nextTriangle[2]; 
    triangle_clipping_index_t  parent; 
    triangle_clipping_index_t  finest_exit_descendent; 
    } 

 

Figure 1:   Pseudo-code for Data Structures 
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In its global form [3], the Lindstrom terrain algorithm partitions 
the spheroidal height-field into a set of 32 quadtrees. The 
quadtree elements are quadnodes. Each quadnode has block of 
128x128 triangle pairs. For each quadnode, Q, the basic tc-
DAG algorithm adds a dynamic array of polyline_LOD_t to the 
quadnode structure to represent the polylines crossing Q. A 
polyline_LOD_t (Figure 1) contains information on the 
polyline’s visual attributes such as width, color and line stipple 
and a dynamic array of quad_clipping_t structures. A 
quad_clipping_t represents a single section of a polyline that 
has one entrance and one exit from quad Q. Since a polyline 
may enter and exit Q multiple times, we have potentially 
multiple quad clippings per polyline_LOD_t. In Figure 2, we 
show only an 8x8 triangle-pair block (9x9 vertices) for 
simplicity.  Figure 2A shows the original polyline. Figure 2B 
shows the two quad clippings for the polyline traversing Q. A 
quad_clipping_t contains a dynamic array of 
triangle_clipping_t structures. A triangle_clipping_t 
corresponds to a single triangle in any legal RQT built on Q’s 
vertices and represents a single section of the polyline that has 
one entrance and one exit from the triangle clipping. The 
entrance edge is the triangle edge the polyline enters. The exit 
edge is the triangle edge the polyline exits. (Possibly either is 
non-existent if the polyline starts/stops inside the triangle.) 
Figure 2B illustrates the two quad clippings broken up into 
individual line segments per triangle clipping. Successive 
triangle clippings are in alternating colors. Note in Figure 2B 
we only illustrate the triangle clippings for triangles in the 
highest resolution RQT mesh for this quad. In general, a 
triangle clipping can come from any legal triangle that the RQT 
LOD algorithm might build from the quad’s triangle vertices. 
Figure 4 illustrates all possible RQT triangle clippings for one 
quad clipping crossing a 9x9 block. Since a polyline may enter 
and exit a given RQT triangle multiple times, a single polyline 
may have multiple triangle clipping’s covering the same RQT 
triangle. (Note, none of the figures illustrate this possibility.) 

A triangle_clipping_t contains geometric, topological, and 
identification information (Figure 1). The geometric component 
is an array of 3D point coordinates representing the successive 
points of the polyline as projected onto the plane of that 
triangle clipping. A triangle_clipping_t then has a size 2 array 
of indices to the “next” triangle clipping. The data member is 
called nextTriangle[2]. This indexes the triangle clipping that 
the polyline enters after exiting the current triangle clipping.  It 
is easy to show that because of the RQT triangulation structure 
a triangle clipping can have either 0, 1 or 2 next triangle 
clippings.  The LOD of a nextTriangle will either be equal to, 
one level above or one level below the LOD of the current 
triangle clipping. The nextTriangle member defines a finite N-
to-N binary relation on the triangle clippings within the context 
of a given quad clipping. This induces the primary directed-
acyclic-graph on the triangle clippings where the nodes are 
triangle clippings with in-degree of 0, 1 or 2 and out degree of 
0,1 or 2. A sentinel value is assigned to a nextTriangle element 
to indicate the absence of a next triangle. The nextTriangle is 
illustrated in Figure 4 with black arrows. (We don’t show these 
arrays for the last two columns since the image grows too dense 
to make sense of). Additionally, each triangle clipping 
structure, T, contains an index to the triangle clipping at one 
LOD shallower in the triangle-split tree that contains T. This 

data member is called parent. A member 
finest_exit_descendent indexes the triangle clipping’s 
descendent triangle clipping (in the triangle-split tree) of 
highest resolution whose exiting edge is embedded in the T’s 
exiting edge or that contains the polyline’s end point. 
 
A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Polyline over a quad node with just a 9x9 block of 
vertices in RQT triangulation. 

 

3.2. Preprocessing Algorithm 
The preprocessing algorithm builds all polyline_LOD_t 
structures and writes them to secondary storage. The goal is to 
find every valid RQT triangle over a quad’s vertex block that is 
intersected by a polyline quad clipping. For each such RQT 
triangle there is at least one and perhaps many triangle 
clippings depending on the number of times the quad clipping 
enters and leaves the triangle. The triangle clippings must be 
strung together using triangle_clipping_t.nextTriangle in the 
order in which the quad clipping visits the triangles. To do this, 
we trace the quad clipping through triangle-pair cells (tp-cells) 
at the highest resolution RQT. TP-cells are the latitude-
longitude squares defined by pairs of triangles sharing a 

Polyline

TP-cell

Polyline

TP-cell

P0.quadClipping[0] P0.quadClipping[1]
P0.quadClipping[0] P0.quadClipping[1]
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diagonal, hypotenuse edge.  Figure 2A a single tp-cell is circled 
in the lower-left corner.  The 9x9 vertex array has 8x8 tp-cells. 

After tracing the quad clipping through the highest-
resolution triangles, we iterate over these successive triangle 
clippings and at each clipping climb up the triangle-split graph 
to find the ancestors of the finest triangle clippings. As this is 
done, ancestor triangle clippings are added to the triangle 
clipping array. These further triangle clippings are added in 
order of highest resolution to lowest. 

VGIS’s quadtrees and height-field use a single, global, 
spheroidal coordinate system. Hence the original polyline 
coordinates are in latitude and longitude. These must be 
geodetically projected onto the mesh triangles. This coordinate 
system transformation and projection is far more floating point 
intensive than the trivial parallel projection that would suffice 
for non-planetary terrain systems [11]. As a partial example, in 
a non-global model, projection of point a to plane P is the 
intersection of the projector (a line) defined by point (a.x,a.y,0) 
and vector (0,0,1). (Here we assume the height field rises along 
the z-axis).  In contrast, just calculating the XYZ coordinate of 
geodetic projector’s start point using a’s geodetic lat/lon 
coordinates involves 4 sin/cos evaluations and a square root. 
Intuitively and empirically, performing these geodetic 
projections at render-time is prohibitive. Instead we should 
perform the geodetic projection at either data-load-time or 
preprocessing time. Presently, we perform the projection at 
preprocessing time and hence both the primary and secondary 
memory triangle_clipping_t structure stores a list of Cartesian 
points. 

Another complexity is the precise geometric tracing of 
spheroidal geodesics through tp-cells (Figure 2A). Spheroidal 
geodesics are the proper way to connect consecutive points in a 
lat/lon polyline. The naïve approach, which we currently use, is 
to approximate a mapping of the spheroid to the plane such that 
lat/lon squares on the spheroid map to lat/lon squares on the 
plane and that spheroidal geodesics map to straight lines in the 
plane.  Under this approximation tracing geographic geodesics 
through the lat/lon grid only requires tracing a straight line 
through a Cartesian grid. However, it is well known in 
cartography that no such spheroid-to-plane (nor sphere-to-
plane) mapping exists. The simple cylindrical projection maps 
a regular spherical lat/lon grid to a grid of squares in the plane 
but spherical geodesics map to complex curves. In the Polar 
Zenithal Gnomonic projection and Equatorial Zenithal 
Gnomonic projection spherical geodesics do map to lines but a 
regular lat/lon spherical grid maps to a grid of curves [14].  It is 
not yet clear which of these methods is best modified for 
tracing polylines over the spheroid. 

At present, we directly write the resulting polylineLOD_t 
structures straight to secondary storage. This is not space 
efficient. The polylineLOD_t structures are optimized for 
render-time operations. Ultimately, a more compact, external 
format for secondary storage is needed. Details are discussed in 
3.3. 

3.2.1. Render-time: Polyline-Mesh Projection 
At render time, the Lindstrom algorithm traverses the quad tree 
and selects which quad’s vertex blocks should be rendered. 

When a block is reached and rendered, a triangle LOD pass 
activates and enables the necessary vertices within the block. 
Each vertex has a bit that says whether it was enabled or not. 
This information is used by the polyline renderer to determine 
what path through the triangle clipping DAG should be 
followed. As each triangle clipping node is reached its polyline 
vertices are rendered. All vertices for a given quad_clipping_t 
are rendered in a single glBegin/glEnd pair using GL_LINES. 
This maximizes efficiency for drawing long polylines. 

We present the triangle clipping DAG traversal algorithm by 
first assuming a simplistic behavior of the RQT algorithm used 
for mesh LOD. Later we’ll see that in practice implementations 
such as the Lindstrom algorithm behave in more complex ways 
and require more complex tc-DAG traversal mechanisms. A 
simplistic block-based RQT algorithm would behave such that 
when the RQT algorithm reaches a quad node, Q, the algorithm 
either examines all of the quad’s vertex data for mesh rendering 
or examines none at all. Assume the RQT algorithm chooses to 
render Q’s mesh, thus setting its mesh vertices’ enabled bits. 
For each quad clipping QC of quad Q, we start with the first 
triangle clipping of highest resolution in QC’s triangle clipping 
DAG.  (By design, this is the first triangle clipping of QC’s 
triangleClippings array). By following the 
triangle_clipping_t.parent, we visit all triangle-split ancestors 
until reaching a triangle clipping whose mesh vertices were 
enabled (i.e., flagged for rendering by the triangle LOD pass). 
This gives us the first triangle clipping to render so we render 
that clipping’s polyline vertices. To determine which of the 
next triangle clippings to follow we test the enabled bit of the 
mesh vertex number N, where N is the decisionVertex structure 
member of the current triangle clipping. The following pseudo-
code illustrates this algorithm. Note, a triangle clipping index 
of -1 implies there is no next triangle and nextTriangle[0] holds 
the next triangle when the triangle clippings node’s out-degree 
is 1. 
 

Algorithm 1: 

render_polyline (polylineLOD_t PL, quad_mesh_t QM) 
{ 
    for all quad clippings QL of PL 
        { 
        triangle_clipping_index_t TCI; 
        TCI = find start triangle clipping in PL; 

    while(TCI != NULL) 
             { 
             triangle_clipping_t TC; 
             TC = QL.triangleClippings[TCI]; 
 

         /* draw all polyline points in a current  
                    triangle clipping */ 

         draw_points(TC); 
     
        /* choose next triangle clipping */ 
        if(TC->nextTriangles[1] >=0) 
           {/* nextTriangle[1] does exist, so 

                    choose between nextTriangle [0]  
                    and [1] */  

           if(vertex_rendered(QM,tc->decisionVertex) 
                /* decison vertex was rendered, so  

217



Wartell et al. / Rendering Vector Data over Global, Multi-resolution 3D Terrain 

© The Eurographics Association 2003. 

                    step to nextTriangle[0] */ 
                  TCI =TC->nextTriangles[0]; 
               else   
                  /* decision vertex was NOT rendered,  
                     so step to nextTriangle[1] */  
                  TCI =TC->nextTriangles[1]; 
               } 
            else 
        /* nextTriangle[1] does NOT exist, so  
                       just examine nextTriangle [0] */ 
                   TCI=TC->nextTriangles[0]; 
             } 
        } 
} 

This simple algorithm is sufficient for a block-based RQT 
algorithm if and only if the mesh algorithm guarantees that in a 
given frame, it either considers the whole of a quadnode’s 
vertex data block or does not consider it all. Unfortunately, we 
empirically observe that the Lindstrom algorithm [4] frequently 
traverses down to a quadnode, Q, and then borrows the needed 
vertex data from a sub-region of the vertex array of an ancestor 
quadnode, AQ. This borrowing appears to occur for several 
reasons. First, vertex data are paged in asynchronously 
compared to the building of the in-memory quadtree. So the 
block-level LOD algorithm may decide it needs to render quad 
Q’s vertices, but Q’s vertex data is not yet paged in. Hence, the 
mesh algorithm must temporarily borrow vertex data from 
some ancestor quad. Second, the Lindstrom algorithm 
associates a given LOD of both the vertex mesh and terrain 
imagery with a fixed quad Q. It is possible that the image data 
may be used from one quad level while the vertex data is from 
another. A third reason for vertex data borrowing is that the 
Lindstrom algorithm forces all quadnodes to have either 0 or 4 
children which may lead to leaf quadnodes that have no vertex 
data associated with them.    

 

Figure 3:  Example of Vertex Borrowing.   Gray meshes are 
quadnodes with no loaded vertex data.   Black meshes are 
quadnodes with loaded vertex data.   The outlined sub-regions 
of AQ are the borrowed vertex data regions borrowed by 

descendant quads Q3, Q6 and Q7.   All other regions (Q1, Q4, 
Q5, Q8) are rendered with their own data  

Figure 3 gives an example of borrowing.  Q3, Q6 and Q7 
lack data and the quadtree traverser borrow’s mesh data from 
AQ to render triangles for these regions. 

Vertex data borrowing greatly complicates the 
implementation of Algorithm 1. With borrowing, when we 
render a quad clipping we render non-contiguous portions of 
the quad clipping as it wanders in and out of various 
disconnected borrowed sub-regions of AQ’s (outlined in AQ in 
Figure 3). The triangle clipping DAG traversal for AQ cannot 
assume that each successively visited triangle clipping should 
be rendered. This incurs two performance penalties. First, we 
spend time visiting triangle clippings whose polyline point data 
must not be rendered (because none of the covering triangles in 
AQ were rendered in this frame). Second, every time the quad 
clipping re-enters a borrowed sub-region, the DAG traversal 
must determine which triangle clipping (1) has an edge 
covering the entrance point of the quad clipping to the 
borrowed sub-region and (2) has its corresponding RQT 
triangle rendered. This requires testing up to covering_triangles 
triangles for their enabled status, where covering_triangles is 
the number of RQT triangles that may cover a point projected 
on the mesh. This value is 2 * (levels_of_detail_per_quad-1) + 
1 which is 15 for our Lindstrom algorithm implementation. 

Our current solution for the borrowing problem is as 
follows. All polyline LOD data for a quad Q is paged in and out 
in unison with Q’s vertex mesh data. Next, we distinguish three 
versions of Algorithm 1 each of which is executed in different 
circumstances. If no vertex borrowing takes place for rendering 
Q’s mesh (Q1,Q4,Q5,Q8 in Figure 3), we render Q’s mesh data 
and then execute Algorithm 1 to render Q’s polyline data. Here 
the borrowed polyline data is drawn when the quad tree 
traversal visits node Q.  

If borrowing does occur, we render polyline data with one of 
two other versions of Algorithm 1.  The two borrowed-mesh 
versions use additional cached information. This cache stores 
intermediate computation results for borrowed mesh sub-
regions in a structure called sub_polylineLOD_t (sub for 
“subset”). A quadnode Q will contain both a dynamic array of 
polylineLOD_t and a dynamic array of sub_polylineLOD_t.   
sub_polylineLOD_t  contains a dynamic array of 
sub_quad_clipping_t.  sub_quad_clipping_t references a subset 
of a quad clipping in the borrowed ancestor quad, AQ.  In 
particular, each sub_quad_clipping_t references a section of 
one of AQ’s quad clippings after it is clipped to Q’s borrowed 
sub-region in AQ.  

The first variant of Algorithm 1 is executed when Q must 
borrow mesh data from ancestor AQ and Q’s cached sub 
polyline data is invalid.  Instead of rendering Q’s polyline when 
the quadtree traversal visits a quad Q (such as Q3,Q6,Q7 in 
Figure 3), we set some flags in AQ that indicate what mesh 
sub-region in AQ was borrowed by Q. Later, when the 
recursive quad tree traversal backtracks up the tree to AQ, it 
notes that descendents Q3, Q6, and Q7 of AQ borrowed AQ’s 
mesh data. The quadtree traversal then calls the first variant of 
Algorithm 1 which renders AQ’s polyline data but only for the 
borrowed sub-regions.  In this case, the tc-DAG traversal must 
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pay the penalty for wandering in and out of various borrowed 
sub regions.  However, the sub polyline cached structures are 
built and/or updated at this time.    

Now that the sub polyline data is cached, when the quadtree 
traversal visits Q in the next frame,  it executes the second 
variant of Algorithm 1.  This variant uses the cached sub 
polyline data in Q to immediately grab the appropriate portions 
of AQ’s quad clippings contained in Q.  Note, in this case the 
borrowed polyline data is drawn when the quadtree traversal 
visits Q itself, instead of delaying the polyline rendering until 
backtracking to AQ. 

The cached sub polyline structures take advantage of frame 
coherence in the terrain LOD thread.  The creation/invalidation 
behavior of this cache is dependent on the pattern of mesh data 
borrowing.  Empirically, the borrowing behavior cannot 
usefully be predicted a priori (i.e. in the mesh LOD 
preprocessing) since the behavior depends on the view point 
flight path. However, the pattern of borrowed data changes 
slowly enough under continuous view point movement to make 
this caching a performance advantage. 

Here are several points regarding OpenGL rendering. First 
the tc-DAG traversal algorithm packs all of a quad clipping’s 
points into a single OpenGL GL_LINES primitive. OpenGL 
vertex array calls and vertex caching extensions can also be 
used. To deal with z-buffer occlusion artifacts between the 
GL_LINES and the co-planar mesh, we use OpenGL polygon 
offset. One is tempted to use standard stencil buffer tricks and 
treat the GL_LINES like “decal” co-planar polygons 
[15,pg516].  However, for this to work for arbitrary view 
points, all of each mesh triangle’s decals (here the embedded 
polylines) must be rendered immediately after each individual 
triangle.  This, however, disallows using efficient triangle 
strips. 

3.2.2. Render-time: Polyline LOD 
The basic triangle clipping DAG structure provides a basis for 
adding polyline LOD. In this section, we explore some the 
possibilities and present some important observations. 

Extending more recent 2D polyline LOD methods to 3D 
terrain systems raises many complications. For example, 
Oosterom’s BLG (Binary-Line Generalization) Tree encodes 
results of the Douglass-Peucker algorithm into a tree structure 
as part of a preprocessing step [13]. The recursive algorithm 
takes the polyline end points and chooses the intermediate point 
which is the greatest distance from the line spanning the end 
points (Figure 5). This most distant, intermediate point is added 
to the tree along with its distance to the spanning line segment. 
This node represents an approximation to the original polyline 
where the approximation contains the end points and the 
chosen point.  Next the algorithm is repeated, recursively 
treating each original endpoint and the newest chosen point as 
new endpoints.  At render time, the render algorithm uses the 
resulting tree to quickly choose a subset of original vertices 
such that the error between the used approximation and the next 
finer approximation is below a given threshold.  Oosterom 
incorporates this algorithm into an interactive 2D system. For a 
2D system given a screen space error threshold, we only need 
to multiply by a constant scaling factor to map the error 

threshold value from screen space into the object space in 
which the BLG tree distance values were computed.  

Unfortunately, this simple screen space to object space 
computation is invalid once a planar polyline is centrally 
projected onto the screen in a 3D application. In the 2D 
application the order in which points are inserted into the BLG 
tree is determined by the distances in object space. In the 2D 
application this order would not be changed by a similarity 
transform that maps object to screen space. In other words, the 
data structure is similarity-invariant.  However, in the 3D 
realm, a planar polyline under different perspective projections 
would yield different relative error distances for the recursively 
added polyline points. This generally yields a different BLG 
tree structure for each possible 3D viewpoint. The BLG 
structure is not projective-invariant.  So in the 3D environment 
the BLG tree can not be as easily and efficiently employed with 
a screen space error metric as in a 2D GIS application. A 
simple option is to use only an object space metric with some 
eye point to triangle clipping distance measure for determining 
the BLG rendering tolerance.  Even better, however, we might 
try to apply similar methods used in the screen error metric 
RQT 3D mesh simplification strategies. 

Note, the triangle clipping DAG structure is easily 
augmented with a BLG tree on a per triangle clipping basis. 
Clearly, adding a BLG tree to a triangle clipping is most 
advantageous when the number of polyline vertices per triangle 
clipping is high. Alternatively, one is tempted to try to 
construct a BLG across multiple triangle clippings. Call this 
alternative the BLG-tree-over-the-mesh approach.  This second 
approach must perform the geodetic projection of every 
possible polyline that might result from the BLG tree 
evaluation.  Each line segment of each possible BLG polyline 
would have to be traced through the RQT triangle mesh, split 
across triangle edges and geodetically projected onto the mesh. 
From our experience with earlier alternatives to the triangle 
clipping DAG, we suspect that a BLG-tree-over-the-mesh 
approach will require at least as much memory as the triangle 
clipping DAG’s mesh-over-BLG-tree approach.  Most 
importantly, we observe that in a finely tessellated RQT mesh, 
simplifying a polyline prior to projection may have little over 
all performance advantage in terms of the number of rendered 
lines.  The reason is even if we simplify the polyline to a single 
line segment, this single line segment will be broken into many 
pieces when geodetically projected onto a fine mesh. 
P0.quadClipping[1] in Figure 2 is a prime example. On the 
other hand, if we have a coarse mesh, then the BLG-tree 
augmented tc-DAG should perform just as well assuming the 
original polyline is relatively smooth.  

We are beginning to experiment with adding BLG tree’s to 
triangle clipping. 

3.3. Data Storage and Paging 
The triangle clipping DAG and associated algorithms presented 
in this paper focus on the render-time component of a complete 
combined polyline-3D-mesh solution.  At present our 
preprocessing step simply stores the triangle clipping DAG 
directly to secondary storage in binary format.  Polyline vertex 
data is dynamically paged at the granularity of a quadnode’s 
complete tc-DAG. The tc-DAG is paged in whenever the mesh 
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LOD algorithm retrieves the quad’s vertex data.  Hence the 
Lindstrom mesh algorithm gives us quadnode level data paging 
and view frustum culling automatically for polylines.  

The triangle clipping DAG presented in section 3.1 is 
optimized for render-time computations.  It can be quickly 
traversed and polyline vertex coordinates can be directly 
pushed into OpenGL GL_LINES primitives. A separate 
external format is still needed to reduce secondary storage and 
better balance the data-load-time CPU cost against its disk 
access cost. In this section, a discussion of the storage required 
by naïvely dumping the in-core tc-DAG to disk will motivate 
the design of a more compact secondary storage format. 

A single polyline point projected onto a quad Q’s mesh can 
be covered by covering_triangles triangles. Recall, 8 vertex 
LOD’s per quad yields 15 covering triangles. Hence a quad 
clipping stores 15 projected copies of the original polyline 
vertices.  This increases coordinate storage costs 15 times. 
Assume 12 bytes per coordinate (3 32-bit floats).  Our Georgia 
County polylines on the ATL terrain (Figure 6) would use an 
estimated 240000*12*15 = 41 MB of storage for the coordinate 
data alone for a single low resolution quad mesh that covers the 
entire state. The empirical storage for this top level quad is 41.8 
MB with 98% of the storage devoted to coordinate data. 

To reduce this intra-quad redundancy, the external tc-DAG 
storage format should store the DAG topology and some form 
of the polyline vertex coordinates that is intermediate between 
the original lat/lon coordinates and the mesh projected 
Cartesian coordinates. A useful compromise is storing the 
geodetic projector for each lat/lon polyline vertex. These 
projectors are shared across triangle clippings of all LOD’s and 
this choice pushes the trigonometry heavy geodetic 
transformation to preprocess-time leaving the simpler plane-
projector intersection test to data-load-time.  

For quick render-time access, the triangle clipping DAG 
stores all triangle clippings relevant to a quad in the quad’s  
data structure. This allows quick access during render-time 
quad tree traversal.  Generally this does not waste too much 
primary memory since the block-LOD algorithm generally 
avoids loading spatially overlapping quads’ vertex data.  
(Recall, we page in and out the polyline structure in unison 
with the quad’s mesh vertex data so by avoiding primary-
memory vertex data duplication we avoid polyline vertex 
duplication as well). By dumping every quad’s tc-DAG to 
secondary storage we store each quad’s complete triangle 
clipping DAG.  There is now inter-quad redundancy because 
parent and child quads share many of the same triangles. 
Except for the root quad, each quad only adds its 2 highest 
resolution triangulations to the global triangulation. A quad’s 
other 13 (15-2) triangle LOD layers are already represented in 
ancestor quads. Total storage for the Georgia County 
preprocessed polyline data is 615MB with 68% of storage 
going to coordinate data.  The obvious solution to the inter-
quad redundancy is to only store triangle clippings for the 2 
highest resolution triangulations for non-root quad nodes.  We 
estimate that reducing both the inter-quad and intra-quad 
redundancies in a specialized external data format will reduce 
storage costs by ten fold. Further reductions are possible using 
delta encodings of the polyline coordinates. 

4. Results 
The results of running our tc-DAG algorithm for several data 
sets are shown in Figure 6.  The first few images show Georgia 
county borders. The border data consists of 389 polylines using 
240K points. The terrain database consists of 50 km elevation 
data for the world at large; 30 m elevation data for Georgia and 
10 m data for downtown Atlanta. The software was run on a 1.5 
GHz Pentium 4 with an NVidia Geforce 2 GTS graphics card. 
With the polylines disabled the system renders 82 triangle 
strips for the mesh with a total of 1820 vertices. The render 
thread runs at 60 FPS while the LOD thread runs at 2.0 FPS. 
When we enable the display of the polylines, another 407 OGL 
primitives are rendered corresponding to the 389 polylines. (In 
this scenario only a few polylines are evidently split across 
triangle clippings). The vertex count increases to 241605 
vertices. The renderer thread FPS drops to 45 and the LOD FPS 
drops to 1.7. Depending on viewpoint for this dataset, the 
render and LOD FPS vary in a range of 15-20% from these 
values (assuming no loading of new data from disk). Of course 
we expect improved performance with a more recent graphics 
card.  Figure 6 also contains zoomed in views that show the 
polyline following the 3D terrain. Figure 6 then illustrates other 
vector data--North and South Korea with borders outlined with 
polylines. We have also run the algorithm on polyline street 
data for Atlanta. 

 
Polylines 
Enabled 

Render 
FPS 

LOD 
FPS 

OGL 
Primitives 

OGL 
Vertices 

   YES 45 1.7 489 241605 
    NO 60 2.0 82 1820 

Table 1:  Comparison of run-time statistics for top image in 
Figure 6. 

5. Conclusions and Future Work 
This paper presented the tc-DAG data structure and its render-
time algorithm. These are key components for combining the 
display of polyline vector data and global 3D terrain. We 
showed and discussed results of our multi-resolution 
implementation and showed interactive rendering.   We are 
developing a space-efficient external storage format and 
improving the balance between the preprocessing-time and 
data-paging-time computations. Additionally, the tc-DAG 
structure is ripe for the addition of a BLG-tree adaptation for 
multi-resolution polylines. 
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Figure 4:   Triangle Clippings of a single segment quad 
clipping assuming a 9x9 vertex quad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:   A-E illustrate the partial construction of a BLG-
tree. The trees in B-E show all nodes added at successive tree 
levels. The polyline to the right of each tree illustrates the 
polyline geometry related to the newest tree node. Dashed lines 
are the spanning line segment being refined. Thick lines are the 
polyline refinement. 

 

 

 

 
Figure 6:  Georgia County Borders (240K points) and North & 
South Korea borders (10K points).  
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