
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2003)
G.-P. Bonneau, S. Hahmann, C. D. Hansen (Editors)

© The Eurographics Association 2003.

Rendering Vector Data over Global, Multi-resolution 3D Terrain

Zachary Wartell1, Eunjung Kang1, Tony Wasilewski1, William Ribarsky1, Nickolas Faust1

1 Graphics, Visualization and Usability Center, Georgia Institute of Technology, Atlanta, Georgia, USA

__
Abstract
Modern desktop PCs are capable of taking 2D Geographic Information System (GIS) applications into the realm of
interactive 3D virtual worlds. In prior work we developed and presented graphics algorithms and data management
methods for interactive viewing of a 3D global terrain system for desktop and virtual reality systems. In this paper we
present a key data structure and associated render-time algorithm for the combined display of multi-resolution 3D terrain
and traditional GIS polyline vector data. Such vector data is traditionally used for representing geographic entities such
as political borders, roads, rivers and cadastral information.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Display Algorithms

__

1. Introduction
GIS and 3D visualization are intimately related; one can
empower and enlarge the other. This was our premise several
years ago when we started a project to merge interactive
visualization with GIS. This merger enlarges and empowers
GIS because it offers a fully 3D GIS that can be interactively
explored and displayed, which was our goal from the
beginning. The merger enlarges and empowers interactive
visualization because it gives visualization concrete and
meaningful applications. Ultimately our work resulted in VGIS
[2][3][6][7][8], a global geospatial system with scalable,
multiresolution data organizations that permit one to explore
comprehensive terrain (elevation and imagery), urban areas and
3D objects, orthorectified maps, 3D dynamic weather, and
other geospatial data within the same framework. Among the
GIS features in VGIS are its efficiently queryable geospatial
databases and its ability to embed GIS annotations [2] (e.g.,
names, contents, and maps of buildings) in its structure for
access through the visual interface. The queryable database is
of significant use, for example, in providing terrain data for
mesoscale weather models or determining the extent of
flooding in an area. The GIS capabilities of the system would
be significantly extended if vector data could be efficiently
stored, displayed, and queried. Vector data include type, shape,
and display properties for roads, state or county boundaries,
rivers, property lines, and countless other features that enable
GIS systems. Vector data enable, for example, the proper
drawing of roads at all resolutions and the visual decorations
that distinguish between road types. Since the vector data are
also queryable, they permit quantitative measurements (e.g.,
road lengths between selected points) and attachment of
identifying information (e.g., road names and characteristics).

The addition of traditional vector data to the VGIS multi-
resolution rendering capability and the methods required to do
this are the subject of this paper.

Traditional Geographical Information Systems (GIS) display
and compute with 2D geometric representations of geographic
data. These data are typically organized as either raster data or
vector data (perhaps more precisely called “coordinate data”)
[10]. Raster data are analogous to a bitmap or a regular 2d array
where each array element contains a data value for a
corresponding rectangular cell in the 2D plane. Vector data
represent geometry as lists of coordinates that define points,
lines and polygons. A key issue in both the computer graphics
community and the GIS and computerized cartography
community is eliminating unnecessary or unwanted geometric
detail from the displayed image. This is done for both
perceptual and computational efficiency. The computer
graphics literature refers to this process as level-of-detail
(LOD) management. In the GIS and cartography literature the
term is “geometric simplification” [10]. GIS geometric
simplification is one aspect of the more general methods of
“generalization”, which are methods for visually representing a
given geographic entity or set of entities using different visuals
when displaying the entities at different map scales.

This paper presents a key data structure, the triangle
clipping DAG (direct-acyclic graph) and associated algorithms
for overlaying traditional 2D polyline GIS data on a global, 3D
terrain visualization system. Displaying 2D polyline data on top
of global 3D terrain becomes challenging in our global system
for several reasons. First, the terrain’s 3D geometry data, image
data and the 2D polyline data are too large to fit into primary
memory. This requires dynamic paging of all three data types

213

http://www.eg.org
http://diglib.eg.org

Wartell et al. / Rendering Vector Data over Global, Multi-resolution 3D Terrain

© The Eurographics Association 2003.

based on the current 3D view of the database. For a number of
reasons to be discussed shortly, we believe that 2D polyline
data should be treated independently from the image data and
therefore should be rendered as separate geometry by the
graphics pipeline. This presents a challenge because modern
terrain LOD algorithms render a 3D mesh whose constituent
triangles are changing at nearly every frame. In order for the
polyline data to appear overlayed on the 3D mesh, the rendered
polyline geometry must therefore also change at each frame. In
this paper, we describe the many challenges in developing a
complete and scaleable algorithm for the combined display of
polyline data and global 3D terrain. This paper then presents a
data structure and algorithm optimized for the render-time
component of a complete algorithm. We present performance
results of the implemented algorithm. We also outline our
current efforts to develop efficient secondary storage formats
and to better balance the computation/memory trade-offs
between the preprocessing-time and data-page-time algorithm
components.

2. Prior Work
The combined display of traditional GIS vector data and global,
multiresolution 3D terrain builds upon work published in both
the computer graphics and GIS communities. This section
briefly reviews the basics of terrain rendering, line
simplification, and the complexities of combining them.

2.1. Terrain LOD Algorithms
LOD algorithms for 3D terrain rendering are an active area of
research [5][7][9]. In this paper, we use the classic algorithm of
Lindstrom et al. [7] for terrain rendering. Briefly, the Lindstrom
terrain mesh algorithm partitions the height-field via a quadtree
structure. The quadtree elements are quadnodes. Each
quadnode has a block of 256x256 triangles (129x129 vertices).
Later the algorithm was extended to global data through the use
of a set of 32 linked quadtrees to represent the earth’s spheroid
[3].

Generally each triangle in the triangle block can be
coalesced with a partner triangle into a single lower resolution
triangle and conversely lower resolution triangles can be split
into two higher resolution triangles. This defines a finite binary
relation between triangles which induces two trees on the
quadnode’s mesh. This binary relation is called the triangle-
split relation and the trees are the triangle-split trees. The top
two nodes in the tree pair correspond to the lowest resolution
triangle pair that could be rendered for the quadnode’s mesh.
Triangles deeper in the tree are of higher resolution. Triangles
shallower in the tree are of lower resolution. Figure 2A
illustrates the highest resolution mesh using, for illustration, a
9x9 vertex block. Figure 4 illustrates a small subset of the
possible triangles the LOD triangulation algorithm may
produce. This type of triangulation is variously referred to as 4-
k meshes, right-triangulated meshes or restricted quadtree
triangulations (RQT). The basic concept of our paper’s
algorithm assumes such a RQT triangulation. Certain details of
our tc-DAG algorithm are specific to the Lindstrom mesh
algorithm [4] and would have to be changed if one wanted to
use recent generalized approaches such as that of Lindstrom
and Pascucci [9].

2.2. Line Simplification Algorithms
Quite likely the notion of geometric simplification methods
originated with cartographers as they represented a physical
world of infinite detail on a map that can only usefully present
a finite amount of detail. Cartographic simplification is one
aspect of the more general concept of cartographic
generalization that aims to address the general problem of
complexity and detail through operations such as
simplification, smoothing, aggregation, exaggeration and
displacement [10]. Cartographers apply these techniques
because simple photographic reduction of a map (i.e. image
scaling), typically yields highly cluttered and incomprehensible
maps. In this paper, however, we only focus on GIS line
simplification, which simplifies geometric detail.

2D line simplification algorithms in digital cartography and
GIS date back to the Douglass-Peucker algorithm presented in
1973 [10,p129]. In addition to generalization’s main goal of
representing important details clearly, when using computer
systems we also want to avoid the computational cost of
rendering unnecessary pixels. Chapter 10 of Longley et al. [11]
reviews the GIS literature regarding line generalization through
the mid-1990’s. Line simplification and generalization continue
to be an area of research [1]. However, to our knowledge this
body of work continues to focus only on 2D polylines since
GIS applications are traditionally 2D graphics applications.

2.3. Complications of Polyline-Mesh Combination

2.3.1. Texture Versus Geometry
There are two general approaches to rendering polyline vector
data on a 3D mesh. One option is to convert the polyline data to
a texture image layer and combine this polyline image layer
with the primary terrain image layer (e.g. from a satellite/aerial
photograph). The second option is to render the polyline data as
separate 3D geometric primitives. Both techniques present a
number of complications. This paper pursues the latter
technique only, but the following paragraphs point out some of
the complications of both of these approaches.

A naïve polyline-as-texture solution is to rasterize the
polylines into the primary terrain texture image at the image’s
highest resolution and then render the terrain in the standard
way using mipmaps or other suitable filtering. However, this is
a poor solution because when zoomed out on the 3D terrain, the
user will find much of the polyline vector information filtered
away especially if single pixel lines were used for the rasterized
vector data. This could cause state borders to be nearly
completely filtered away when zoomed out to view an entire
country. Additionally, it would be undesirable to zoom into a
region of low primary image resolution and then to see not only
the individual texels of the primary image data but also the
individual texels of the texture-rasterized polyline vectors. The
basic GIS semantics of a polyline line segment is that the
represented geographic entity is defined by a line between two
points in the real-valued Cartesian plane. The abstract line’s
accuracy is independent of the resolution of the primary
imagery and we would not want to limit its visual
representation’s accuracy to the texel resolution of the primary
imagery. For example, imagine the system displays a home
owner’s property line on top of the primary imagery. This

214

Wartell et al. / Rendering Vector Data over Global, Multi-resolution 3D Terrain

© The Eurographics Association 2003.

imagery might be either 50 M satellite imagery or 1 cm aerial
imagery. In either case, the accuracy of the property line
information does not vary. If we simply rasterized the property
line into the primary terrain image layer under these two
different conditions, each condition’s visual results would
convey very different notions of property line accuracy due to
the large variation in texel resolutions of the texture-rasterized
property line. Further, this native polyline-as-geometry
approach does not allow the flexibility in polyline rendering
expected in a GIS. These systems provide interactive enabling
and disabling of the display of different subsets of polyline data
and interactive adjustment of line styles such as line color,
width and stipple patterns in order to distinguish and highlight
different geographic data.

A 3D GIS needs a solution that can control the polylines’
screen image independently from the primary texture. This
indicates using either the polyline-as-3D-geometry solution or
an adaptive polyline-as-texture solution. An adaptive polyline-
as-texture solution would need to treat the primary texture
imagery and the polyline rasterized texture as separate image
layers of differing resolutions and would store the polyline in
the original 2D geodetic coordinates. The polylines rendered
via textures should have the same flexibility as if the polylines
were rendered as 3D geometric OpenGL primitives
(GL_LINES) allowing line color, stipple and width to be
varied. The polyline-as-texture approach requires on-the-fly
generation of the polyline-texture image because a-priori there
is no limit on the zoom levels a user might choose and hence
the maximum polyline-texture resolution needed avoid polyline
texel enlargement is unknown. If we cache the textures, a
cached invalidation policy is needed. Generating polyline-
textures on the fly requires polyline simplification. We aim to
explore an image-based polyline simplification scheme but this
requires information on the polyline’s structure in 3D space
(i.e. how it exists as a 3D line on the terrain). This 3D
information is not available in the polyline-as-texture approach
because this approach explicitly avoids computing the
polyline’s 3D structure. For these reasons, we made a strategic
decision to explore the polyline-as-3D-geometry approach first.
Ultimately a comparison of two complete, scalable, and global
implementations of both techniques should be performed.

2.3.2. Other Polyline-as-geometry Work
IMAGINE by Erdas is a traditional 2D GIS package that has
added a separate 3D terrain visualization module called
“IMAGINE VirtualGIS” [4]. This module is a simplified
version on the algorithm of Lindstrom et al. [7]. The module,
does not provide a global terrain database and the VirtualGIS
LOD algorithm does block-based LOD but does not perform
lower level triangle LOD. These facts can be easily verified by
running VirtualGIS in wireframe mode. VirtualGIS can display
polyline vector data. The method appears to be a polyine-as-
geometry approach. The fact that only block-based LOD is
performed, however, simplifies the polyline-as-geometry
problem because once a given block is chosen for rendering the
set of rendered triangles within that block never changes. In
contrast, in the more sophisticated RQT triangulation
algorithms, the set of rendered triangles change in a much more
arbitrary way from frame to frame.

3. Methods
LOD algorithms with dynamic paging, split computation over
three phases: preprocessing, data-load-time and render-time. A
preprocessing step computes LOD information such as edge-
collapse tolerance values, performs re-meshing and coordinate
system transforms and constructs some LOD data structure,
typically a tree or DAG. These data are stored in secondary
storage. During interactive viewing there is data-load-time
computation and a render-time computation. The data-load-
time computation loads and unpacks the data from disk into
primary memory. A typical example is transforming geodetic
height field data stored in secondary memory into easily
rendered Cartesian coordinates in primary memory. Finally, at
render-time for each frame or iteration of the LOD algorithm,
the primary memory data structures are examined to determine
what geometry to send to the graphics pipeline.

The triangle clipping DAG structure and associated
algorithms are a key element in combining traditional 2D GIS
line simplification methods with 3D terrain LOD rendering.
The presented algorithms provide an efficient solution to many
of the render-time issues. In the following sections, we discuss
these in detail and point out where further work is needed
regarding aspects of the preprocessing algorithm and regarding
the computation/storage balance between the data-load-time
and preprocessing components.

3.1. Data Structures

struct quadnode
 {
 /* terrain and object data members */
 ……
 /* polyline level of detail */
 polyline_LOD_t polylineLODs [];
 }
struct polyline_LOD_t
 {
 /* graphical attributes */
 ……
 /* quad clippings */
 quad_clipping_t quadClippings[];
 }
struct quad_clipping_t
 {
 triangle_clipping_t triangleClippings[];
 }
struct triangle_clipping_t
 {
 point3D_t points[];
 triangleID_t ID;
 vertex_index_t decisionVertex;
 triangle_clipping_index_t nextTriangle[2];
 triangle_clipping_index_t parent;
 triangle_clipping_index_t finest_exit_descendent;
 }

Figure 1: Pseudo-code for Data Structures

215

Wartell et al. / Rendering Vector Data over Global, Multi-resolution 3D Terrain

© The Eurographics Association 2003.

In its global form [3], the Lindstrom terrain algorithm partitions
the spheroidal height-field into a set of 32 quadtrees. The
quadtree elements are quadnodes. Each quadnode has block of
128x128 triangle pairs. For each quadnode, Q, the basic tc-
DAG algorithm adds a dynamic array of polyline_LOD_t to the
quadnode structure to represent the polylines crossing Q. A
polyline_LOD_t (Figure 1) contains information on the
polyline’s visual attributes such as width, color and line stipple
and a dynamic array of quad_clipping_t structures. A
quad_clipping_t represents a single section of a polyline that
has one entrance and one exit from quad Q. Since a polyline
may enter and exit Q multiple times, we have potentially
multiple quad clippings per polyline_LOD_t. In Figure 2, we
show only an 8x8 triangle-pair block (9x9 vertices) for
simplicity. Figure 2A shows the original polyline. Figure 2B
shows the two quad clippings for the polyline traversing Q. A
quad_clipping_t contains a dynamic array of
triangle_clipping_t structures. A triangle_clipping_t
corresponds to a single triangle in any legal RQT built on Q’s
vertices and represents a single section of the polyline that has
one entrance and one exit from the triangle clipping. The
entrance edge is the triangle edge the polyline enters. The exit
edge is the triangle edge the polyline exits. (Possibly either is
non-existent if the polyline starts/stops inside the triangle.)
Figure 2B illustrates the two quad clippings broken up into
individual line segments per triangle clipping. Successive
triangle clippings are in alternating colors. Note in Figure 2B
we only illustrate the triangle clippings for triangles in the
highest resolution RQT mesh for this quad. In general, a
triangle clipping can come from any legal triangle that the RQT
LOD algorithm might build from the quad’s triangle vertices.
Figure 4 illustrates all possible RQT triangle clippings for one
quad clipping crossing a 9x9 block. Since a polyline may enter
and exit a given RQT triangle multiple times, a single polyline
may have multiple triangle clipping’s covering the same RQT
triangle. (Note, none of the figures illustrate this possibility.)

A triangle_clipping_t contains geometric, topological, and
identification information (Figure 1). The geometric component
is an array of 3D point coordinates representing the successive
points of the polyline as projected onto the plane of that
triangle clipping. A triangle_clipping_t then has a size 2 array
of indices to the “next” triangle clipping. The data member is
called nextTriangle[2]. This indexes the triangle clipping that
the polyline enters after exiting the current triangle clipping. It
is easy to show that because of the RQT triangulation structure
a triangle clipping can have either 0, 1 or 2 next triangle
clippings. The LOD of a nextTriangle will either be equal to,
one level above or one level below the LOD of the current
triangle clipping. The nextTriangle member defines a finite N-
to-N binary relation on the triangle clippings within the context
of a given quad clipping. This induces the primary directed-
acyclic-graph on the triangle clippings where the nodes are
triangle clippings with in-degree of 0, 1 or 2 and out degree of
0,1 or 2. A sentinel value is assigned to a nextTriangle element
to indicate the absence of a next triangle. The nextTriangle is
illustrated in Figure 4 with black arrows. (We don’t show these
arrays for the last two columns since the image grows too dense
to make sense of). Additionally, each triangle clipping
structure, T, contains an index to the triangle clipping at one
LOD shallower in the triangle-split tree that contains T. This

data member is called parent. A member
finest_exit_descendent indexes the triangle clipping’s
descendent triangle clipping (in the triangle-split tree) of
highest resolution whose exiting edge is embedded in the T’s
exiting edge or that contains the polyline’s end point.

A

B

Figure 2: Polyline over a quad node with just a 9x9 block of
vertices in RQT triangulation.

3.2. Preprocessing Algorithm
The preprocessing algorithm builds all polyline_LOD_t
structures and writes them to secondary storage. The goal is to
find every valid RQT triangle over a quad’s vertex block that is
intersected by a polyline quad clipping. For each such RQT
triangle there is at least one and perhaps many triangle
clippings depending on the number of times the quad clipping
enters and leaves the triangle. The triangle clippings must be
strung together using triangle_clipping_t.nextTriangle in the
order in which the quad clipping visits the triangles. To do this,
we trace the quad clipping through triangle-pair cells (tp-cells)
at the highest resolution RQT. TP-cells are the latitude-
longitude squares defined by pairs of triangles sharing a

Polyline

TP-cell

Polyline

TP-cell

P0.quadClipping[0] P0.quadClipping[1]
P0.quadClipping[0] P0.quadClipping[1]

216

Wartell et al. / Rendering Vector Data over Global, Multi-resolution 3D Terrain

© The Eurographics Association 2003.

diagonal, hypotenuse edge. Figure 2A a single tp-cell is circled
in the lower-left corner. The 9x9 vertex array has 8x8 tp-cells.

After tracing the quad clipping through the highest-
resolution triangles, we iterate over these successive triangle
clippings and at each clipping climb up the triangle-split graph
to find the ancestors of the finest triangle clippings. As this is
done, ancestor triangle clippings are added to the triangle
clipping array. These further triangle clippings are added in
order of highest resolution to lowest.

VGIS’s quadtrees and height-field use a single, global,
spheroidal coordinate system. Hence the original polyline
coordinates are in latitude and longitude. These must be
geodetically projected onto the mesh triangles. This coordinate
system transformation and projection is far more floating point
intensive than the trivial parallel projection that would suffice
for non-planetary terrain systems [11]. As a partial example, in
a non-global model, projection of point a to plane P is the
intersection of the projector (a line) defined by point (a.x,a.y,0)
and vector (0,0,1). (Here we assume the height field rises along
the z-axis). In contrast, just calculating the XYZ coordinate of
geodetic projector’s start point using a’s geodetic lat/lon
coordinates involves 4 sin/cos evaluations and a square root.
Intuitively and empirically, performing these geodetic
projections at render-time is prohibitive. Instead we should
perform the geodetic projection at either data-load-time or
preprocessing time. Presently, we perform the projection at
preprocessing time and hence both the primary and secondary
memory triangle_clipping_t structure stores a list of Cartesian
points.

Another complexity is the precise geometric tracing of
spheroidal geodesics through tp-cells (Figure 2A). Spheroidal
geodesics are the proper way to connect consecutive points in a
lat/lon polyline. The naïve approach, which we currently use, is
to approximate a mapping of the spheroid to the plane such that
lat/lon squares on the spheroid map to lat/lon squares on the
plane and that spheroidal geodesics map to straight lines in the
plane. Under this approximation tracing geographic geodesics
through the lat/lon grid only requires tracing a straight line
through a Cartesian grid. However, it is well known in
cartography that no such spheroid-to-plane (nor sphere-to-
plane) mapping exists. The simple cylindrical projection maps
a regular spherical lat/lon grid to a grid of squares in the plane
but spherical geodesics map to complex curves. In the Polar
Zenithal Gnomonic projection and Equatorial Zenithal
Gnomonic projection spherical geodesics do map to lines but a
regular lat/lon spherical grid maps to a grid of curves [14]. It is
not yet clear which of these methods is best modified for
tracing polylines over the spheroid.

At present, we directly write the resulting polylineLOD_t
structures straight to secondary storage. This is not space
efficient. The polylineLOD_t structures are optimized for
render-time operations. Ultimately, a more compact, external
format for secondary storage is needed. Details are discussed in
3.3.

3.2.1. Render-time: Polyline-Mesh Projection
At render time, the Lindstrom algorithm traverses the quad tree
and selects which quad’s vertex blocks should be rendered.

When a block is reached and rendered, a triangle LOD pass
activates and enables the necessary vertices within the block.
Each vertex has a bit that says whether it was enabled or not.
This information is used by the polyline renderer to determine
what path through the triangle clipping DAG should be
followed. As each triangle clipping node is reached its polyline
vertices are rendered. All vertices for a given quad_clipping_t
are rendered in a single glBegin/glEnd pair using GL_LINES.
This maximizes efficiency for drawing long polylines.

We present the triangle clipping DAG traversal algorithm by
first assuming a simplistic behavior of the RQT algorithm used
for mesh LOD. Later we’ll see that in practice implementations
such as the Lindstrom algorithm behave in more complex ways
and require more complex tc-DAG traversal mechanisms. A
simplistic block-based RQT algorithm would behave such that
when the RQT algorithm reaches a quad node, Q, the algorithm
either examines all of the quad’s vertex data for mesh rendering
or examines none at all. Assume the RQT algorithm chooses to
render Q’s mesh, thus setting its mesh vertices’ enabled bits.
For each quad clipping QC of quad Q, we start with the first
triangle clipping of highest resolution in QC’s triangle clipping
DAG. (By design, this is the first triangle clipping of QC’s
triangleClippings array). By following the
triangle_clipping_t.parent, we visit all triangle-split ancestors
until reaching a triangle clipping whose mesh vertices were
enabled (i.e., flagged for rendering by the triangle LOD pass).
This gives us the first triangle clipping to render so we render
that clipping’s polyline vertices. To determine which of the
next triangle clippings to follow we test the enabled bit of the
mesh vertex number N, where N is the decisionVertex structure
member of the current triangle clipping. The following pseudo-
code illustrates this algorithm. Note, a triangle clipping index
of -1 implies there is no next triangle and nextTriangle[0] holds
the next triangle when the triangle clippings node’s out-degree
is 1.

Algorithm 1:

render_polyline (polylineLOD_t PL, quad_mesh_t QM)
{
 for all quad clippings QL of PL
 {
 triangle_clipping_index_t TCI;
 TCI = find start triangle clipping in PL;

 while(TCI != NULL)
 {
 triangle_clipping_t TC;
 TC = QL.triangleClippings[TCI];

 /* draw all polyline points in a current
 triangle clipping */

 draw_points(TC);

 /* choose next triangle clipping */
 if(TC->nextTriangles[1] >=0)
 {/* nextTriangle[1] does exist, so

 choose between nextTriangle [0]
 and [1] */

 if(vertex_rendered(QM,tc->decisionVertex)
 /* decison vertex was rendered, so

217

Wartell et al. / Rendering Vector Data over Global, Multi-resolution 3D Terrain

© The Eurographics Association 2003.

 step to nextTriangle[0] */
 TCI =TC->nextTriangles[0];
 else
 /* decision vertex was NOT rendered,
 so step to nextTriangle[1] */
 TCI =TC->nextTriangles[1];
 }
 else
 /* nextTriangle[1] does NOT exist, so
 just examine nextTriangle [0] */
 TCI=TC->nextTriangles[0];
 }
 }
}

This simple algorithm is sufficient for a block-based RQT
algorithm if and only if the mesh algorithm guarantees that in a
given frame, it either considers the whole of a quadnode’s
vertex data block or does not consider it all. Unfortunately, we
empirically observe that the Lindstrom algorithm [4] frequently
traverses down to a quadnode, Q, and then borrows the needed
vertex data from a sub-region of the vertex array of an ancestor
quadnode, AQ. This borrowing appears to occur for several
reasons. First, vertex data are paged in asynchronously
compared to the building of the in-memory quadtree. So the
block-level LOD algorithm may decide it needs to render quad
Q’s vertices, but Q’s vertex data is not yet paged in. Hence, the
mesh algorithm must temporarily borrow vertex data from
some ancestor quad. Second, the Lindstrom algorithm
associates a given LOD of both the vertex mesh and terrain
imagery with a fixed quad Q. It is possible that the image data
may be used from one quad level while the vertex data is from
another. A third reason for vertex data borrowing is that the
Lindstrom algorithm forces all quadnodes to have either 0 or 4
children which may lead to leaf quadnodes that have no vertex
data associated with them.

Figure 3: Example of Vertex Borrowing. Gray meshes are
quadnodes with no loaded vertex data. Black meshes are
quadnodes with loaded vertex data. The outlined sub-regions
of AQ are the borrowed vertex data regions borrowed by

descendant quads Q3, Q6 and Q7. All other regions (Q1, Q4,
Q5, Q8) are rendered with their own data

Figure 3 gives an example of borrowing. Q3, Q6 and Q7
lack data and the quadtree traverser borrow’s mesh data from
AQ to render triangles for these regions.

Vertex data borrowing greatly complicates the
implementation of Algorithm 1. With borrowing, when we
render a quad clipping we render non-contiguous portions of
the quad clipping as it wanders in and out of various
disconnected borrowed sub-regions of AQ’s (outlined in AQ in
Figure 3). The triangle clipping DAG traversal for AQ cannot
assume that each successively visited triangle clipping should
be rendered. This incurs two performance penalties. First, we
spend time visiting triangle clippings whose polyline point data
must not be rendered (because none of the covering triangles in
AQ were rendered in this frame). Second, every time the quad
clipping re-enters a borrowed sub-region, the DAG traversal
must determine which triangle clipping (1) has an edge
covering the entrance point of the quad clipping to the
borrowed sub-region and (2) has its corresponding RQT
triangle rendered. This requires testing up to covering_triangles
triangles for their enabled status, where covering_triangles is
the number of RQT triangles that may cover a point projected
on the mesh. This value is 2 * (levels_of_detail_per_quad-1) +
1 which is 15 for our Lindstrom algorithm implementation.

Our current solution for the borrowing problem is as
follows. All polyline LOD data for a quad Q is paged in and out
in unison with Q’s vertex mesh data. Next, we distinguish three
versions of Algorithm 1 each of which is executed in different
circumstances. If no vertex borrowing takes place for rendering
Q’s mesh (Q1,Q4,Q5,Q8 in Figure 3), we render Q’s mesh data
and then execute Algorithm 1 to render Q’s polyline data. Here
the borrowed polyline data is drawn when the quad tree
traversal visits node Q.

If borrowing does occur, we render polyline data with one of
two other versions of Algorithm 1. The two borrowed-mesh
versions use additional cached information. This cache stores
intermediate computation results for borrowed mesh sub-
regions in a structure called sub_polylineLOD_t (sub for
“subset”). A quadnode Q will contain both a dynamic array of
polylineLOD_t and a dynamic array of sub_polylineLOD_t.
sub_polylineLOD_t contains a dynamic array of
sub_quad_clipping_t. sub_quad_clipping_t references a subset
of a quad clipping in the borrowed ancestor quad, AQ. In
particular, each sub_quad_clipping_t references a section of
one of AQ’s quad clippings after it is clipped to Q’s borrowed
sub-region in AQ.

The first variant of Algorithm 1 is executed when Q must
borrow mesh data from ancestor AQ and Q’s cached sub
polyline data is invalid. Instead of rendering Q’s polyline when
the quadtree traversal visits a quad Q (such as Q3,Q6,Q7 in
Figure 3), we set some flags in AQ that indicate what mesh
sub-region in AQ was borrowed by Q. Later, when the
recursive quad tree traversal backtracks up the tree to AQ, it
notes that descendents Q3, Q6, and Q7 of AQ borrowed AQ’s
mesh data. The quadtree traversal then calls the first variant of
Algorithm 1 which renders AQ’s polyline data but only for the
borrowed sub-regions. In this case, the tc-DAG traversal must

218

Wartell et al. / Rendering Vector Data over Global, Multi-resolution 3D Terrain

© The Eurographics Association 2003.

pay the penalty for wandering in and out of various borrowed
sub regions. However, the sub polyline cached structures are
built and/or updated at this time.

Now that the sub polyline data is cached, when the quadtree
traversal visits Q in the next frame, it executes the second
variant of Algorithm 1. This variant uses the cached sub
polyline data in Q to immediately grab the appropriate portions
of AQ’s quad clippings contained in Q. Note, in this case the
borrowed polyline data is drawn when the quadtree traversal
visits Q itself, instead of delaying the polyline rendering until
backtracking to AQ.

The cached sub polyline structures take advantage of frame
coherence in the terrain LOD thread. The creation/invalidation
behavior of this cache is dependent on the pattern of mesh data
borrowing. Empirically, the borrowing behavior cannot
usefully be predicted a priori (i.e. in the mesh LOD
preprocessing) since the behavior depends on the view point
flight path. However, the pattern of borrowed data changes
slowly enough under continuous view point movement to make
this caching a performance advantage.

Here are several points regarding OpenGL rendering. First
the tc-DAG traversal algorithm packs all of a quad clipping’s
points into a single OpenGL GL_LINES primitive. OpenGL
vertex array calls and vertex caching extensions can also be
used. To deal with z-buffer occlusion artifacts between the
GL_LINES and the co-planar mesh, we use OpenGL polygon
offset. One is tempted to use standard stencil buffer tricks and
treat the GL_LINES like “decal” co-planar polygons
[15,pg516]. However, for this to work for arbitrary view
points, all of each mesh triangle’s decals (here the embedded
polylines) must be rendered immediately after each individual
triangle. This, however, disallows using efficient triangle
strips.

3.2.2. Render-time: Polyline LOD
The basic triangle clipping DAG structure provides a basis for
adding polyline LOD. In this section, we explore some the
possibilities and present some important observations.

Extending more recent 2D polyline LOD methods to 3D
terrain systems raises many complications. For example,
Oosterom’s BLG (Binary-Line Generalization) Tree encodes
results of the Douglass-Peucker algorithm into a tree structure
as part of a preprocessing step [13]. The recursive algorithm
takes the polyline end points and chooses the intermediate point
which is the greatest distance from the line spanning the end
points (Figure 5). This most distant, intermediate point is added
to the tree along with its distance to the spanning line segment.
This node represents an approximation to the original polyline
where the approximation contains the end points and the
chosen point. Next the algorithm is repeated, recursively
treating each original endpoint and the newest chosen point as
new endpoints. At render time, the render algorithm uses the
resulting tree to quickly choose a subset of original vertices
such that the error between the used approximation and the next
finer approximation is below a given threshold. Oosterom
incorporates this algorithm into an interactive 2D system. For a
2D system given a screen space error threshold, we only need
to multiply by a constant scaling factor to map the error

threshold value from screen space into the object space in
which the BLG tree distance values were computed.

Unfortunately, this simple screen space to object space
computation is invalid once a planar polyline is centrally
projected onto the screen in a 3D application. In the 2D
application the order in which points are inserted into the BLG
tree is determined by the distances in object space. In the 2D
application this order would not be changed by a similarity
transform that maps object to screen space. In other words, the
data structure is similarity-invariant. However, in the 3D
realm, a planar polyline under different perspective projections
would yield different relative error distances for the recursively
added polyline points. This generally yields a different BLG
tree structure for each possible 3D viewpoint. The BLG
structure is not projective-invariant. So in the 3D environment
the BLG tree can not be as easily and efficiently employed with
a screen space error metric as in a 2D GIS application. A
simple option is to use only an object space metric with some
eye point to triangle clipping distance measure for determining
the BLG rendering tolerance. Even better, however, we might
try to apply similar methods used in the screen error metric
RQT 3D mesh simplification strategies.

Note, the triangle clipping DAG structure is easily
augmented with a BLG tree on a per triangle clipping basis.
Clearly, adding a BLG tree to a triangle clipping is most
advantageous when the number of polyline vertices per triangle
clipping is high. Alternatively, one is tempted to try to
construct a BLG across multiple triangle clippings. Call this
alternative the BLG-tree-over-the-mesh approach. This second
approach must perform the geodetic projection of every
possible polyline that might result from the BLG tree
evaluation. Each line segment of each possible BLG polyline
would have to be traced through the RQT triangle mesh, split
across triangle edges and geodetically projected onto the mesh.
From our experience with earlier alternatives to the triangle
clipping DAG, we suspect that a BLG-tree-over-the-mesh
approach will require at least as much memory as the triangle
clipping DAG’s mesh-over-BLG-tree approach. Most
importantly, we observe that in a finely tessellated RQT mesh,
simplifying a polyline prior to projection may have little over
all performance advantage in terms of the number of rendered
lines. The reason is even if we simplify the polyline to a single
line segment, this single line segment will be broken into many
pieces when geodetically projected onto a fine mesh.
P0.quadClipping[1] in Figure 2 is a prime example. On the
other hand, if we have a coarse mesh, then the BLG-tree
augmented tc-DAG should perform just as well assuming the
original polyline is relatively smooth.

We are beginning to experiment with adding BLG tree’s to
triangle clipping.

3.3. Data Storage and Paging
The triangle clipping DAG and associated algorithms presented
in this paper focus on the render-time component of a complete
combined polyline-3D-mesh solution. At present our
preprocessing step simply stores the triangle clipping DAG
directly to secondary storage in binary format. Polyline vertex
data is dynamically paged at the granularity of a quadnode’s
complete tc-DAG. The tc-DAG is paged in whenever the mesh

219

Wartell et al. / Rendering Vector Data over Global, Multi-resolution 3D Terrain

© The Eurographics Association 2003.

LOD algorithm retrieves the quad’s vertex data. Hence the
Lindstrom mesh algorithm gives us quadnode level data paging
and view frustum culling automatically for polylines.

The triangle clipping DAG presented in section 3.1 is
optimized for render-time computations. It can be quickly
traversed and polyline vertex coordinates can be directly
pushed into OpenGL GL_LINES primitives. A separate
external format is still needed to reduce secondary storage and
better balance the data-load-time CPU cost against its disk
access cost. In this section, a discussion of the storage required
by naïvely dumping the in-core tc-DAG to disk will motivate
the design of a more compact secondary storage format.

A single polyline point projected onto a quad Q’s mesh can
be covered by covering_triangles triangles. Recall, 8 vertex
LOD’s per quad yields 15 covering triangles. Hence a quad
clipping stores 15 projected copies of the original polyline
vertices. This increases coordinate storage costs 15 times.
Assume 12 bytes per coordinate (3 32-bit floats). Our Georgia
County polylines on the ATL terrain (Figure 6) would use an
estimated 240000*12*15 = 41 MB of storage for the coordinate
data alone for a single low resolution quad mesh that covers the
entire state. The empirical storage for this top level quad is 41.8
MB with 98% of the storage devoted to coordinate data.

To reduce this intra-quad redundancy, the external tc-DAG
storage format should store the DAG topology and some form
of the polyline vertex coordinates that is intermediate between
the original lat/lon coordinates and the mesh projected
Cartesian coordinates. A useful compromise is storing the
geodetic projector for each lat/lon polyline vertex. These
projectors are shared across triangle clippings of all LOD’s and
this choice pushes the trigonometry heavy geodetic
transformation to preprocess-time leaving the simpler plane-
projector intersection test to data-load-time.

For quick render-time access, the triangle clipping DAG
stores all triangle clippings relevant to a quad in the quad’s
data structure. This allows quick access during render-time
quad tree traversal. Generally this does not waste too much
primary memory since the block-LOD algorithm generally
avoids loading spatially overlapping quads’ vertex data.
(Recall, we page in and out the polyline structure in unison
with the quad’s mesh vertex data so by avoiding primary-
memory vertex data duplication we avoid polyline vertex
duplication as well). By dumping every quad’s tc-DAG to
secondary storage we store each quad’s complete triangle
clipping DAG. There is now inter-quad redundancy because
parent and child quads share many of the same triangles.
Except for the root quad, each quad only adds its 2 highest
resolution triangulations to the global triangulation. A quad’s
other 13 (15-2) triangle LOD layers are already represented in
ancestor quads. Total storage for the Georgia County
preprocessed polyline data is 615MB with 68% of storage
going to coordinate data. The obvious solution to the inter-
quad redundancy is to only store triangle clippings for the 2
highest resolution triangulations for non-root quad nodes. We
estimate that reducing both the inter-quad and intra-quad
redundancies in a specialized external data format will reduce
storage costs by ten fold. Further reductions are possible using
delta encodings of the polyline coordinates.

4. Results
The results of running our tc-DAG algorithm for several data
sets are shown in Figure 6. The first few images show Georgia
county borders. The border data consists of 389 polylines using
240K points. The terrain database consists of 50 km elevation
data for the world at large; 30 m elevation data for Georgia and
10 m data for downtown Atlanta. The software was run on a 1.5
GHz Pentium 4 with an NVidia Geforce 2 GTS graphics card.
With the polylines disabled the system renders 82 triangle
strips for the mesh with a total of 1820 vertices. The render
thread runs at 60 FPS while the LOD thread runs at 2.0 FPS.
When we enable the display of the polylines, another 407 OGL
primitives are rendered corresponding to the 389 polylines. (In
this scenario only a few polylines are evidently split across
triangle clippings). The vertex count increases to 241605
vertices. The renderer thread FPS drops to 45 and the LOD FPS
drops to 1.7. Depending on viewpoint for this dataset, the
render and LOD FPS vary in a range of 15-20% from these
values (assuming no loading of new data from disk). Of course
we expect improved performance with a more recent graphics
card. Figure 6 also contains zoomed in views that show the
polyline following the 3D terrain. Figure 6 then illustrates other
vector data--North and South Korea with borders outlined with
polylines. We have also run the algorithm on polyline street
data for Atlanta.

Polylines
Enabled

Render
FPS

LOD
FPS

OGL
Primitives

OGL
Vertices

 YES 45 1.7 489 241605
 NO 60 2.0 82 1820

Table 1: Comparison of run-time statistics for top image in
Figure 6.

5. Conclusions and Future Work
This paper presented the tc-DAG data structure and its render-
time algorithm. These are key components for combining the
display of polyline vector data and global 3D terrain. We
showed and discussed results of our multi-resolution
implementation and showed interactive rendering. We are
developing a space-efficient external storage format and
improving the balance between the preprocessing-time and
data-paging-time computations. Additionally, the tc-DAG
structure is ripe for the addition of a BLG-tree adaptation for
multi-resolution polylines.

Acknowledgements

This work is supported by the Department of Defense's
MURI program, administered by the Army Research Office.

References

1. Albert.H.J. Christensen, Line generalization by waterlining
and medial-axis transformation. Successes and issues in an
implementation of Perkal's Proposal, Cartographic Journal
37, no.1 (2000) p. 19-28.

2. Davis, Douglass, T.Y Jiang, William Ribarsky, and
Nickolas Faust. "Intent, Perception, and Out-of-Core

220

Wartell et al. / Rendering Vector Data over Global, Multi-resolution 3D Terrain

© The Eurographics Association 2003.

Visualization Applied to Terrain," Report GIT-GVU-98-
12, pp. 455-458, IEEE Visualization '98.

3. Nickolas Faust, William Ribarsky, T.Y. Jiang, and Tony
Wasilewski, “Real-Time Global Data Model for the Digital
Earth,” Proceedings of the INTERNATIONAL
CONFERENCE ON DISCRETE GLOBAL GRIDS
(2000).

4. IMAGINE VirtualGIS V8.3, Tour Guide, ERDAS Inc.,
Atlanta GA, 1997.

5. Hugues Hoppe, Smooth View-Dependent Level-of-Detail
Control and its Application to Terrain Rendering. Proc.
IEEE Visualization ‘98, pp. 35-42 (1998).

6. T.Y. Jiang, William Ribarsky, Tony Wasilewski, Nickolas
Faust, Brendan Hannigan, and Mitchell Parry. Acquisition
and Display of Real-Time Atmospheric Data on Terrain.
Proceedings of Eurographics-IEEE Visualization
Symposium, pp. 15-24, 2001.

7. Peter Lindstrom, David Koller, Larry Hodges, Bill
Ribarsky, Nick Faust, and Gregory Turner, "Real-Time,
Continuous Level of Detail Rendering of Height Fields,",
Proceedings of SIGGRAPH '96, pp. 109-118 (1996).

8. Peter Lindstrom, David Koller, William Ribarsky, Larry F.
Hodges, Augusto Op den Bosch, and Nick Faust, “An
Integrated Global GIS and Visual Simulation
System”.GVU Technical Report GIT-GVU-97-07,
Graphics, Visualization and Usability Center, Georgia
Institute of Technology, March 1997.

9. Peter Lindstrom and Valerio Pascucci, Terrain
Simplification Simplified: A General Framework for
View-Dependent Out-of-Core Visualization., IEEE
Transactions on Visualization and Computer Graphics,
8(3), pp. 239-254, July-September 2002.

10. Paul A. Longley, Michael F. Goodchild, David J. Maguire,
David W. Rhind, Geographical Information Systems:
Volume 1: Principle and Technical Issues, John Wiley &
Sons, Inc., New York 1999.

11. Maling, D.H., Coordinate Systems and Map Projections,
George Philop and Son Limited. London. 1973.

12. Robert Brainerd McMaster, Automated Line
Generalization, Cartographica, 24/2: 74-11, 1997.

13. Peter van Oosterom. 'The Reactive-tree: A Storage
Structure for a Seamless, Scaleless Geographic Database'.
In proceedings Auto-Carto 10, Baltimore, Maryland, pages
393-407, March 1991.

14. Hugh S. Roblin, “Map Projections”, Edward Arnold LTD.
1969.

15. Mason Woo, Jackie Neider and Tom Davis, OpenGL
Program Guide, Addison-Wesley Developers Press,
Reading, Massachusetts, 1997.

221

Wartell et al. / Rendering Vector Data over Global, Multi-resolution 3D Terrain

© The Eurographics Association 2003.

Figure 4: Triangle Clippings of a single segment quad
clipping assuming a 9x9 vertex quad.

Figure 5: A-E illustrate the partial construction of a BLG-
tree. The trees in B-E show all nodes added at successive tree
levels. The polyline to the right of each tree illustrates the
polyline geometry related to the newest tree node. Dashed lines
are the spanning line segment being refined. Thick lines are the
polyline refinement.

Figure 6: Georgia County Borders (240K points) and North &
South Korea borders (10K points).

(1,6),2

(1,2) (2,6)

Segment
endpoints

Vertex
Used to

Split segment

(1,6),2

(1,2) (2,6)

Segment
endpoints

Vertex
Used to

Split segment

1

2

3

4

5

6

1

2

3

4

5

6

(1,6),2

(1,2) (2,6),5

(2,5) (5,6)

(1,6),2

(1,2) (2,6),5

(2,5) (5,6)

1

2

3

4

5

6

1

2

3

4

5

6

(1,6),2

(1,2) (2,6),5

(2,5),4 (5,6)

(2,4) (4,5)

(1,6),2

(1,2) (2,6),5

(2,5),4 (5,6)

(2,4) (4,5)

1

2

3

4

5

6

1

2

3

4

5

6 (1,6),2

(1,2) (2,6),5

(2,5),5 (5,6)

(2,4),3 (4,5)

(2,3) (3,4)

(1,6),2

(1,2) (2,6),5

(2,5),5 (5,6)

(2,4),3 (4,5)

(2,3) (3,4)

1

2

3

4

5

1

2

3

4

66

5

B C

D E

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6A

(1,6),2

(1,2) (2,6)

Segment
endpoints

Vertex
Used to

Split segment

(1,6),2

(1,2) (2,6)

Segment
endpoints

Vertex
Used to

Split segment

(1,6),2

(1,2) (2,6)

Segment
endpoints

Vertex
Used to

Split segment

(1,6),2

(1,2) (2,6)

Segment
endpoints

Vertex
Used to

Split segment

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

(1,6),2

(1,2) (2,6),5

(2,5) (5,6)

(1,6),2

(1,2) (2,6),5

(2,5) (5,6)

(1,6),2

(1,2) (2,6),5

(2,5) (5,6)

(1,6),2

(1,2) (2,6),5

(2,5) (5,6)

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

(1,6),2

(1,2) (2,6),5

(2,5),4 (5,6)

(2,4) (4,5)

(1,6),2

(1,2) (2,6),5

(2,5),4 (5,6)

(2,4) (4,5)

(1,6),2

(1,2) (2,6),5

(2,5),4 (5,6)

(2,4) (4,5)

(1,6),2

(1,2) (2,6),5

(2,5),4 (5,6)

(2,4) (4,5)

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 (1,6),2

(1,2) (2,6),5

(2,5),5 (5,6)

(2,4),3 (4,5)

(2,3) (3,4)

(1,6),2

(1,2) (2,6),5

(2,5),5 (5,6)

(2,4),3 (4,5)

(2,3) (3,4)

(1,6),2

(1,2) (2,6),5

(2,5),5 (5,6)

(2,4),3 (4,5)

(2,3) (3,4)

(1,6),2

(1,2) (2,6),5

(2,5),5 (5,6)

(2,4),3 (4,5)

(2,3) (3,4)

1

2

3

4

5

1

2

3

4

66

5

1

2

3

4

5

1

2

3

4

66

5

B C

D E

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6A

222

