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Efficient Monte Carlo and Quasi-Monte Carlo
Rendering Techniques

Alexander Keller, Thomas Kollig, Mateu Sbert, László Szirmay-Kalos

Abstract
The tutorial reviews advanced soft- and hardware rendering techniques that are based on Monte Carlo, quasi-
Monte Carlo, and randomized quasi-Monte Carlo methods. The morning session explains the basic theoretical
concepts along with the practical algorithmic aspects of Monte Carlo, quasi-Monte Carlo and randomized quasi-
Monte Carlo integration. We also focus on error reduction techniques emphasizing importance, correlated, and
Metropolis sampling. After reviewing the equations of image synthesis and global illumination in the continuous
and discrete setting, the afternoon session is devoted to the practical application of the aforementioned sampling
techniques in rendering algorithms. The tutorial presents the advanced tricks of gathering, shooting, and bidirec-
tional random walk methods, and a strikingly simple implementation of the Metropolis light transport algorithm.
Concerning improved efficiency, techniques based on reusing light paths are presented including applications like
e.g. instant radiosity and photon mapping. The tutorial is completed by production quality quasi-Monte Carlo
rendering techniques for anti-aliasing, parallelization, deterministic RenderMan, distribution ray tracing, and
interactive global illumination. A basic understanding of rendering terms, equations, and techniques is assumed.

1. Lecturers

Alexander Keller, University of Ulm

Alexander Keller is a professor in computer graphics at the
University of Ulm, Germany. He received his Ph.D. with dis-
tinction in 1997 at the University of Kaiserslautern. Based on
this work he designed and developed the quasi-Monte Carlo
techniques behind the rendering software mental ray which
is the backend renderer of Maya, 3d Studio Max, CATIA,
and many others. Due to its superior performance this ren-
dering software received a technical achievement award in
2003. Alexander Keller is continuously publishing and de-
veloping highly efficient quasi-Monte Carlo rendering tech-
niques for almost 10 years now. He had been invited to the
CalTech, the ETH Zürich, and the Saarland University for
giving courses on his quasi-Monte Carlo techniques.

Contact:

Abt. Medieninformatik, Geb. O27/338
Universität Ulm
D-89069 Ulm, Germany

keller@informatik.uni-ulm.de
medien.informatik.uni-ulm.de/∼keller

Thomas Kollig, University of Kaiserslautern

Thomas Kollig is an expert in Monte Carlo and quasi-Monte
Carlo integration. Following several successful international
publications, his Ph.D. thesis on randomized quasi-Monte
Carlo methods for photorealistic image synthesis is close to
submission.

Contact:

Fachbereich Informatik, Geb. 36/208
Universität Kaiserslautern
D-67653 Kaiserslautern, Germany

kollig@informatik.uni-kl.de
www.uni-kl.de/AG-Heinrich/Thomas.html

Mateu Sbert, University of Girona

Mateu Sbert is an associate professor in computer science
at the University of Girona. He received a M.Sc. in theoret-
ical physics (1977) at the University of Valencia, a M.Sc.
in mathematics (statistics and operations research, 1983) at
U.N.E.D. University (Madrid) and his Ph.D. in computer
science at the U.P.C. (Universitat Politecnica de Catalunya,
1997, Best Ph.D. Award). Mateu Sbert’s research interests
include the application of Monte Carlo, integral geometry
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and information theory techniques to radiosity, global illu-
mination and image based rendering. He has authored or
co-authored about 60 papers in his areas of research and
served as a member of program committee in several Span-
ish and international conferences. Mateu Sbert co-organized
the 2001 Dagstuhl Seminar No. 01242, entitled "Stochastic
Methods in Rendering".

Contact:

Campus Montilivi-Edifici
University of Girona
PIV 17071 Girona, Spain

mateu@ima.udg.es
ima.udg.es/∼mateu

László Szirmay-Kalos, Budapest University of
Technology

László Szirmay-Kalos is the head of the computer graphics
group at the Faculty of Electrical Engineering and Informa-
tion Technology at the Budapest University of Technology
and Economics. He received his Ph.D. in 1992 and full pro-
fessorship in 2001 in computer graphics. His research area
is Monte-Carlo global illumination algorithms and he pub-
lished more than a hundred papers.

Contact:

Magyar Tudósok krt. 2.
Budapest University of Technology
Budapest, H-1117, Hungary

szirmay@iit.bme.hu
www.iit.bme.hu/∼szirmay

2. Syllabus

9.30 - 11.00Part I

Introduction (Szirmay-Kalos) Why you should use
Monte-Carlo and quasi-Monte Carlo integration in
your renderer

Monte Carlo integration (Sbert) Variance Reduction:
importance sampling, partial analytic integration, cor-
related sampling, weighted sampling, multiple impor-
tance sampling

Quasi-Monte Carlo integration (Keller) Discrepancy
and discrete density approximation, algorithms for
low discrepancy sampling points, structure of low
discrepancy sampling points

11.00 - 11.30Coffee break
11.30 - 13.00Part II

Randomized quasi-Monte Carlo integration (Keller)
Randomized low discrepancy sampling

Efficient multidimensional sampling (Kollig)
Metropolis sampling (Szirmay-Kalos)

Random walks in the radiosity context (Sbert)

13.00 - 14.30Lunch break
14.30 - 16.00Part III

Multipath algorithms (Sbert) A random walk approach
with global lines

Random walks (Szirmay-Kalos) The general setting,
the art of path building and reuse: distributed ray-
tracing, path tracing, light tracing, bi-directional path
tracing, photon map, instant radiosity, virtual light
sources, resuing path, discontinuity buffer, Metropolis
light transport

Stochastic iteration algorithms (Szirmay-Kalos)

16.30 - 18.00Part IV

Bidirectional path tracing (Kollig) Efficiency from
randomized low discrepancy sampling

Quasi-Monte Carlo rendering techniques (Keller)
Interleaved sampling and parallelization, efficient
volume rendering, strictly deterministic sampling
in RenderMan, strictly deterministic path and
distribution ray tracing, interactive global illumination
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Monte Carlo and Beyond

Course Notes

Alexander Keller

keller@informatik.uni-ulm.de

U
N

I V E R S I T Ä T
U L M

·
S

C
IE

N
D

O

·
DOCENDO

·C
U

R
A

N
D

O
·

This course was first held at the Caltech July 30th through August 3rd, 2001.

Early 2002 it was held at the ETH Zürich.



’For every randomized algorithm, there is a clever deterministic one.’

Harald Niederreiter, Claremont, 1998.



’For every randomized algorithm, there is a clever deterministic one.’

Harald Niederreiter, Claremont, 1998.

– no real random on classical deterministic computers

– real random by measuring quantum registers
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• MC: Monte Carlo

– random sampling

• QMC: Quasi-Monte Carlo integration

– low-discrepancy sampling by deterministic nets, sequences, and lattices

• RQMC = MC: Monte Carlo extensions of quasi-Monte Carlo

– random field synthesis on good lattice points

– randomized quasi-Monte Carlo integration

• DRQMC = QMC: Derandomized randomized quasi-Monte Carlo integration
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Applications in Computer Graphics
• MC: Industry standard RenderMan by PIXAR

– stratified random sampling

• QMC: Derandomized RenderMan

– new graphics hardware

• RQMC: Ocean wave synthesis

– discrete Fourier transform independent of dimension

RQMC: Error estimation for bidirectional path tracing

– simpler algorithms

• DRQMC: Industry standard mental ray by mental images

– deterministic correlated low discrepancy sampling

– fastest performance
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Reengineering the Classics of Computer Graphics

• Uncorrelated sampling

– correlated sampling more efficient

• Uniformity is sufficient

– low-discrepancy sampling more efficient

• Either stratification or Latin hypercube sampling

– you can have both and even more...

• One dimensional stratified Monte Carlo integration

– Cranley-Patterson rotations more efficient

• Antialiasing only by random sampling

– deterministic low-discrepancy sampling more efficient



Monte Carlo and Beyond

• Principles of rendering algorithms

• Monte Carlo integration

• Quasi-Monte Carlo points

• Quasi-Monte Carlo integration

• Monte Carlo extensions of quasi-Monte Carlo

• Application to computer graphics
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Scene Geometry

• Scene surface ∂V := ∪Ki=1Si

– Si surface primitive, e.g. triangle

• Scene V := BoundingBox(∂V )

• Set Ω of all unit directions ω

– surface of a unit sphere

• Surface normal n̂ : ∂V → Ω

• Ray (x, ω) ∈ V ×Ω

• Hitpoint h : V ×Ω → ∂V ∪ {∞}
– first surface point hit, when shooting a ray from x into direction ω



Interaction of Light and Matter

• Bidirectional scattering distribution function fs(ωi, x, ω) : Ω× ∂V ×Ω → R+
0

– may depend on wavelength

– Helmholtz reciprocity principle fs(ωi, x, ω) = fs(ω, x, ωi)
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• Bidirectional scattering distribution function fs(ωi, x, ω) : Ω× ∂V ×Ω → R+
0

– may depend on wavelength

– Helmholtz reciprocity principle fs(ωi, x, ω) = fs(ω, x, ωi)
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• Scattered radiance

Ls(x, ω) =
∫
Ω
fs(ωi, x, ω)Li(x, ωi)|n̂(x) · ωi|dωi

=
∫
Ω
fs(ωi, x, ω)Li(x, ωi) cos θidωi

• Integral operator shorthand

Ls = TfsLi
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Vacuum Radiance Transport

• Emitted radiance Le(x, ω) : ∂V ×Ω → R+
0

• Looking for L(x, ω) : V ×Ω → R+
0

– usually in RGB color space

– in vacuum L(x, ω) = L(h(x,−ω), ω)

⇒ sufficient to consider radiance for x ∈ ∂V
L(x, ω) = Le(x, ω) + Ls(x, ω)

Li(x, ωi) = L(h(x, ωi),−ωi)
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Vacuum Radiance Transport

• Emitted radiance Le(x, ω) : ∂V ×Ω → R+
0

• Looking for L(x, ω) : V ×Ω → R+
0

– usually in RGB color space

– in vacuum L(x, ω) = L(h(x,−ω), ω)

⇒ sufficient to consider radiance for x ∈ ∂V
L(x, ω) = Le(x, ω) + Ls(x, ω)

Li(x, ωi) = L(h(x, ωi),−ωi)
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• Radiance integral equation

L(x, ω) = Le(x, ω) +
∫
Ω
fs(ωi, x, ω)L(h(x, ωi),−ωi)cos θidωi

L = Le + TfsL



Vacuum Radiance Transport

• Emitted radiance Le(x, ω) : ∂V ×Ω → R+
0

• Looking for L(x, ω) : V ×Ω → R+
0

– usually in RGB color space

– in vacuum L(x, ω) = L(h(x,−ω), ω)

⇒ sufficient to consider radiance for x ∈ ∂V
L(x, ω) = Le(x, ω) + Ls(x, ω)

Li(x, ωi) = L(h(x, ωi),−ωi)
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• Radiance integral equation

L(x, ω) = Le(x, ω) +
∫
Ω
fs(ωi, x, ω)L(h(x, ωi),−ωi)cos θidωi

L = Le + TfsL

• Neumann series, convergent if ‖Tαfs‖ < 1

L = Le + TfsLe + T2
fsLe + · · ·

=
∞∑
i=0

T ifsLe =: (I − Tfs)
−1Le



Image Synthesis

• Flux responsivity W : V ×Ω → R

• Measurement∫
V

∫
Ω
W (x, ω)L(x, ω)dωdx =: 〈W,L〉

= 〈W, (I − Tfs)
−1Le〉



Image Synthesis

• Flux responsivity W : V ×Ω → R

• Measurement∫
V

∫
Ω
W (x, ω)L(x, ω)dωdx =: 〈W,L〉

= 〈W, (I − Tfs)
−1Le〉

• Example: Pixelsensors Wm,n of a pinhole camera

– detects average radiance passing through a pixel



The Global Illumination Problem in Vacuum

• Given the

– scene surface ∂V ,

– scattering properties fs,

– radiance emission Le, and

– a sensor W

• compute

〈W, (I − Tfs)
−1Le〉

⇒ the global illumination problem is reduced to an integration problem



Principles of Rendering Algorithms

• Pipeline: Transformation, opt. cull, shade, clip, rasterize with Z-buffer

– Rasterization hardware

∗ e.g. nVidea, ATI, Matrox
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Principles of Rendering Algorithms

• Pipeline: Transformation, opt. cull, shade, clip, rasterize with Z-buffer

– Rasterization hardware

∗ e.g. nVidea, ATI, Matrox

• Pipeline: Split, cull, dice, shade micro-polygons, cull, cast rays with Z-buffer

– RenderMan (REYES) ray caster

∗ PIXAR, California

• Pipeline: Trace ray by culling, shade, recurse ⇒ no streaming

– Entropy (BMRT, Torro) ray tracer with analytic anti-aliasing

∗ Exluna, California

– mental ray

∗ mental images, Berlin



The Pinhole Camera: Camera Obscura

• Central projection onto image plane



Ray Tracing

• Image: Matrix of pixels

– Pix-el = Pict ure Element

• 1980: Turner Whitted: An Improved Illumination Model for Shaded Display.

• Trace ray from center of pixel through focal point into the scene



A simple Ray Tracing Program: Sampling

#include ”Graphics.h”

int main(int Parameters, char **Parameter)
{

Image* Picture;
Color Sample;
Color SumOfSamples;

Initialize(Parameters, Parameter);
Picture = new Image(SizeX, SizeY);

for (int x = 0; x < SizeX; x++)
for (int y = 0; y < SizeY; y++)
{

Sample = Shade(x + 0.5, y + 0.5);
Picture →Pixel(x, y) = Sample;

}

SaveImage(Picture);

return 0;
}



Observation: Aliasing

• The image contains jaggies.



Anti-Aliasing by Supersampling

• In fact the pixel is an area, not a point !

⇒ pixel color is average not a single sample

pixel color =
1

|P |

∫
P
L(x)dx ≈

1

N

N∑
i=1

L(xi)



Anti-Aliasing by Supersampling

• In fact the pixel is an area, not a point !

⇒ pixel color is average not a single sample

pixel color =
1

|P |

∫
P
L(x)dx ≈

1

N

N∑
i=1

L(xi)

• Multiple samples instead of only pixel center

axis-aligned, regular grid



Supersampling
...
for (int x = 0; x < SizeX; x++)

for (int y = 0; y < SizeY; y++)
{

SumOfSamples = Black;

for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
{

Sample = Shade(x + ((double) i + 0.5) / 3.0, y + ((double) j + 0.5) / 3.0);
SumOfSamples = SumOfSamples + Sample;

}

Picture →Pixel(x, y) = SumOfSamples / 9;
}

...



Observation 1: Reduced Aliasing



Observation 2: Still Aliasing

• since the 9 points can behave like only 3



Introducing Randomness

• Jittering
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Introducing Randomness

• Jittering

→

⇒ use random numbers

• Estimation by throwing the dice is superior !

⇒ Monte Carlo algorithms



Stochastic Supersampling
...
for (int x = 0; x < SizeX; x++)

for (int y = 0; y < SizeY; y++)
{

SumOfSamples = Black;

for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
{

Sample = Shade(x + ((double) i + drand48() ) / 3.0,
y + ((double) j + drand48() ) / 3.0);

SumOfSamples = SumOfSamples + Sample;
}

Picture →Pixel(x, y) = SumOfSamples / 9;
}

...



Antialiasing by Stochastic Supersampling

• Noise instead of aliasing



Monte Carlo and Beyond

• Principles of rendering algorithms

• Monte Carlo integration

– Simulation of random variables and fields

– Monte Carlo integration

– Method of dependent tests

– Multilevel method of dependent tests

– Dependent sampling

– Replication heuristics

– Regularization of the samples

• Quasi-Monte Carlo points

• Quasi-Monte Carlo integration

• Monte Carlo extensions of quasi-Monte Carlo

• Application to computer graphics



Probability Spaces, Random Variables and Random Fields

• Definition: A probability space is given by a set Ω = {ω1, ω2, . . .} of elementary
events ωi, where each elementary event is assigned a probability with

0 ≤ Prob (ωi) ≤ 1 and
∑
ω∈Ω

Prob (ω) = 1.

E ⊆ Ω is called event with

Prob (E) =
∑
ω∈E

Prob (ω).
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Probability Spaces, Random Variables and Random Fields

• Definition: A probability space is given by a set Ω = {ω1, ω2, . . .} of elementary
events ωi, where each elementary event is assigned a probability with

0 ≤ Prob (ωi) ≤ 1 and
∑
ω∈Ω

Prob (ω) = 1.

E ⊆ Ω is called event with

Prob (E) =
∑
ω∈E

Prob (ω).

• Definition: Given a probability space on the set of elementary events Ω, a mapping

X : Ω → R
ω 7→ Xω

is called a random variable . Xω is called a realization .

• Definition: A random field (also called random function )

X : Ω → C(s, d)

ω 7→ Xω

maps the space of elementary events Ω into the space of continuous functionsC(s, d).

If s = 1 the random fields can be called random process .



Discrete Random Variables

• Definition: If the probability space Ω is finite or countable, the random variable X is
discrete .

PX : R → [0,1]

x 7→ Prob (X ≤ x) =
∑
x′≤x

Prob (X = x′)

is called cumulative distribution function (cdf) of the random variable X.



Continuous Random Variables

• Definition: A continuous random variable X and its underlying (real) probability
space are defined by an integrable density function

pX : R → R+
0

with the property
∫
R pX(x)dx = 1. A set A ⊆ R that can be built by the union A =

∪kIk of countably many pair-wise disjoint intervals of arbitrary kind (open, closed,
half-open, one-sided infinite) is called event . X takes a value from A with

Prob (A) =
∫
A
pX(x)dx =

∑
k

∫
Ik
pX(x)dx.

The cumulative distribution function (cdf) is

PX(x) = Prob (X ≤ x) = Prob ({t ∈ R|t ≤ x}) =
∫ x
−∞

pX(t)dt.



• Properties of the cumulative distribution function

– monotonicity and continuity

– limx→−∞ PX(x) = 0
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• Properties of the cumulative distribution function

– monotonicity and continuity

– limx→−∞ PX(x) = 0

– limx→∞ PX(x) = 1

• Corollary: Any differentiable function P that fulfills the above properties can be as-
signed a probability density function by

p = P ′(x).
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Uniform Distribution U on [0,1)s

• Probability density function

pU(x) =

1 x ∈ [0,1)s

0 else

• Requirements for simulation, i.e. realization

– fast, deterministic algorithms

– mimic independence

⇒ pseudo-random numbers

• Example: Linear congruential generators (starting value z0)

zi+1 = (azi + c) mod m ∈ {0, . . . ,m− 1}

ξi+1 =
zi+1

m
– discrete subset of [0,1)

– finite period

– choice of a, c,m crucial for good statistical properties

– parallelization difficult



The Inversion Method

• Given a density p(x) > 0 on [0,1] generate samples y that are p-distributed

• Determine

x = P (y) =

∫ y
0 p(τ)dτ∫ 1
0 p(τ)dτ

∈ [0,1]

and use

yi = P−1(xi)

if P is invertible.



The Multidimensional Inversion Method

• For p(x) > 0 for x ∈ Is and
∫
Is p(x)dx <∞ realize p-distributed samples

P−1(x) := (y(1), . . . , y(s)) = y

from x ∼ U by successively determining

y(1) using x(1) = F1(y
(1)) ,

y(2) using x(2) = F2(y
(1), y(2))

...

using the bijections

Fj(t1, . . . , tj) :=

∫ tj
0
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0 · · ·

∫ 1
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0
∫ 1
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∫ 1
0 p(t1, . . . , tj−1, τj, . . . , τs)dτj · · · dτs
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The Multidimensional Inversion Method

• For p(x) > 0 for x ∈ Is and
∫
Is p(x)dx <∞ realize p-distributed samples

P−1(x) := (y(1), . . . , y(s)) = y

from x ∼ U by successively determining

y(1) using x(1) = F1(y
(1)) ,

y(2) using x(2) = F2(y
(1), y(2))

...

using the bijections

Fj(t1, . . . , tj) :=

∫ tj
0
∫ 1
0 · · ·

∫ 1
0 p(t1, . . . , tj−1, τj, . . . , τs)dτj · · · dτs∫ 1

0
∫ 1
0 · · ·

∫ 1
0 p(t1, . . . , tj−1, τj, . . . , τs)dτj · · · dτs

• If p(x) =
∏s
j=1 p

(j)(x(j))

Fj(tj) =

∫ tj
0 p(j)(τ)dτ∫ 1
0 p

(j)(τ)dτ

• Note: P−1 not unique, since there exist many mappings of the unit cube onto itself



Composition Method

• Simulation of composite probability density functions

p(x) =
K∑
i=1

wipi(x) wi ∈ R+,
K∑
i=1

wi = 1

1. fix index i using ξ ∼ U

i−1∑
j=1

wj ≤ ξ <
i∑

j=1

wj,

i.e. simulate a discrete random variable with Prob (ωi) = wi

2. efficiently simulate pi by

ξ −
∑i−1
j=1wj

wi
∈ I

using only one random number



Composition Method

• Simulation of composite probability density functions

p(x) =
K∑
i=1

wipi(x) wi ∈ R+,
K∑
i=1

wi = 1

1. fix index i using ξ ∼ U

i−1∑
j=1

wj ≤ ξ <
i∑

j=1

wj,

i.e. simulate a discrete random variable with Prob (ωi) = wi

2. efficiently simulate pi by

ξ −
∑i−1
j=1wj

wi
∈ I

using only one random number

• Note: The composition method can raise variance.

• Applications: Russian Roulette, stochastic evaluation of sums



Selection Methods

• Neumann rejection method, if ‖p‖∞ < b <∞
– Choose two independent realizations of uniform random numbers ξ, ζ ∼ U
– If p(ξ) > bζ take ξ as a sample

– else reject ξ and try again

• Efficiency depends on graph of p



Selection Methods

• Neumann rejection method, if ‖p‖∞ < b <∞
– Choose two independent realizations of uniform random numbers ξ, ζ ∼ U
– If p(ξ) > bζ take ξ as a sample

– else reject ξ and try again

• Efficiency depends on graph of p

• Generalized Neumann rejection method

– density separable, i.e. p(x) = p1(x
(1)) · p2(x(2))

– multidimensional inversion method on invertible part p2
– Neumann rejection method on p1



Selection Methods

• Neumann rejection method, if ‖p‖∞ < b <∞
– Choose two independent realizations of uniform random numbers ξ, ζ ∼ U
– If p(ξ) > bζ take ξ as a sample

– else reject ξ and try again

• Efficiency depends on graph of p

• Generalized Neumann rejection method

– density separable, i.e. p(x) = p1(x
(1)) · p2(x(2))

– multidimensional inversion method on invertible part p2
– Neumann rejection method on p1

• Metropolis sampling algorithm

– construct Markov chain with desired density p as stationary density



Selection Methods

• Neumann rejection method, if ‖p‖∞ < b <∞
– Choose two independent realizations of uniform random numbers ξ, ζ ∼ U
– If p(ξ) > bζ take ξ as a sample

– else reject ξ and try again

• Efficiency depends on graph of p

• Generalized Neumann rejection method

– density separable, i.e. p(x) = p1(x
(1)) · p2(x(2))

– multidimensional inversion method on invertible part p2
– Neumann rejection method on p1

• Metropolis sampling algorithm

– construct Markov chain with desired density p as stationary density

• Construction dimension , i.e. random numbers required for one realization

– now only finite expectation



Special Methods: Normal Distribution N (µ, σ)

• Probability density function

fN (µ,σ)(x) =
1√
2πσ

· e−
(x−µ)2

2σ2

– expectation µ

– variance σ2

• Trick: Simulate a pair (X,Y ) ∼ N (0,1)×N (0,1)

fN (0,1)(x) · fN (0,1)(y)dxdy =
1

2π
· e−

x2+y2

2 dxdy
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Special Methods: Normal Distribution N (µ, σ)

• Probability density function

fN (µ,σ)(x) =
1√
2πσ

· e−
(x−µ)2

2σ2

– expectation µ

– variance σ2

• Trick: Simulate a pair (X,Y ) ∼ N (0,1)×N (0,1)

fN (0,1)(x) · fN (0,1)(y)dxdy =
1

2π
· e−

x2+y2

2 dxdy =
1

2π
· e−

r2
2 rdrdφ

• Polar method (Box-Müller)

(X,Y ) =
√
−2 ln(1− ξ) · (cos 2πν, sin 2πν)

where ξ, ν ∼ U on [0,1)



Simulation of Periodic Random Fields

• Typical realization procedure of X : Ω → C(s, d)

1. Realize Gaussian noise on s-dimensional regular grid K

Nω(k) ∼ (N (0,1)× iN (0,1))d , k ∈ K

2. Shape noise by spectrum S of phenomenon

X̂ω(k) = S(k)Nω(k)

3. Band limited evaluation by fast Fourier transform for each dimension

Xω(x) =
∑

k∈K
X̂ω(k)e2πik

T ·x ∈ C(s, d)



Simulation of Periodic Random Fields

• Typical realization procedure of X : Ω → C(s, d)

1. Realize Gaussian noise on s-dimensional regular grid K

Nω(k) ∼ (N (0,1)× iN (0,1))d , k ∈ K

2. Shape noise by spectrum S of phenomenon

X̂ω(k) = S(k)Nω(k)

3. Band limited evaluation by fast Fourier transform for each dimension

Xω(x) =
∑

k∈K
X̂ω(k)e2πik

T ·x ∈ C(s, d)

• Standard tensor product approach is exponential in s = dimx = dimk

⇒ Curse of dimension



Curse of Dimension from Regular Grids

• Lattices of rank s with N = ns points from tensor product approach
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-

• O (ns logn) for s fast Fourier transforms



Curse of Dimension

• Theorem (Bakhvalov): Let CrM denote the set of functions on [0,1)s with r continu-
ous, bounded derivates, i.e.∣∣∣∣∣ ∂rf(x)

∂x
α1
1 · · · ∂xαss

∣∣∣∣∣ ≤M for f ∈ CrM

for all α1, . . . , αs, such that
∑s
i=1αi = r. Then there exists a function f ∈ CrM such

that the error of approximating the integral of f using anyN point quadrature rule with
weights wi and function values f(xi) is∣∣∣∣∣∣

∫
[0,1)s

f(x)dx−
N−1∑
i=0

wif(xi)

∣∣∣∣∣∣ > k ·N−rs

where the constant k > 0 depends on M and r.



Curse of Discontinuities

• Consider

f(x) =

1 if x < X∗

0 if x ≥ X∗

with xi =
i
n and xi 6= X∗. Then∣∣∣∣∣∣

∫ 1

0
f(x)dx−

1

n

n−1∑
i=0

f(xi)

∣∣∣∣∣∣ ∼ 1

n

• O
(
N−1

s

)
error for s dimensions



Information Based Complexity Theory

• Goal: Find ε-approximations to numerical problems
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Information Based Complexity Theory

• Goal: Find ε-approximations to numerical problems

– minimal cost algorithm for maximum error ε

• Problem statement: Deterministic numerical integration

– Global information

∗ function class: f ∈ CrM ([0,1]s)

– Local, partial information

∗ point sampling (standard information): f(x)

– Model of computation

∗ real number model

∗ scalar products as class of algorithms:
∑N(f)
i=1 wif(xi)

• Analysis of ε-complexity: O(N−rs)

– lower bound by abstract structures: Bakhvalov’s theorem

– upper bound by algorithm: Newton-Cotes quadrature formulas

⇒ matching bounds



Information Based Complexity Theory

• Goal: Find ε-approximations to numerical problems

– minimal cost algorithm for maximum error ε

• Problem statement: Stochastic numerical integration

– Global information

∗ function class: f ∈ L2 ([0,1]s)

– Local, partial information

∗ point sampling (standard information): f(x)

– Model of computation

∗ real number model

∗ scalar products as class of algorithms:
∑N(f)
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• Analysis of ε-complexity: O(N−1
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– lower bound by abstract structures

– upper bound by algorithm: Monte Carlo integration
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Information Based Complexity Theory

• Goal: Find ε-approximations to numerical problems

– minimal cost algorithm for maximum error ε

• Problem statement: Stochastic numerical integration

– Global information

∗ function class: f ∈ CrM ([0,1]s)

– Local, partial information

∗ point sampling (standard information): f(x)

– Model of computation

∗ real number model

∗ scalar products as class of algorithms:
∑N(f)
i=1 wif(xi)

• Analysis of ε-complexity: O(N−rs−
1
2)

– lower bound by abstract structures

– upper bound by algorithm: Monte Carlo with separation of the main part

⇒ matching bounds



Monte Carlo Integration
• Principle: Construct random variable with desired functional as expectation

• Numerical integration by random sampling

Prob


∣∣∣∣∣∣
∫
Is
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣ < 3σ(f)√
N


 ≈ 0.997 xi ∼ U
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• Simple, independent of dimension and smoothness, only f ∈ L2

• Problems

– Noise, slow convergence, difficult parallelization and reproducability

– No real random numbers



Monte Carlo Integration
• Principle: Construct random variable with desired functional as expectation

• Numerical integration by random sampling

Prob


∣∣∣∣∣∣
∫
Is
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣ < 3σ(f)√
N


 ≈ 0.997 xi ∼ U

• Simple, independent of dimension and smoothness, only f ∈ L2

• Problems

– Noise, slow convergence, difficult parallelization and reproducability

– No real random numbers

• Computational complexity

N · tS · σ2(f) = N · tS · E

∣∣∣∣∣∣
∫
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f(x)dx−

1

N

N−1∑
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Monte Carlo Integration
• Principle: Construct random variable with desired functional as expectation

• Numerical integration by random sampling

Prob


∣∣∣∣∣∣
∫
Is
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣ < 3σ(f)√
N


 ≈ 0.997 xi ∼ U

• Simple, independent of dimension and smoothness, only f ∈ L2

• Problems

– Noise, slow convergence, difficult parallelization and reproducability

– No real random numbers

• Computational complexity

N · tS · σ2(f) = N · tS · E

∣∣∣∣∣∣
∫
Is
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣
2

• Increase efficiency, not only variance reduction !!!

1

tS · σ2(f)
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Error Control

• Unbiased estimator Y

EY =
∫
Is
f(x)dx

• Bias of estimator Y

βY := EY −
∫
Is
f(x)dx

• Consistent estimator Y

Prob

 lim
N→∞

1

N

N−1∑
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yi =
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Error Control

• Unbiased estimator Y

EY =
∫
Is
f(x)dx

• Bias of estimator Y

βY := EY −
∫
Is
f(x)dx

• Consistent estimator Y

Prob

 lim
N→∞

1

N

N−1∑
i=0

yi =
∫
Is
f(x)dx

 = 1

• Error estimate of the estimate

σ2

 1

N

N−1∑
i=0

f(xi)

 ≈ 1

N − 1

N−1∑
i=0

(f(xi))
2 −

1

N

N−1∑
i=0

f(xi)

2


– adaptive sampling



Correlated Sampling: Separation of the Main Part

• Variance reduction by approximation, method of control variables

• Search g with

‖f − g‖∞ < τ ∈ R+

• Then∫
Is
f(x)dx =

∫
Is
g(x)dx︸ ︷︷ ︸

analytical

+
∫
Is
f(x)− g(x)dx︸ ︷︷ ︸
Monte Carlo
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Note: The independent evaluation would destroy the advantages of the method.

• Variance of Monte Carlo part

σ2(f − g) ≤
∫
Is
|f(x)− g(x)|2dx ≤ τ2



Correlated Sampling: Separation of the Main Part

• Variance reduction by approximation, method of control variables

• Search g with

‖f − g‖∞ < τ ∈ R+

• Then∫
Is
f(x)dx =

∫
Is
g(x)dx︸ ︷︷ ︸

analytical

+
∫
Is
f(x)− g(x)dx︸ ︷︷ ︸
Monte Carlo

≈
∫
Is
g(x)dx+

1

N

N−1∑
i=0

(f(xi)− g(xi))

Note: The independent evaluation would destroy the advantages of the method.

• Variance of Monte Carlo part

σ2(f − g) ≤
∫
Is
|f(x)− g(x)|2dx ≤ τ2

• Lower bound O
(
N−rs−

1
2

)
for f ∈ CrM ([0,1)s) obtained by Newton-Cotes methods



The Method of Dependent Tests
• Principle: Construct random field with desired function as expectation

• Method of dependent tests (parametric Monte Carlo integration)

g(y) :=
∫
Is
f(x, y)dx

≈
1

N

N−1∑
i=0

f(xi, y)

for integro-approximation problems
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≈
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The Method of Dependent Tests
• Principle: Construct random field with desired function as expectation

• Method of dependent tests (parametric Monte Carlo integration)

g(y) :=
∫
Is
f(x, y)dx

≈
1

N

N−1∑
i=0

f(xi, y)

for integro-approximation problems

• Computational complexity

N · tS · E

∥∥∥∥∥∥
∫
Is
f(x, y)dx−

1

N

N−1∑
i=0

f(xi, y)

∥∥∥∥∥∥
2

L2

• Note: One single set (xi)
N−1
i=0 ⊂ Is of i.i.d. random samples

⇒ exploit induced grid structure

• Examples

– accumulation buffer

– multilevel method of dependent tests



Hierarchical Function Representation
• Use multilevel function representation [Heinrich 1998]

Pmg = P0g+
m∑
l=1

[Pl − Pl−1]g

for an arbitrary sequence (Pl)
m
l=0 of interpolation operators

+λ2
1·

+

+

+

y

y

1

(P3g)(y)

=

1

Λ2
1(y)

Λ3
3(y)

Λ3
1(y)

Λ3
0(y)

Λ2
0(y)

Λ1
0(y)

1− y

=

=

=

=

+g2m·

g0·

λ1
0·

λ2
0·

λ3
0·

+λ3
1·

+λ3
2·

+λ3
3·

1
y

y

Λ3
2(y)

(P0g)(y)

([P3 − P2]g) (y)

([P2 − P1]g) (y)

([P1 − P0]g) (y)
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2m

• Method of dependent tests

Glk :=
1

Nl

Nl−1∑
i=0

f(xi, yk) with Nl := N ·
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• Compute approximation gi ≈ ĝi

– boundary g0 ≈ ĝ0 := G0
0 and g2m ≈ ĝ2m := G0

2m

– refinement

g(2k+1)2m−l =
g
k2m−(l−1) + g(k+1)2m−(l−1)

2︸ ︷︷ ︸
Predictor

+ λlk︸︷︷︸
Update



Multilevel Method of Dependent Tests

• Linear Lagrange interpolation of gk := g(yk) = (Pmg)(yk) in yk = k
2m

• Method of dependent tests

Glk :=
1

Nl

Nl−1∑
i=0

f(xi, yk) with Nl := N ·
2m + 1

2l + 1
· 2αl ·

2α − 1

2α(m+1) − 1

• Compute approximation gi ≈ ĝi

– boundary g0 ≈ ĝ0 := G0
0 and g2m ≈ ĝ2m := G0

2m

– refinement

g(2k+1)2m−l =
g
k2m−(l−1) + g(k+1)2m−(l−1)

2︸ ︷︷ ︸
Predictor

+ λlk︸︷︷︸
Update

≈ ĝ(2k+1)2m−l



Multilevel Method of Dependent Tests

• Linear Lagrange interpolation of gk := g(yk) = (Pmg)(yk) in yk = k
2m

• Method of dependent tests

Glk :=
1

Nl

Nl−1∑
i=0

f(xi, yk) with Nl := N ·
2m + 1

2l + 1
· 2αl ·

2α − 1

2α(m+1) − 1

• Compute approximation gi ≈ ĝi

– boundary g0 ≈ ĝ0 := G0
0 and g2m ≈ ĝ2m := G0

2m

– refinement

g(2k+1)2m−l =
g
k2m−(l−1) + g(k+1)2m−(l−1)

2︸ ︷︷ ︸
Predictor

+ λlk︸︷︷︸
Update

≈ ĝ(2k+1)2m−l :=
ĝ
k2m−(l−1) + ĝ(k+1)2m−(l−1)

2

+Gl(2k+1)2m−l −
Gl

(2k)2m−l
+Gl

(2k+2)2m−l

2︸ ︷︷ ︸
=:λ̃lk



Implementation

• In-place reconstruction

Finer levell

2k2m−l

ĝ(k+1)2m−(l−1)

Coarser levell − 1

ĝ(2k+1)2m−l

(2k+ 2)2m−l

ĝk2m−(l−1)

Gl
(2k+2)2m−l

Gl
(2k+1)2m−l

Gl
(2k)2m−l

λ̃lk

(2k+ 1)2m−l
k2m−(l−1) (k+ 1)2m−(l−1)
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Efficiency Issues

• Individual functionals

– same high variance

– same sampling rate, even if correlated

– converged samples

• One function

– small detail contribution if correlated

λ̃lk =
1

Nl

Nl−1∑
i=0

f(xi, y(2k+1)2m−l)−
f(xi, y(2k)2m−l) + f(xi, y(2k+2)2m−l)

2


– adapt sampling rate Nl to support size

⇒ reduced computational cost by exploiting correlation

• Localization heuristics

– range check

– predictor-corrector difference

– relative error

• With lifting scheme on arbitrary topology and boundaries
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• Integral transformation by introducing a probability density p

∫
Is
f(x)dx =

∫
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f(x)

p(x)

p(x)
dx =

∫
Is

f(y)

p(y)
dP (y) ≈

1

N

N−1∑
i=0

f(yi)

p(yi)
yi ∼ p

• Variance

σ2
(
f

p

)
=
∫
Is

f2(x)

p(x)
dx−
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Is
f(x)dx

)2

• Often f(x) = g(x)p(x)

∫
Is
f(x)dx =

∫
Is
g(x)p(x)dx =

∫
Is
g(y)dP (y) ≈

1

N

N−1∑
i=0

g(yi) yi ∼ p

• Often separating the main part is more efficient than importance sampling
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• Replication heuristic(
wj, Rj

)M−1

j=0

– weight functions wj(x) : Is → R, and

– mappings Rj(x) : Is → Is so that

∫
Is
f(x)dx =

∫
Is

M−1∑
j=0

wj(x)f(Rj(x))dx =
M−1∑
j=0

∫
Is
wj(x)f(Rj(x))dx

• Either independent integral estimation

M−1∑
j=0

∫
Is
wj(x)f(Rj(x))dx ≈

M−1∑
j=0

1

Nj

Nj−1∑
i=0

wj(xi,j)f(Rj(xi,j)),

or dependent, i.e. correlated sampling

∫
Is

M−1∑
j=0

wj(x)f(Rj(x))dx ≈
1

N

N−1∑
i=0

M−1∑
j=0

wj(xi)f(Rj(xi)),



Replication Heuristics: Multiple importance sampling

• Simple importance sampling can cause infinite variance

• For a set of techniques pj, i.e. Rj := P−1
j , the weights are

Heuristic independent sampling dependent sampling

Power (β ∈ R+) wj(x) :=
N
β
j p

β
j (x)∑M−1

k=0 N
β
k p

β
k(x)

· 1
pj(x)

wj(x) =
p
β
j (x)∑M−1

k=0 p
β
k(x)

· 1
pj(x)

Balance (β = 1) wj(x) :=
Nj∑M−1

k=0 Nkpk(x)
wj(x) = 1∑M−1

k=0 pk(x)

Uniform (β = 0) wj(x) :=
Nj

pj(x)
∑M−1
k=0 Nk

wj(x) = 1
Mpj(x)



Replication Heuristics: Multiple importance sampling

• Simple importance sampling can cause infinite variance

• For a set of techniques pj, i.e. Rj := P−1
j , the weights are

Heuristic independent sampling dependent sampling

Power (β ∈ R+) wj(x) :=
N
β
j p

β
j (x)∑M−1

k=0 N
β
k p

β
k(x)

· 1
pj(x)

wj(x) =
p
β
j (x)∑M−1

k=0 p
β
k(x)

· 1
pj(x)

Balance (β = 1) wj(x) :=
Nj∑M−1

k=0 Nkpk(x)
wj(x) = 1∑M−1

k=0 pk(x)

Uniform (β = 0) wj(x) :=
Nj

pj(x)
∑M−1
k=0 Nk

wj(x) = 1
Mpj(x)

• Problem of insufficient techniques
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• Partition of integration domain Is = ∪Kk=1Ak

• Monte Carlo integration on each of the disjoint strata Ak∫
Is
f(x)dx =

K∑
k=1

∫
Ak
f(x)dx ≈

K∑
k=1

λs(Ak)

Nk

Nk−1∑
i=0

f(xk,i)

• Variance reduction for standard choice Nk = λs(Ak)N

K∑
k=1

λs(Ak)

Nk

∫
Ak

(
f(y)−

1

λs(Ak)

∫
Ak
f(x)dx

)2

dy ≤
σ2(f)

N

⇒ at least as good as uniform random sampling

• λs(Ak) = 1
N yields

∫
Is
f(x)dx ≈

1

N

N−1∑
k=0

f(xk|Ak)

– Lloyd-relaxation

– jittered sampling



Stratification by Lloyd-Relaxation

• Algorithm (similar to vector quantization)

– Take N random initial points

– Loop: Move each point into the center of gravity of its Voronoi-cell

• Periodic boundary conditions

+ Fast convergence to regular patterns

⇒ Small number of relaxation steps yields blue-noise-samples

- Expensive iteration step

- No incremental sampling



Stratification by Lloyd-Relaxation

u

u

u

u

u

u
u

u
u

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

u

u

uu

u
u

u

u
u

u

u

u
u

u
u

u

u u

u

u

u

u
uu

u

u

u

u
u

u

u

u

u

u

u

u

u

u

u

u
u

u
u

u

u

u

u

u
u

u

u

u uu
u

u

u

u

u

u

u

u

u

u

u

uu

• Iteration 0



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

u

u

uu

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
u

u

u

u

u

u
u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u

u

u

u

u

u

uu

• Iteration 1



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u

u

u

uu

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u

u
u

u

u

u

u
u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u

u

u

u

u

u

u
u

• Iteration 2



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

uu

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u

u

u

u

u

u

u
u

• Iteration 3



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

uu

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u

u

u

u

u

u

u
u

• Iteration 4



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

uu

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 5



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

uu

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
u

u

u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 6



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

uu

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
u

u

u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 7



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
u

u

u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 8



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
u

u

u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u
uu

u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 9



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u
uu

u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 10



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 11



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u
u

u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 12



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u u
u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 13



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u u
u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 14



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u u
u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 15



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u u
u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

uu

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 16



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u u
u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

uu

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 17



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u u
u

u

u

u

u

u
u

uu

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

uu

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 18



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u u
u

u

u

u

u

u
u

u
u

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

uu

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 19



Stratification by Lloyd-Relaxation

u

u

u

u

u

u

u

u u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u u
u

u

u

u

u

u
u

u
u

u

u

u

u

u

u

u
uu

u
u

u

u

u

u

u

u

uu

u

u

u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u uu
u

u

u

u

u

u
u

u

u

u

u

u
u

• Iteration 20



Stratification: Jittered Sampling

• Division of each axis into Nj intervals for N =
∏s
j=1Nj

}
}

} }
} } }

}

} } }
}

} }
}

}

• Increased efficiency by increased uniformity of distribution

• Problem: N must be factorized



Latin Hypercube Sampling ( N -Rooks Sampling)

• Using s uniform random permutations σ(j)
N of size N yields

xi =

σ(1)
N (i) + ξ

(1)
i

N
, . . . ,

σ
(s)
N (i) + ξ

(s)
i

N


where σ(1)

N can be chosen as identity
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Latin Hypercube Sampling ( N -Rooks Sampling)

• Using s uniform random permutations σ(j)
N of size N yields

xi =

σ(1)
N (i) + ξ

(1)
i

N
, . . . ,

σ
(s)
N (i) + ξ

(s)
i

N


where σ(1)

N can be chosen as identity

}

}

}
}}

}

}}

}

}

}

}
}}

}

}

• Cannot be much worse than uniform random sampling

σ2(fLHS) ≤
N

N − 1
σ2(fMC)



Replication Heuristics: Stratification

• Heuristic with

– weights wj = λs(Aj), and

– mappings Rj : Is → Aj

• Independent sampling for Nj = λs(Aj)N

∫
Is
f(x)dx ≈

M−1∑
j=0

1

Nj

Nj−1∑
i=0

λs(Aj)f(Rj(xi,j)) =
1

N

M−1∑
j=0

Nj−1∑
i=0

f(Rj(xi,j))

• Dependent sampling

∫
Is
f(x)dx ≈

1

N

N−1∑
i=0

M−1∑
j=0

λs(Aj)f(Rj(xi))



Replication Heuristics: Regularization

• Antithetic variables∫
I
f(x)dx =

∫
I

1

2
f(x) +

1

2
f(1− x)dx ≈

1

2N

N−1∑
i=0

(f(xi) + f(1− xi))

– sample points doubled and symmetrized

– more efficient if variance reduced to less than half of original variance

– good for monotonic problems

– effect killed by independent sampling !



Replication Heuristics: Regularization

• Antithetic variables∫
I
f(x)dx =

∫
I

1

2
f(x) +

1

2
f(1− x)dx ≈

1

2N

N−1∑
i=0

(f(xi) + f(1− xi))

– sample points doubled and symmetrized

– more efficient if variance reduced to less than half of original variance

– good for monotonic problems

– effect killed by independent sampling !

• Combining stratification

fstrat(x) =
1

2

(
f

(
x

2

)
+ f

(
1−

x

2

))
and antithetic variables∫
I
fstrat, anti(x)dx ≈

1

4N

N−1∑
i=0

(
f

(
xi
2

)
+ f

(
1−

xi
2

)
+ f

(
1

2
+
xi
2

)
+ f

(
1

2
−
xi
2

))



Splitting

• Instead of∫
Is1

∫
Is2

f(x, y)dydx ≈
1

N

N−1∑
i=0

f(xi, yi)

computational complexity can be improved by

∫
Is1

∫
Is2

f(x, y)dydx ≈
1

NM

N−1∑
i=0

M−1∑
j=0

f(xi, yi,j)

• Low pass filtering of problematic dimensions of the integrand

– e.g. splitting for shadow rays



Replication Heuristics: Dependent Splitting

• Splitting considered as a replication heuristic restricted to selected dimensions∫
Is1

∫
Is2

f(x, y)dydx =
∫
Is1

∫
Is2

M−1∑
j=0

wj(x, y)f(x,Rj(x, y))dydx

≈
1

N

N−1∑
i=0

M−1∑
j=0

wj(xi, yi)f(xi, Rj(xi, yi))dydx

• Realize splitting much more efficiently by e.g.

– stratification heuristic (independent sampling)

– randomized quadratures (dependent sampling)



Summary

• Simulation of random variables and fields

• Monte Carlo integration

• Method of dependent tests

• Efficiency and time complexity

• Dependent sampling

• Replication



Summary

• Simulation of random variables and fields

• Monte Carlo integration

• Method of dependent tests

• Efficiency and time complexity

• Dependent sampling

• Replication

⇒ Use as few random numbers as possible



Monte Carlo and Beyond

• Principles of rendering algorithms

• Monte Carlo integration

• Quasi-Monte Carlo points

– Discrepancy

– Deterministic low discrepancy

∗ Halton and Hammersley points

∗ Scrambling

∗ (t,m, s)-nets and (t, s)-sequences

∗ Digital constructions

∗ Good lattice points

• Quasi-Monte Carlo integration

• Monte Carlo extensions of quasi-Monte Carlo

• Application to computer graphics



Discrepancy

• Definition: The discrepancy

D(PN ,A) := sup
A∈A

∣∣∣∣∣∣λs(A)−
1

N

N−1∑
i=0

χA(xi)

∣∣∣∣∣∣
is a measure of the uniform distribution of a given point set PN = {x0, . . . , xN−1}
with respect to non-empty families A of Lebesgue-measurable subsets of Is. χA is
the characteristic function of the set A.
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• Definition: The discrepancy

D(PN ,A) := sup
A∈A

∣∣∣∣∣∣λs(A)−
1

N

N−1∑
i=0

χA(xi)

∣∣∣∣∣∣
is a measure of the uniform distribution of a given point set PN = {x0, . . . , xN−1}
with respect to non-empty families A of Lebesgue-measurable subsets of Is. χA is
the characteristic function of the set A.

• D(PN ,A) ∼ worst case integration error

• (Star-) discrepancy

D∗(PN) := D

PN ,
A|A =

s∏
j=1

[0, aj) ⊂ Is




• Extreme discrepancy

D(PN) := D

PN ,
A|A =

s∏
j=1

[aj, bj) ⊂ Is


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Discrepancy

• Definition: The discrepancy

D(PN ,A) := sup
A∈A

∣∣∣∣∣∣λs(A)−
1

N

N−1∑
i=0

χA(xi)

∣∣∣∣∣∣
is a measure of the uniform distribution of a given point set PN = {x0, . . . , xN−1}
with respect to non-empty families A of Lebesgue-measurable subsets of Is. χA is
the characteristic function of the set A.

• D(PN ,A) ∼ worst case integration error

• (Star-) discrepancy

D∗(PN) := D

PN ,
A|A =

s∏
j=1

[0, aj) ⊂ Is




• Extreme discrepancy

D(PN) := D

PN ,
A|A =

s∏
j=1

[aj, bj) ⊂ Is




• The (Star-) discrepancy and extreme discrepancy are anisotropic measures



Discrepancy Bounds

• Case s = 1: Discrepancy is size of largest gap

D∗(PN) ≥
1

2N

D(PN) ≥
1

N

• General case

D∗(PN) ≥ Bs
log

s−1
2 N

N
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• Discrepancy of random points

D∗(P random
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
• Discrepancy of regular grids

D∗(PN) ∈ O
(

1
s
√
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Discrepancy Bounds

• Case s = 1: Discrepancy is size of largest gap

D∗(PN) ≥
1

2N

D(PN) ≥
1

N

• General case

D∗(PN) ≥ Bs
log

s−1
2 N

N

• Discrepancy of random points

D∗(P random
N ) ∈ O

√log logN

N


• Discrepancy of regular grids

D∗(PN) ∈ O
(

1
s
√
N

)
– includes points taken from space filling curves like e.g. the Hilbert curve



Uniform and Completely Uniform Distribution

• By the theory of uniform distribution

(xi) is uniformly distributed in Is

⇔ limN→∞D(PN) = 0

⇔ limN→∞D∗(PN) = 0



Uniform and Completely Uniform Distribution

• By the theory of uniform distribution

(xi) is uniformly distributed in Is

⇔ limN→∞D(PN) = 0

⇔ limN→∞D∗(PN) = 0

• Definition: A sequence (xi) of numbers in I is completely uniformly distributed
if for every s ∈ N the sequence of points (xn, xn+1, . . . , xn+s−1) is uniformly dis-
tributed in Is for n ∈ N0.

• Formalization of independence
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• Low discrepancy means

D∗(PN) ∈ O
(
logsN

N
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Quasi-Monte Carlo Point Sets

• Low discrepancy means

D∗(PN) ∈ O
(
logsN

N

)
• Low discrepancy sequences cannot be completely uniformly distributed

• Quasi-Monte Carlo points means

– low discrepancy and

– deterministic points

⇒ Discrete density approximation of uniform distribution U



Halton Sequence and Hammersley Points

• Radical inverse (van der Corput sequence) in base b

i =
∞∑
j=0

aj(i)b
j 7→ Φb(i) :=

∞∑
j=0

aj(i)b
−j−1
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Halton Sequence and Hammersley Points

• Radical inverse (van der Corput sequence) in base b

i =
∞∑
j=0

aj(i)b
j 7→ Φb(i) :=

∞∑
j=0

aj(i)b
−j−1

Note: The radical inverses are not completely uniform distributed !!!

• Halton sequence xi :=
(
Φb1(i), . . . ,Φbs(i)

)
where bi is the i-th prime number

D∗(PHalton
N ) <

s

N
+

1

N

s∏
j=1

(
bj − 1

2 log bj
logN +

bj + 1

2

)
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Halton Sequence and Hammersley Points

• Radical inverse (van der Corput sequence) in base b

i =
∞∑
j=0

aj(i)b
j 7→ Φb(i) :=

∞∑
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−j−1

Note: The radical inverses are not completely uniform distributed !!!
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• Hammersley point set xi :=

(
i
N ,Φb1(i), . . . ,Φbs−1

(i)
)

D∗(PHammersley
N ) <

s

N
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N
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Algorithm: Radical Inversion

double RadicalInverse(const int Base, int i)

{

double Digit, Radical, Inverse;

Digit = Radical = 1.0 / (double) Base;

Inverse = 0.0;

while(i)

{

Inverse += Digit * (double) (i % Base);

Digit *= Radical;

i /= Base;

}

return Inverse;

}



Algorithm: Incremental Radical Inversion

double NextRadicalInverse(const double Radical, double Inverse)
// Radical = 1.0 / Base
{

const double AlmostOne = 1.0 - 1e-10;
double NextInverse, Digit1, Digit2;

NextInverse = Inverse + Radical;

if(NextInverse < AlmostOne)
return NextInverse;

else
{

Digit1 = Radical;
Digit2 = Radical * Radical;

while(Inverse + Digit2 >= AlmostOne)
{

Digit1 = Digit2;
Digit2 *= Radical;

}

return Inverse + (Digit1 - 1.0) + Digit2;
}

}
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– A is family of all convex subsets of Is
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– A is family of all convex subsets of Is

– by

D∗(PN) ≤ D(PN) ≤ 2sD∗(PN)

D(PN) ≤ J(PN) ≤ 4sD(PN)1/s

∗ upper bound

J(PN) ≤ 4sD(PN)1/s ≤ 4s(2sD∗(PN))1/s = 8sD∗(PN)1/s

∗ lower bound

J(PN) ≥ D(PN) ≥ D∗(PN)



Other Discrepancies

• Isotropic discrepancy J(PN)

– A is family of all convex subsets of Is

– by

D∗(PN) ≤ D(PN) ≤ 2sD∗(PN)

D(PN) ≤ J(PN) ≤ 4sD(PN)1/s

∗ upper bound

J(PN) ≤ 4sD(PN)1/s ≤ 4s(2sD∗(PN))1/s = 8sD∗(PN)1/s

∗ lower bound

J(PN) ≥ D(PN) ≥ D∗(PN)

• Triangle discrepancy

• Edge discrepancy



Computing Discrepancies

• L2-norm based discrepancy

D∗2(PN) :=

√√√√√∫
Is

λs(A(x))−
1

N

N−1∑
i=0

χA(x)(xi)

2

dx

where A(x) =
∏s
j=1[0, x

(j))

• Can be efficiently computed in contrast to L∞-norm based discrepancies



Computing Discrepancies

• L2-norm based discrepancy

D∗2(PN) :=

√√√√√∫
Is

λs(A(x))−
1

N

N−1∑
i=0

χA(x)(xi)

2

dx

where A(x) =
∏s
j=1[0, x

(j))

• Can be efficiently computed in contrast to L∞-norm based discrepancies

• Numerical example: Triangular discrepancy

D(PN , T ) ≤ J(PN) ≤ 16
√
D∗(PN)

N 10000 random triangles 100000 random triangles theoretical bound
4 0.539712 0.591708 16.971
16 0.18326 0.230355 9.381
64 0.0660696 0.0777368 5.099
256 0.032454 0.0364673 2.739
1024 0.0118695 0.0178952 1.458
4096 0.00521621 0.00715305 0.771



Correlation Problems of Projections

• Dimensions 7 and 8 of the Halton sequence

s s s s s s s s s s s s s s s s ss s

s s s s s s s s s s s s s s ss s s s

s s s s s s s s s s s s ss s s s s s

s s s s s s s s s s ss s s s s s s s

s s s s s s s s ss s s s s s s s s s

s s s s s s ss s s s s s s s s s s s
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s s ss s s s s s s s s s s s s s s s

ss s s s s s s s s s s s s s s s ss

s s s s s s s s s s s s s s s ss s s

s s s s s s s s s s s s s ss s s s s

s s s s s s s s s s s ss s s s s s s

s s s s s s s s s ss s s s s s s s s

s s s s s s s ss



Scrambling Permutations by Faure

• Scrambled radical inverse

i =
∞∑
j=0

aj(i)b
j 7→

∞∑
j=0

σb(aj(i))b
−j−1,

using permutations σb by Faure

σ2 = (0,1)

σ3 = (0,1,2)

σ4 = (0,2,1,3)

σ5 = (0,3,2,1,4)

σ6 = (0,2,4,1,3,5)

σ7 = (0,2,5,3,1,4,6)

σ8 = (0,4,2,6,1,5,3,7)
...

• Construction rule

– b is even: Take 2σ b
2

and append 2σ b
2
+ 1

– b is odd: Take σb−1, increment each value ≥ b−1
2 and insert b−1

2 in the middle



Scrambled Halton Sequence and Hammersley Points

• Scrambled Halton sequence

xi :=
(
Φb1(i, σb1), . . . ,Φbs(i, σbs)

)
• Scrambled Hammersley point set

xi :=
(
i

N
,Φb1(i, σb1), . . . ,Φbs−1

(i, σbs−1
)
)



Scrambled Halton Sequence and Hammersley Points

• Scrambled Halton sequence

xi :=
(
Φb1(i, σb1), . . . ,Φbs(i, σbs)

)
• Scrambled Hammersley point set

xi :=
(
i

N
,Φb1(i, σb1), . . . ,Φbs−1

(i, σbs−1
)
)

• Improvement by scrambling (scrambled Halton sequence dimensions 7 and 8)
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(t,m, s)-Nets in Base b

• Elementary interval

E :=
s∏

j=1

[
aj

blj
,
aj + 1

blj

)
⊆ Is for integers lj ≥ 0 and 0 ≤ aj < blj

• Consequently its volume is

λs(E) =
s∏

j=1

1

blj
=

1

b
∑s
j=1 lj



(t,m, s)-Nets in Base b

• Elementary interval

E :=
s∏

j=1

[
aj

blj
,
aj + 1

blj

)
⊆ Is for integers lj ≥ 0 and 0 ≤ aj < blj

• Consequently its volume is

λs(E) =
s∏

j=1

1

blj
=

1

b
∑s
j=1 lj

• Definition: For two integers 0 ≤ t ≤ m, a finite point set of bm points in s dimensions
is called a (t,m, s)-net in base b, if every elementary interval of volume λs(E) =

bt−m contains exactly bt points.



(t,m, s)-Nets in Base b

• Elementary interval

E :=
s∏

j=1

[
aj

blj
,
aj + 1

blj

)
⊆ Is for integers lj ≥ 0 and 0 ≤ aj < blj

• Consequently its volume is

λs(E) =
s∏

j=1

1

blj
=

1

b
∑s
j=1 lj

• Definition: For two integers 0 ≤ t ≤ m, a finite point set of bm points in s dimensions
is called a (t,m, s)-net in base b, if every elementary interval of volume λs(E) =

bt−m contains exactly bt points.

• For (t,m, s)-nets in base b we have

D∗(PN) ≤ B(s, b)bt
logs−1N

N
+O

(
bt

logs−2N

N

)
– t is the quality parameter



(t,m, s)-Nets in Base b

• Elementary interval

E :=
s∏

j=1

[
aj

blj
,
aj + 1

blj

)
⊆ Is for integers lj ≥ 0 and 0 ≤ aj < blj

• Consequently its volume is

λs(E) =
s∏

j=1

1

blj
=

1

b
∑s
j=1 lj

• Definition: For two integers 0 ≤ t ≤ m, a finite point set of bm points in s dimensions
is called a (t,m, s)-net in base b, if every elementary interval of volume λs(E) =

bt−m contains exactly bt points.

• For (t,m, s)-nets in base b we have

D∗(PN) ≤ B(s, b)bt
logs−1N

N
+O

(
bt

logs−2N

N

)
– t is the quality parameter

• Note: So far the concept applies to random and deterministic points



Structure of (0,m,2)-Nets in Base b = 2

• (t,m, s)-net in base b:

– Set PN of N = bm s-dimensional points of low discrepancy

– Every elementary interval of volume bt−m contains exactly bt points



Structure of (0,m,2)-Nets in Base b = 2

• (t,m, s)-net in base b:

– Set PN of N = bm s-dimensional points of low discrepancy

– Every elementary interval of volume bt−m contains exactly bt points

• (0,m,2)-net in base b = 2

– Set PN of N = 2m 2-dimensional points of low discrepancy

– Every elementary interval of volume 2−m = 1
N contains exactly 1 point



Structure of (0,m,2)-Nets in Base b = 2

• (t,m, s)-net in base b:

– Set PN of N = bm s-dimensional points of low discrepancy

– Every elementary interval of volume bt−m contains exactly bt points

• (0,m,2)-net in base b = 2

– Set PN of N = 2m 2-dimensional points of low discrepancy

– Every elementary interval of volume 2−m = 1
N contains exactly 1 point

• Example: All elementary volumes of a (0,3,2)-net in base b = 2:

u uu uu uu u

u uu uu uu u

u uu uu uu u

u uu uu uu u

– more general than stratification and Latin hypercube sampling



Example of a (1,3,2)-Net in Base b = 2

• All elementary volumes of a (0,3,2)-net in base b = 2:

u uu uu uu u

u uu uu uu u

u uu uu uu u

u uu uu uu u

λs(E) = bt−m = 20−3 = 1
8 with exactly bt = 20 = 1 point

⇒ it cannot be a (0,3,2)-net !



Example of a (1,3,2)-Net in Base b = 2

• All elementary volumes of a (0,3,2)-net in base b = 2:

u uu uu uu u

u uu uu uu u

u uu uu uu u

u uu uu uu u

λs(E) = bt−m = 20−3 = 1
8 with exactly bt = 20 = 1 point

⇒ it cannot be a (0,3,2)-net !

• All elementary volumes of a (1,3,2)-net in base b = 2:

u uu uu uu u

u uu uu uu u

u uu uu uu u

λs(E) = bt−m = 21−3 = 1
4 with exactly bt = 21 = 2 points

⇒ it is only a (1,3,2)-net...



Structure of (0,2n,2)-Nets in Base b = 2

• (t,m, s)-net in base b:

– Set PN of N = bm s-dimensional points of low discrepancy

– Every elementary interval of volume bt−m contains exactly bt points



Structure of (0,2n,2)-Nets in Base b = 2

• (t,m, s)-net in base b:

– Set PN of N = bm s-dimensional points of low discrepancy

– Every elementary interval of volume bt−m contains exactly bt points

• (0,2n,2)-net in base b = 2

– Set PN of N = (2n)2 2-dimensional points of low discrepancy

– Every elementary interval of volume 2−2n = 1
N contains exactly 1 point



Structure of (0,2n,2)-Nets in Base b = 2

• (t,m, s)-net in base b:

– Set PN of N = bm s-dimensional points of low discrepancy

– Every elementary interval of volume bt−m contains exactly bt points

• (0,2n,2)-net in base b = 2

– Set PN of N = (2n)2 2-dimensional points of low discrepancy

– Every elementary interval of volume 2−2n = 1
N contains exactly 1 point
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jittered and LHS (N -rooks)

• (t,m, s)-nets: Much more general concept of stratification



(t, s)-Sequences in Base b

• Definition: For t ≥ 0, an infinite point sequence is called a (t, s)-sequence in base
b, if for all k ≥ 0 and m ≥ t, the vectors xkbm+1, . . . , x(k+1)bm ∈ Is form a (t,m, s)-
net.
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net.

• For (t, s)-sequence in base b we have

D∗(PN) ≤ C(s, b)bt
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• Definition: For t ≥ 0, an infinite point sequence is called a (t, s)-sequence in base
b, if for all k ≥ 0 and m ≥ t, the vectors xkbm+1, . . . , x(k+1)bm ∈ Is form a (t,m, s)-
net.

• For (t, s)-sequence in base b we have

D∗(PN) ≤ C(s, b)bt
logsN

N
+O

(
bt

logs−1N

N

)

• Adding the component i
N = i

bm to a (t, s)-sequence yields a (t,m, s+ 1)-net

• (0, s)-sequences can only exist for b ≥ s



(t, s)-Sequences in Base b

• Definition: For t ≥ 0, an infinite point sequence is called a (t, s)-sequence in base
b, if for all k ≥ 0 and m ≥ t, the vectors xkbm+1, . . . , x(k+1)bm ∈ Is form a (t,m, s)-
net.

• For (t, s)-sequence in base b we have

D∗(PN) ≤ C(s, b)bt
logsN

N
+O

(
bt

logs−1N

N

)

• Adding the component i
N = i

bm to a (t, s)-sequence yields a (t,m, s+ 1)-net

• (0, s)-sequences can only exist for b ≥ s

• Examples

– Van der Corput sequences are (0,1)-sequences in base b

– adding the component i
N with N = bm yields a (0,m,2)-net

∗ e.g. Hammersley point set for s = 2 and N = 2m points

∗ many applications in finance and particle transport problems



Digital (t,m, s)-Nets and (t, s)-Sequences

• Fixed-point numbers with M digits in base b

[0,1)b,M :=
{
kb−M | k = 0, . . . , bM − 1

}
⊂ [0,1)



Digital (t,m, s)-Nets and (t, s)-Sequences

• Fixed-point numbers with M digits in base b

[0,1)b,M :=
{
kb−M | k = 0, . . . , bM − 1

}
⊂ [0,1)

• Components A(j)
i of a point set A = {A0, . . . , AN−1}

A
(j)
i =

M∑
k=1

a
(j)
i,k · b

−k
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• Fixed-point numbers with M digits in base b

[0,1)b,M :=
{
kb−M | k = 0, . . . , bM − 1

}
⊂ [0,1)

• Components A(j)
i of a point set A = {A0, . . . , AN−1}

A
(j)
i =

M∑
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a
(j)
i,k · b
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(j)
i,2 . . . a

(j)
i,M ∈ [0,1)b,M



Digital (t,m, s)-Nets and (t, s)-Sequences

• Fixed-point numbers with M digits in base b

[0,1)b,M :=
{
kb−M | k = 0, . . . , bM − 1

}
⊂ [0,1)

• Components A(j)
i of a point set A = {A0, . . . , AN−1}

A
(j)
i =

M∑
k=1

a
(j)
i,k · b

−k =b 0.a(j)i,1 a
(j)
i,2 . . . a

(j)
i,M ∈ [0,1)b,M where

a
(j)
i,k := η

(j)
k

(M−1∑
l=0

c
(j)
k,l · ψl

(
di,l
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for 1 ≤ j ≤ s and

i =:
M−1∑
l=0

di,l · bl di,l ∈ Zb := {0, . . . , b− 1}



Digital (t,m, s)-Nets and (t, s)-Sequences

• Fixed-point numbers with M digits in base b

[0,1)b,M :=
{
kb−M | k = 0, . . . , bM − 1

}
⊂ [0,1)

• Components A(j)
i of a point set A = {A0, . . . , AN−1}

A
(j)
i =

M∑
k=1

a
(j)
i,k · b

−k =b 0.a(j)i,1 a
(j)
i,2 . . . a

(j)
i,M ∈ [0,1)b,M where

a
(j)
i,k := η

(j)
k

(M−1∑
l=0

c
(j)
k,l · ψl

(
di,l

))
for 1 ≤ j ≤ s and

i =:
M−1∑
l=0

di,l · bl di,l ∈ Zb := {0, . . . , b− 1}

• Arithmetic in commutative ring (R,+, ·) with |R| = b elements

• Bijections η(j)k : R→ Zb and ψl : Zb → R



Digital (t,m, s)-Nets and (t, s)-Sequences

• Fixed-point numbers with M digits in base b

[0,1)b,M :=
{
kb−M | k = 0, . . . , bM − 1

}
⊂ [0,1)

• Components A(j)
i of a point set A = {A0, . . . , AN−1}

A
(j)
i =

M∑
k=1

a
(j)
i,k · b

−k =b 0.a(j)i,1 a
(j)
i,2 . . . a

(j)
i,M ∈ [0,1)b,M where

a
(j)
i,k := η

(j)
k

(M−1∑
l=0

c
(j)
k,l · ψl

(
di,l

))
for 1 ≤ j ≤ s and

i =:
M−1∑
l=0

di,l · bl di,l ∈ Zb := {0, . . . , b− 1}

• Arithmetic in commutative ring (R,+, ·) with |R| = b elements

• Bijections η(j)k : R→ Zb and ψl : Zb → R

⇒ If now A is a (t,m, s)-net, it is called a digital (t,m, s)-net

⇒ If now A is a (t, s)-sequence, it is called a digital (t, s)-sequence



Deterministic Constructions of Digital Point Sets

• Generator matrix

C(j) :=

(
c
(j)
k,l

)M,M−1

k=1,l=0
∈ RM×M

• van der Corput, Sobol’, Faure, Niederreiter, and Niederreiter-Xing

– increased quality by decreased parameter t

– difficult computation of the generator matrices



Deterministic Constructions of Digital Point Sets

• Generator matrix

C(j) :=

(
c
(j)
k,l

)M,M−1

k=1,l=0
∈ RM×M

• van der Corput, Sobol’, Faure, Niederreiter, and Niederreiter-Xing

– increased quality by decreased parameter t

– difficult computation of the generator matrices

• Fast evaluation by

– Gray codes

– vectorization

– buffering of invariants

– rings implemented as lookup tables

• Very often

a(j)
i = C(j)di



Vectorization Example for Base b = 2

• Ring R = ({0,1},+, ·) = Z2 by bit vector operations

• One component at M bits precision

xi =
(
1

2
· · ·

1

2M

)
· C ·

 d0(i)
...

dM−1(i)

 where i =
m−1∑
k=0

dk(i)2
k



Vectorization Example for Base b = 2

• Ring R = ({0,1},+, ·) = Z2 by bit vector operations

• One component at M bits precision

xi =
(
1

2
· · ·

1

2M

)
· C ·

 d0(i)
...

dM−1(i)

 where i =
m−1∑
k=0

dk(i)2
k

• Basic vectorized algorithm

double x(int i)

{

for(int y = 0, int k = 0; i; i /= 2, k++)

if(i & 1)

y ˆ= C[k];

return (double) y / (double) (1 << (M + 1));

}



Examples Matrices for Base b = 2

• (0,m,1)-nets at N = 2m

C1 =


0 0 · · · 0 1
0 0 · · · 1 0

. . .
0 1 · · · 0 0
1 0 · · · 0 0


implements x = i

N



Examples Matrices for Base b = 2

• (0,1)-sequences: Bit reversal, or φ2(i) by van der Corput

C2 = I



Examples Matrices for Base b = 2

• (0,1)-sequences: Bit reversal, or φ2(i) by van der Corput

C2 = I

• Algorithm

double RadicalInverse(unsigned int bits) // M=32 bits version
{

bits = ( bits << 16) | ( bits >> 16);
bits = ((bits & 0x00ff00ff) << 8) | ((bits & 0xff00ff00) >> 8);
bits = ((bits & 0x0f0f0f0f) << 4) | ((bits & 0xf0f0f0f0) >> 4);
bits = ((bits & 0x33333333) << 2) | ((bits & 0xcccccccc) >> 2);
bits = ((bits & 0x55555555) << 1) | ((bits & 0xaaaaaaaa) >> 1);

return (double) bits / (double) 0x100000000L;
}



Examples Matrices for Base b = 2

• (0,1)-sequences: Sobol’ scrambled radical inverse

C3 =


1 0 0 · · · 0 0
1 1 0 · · · 0 0
1 0 1 · · · 0 0
1 1 1 . . . 0 0

 =

(
k − 1
l − 1

)
mod 2



Examples Matrices for Base b = 2

• (0,1)-sequences: Sobol’ scrambled radical inverse

C3 =


1 0 0 · · · 0 0
1 1 0 · · · 0 0
1 0 1 · · · 0 0
1 1 1 . . . 0 0

 =

(
k − 1
l − 1

)
mod 2

• Algorithm

double SobolRadicalInverse(int i)
{

int r, v;

v = 1 << M;

for(r = 0; i; i >>= 1)
{

if(i & 1)
r ˆ= v;

v ˆ= v >> 1;
}

return (double) r / (double) (1 << (M + 1));
}



Examples Matrices for Base b = 2
• (0,1)-sequences: Larcher-Pillichshammer scrambled radical inverse

C4 =


1 0 · · · 0 0
1 1 · · · 0 0

. . .
1 1 · · · 1 0
1 1 · · · 1 1





Examples Matrices for Base b = 2
• (0,1)-sequences: Larcher-Pillichshammer scrambled radical inverse

C4 =


1 0 · · · 0 0
1 1 · · · 0 0

. . .
1 1 · · · 1 0
1 1 · · · 1 1


• Algorithm

double LarcherPillichshammerRadicalInverse(int i)
{

int r, v;

v = 1 << M;

for(r = 0; i; i >>= 1)
{

if(i & 1)
r ˆ= v;

v |= v >> 1;
}

return (double) r / (double) (1 << (M + 1));
}



Digital (0,m, s)-Nets and (0, s)-Sequences in Base b = 2

• (0,m,2)-nets at N = 2m

– Hammersley points (worst constant)

(C1, C2)

– Larcher-Pillichshammer points (best constant)

(C1, C4)
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• (0,2)-sequence: Sobol’ LP0-sequence
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Digital (0,m, s)-Nets and (0, s)-Sequences in Base b = 2

• (0,m,2)-nets at N = 2m

– Hammersley points (worst constant)

(C1, C2)

– Larcher-Pillichshammer points (best constant)

(C1, C4)

• (0,2)-sequence: Sobol’ LP0-sequence

(C2, C3)

• (0,m,3)-net at N = 2m: Sobol’ LP0-net

(C1, C2, C3)

• Very useful in particle transport, especially computer graphics



Software

• http://www.uni-kl.de/AG-Heinrich/SamplePack.html

– Sobol’ sequence

– Niederreiter sequence

– Niederreiter-Xing sequence

• http://www.dismat.oeaw.ac.at/pirs/niedxing.html

– generator matrices for the Niederreiter-Xing sequence

• http://www.multires.caltech.edu/software/libseq/index.html

– general package

– several sequences (Halton, Niederreiter, ...)

• Numerical Recipes

– Sobol’ sequence
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• Definition: A discrete subset

L := PN + Zs ⊂ Rs

that is closed under addition and subtraction is called a lattice .
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Good Lattice Points: Rank- 1 Lattices

• Definition: A discrete subset

L := PN + Zs ⊂ Rs

that is closed under addition and subtraction is called a lattice .

• Rank-1 lattice

xi :=
i

N
g

by suitable generating vector g ∈ Ns

• Low discrepancy constructions

– Fibonacci lattices for s = 2

– lattices with generator vector of Korobov-form g = (1, l, l2, . . .)

• No explicit construction - only tables



• One-periodic pattern L ∩ [0,1)s
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• Low discrepancy

• Much better discrepancy than regular grids



Example: Fibonacci Rank- 1 Lattice

• Fibonacci numbers: F1 = F2 = 1, Fk = Fk−1 + Fk−2 for k > 2

• Fibonacci lattice by generator vector g = (1, Fk−1) at N = Fk points

xi :=
i

Fk
(1, Fk−1)

– Low discrepancy
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• Fibonacci numbers: F1 = F2 = 1, Fk = Fk−1 + Fk−2 for k > 2

• Fibonacci lattice by generator vector g = (1, Fk−1) at N = Fk points

xi :=
i

Fk
(1, Fk−1)

– Low discrepancy

• Example: N = F10 = 55, xi :=
i

55(1,34)
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• Fibonacci numbers: F1 = F2 = 1, Fk = Fk−1 + Fk−2 for k > 2

• Fibonacci lattice by generator vector g = (1, Fk−1) at N = Fk points
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i
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i

55(1,34)

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30

r31

r32

r33

r34

r35

r36

r37

r38

r39

r40

r41

r42

r43

r44

r45

r46

r47

r48

r49

r50

r51

r52

r53

r54

• Note: N grows exponentially for Fibonacci lattices
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Lattice Sequences

• Rank-1 lattice

xi =
i

N
· g

• Hide N by choosing N = bm and

xi = φb(i) · g

• Similar to (t, s)-sequences: xkbm, . . . ,x(k+1)bm−1 form a shifted lattice

• Shift ∆ in the k+ 1st run for N = bm

φb(i+ kbm) · g = (φb(i) + φb(kb
m)) · g

= φb(i) · g + φb(k)b
−m−1g︸ ︷︷ ︸

=:∆
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– low discrepancy

– deterministic

– intrinsic stratification (Latin hypercube, symmetrized, regularized, antithetic)

∗ no extra programming



Summary

• Quasi-Monte Carlo Points

– low discrepancy

– deterministic

– intrinsic stratification (Latin hypercube, symmetrized, regularized, antithetic)

∗ no extra programming

– no completely uniform distribution due to correlation



Monte Carlo and Beyond

• Principles of rendering algorithms

• Monte Carlo integration

• Quasi-Monte Carlo points

• Quasi-Monte Carlo integration

– Koksma-Hlawka inequality and variation in the sense of Hardy and Krause

– Discrete density approximation

– Error control

– Transferring Monte Carlo techniques to quasi-Monte Carlo

– Integrands of infinite variation

– Discrete Fourier transform on good lattice points

• Monte Carlo extensions of quasi-Monte Carlo

• Application to computer graphics



Quasi-Monte Carlo Integration

• Numerical integration by Quasi-Monte Carlo points∣∣∣∣∣∣
∫
Is
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣ ≤ V (f)D∗(PN)

with variation V (f) in the sense of Hardy and Krause and star-discrepancy

D∗(PN) := sup
A=

∏s
j=1[0,aj)⊆Is

∣∣∣∣∣∣∣∣∣
∫
Is
χA(x)dx︸ ︷︷ ︸
=λs(A)

−
1

N

N−1∑
i=0

χA(xi)

∣∣∣∣∣∣∣∣∣



Quasi-Monte Carlo Integration

• Numerical integration by Quasi-Monte Carlo points∣∣∣∣∣∣
∫
Is
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣ ≤ V (f)D∗(PN)

with variation V (f) in the sense of Hardy and Krause and star-discrepancy

D∗(PN) := sup
A=

∏s
j=1[0,aj)⊆Is

∣∣∣∣∣∣∣∣∣
∫
Is
χA(x)dx︸ ︷︷ ︸
=λs(A)

−
1

N

N−1∑
i=0

χA(xi)

∣∣∣∣∣∣∣∣∣
• Deterministic error bound by the Koksma-Hlawka inequality

• Independent of dimension by using quasi-Monte Carlo points

– roughly quadratically faster as compared to random sampling



Theorem: The Koksma-Hlawka Inequality

∣∣∣∣∣∣
∫
I
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣ ≤ V (f)D∗(PN)

• Proof for s = 1: Decompose

f(x) = f(1)−
∫ 1

x
f ′(u)du = f(1)−

∫
I
χ[0,u](x)f

′(u)du

and define

V (f) :=
∫
I

∣∣∣∣∣∂f(u)∂u

∣∣∣∣∣ du
• Note:

χ[0,u](x) =

1 x ∈ [0, u)

0 else
=

1 x < u

0 else
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0 else
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Variation in the Sense of Vitali

• Difference operator for intervals of the form A =
∏s
i=1[ai, bi) ⊆ Is

∆(f,A) :=
1∑

j1=0

· · ·
1∑

js=0

(−1)
∑s
k=1 jkf(j1a1+(1−j1)b1, . . . , jsas+(1−js)bs)

• Variation in the sense of Vitali

V (s)(f) := sup
P

∑
A∈P

|∆(f,A)|

where P is the set of partitions of Is into subintervals A as above

• If f has a continuous derivative

V (s)(f) =
∫
Is

∣∣∣∣∣∂sf(u1, . . . , us)

∂u1 · · · ∂us

∣∣∣∣∣ du
• Problem if f constant in only some of the variables u1, . . . , us

⇒ ∆(f,A) = 0 ⇒ V (s)(f) = 0
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Variation in the Sense of Hardy and Krause

• Restrict variation in the sense of Vitali

V (k)(f ; i1, . . . , ik)

to the k-dimensional face {(u1, . . . , us) ∈ [0,1]s|uj = 1 for j 6= i1, . . . , ik}

• Variation in the sense of Hardy and Krause
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• Restrict variation in the sense of Vitali

V (k)(f ; i1, . . . , ik)

to the k-dimensional face {(u1, . . . , us) ∈ [0,1]s|uj = 1 for j 6= i1, . . . , ik}

• Variation in the sense of Hardy and Krause

V (f) :=
s∑

k=1

∑
1≤i1<···<ik≤s

V (k)(f ; i1, . . . , ik)

• Definition:

f is of bounded variation in the sense of Hardy and Krause, if V (f) is finite.

• Estimating the variation in the sense of Hardy and Krause

– use regular grid at N = ns samples

– compute difference operator ∆ on the grid

– sum up the approximations of the single Vitali variations

– n→∞
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Variation Reduction

• Transfer Monte Carlo variance reduction techniques to quasi-Monte Carlo

– separation of the main part

– multilevel method of dependent tests

– importance sampling

– replication heuristics (presmoothing the integrand)

• Quasi-Monte Carlo importance sampling∣∣∣∣∣∣
∫
Is
f(x)dx−

1

N

N−1∑
i=0

f(yi)

p(yi)

∣∣∣∣∣∣ ≤ V

(
f

p

)
D∗(PN)

where yi ∼ p by the multidimensional inversion method

– Similar to the Monte Carlo case, the variation is not changed

– For low discrepancy points PN quadratically faster than random sampling
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• Often integrands of the form f = gp

– p can be modeled using the multidimensional inversion method

– g is hard to handle (e.g. discontinuous, expensive)



Approximating Continuous by Discrete Measures

• Often integrands of the form f = gp

– p can be modeled using the multidimensional inversion method

– g is hard to handle (e.g. discontinuous, expensive)

• Avoid weighting by small probabilities∫
Is
f(x)dx =

∫
Is
g(x)p(x)dx =

∫
Is
g(y)dP (y)

• Approximate measure P by discrete measure

PN :=
1

N

N−1∑
i=0

δyi

modeled by yi = P−1(xi) from xi ∼ U

• Then∫
Is
g(y)dP (y) ≈

∫
Is
g(y)dPN(y) :=

1

N

N−1∑
i=0

g(yi)
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D∗(p, CN) := sup
A∈J ∗
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Is
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N

N−1∑
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where CN = {y0, . . . , yN−1}
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Discrepancy Bounds for Transformed Points

• Definition: The discrepancy with respect to the density p is

D∗(p, CN) := sup
A∈J ∗

∣∣∣∣∣∣
∫
Is
χA(x)p(x)dx−

1

N

N−1∑
i=0

χA(yi)

∣∣∣∣∣∣
where CN = {y0, . . . , yN−1}

• Multidimensional inversion method: If p is separable, i.e. p(x) =
∏s
j=1 p

(j)(x(j))

D∗(p, CN) = D∗(PN)

otherwise

D∗(p, CN) ≤ c
(
D∗(PN)

)1
s c ∈ R+

Discrete density approximation by elements of low discrepancy outperforms
random sampling !!!

• Generalized Koksma-Hlawka inequality∣∣∣∣∣∣
∫
Is
g(x)p(x)dx−

1

N

N−1∑
i=0

g(yi)

∣∣∣∣∣∣ ≤ V (g)D∗(p, CN)
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Discrete Density Approximation

• Example: Particle emission (jittered sampling and Hammersley points at N = 16)

• Note: Assigning dimensions is crucial



Discrete Density Approximation
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Infinite Variation

• Quasi-Monte Carlo is roughly quadratically faster than random sampling

• Case s = 1: V (f) <∞ for piecewise continuous functions

• General case: Usually infinite variation for piecewise continuous functions

• In computer graphics: Triangles and edges
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• Proof for the Hammersley points at N = 2l∣∣∣∣∣∣
∫
I2
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣ =


1
2
√
N

l even
1√
2N

else



Far Too Pessimistic Bounds by Isotropic Discrepancy

• Restrict f to convex domains C, where f |C is of bounded variation∣∣∣∣∣∣
∫
C
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N

N−1∑
i=0

χC(xi)f(xi)

∣∣∣∣∣∣ ≤ (V (f) + |f(1, . . . ,1)|) J(PN)

≤ (V (f) + |f(1, . . . ,1)|) 8sD∗(PN)
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Far Too Pessimistic Bounds by Isotropic Discrepancy

• Restrict f to convex domains C, where f |C is of bounded variation∣∣∣∣∣∣
∫
C
f(x)dx−

1

N

N−1∑
i=0

χC(xi)f(xi)

∣∣∣∣∣∣ ≤ (V (f) + |f(1, . . . ,1)|) J(PN)

≤ (V (f) + |f(1, . . . ,1)|) 8sD∗(PN)
1
s

• Bound worse than the Monte Carlo rate for s > 2

• Numerical experiments tell a different story...

– see e.g. the experiments on the triangle discrepancy

• Justification by discrete density approximation

– using low discrepancy sequences always is better

• Which function class other than bounded variation ?
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Convergence

• Quasi-Monte Carlo integration converges for Riemann-integrable functions

• Observed rate for discontinuous functions O
(
N−s+1

2s

)
• Argument in ”Numerical Recipes”

– Weak assumption:

The behavior of low discrepancy samples at the border of characteristic sets
is uncorrelated.

– in fact true for jittered sampling [Mitchell]

– generalized by Szirmay-Kalos

• Argument by [MC95]

– Weak assumption:

Rate of random sampling used as upper bound for low discrepancy sampling,
i.e. it is assumed, that low discrepancy sampling deterministically (!) does not
behave worse than random sampling.

– there exist proofs for some special cases for s = 2
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The Spirit of the Numerical Recipes’ Argument

Proposition: Using stratified sampling to integrate the characteristic function χA for
some subset A ⊂ Is, λs(A) > 0, for N =

∏s
j=1Nj and the axial subdivision into

Nj equally spaced intervals, results in the convergence rate of O
(
N−s+1

2s

)
.

Proof:

– Is partitioned into N =
∏s
j=1Nj voxels vi, λs(vi) = 1

N , 1 ≤ i ≤ N

– Jittered sampling for

∫
Is
χA(x)dx ≈

1

N

N−1∑
i=0

χA(xi|vi)

– Three sets of voxel indices

Vi = {vi|vi ∩A = vi}
Vb = {vi|∅ 6= vi ∩A 6= vi}
Vo = {vi|vi ∩A = ∅}

– Assumption: |Vi| ∈ O(N)

– Assumption: Dimension of the boundary s− 1 ⇒ |Vb| ∈ O
(
N

s−1
s

)
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– Random sample xi ∈ vi ∈ Vb is Bernoulli random variable with

pi =
λs(A ∩ vi)
λs(vi)

and σ2(χA∩vi) ≤
1

4

– Then
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χA(xi|vi)

 = σ2

 1
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N−1∑
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N

∑
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χA∩vi(xi) +
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∑
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χA∩vi(xi)
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= σ2

 1

N
|Vi|+
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∑
i∈Vb

χA∩vi(xi) + 0


= σ2

 1

N

∑
i∈Vb

χA∩vi(xi)

=
∑
i∈Vb

σ2(χA∩vi(xi))

N2

≤ |Vb|
1
4

N2
= cN

s−1
s N−2 = cN−s+1

s
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– By the Hölder inequality the error is expected to be∣∣∣∣∣∣
∫
Is
χA(x)dx−

1

N

N−1∑
i=0

χA(xi)

∣∣∣∣∣∣ ≤
√
cN−s+1

s ∈ O(N−s+1
2s ) q.e.d.

• Note:

lim
s→∞N−s+1

2s = N−1
2
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Error Control

• Determinism: Variance of estimate is zero !

– no cheap error estimate from samples

– no efficiency - complex analysis by information based complexity theory

– quasi-Monte Carlo integration is ”biased” but ”consistent”

• Adaptive sampling by using low discrepancy sequences

– convergence is rather smooth due to intrinsic stratification properties

– choose fixed distance ∆N of samples

– compare difference of averages all ∆N to a threshold

– must be below the threshold T times

• The points ”know” where to fall

• Consider local minima for ∆N !

– e.g. (t, s)-sequences at ∆N = bm

– e.g. Hammersley in s = 2
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From Monte Carlo to Quasi-Monte Carlo Integration

• The basic algorithms transfer

– integration

– integro-approximation

– Separation of main part and multilevel method of dependent tests

• Faster convergence by deterministic low discrepancy sampling

– intrinsically stratified, Latin hypercube, regularized, antithetic, ...

• The simulation of random variables becomes discrete density approximation

– no independence required due to averaging

– importance sampling carries over

– rejection modeling impossible

• Adaptive sampling by difference comparison

• What about splitting ?
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Efficient Design of Quasi-Monte Carlo Algorithms

• Write down the integral

• Transform onto unit cube Is

• Separate the main part

• Apply (multiple) importance sampling

• Use quasi-Monte Carlo points

– sample size N

– assigning dimensions

• Use dependent splitting



Quasi-Monte Carlo Integration using Lattice Points

• Originally developed for the class Eα(c) with c > 0, α > 1, where

f ∈ Eα(c) ⇔ |f̂(h)| ≤
c

(h̄1 · · · h̄s)α
h̄j := max{1, |hj|},h ∈ Zs

• Error bound∣∣∣∣∣∣ 1N
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i=0

f

(
i

N
g
)
−
∫
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f(x)dx
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f ∈ Eα(c) ⇔ |f̂(h)| ≤
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• Generalized to class of bounded variation



Curse of Dimension from Regular Grids

• Lattices of rank s with N = ns points from tensor product approach

•
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-

• O (ns logn) for s fast Fourier transforms
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Fourier Transform on Rank- 1 Lattices
• Choice of wave vectors

KN := {k0, . . . ,kN−1} ⊂ Zs

such that

km ∈ Zm := {k ∈ Zs | kT · g ≡ m (mod N)}

since then

kTm · xn = kTm ·
n

N
g = (m+ lmN)

n

N

• Evaluate

f(xn) =
∑

k∈KN
f̂(k)e2πik

T ·xn =
N−1∑
m=0

f̂(km)e2πik
T
m·xn

=
N−1∑
m=0

f̂(km)e2πi(m
n
N+lmn)

=
N−1∑
m=0

f̂(km)e2πim
n
N

by one-dimensional Fourier transform ⇒ way to break curse of dimension !
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Determining the Wave Vectors
• Many possible choices for

km ∈ Zm := {k ∈ Zs | kT · g ≡ m (mod N)}

• Choose largest waves first

‖km‖2 = min
k∈Zm

‖k‖2.
6
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• Enumerate along lines of constant ‖ · ‖1-norm



Summary

• Quasi-Monte Carlo simpler and faster than Monte Carlo integration

• Most Monte Carlo techniques transfer

• However, no rejection sampling !

• Works fine on L2, too

– justification by discrete density approximation

• Breaks curse of dimension even for discrete Fourier transform



Summary

• Quasi-Monte Carlo simpler and faster than Monte Carlo integration

• Most Monte Carlo techniques transfer

• However, no rejection sampling !

• Works fine on L2, too

– justification by discrete density approximation

• Breaks curse of dimension even for discrete Fourier transform

• Use whenever you can write the problem as an integral



Monte Carlo and Beyond

• Principles of rendering algorithms

• Monte Carlo integration

• Quasi-Monte Carlo points

• Quasi-Monte Carlo integration

• Monte Carlo extensions of quasi-Monte Carlo

– Random field synthesis on good lattice points

– Randomized quasi-Monte Carlo integration

– Randomized replications

– Restricted randomized replications

• Application to computer graphics
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Periodic Random Field Synthesis on Good Lattice Points
• Applications of Periodic Random Fields fω(x) = fω(x + z) for z ∈ Zs (Period 1)

– height fields: Waves, terrain

– caustics

– turbulent wind fields

• Typical procedure

1. Realize Gaussian noise

Nω(k) ∼ (N (0,1)× iN (0,1))d

2. Filter noise by spectrum S of phenomenon

f̂ω(k) = S(k)Nω(k)

3. Band limited evaluation by fast Fourier transform

fω(x) =
∑

k∈KN
f̂ω(k)e2πik

T ·x



Fourier Transform on Rank- 1 Lattices

• Choice of wave vectors KN := {k0, . . . ,kN−1} ⊂ Zs

such that

km ∈ Zm := {k ∈ Zs | kT · g ≡ m (mod N)}

hence with xn = n
Ng

kTm · xn = kTm ·
n

N
g = (m+ lmN)

n

N

• By one-dimensional Fourier transform evaluate

f(xn) =
∑

k∈KN
f̂ω(k)e2πik

T ·xn =
N−1∑
m=0

f̂ω(km)e2πik
T
m·xn

=
N−1∑
m=0

f̂ω(km)e2πi(m
n
N+lmn)

=
N−1∑
m=0

f̂ω(km)e2πim
n
N
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Application: Ocean Wave Simulation
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Application: Ocean Wave Simulation

• Ocean height field synthesis

1. Realize Gaussian noise random field ξr,m, ξi,m ∼ N (0,1)

2. Fourier coefficients by filtering with Philipps spectrum Ph(km)

ĥω(km, t) =

√
Ph(km)

2

(
(ξr,m + iξi,m)eiω(km)t + (ξr,m − iξi,m)e−iω(km)t

)

3. Height field hω : R3 → R and normals by ∇hω : R3 → R3

hω(xn, t) =
N−1∑
m=0

ĥω(km, t)e
2πim n

N

∇hω(xn, t) =
N−1∑
m=0

2πikmĥω(km, t)e
2πim n

N

⇒ dimxn = 2, but evaluation by one-dimensional fast Fourier transform



Example: Ocean Waves on Fibonacci Rank- 1 Lattices

• Fibonacci numbers: F1 = F2 = 1, Fk = Fk−1 + Fk−2 for k > 2

• Fibonacci lattice by generator vector g = (1, Fk−1) at N = Fk points

xn :=
n

Fk
(1, Fk−1)

– Low discrepancy

• Example: N = F10 = 55, xn := n
55(1,34)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

• Barycentric interpolation on periodic Delauney triangulation
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Breaking the Curse of Dimension
• Point set PN = {x0, . . . , xN−1}

• Monte Carlo Integration: Random points PN

Prob


∣∣∣∣∣∣
∫
Is
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣ < 3√
N
σ(f)


 ≈ 0.997

– slow

– cheap error estimate

– easy math for L2

• Quasi-Monte Carlo Integration: Quasi-Monte Carlo points PN∣∣∣∣∣∣
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– fast
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• Point set PN = {x0, . . . , xN−1}

• Monte Carlo Integration: Random points PN

Prob


∣∣∣∣∣∣
∫
Is
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣ < 3√
N
σ(f)


 ≈ 0.997

– slow

– cheap error estimate

– easy math for L2

• Quasi-Monte Carlo Integration: Quasi-Monte Carlo points PN∣∣∣∣∣∣
∫
Is
f(x)dx−

1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣∣ < D∗(PN)V (f)

– fast

– no error estimate

– heavy math for BV

• Combine and take the best !

• Price: A little bit of convergence, problems of random number generators



Randomized Quasi-Monte Carlo Integration

• Randomized replications of a QMC point set A := {A0, . . . , An−1}

Xk := {Xk,0, . . . , Xk,n−1} for 1 ≤ k ≤ r

such that

1. Uniformity: Xk,i ∼ U [0,1)s for fixed i

2. Equidistribution: X1, . . . , Xr are low-discrepancy point sets with probability one
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such that

1. Uniformity: Xk,i ∼ U [0,1)s for fixed i
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Randomized Quasi-Monte Carlo Integration

• Randomized replications of a QMC point set A := {A0, . . . , An−1}

Xk := {Xk,0, . . . , Xk,n−1} for 1 ≤ k ≤ r

such that

1. Uniformity: Xk,i ∼ U [0,1)s for fixed i

2. Equidistribution: X1, . . . , Xr are low-discrepancy point sets with probability one

• Monte Carlo estimate

Ir,nf :=
1

r

r∑
k=1

1

n

n−1∑
i=0

f(Xk,i)

with error estimate

σ2(Ir,nf) ≈
1

r(r − 1)

r∑
k=1

1

n

n−1∑
i=0

f(Xk,i)− Ir,nf

2

• Presmoothing of the integrand by correlated sampling
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Randomized Replications

• Random bijections

Rω : Is → Is

– in fact dependent sampling replication heuristics

• Cranley-Patterson rotations

– originally designed for error estimation with lattice points

– very simple

• Owen-Scrambling

– designed for (t,m, s)-nets and (t, s)-sequences in base b

– advanced
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Randomized Replications by Cranley-Patterson Rotations

• Random shifts on the torus Is applied to A

X
(j)
k,i := A

(j)
i + U

(j)
k mod 1 for 1 ≤ j ≤ s

• Originally A was a lattice of low discrepancy

• Note: Cranley-Patterson rotations work with any arbitrary point set A

– still unbiased Monte Carlo scheme

– especially for (t, s)-sequences and (t,m, s)-nets

∗ however discrepancy can be affected due to shifting

– example: Padded replications sampling

∗ pad A by low dimensional point sets, apply random shifts

∗ exploit problem structure, e.g. in transport problems

∗ cheaper point sets than quasi-Monte Carlo points in high dimensions



Randomized Replications by Owen-Scrambling

• Scramble (t,m, s)-nets and (t, s)-sequences in base b

• Algorithm: Start with H = Is and for each axis

1. slice H into b equally sized volumes H1, H2, . . . , Hb along the axis

2. randomly permute these volume

3. for each Hh recursively repeat the procedure with H = Hh
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Randomized Replications by Owen-Scrambling

• Scramble (t,m, s)-nets and (t, s)-sequences in base b

• Algorithm: Start with H = Is and for each axis

1. slice H into b equally sized volumes H1, H2, . . . , Hb along the axis

2. randomly permute these volume

3. for each Hh recursively repeat the procedure with H = Hh

• Algorithm gets finite by finite precision of computation, i.e. digital constructions

• Net and sequence parameters remain untouched

– contrary to random shifts by Cranley-Patterson

• Much faster convergence for N > ss

O

log
s−1
2 N

N
3
2


due to extinction effects by full stratification



Replication by Scrambling

• Unit square [0,1)2
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Replication by Scrambling

• All bits of x and y



Formalization of Scrambling

• Given a digital (t,m, s)-net A = {A0, . . . , AN−1} in base b with components

A
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i =
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i,M
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Formalization of Scrambling

• Given a digital (t,m, s)-net A = {A0, . . . , AN−1} in base b with components

A
(j)
i =

M∑
k=1

a
(j)
i,k · b

−k =b 0.a(j)i,1 a
(j)
i,2 . . . a

(j)
i,M

• A scrambled replicate X of A is obtained by

X
(j)
i =

M∑
k=1

x
(j)
i,k · b

−k =b 0.x(j)i,1x
(j)
i,2x

(j)
i,3 · · ·x

(j)
i,M

where

x
(j)
i,1 := π(j)

(
a
(j)
i,1

)
x
(j)
i,2 := π

(j)

a
(j)
i,1

(
a
(j)
i,2

)
...

x
(j)
i,M := π

(j)

a
(j)
i,1 ,a

(j)
i,2 ,...,a

(j)
i,M−1

(
a
(j)
i,M

)

• Independent random permutations π(j) ∈ Sb

• Permutation depends on the k − 1 leading digits of A(j)
i ⇒ permutation tree
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• Main ideas for efficient scrambling:

– keep only one path of the permutation tree in memory

– traverse permutation tree paths that way, that each permutation is used only once



Efficient Implementation of Scrambling

• Main ideas for efficient scrambling:

– keep only one path of the permutation tree in memory

– traverse permutation tree paths that way, that each permutation is used only once

• Implies reordering of the points that should be scrambled

– sorting the components

A(j) = {A(j)
0 , . . . , A

(j)
N−1} → A

(j)
σj(0) ≤ . . . ≤ A

(j)
σj(N−1)

– in this order scramble the components

⇒ each branch of the permutation tree is traversed at most once

– undo the sorting using the inverse permutation σ−1
j



Example: Scrambled (0,m,2)-Nets in Base b = 2

• N = 2m points A = {A0, . . . , AN−1}

• The components correspond to the inverse permutations σ−1
j (i) = N ·A(j)

i

– e.g. Hammersley: σ−1
0 (i) = 2m · iN and σ−1

1 (i) = 2m ·Φ2(i)

• Random permutations on Z2 are random bit flips and can be vectorized

– i.e. applying a path of permutation means XORing the bit vector of bit permutations



Example: Scrambled (0,m,2)-Nets in Base b = 2

• N = 2m points A = {A0, . . . , AN−1}

• The components correspond to the inverse permutations σ−1
j (i) = N ·A(j)

i

– e.g. Hammersley: σ−1
0 (i) = 2m · iN and σ−1

1 (i) = 2m ·Φ2(i)

• Random permutations on Z2 are random bit flips and can be vectorized

– i.e. applying a path of permutation means XORing the bit vector of bit permutations

• Scrambling the component j:

– start out with a random bit vector and save it in X(j)

σ−1
j (0)

– permutation tree traversal by enumerating i = 1, . . . ,2m − 1

∗ detect were tree ramifies: Number f of leading shared digits of i− 1 and i

∗ XORa bit vector with f leading zeros followed by a 1 filled by random bits

≡ change the branch and choose new random permutations π

∗ store result in X(j)

σ−1
j (i)



Implementation: Scrambled Hammersley Point Set

N = 1 << m;

Digits = get 32 random bits() ;
P(0, 0) = (double) Digits / (double) 0x100000000L;

Digits2 = get 32 random bits() ;
P(0, 1) = (double) Digits2 / (double) 0x100000000L;

for(i = 1; i < N; i++)
{

Difference = (i - 1) ∧ i;

for(Bits = 0; Difference; Bits++)
Difference >>= 1;

Shift = Log - Bits;

Digits ∧= (0x80000000 | get 31 random bits() ) >> Shift;
P( i, 0) = (double) Digits / (double) 0x100000000L;

Digits2 ∧= (0x80000000 | get 31 random bits() ) >> Shift;
P((int) ((double) N * Φ2(i)), 1) = (double) Digits2

/ (double) 0x100000000L;
}



Example: Instance of a Randomly Scrambled (0,4,2)-Net

• Random scrambling preserves the net properties

• Uniformly random, Stratified, Latin Hypercube sample, and even more...
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• Random scrambling preserves the net properties
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Example: Instance of a Randomly Scrambled (0,4,2)-Net

• All instances are of low discrepancy

• Not all instances are equally good...
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Another Instance of a Randomly Scrambled (0,4,2)-Net

• All instances are of low discrepancy

• Not all instances are equally good...
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Trajectory Splitting and Dependent Sampling

• Increase efficiency by splitting

1

N

N−1∑
i=0

f(xi, yi) ≈
∫
Is1

∫
Is2

f(x, y)dxdy ≈
1

Ns

N−1∑
i=0

s−1∑
j=0

f(xi, yi,j)

depending on the correlation coefficient of f(ξ, η) and f(ξ, η′)

• Exploit smoothness by correlated sampling

M∑
j=1

1

Nj

Nj−1∑
i=0

fj(xi,j) ≈
M∑
j=1

∫
Is
fj(x)dx

=
∫
Is

M∑
j=1

fj(x)dx ≈
1

N

N−1∑
i=0

M∑
j=1

fj(xi)

e.g. separation of the main part
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Trajectory Splitting by Dependent Sampling

• Integrals invariant under Cranley-Patterson rotation by zj ∈ Is2

Rj : Is2 → Is2

y 7→ (y+ zj) mod 1
⇒

∫
Is2

g(y)dy =
∫
Is2

g(Rj(y))dy

• Presmoothing of selected dimensions by replication∫
Is1

∫
Is2

f(x, y)dydx =
∫
Is1

∫
Is2

1

M

M−1∑
j=0

f(x,Rj(y))dydx

≈
1

N

N−1∑
i=0

1

M

M−1∑
j=0

f(xi, Rj(yi))

=
1

N

N−1∑
i=0

1

M

M−1∑
j=0

f(xi, (yi+zj) mod 1)

– global quadrature rule PN,s1+s2 = (xi, yi)
N−1
i=0

– local quadrature rule PM,s2 = (zj)
M−1
j=0

⇒ Trajectories split by dependent sampling
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Further Randomization Techniques

• Padding quasi-Monte Carlo points for high dimensions

– by random numbers

– by Latin hypercube samples

• Jittered quasi-Monte Carlo point sets

– Latin hypercube samples, however deterministic permutation

Note: Rate of randomly permuted Latin hypercube samples does not apply !

– e.g. (0,m,2)-net with jitter of size b−m

• Latin supercube sampling

– biased

– unbiased if used for decorrelating padded replications sampling



Summary

• Random field synthesis on good lattice points

• Randomized quasi-Monte Carlo integration

– error estimate

– L2

– almost as fast as pure quasi-Monte Carlo integration

– concept of randomized replications

• Dependent splitting



Monte Carlo and Beyond

• Principles of rendering algorithms

• Monte Carlo integration

• Quasi-Monte Carlo points

• Quasi-Monte Carlo integration

• Monte Carlo extensions of quasi-Monte Carlo

• Application to computer graphics: Discontinuous, high dimensional integrands

– Interleaved sampling

∗ interleaved method of dependent tests

– Volume rendering

∗ dependent splitting by restricted Cranley-Patterson rotations

– Bidirectional path tracing

∗ padded replications sampling for cheap high-dimensional samples

– Distribution ray tracing

∗ strictly deterministic

∗ dependent splitting by restricted Cranley-Patterson rotations



Sampling

• Regular grids
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+ optimal spectral properties

+ low discrepancy
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Interleaved Sampling
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v

v

v

v

v

v

v

v v
v

v

v
v

v

v

v
v

v

v

v

v

v

v

v v
v

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
v

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
v

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
v

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
v

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
v

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
~

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
~

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
~

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
~

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
~

v

v
v

v

v

v

v

v

v

v

v

v

v

v v
~

v

v
v

v

v

v



Consequences and Theoretical Considerations
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Consequences and Theoretical Considerations

• Aliasing by pattern repetition

– spread out by larger-than-pixel-size patterns

– arbitrary interleaving

• Method of dependent tests (parametric Monte Carlo integration)

– Accumulation buffer

gP (y) =
∫
[0,1)s

f(x, y)dx ≈
1

N

N−1∑
i=0

f(xi, y)

– Interleaved sampling

gP (y) =
∫
[0,1)s

χP (x)f ′(x, y)dx ≈
1

N ′

N ′−1∑
i=0

χP (x′i)f
′(x′i, y)

• Exploit intrinsic high coherence

– new hardware

– new software parallelization paradigm



Sampling Patterns for Interleaved Sampling

• Precomputed Max-Lloyd relaxation points as basis pattern

– periodically tile seamlessly

– blue noise spectral characteristics (minimum distance property)

– low discrepancy (correlated)

– for arbitrary problem dimension



Sampling Patterns for Interleaved Sampling

• Precomputed Max-Lloyd relaxation points as basis pattern

– periodically tile seamlessly

– blue noise spectral characteristics (minimum distance property)

– low discrepancy (correlated)

– for arbitrary problem dimension

• Size N ′ of irregular basis pattern

– blend between regular and irregular sampling
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Sampling Patterns for Interleaved Sampling

• Precomputed Max-Lloyd relaxation points as basis pattern

– periodically tile seamlessly

– blue noise spectral characteristics (minimum distance property)

– low discrepancy (correlated)

– for arbitrary problem dimension

• Size N ′ of irregular basis pattern

– blend between regular and irregular sampling
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• Choice of interleaving ratio by χP
– spread out aliasing artifacts

tt
t tt

t
tt ttt

t t ttt

tt
t tt

t
tt ttt

t t ttt
tt

t tt
t

tt ttt
t t ttt

tt
t tt

t
tt ttt

t t ttt
tt

t tt
t

tt ttt
t t ttt

tt
t tt

t
tt ttt

t t ttt
tt

t tt
t

tt ttt
t t ttt

tt
t tt

t
tt ttt

t t ttt
tt

t tt
t

tt ttt
t t ttt

tt
t tt

t
tt ttt

t t ttt
tt

t tt
t

tt ttt
t t ttt

tt
t tt

t
tt ttt

t t ttt
tt

t tt
t

tt ttt
t t ttt

tt
t tt

t
tt ttt

t t ttt
tt

t tt
t

tt ttt
t t ttt

tt
t tt

t
tt ttt

t t ttt



Application: Antialiasing

Accumulation Buffer Interleaved Sampling

• Reduced aliasing at only 4 samples per pixel

– artifacts spread out

– artifacts from repetition, not from deterministic sampling

• Simple to implement by hardware (current and future)
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Accumulation Buffer Interleaved Sampling Uncorrelated Sampling

• Artifacts replaced by noise at 16 samples per pixel



Application: Motion Blur

Accumulation Buffer Interleaved Sampling Uncorrelated Sampling

• Artifacts replaced by noise at 16 samples per pixel

• Exactly one moment in time for each subimage

– finite number of time samples and consequently instances of the scene

– finally correct implementations of REYES/RenderMan and the photon map

– Sobol’ (0,m,3)-net optimally can replace stratified random sampling



Other Applications

• All accumulation buffer techniques

– weighted sampling

– extended light source and the N -shadow problem

– deep shadow maps

– global illumination by instant radiosity

• CCD chip design

– high dynamic range capturing



”One-Dimensional” Integration in Computer Graphics

• Linear light sources, spectral effects, volumetric effects

• The (example) problem∫
I3
f(x, y, z)dxdydz

– x, y for ray from the eye through a point in the pixel

– z for integrating the density f along the ray
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”One-Dimensional” Integration in Computer Graphics

• Linear light sources, spectral effects, volumetric effects

• The (example) problem∫
I3
f(x, y, z)dxdydz

– x, y for ray from the eye through a point in the pixel

– z for integrating the density f along the ray

• The z-component requires presmoothing

• Bad: Using one-dimensional stratified Monte Carlo for

g(x, y) =
∫
I
f(x, y, z)dz

– uncorrelated ray marching: Fur, photon map with participating media, ...

• Good: Use dependent splitting , e.g. by restricted Cranley-Patterson rotations

∫
I3

1

M

M−1∑
k=0

f(x, y,Rk(z))dxdydz

– correlated ray marching: Less random numbers and faster convergence
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• Discontinuous integrand mainly in x, y
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• Discontinuous integrand mainly in x, y

• For s = 1

– lattices and (0,m,1)-nets become identical, in fact the rectangle rule

– the best discrepancy is D∗(PN) ≥ 1
N

∗ obtained by equidistant set of samples (correlated)

∗ (stratified) random sampling D∗(PN) ∈ O
(

1√
N

)
(uncorrelated)



Remember...

• Discontinuous integrand mainly in x, y

• For s = 1

– lattices and (0,m,1)-nets become identical, in fact the rectangle rule

– the best discrepancy is D∗(PN) ≥ 1
N

∗ obtained by equidistant set of samples (correlated)

∗ (stratified) random sampling D∗(PN) ∈ O
(

1√
N

)
(uncorrelated)

⇒ Never use one-dimensional stratified Monte Carlo !!!

⇒ Use randomized quasi-Monte Carlo instead
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Volume Rendering

∆

σe(x, y, z)

zk = k ·∆ z

ξξξξ

zk = (k+ ξ)∆ z

σe(x, y, z)

ξ1

z

σe(x, y, z)

zk = (k+ ξk)∆

ξ0

equidistant dependent stratified

• Dependent sampling saves ∼20% rendering time wasted for random numbers

• Equidistant, i.e. correlated, samples have lower discrepancy that stratified samples

• Combine with interleaved sampling: Coherent ray marching



Application: Volume Rendering

• Much improved depth antialiasing (unbiased)

• Simply interleaving images

– coherent ray marching



Application: Volume Rendering
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Application: Volume Rendering



The Global Illumination Problem

• Three-point form of the light transport equation

L(y qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqq z) = Le(y qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqq z) +
∫
S
L(x qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqq y)fs(x qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqq y qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqq z)G(x qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq y)dA(x)
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Measurement equation

Ij =
∫
S×S

W
(j)
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The Global Illumination Problem
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∫
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∫
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• Bidirectional path tracing

– Multiple importance sampling for quasi-Monte Carlo integration

– How much is sacrificed by randomized quasi-Monte Carlo integration ?

– Adapt to two-dimensional structure of integral equation

∗ padded replications sampling



Path Integral Formulation
• Path space and path measure

Pk = {x̄ = x0x1 . . . xk | xi ∈ S} dµk(x̄) =
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i=0

dA(xi)
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• Integral for path length k ∫
Pk
fj(x̄)dµk(x̄)



Multiple Importance Sampling

• N techniques to generate samples with associated probability density functions

p1, p2, . . . , pN : D qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqq R+
0

• Heuristic

w1, w2, . . . , wN : D qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqq R+
0

–
∑N
i=1wi(x) = 1 for all x ∈ D with f(x) 6= 0

– wi(x) = 0 for all x ∈ D with pi(x) = 0
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D
f(x)dx ≈
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pi(xi,j)
where xi,j ∼ pi
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• Example: Balance heuristic

wi(x) :=
pi(x)∑N
`=1 p`(x)

⇒
∫
D
f(x)dx ≈

1

n

n∑
j=1

N∑
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f(xi,j)∑N
`=1 p`(xi,j)



Bidirectional Path Tracing
• Generation of path space samples
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rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqp3,0
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqq

p3,1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
p3,2

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq p3,3

• Estimator∫
Pk
fj(x̄)dµk(x̄) ≈

1

n

n∑
j=1

k∑
i=0

fj(x̄i,j)∑k
`=0 pk,`(x̄i,j)

where x̄i,j ∼ pk,i



Randomized Quasi-Monte Carlo Integration

• Low discrepancy point set A = {a1, a2, . . . , am} where ai ∈ Is

r randomized replications of A x1,1 xi,1 xm,1

x1,j xi,j xm,j

x1,r xi,r xm,r

r r r r r r

r r r r r r

r r r r r r

rrr
rrr



Randomized Quasi-Monte Carlo Integration

• Low discrepancy point set A = {a1, a2, . . . , am} where ai ∈ Is

r randomized replications of A x1,1 xi,1 xm,1

x1,j xi,j xm,j

x1,r xi,r xm,r

r r r r r r

r r r r r r

r r r r r r

rrr
rrr


qqqqqqqqqq

properties of A



Randomized Quasi-Monte Carlo Integration

• Low discrepancy point set A = {a1, a2, . . . , am} where ai ∈ Is

r randomized replications of A x1,1 xi,1 xm,1

x1,j xi,j xm,j

x1,r xi,r xm,r

r r r r r r

r r r r r r

r r r r r r

rrr
rrr


qqqqqqqqqq

properties of A


qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqq

∼ U(Is) independent



Randomized Quasi-Monte Carlo Integration

• Low discrepancy point set A = {a1, a2, . . . , am} where ai ∈ Is

r randomized replications of A x1,1 xi,1 xm,1

x1,j xi,j xm,j

x1,r xi,r xm,r

r r r r r r

r r r r r r

r r r r r r

rrr
rrr


qqqqqqqqqq

properties of A


qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqq

∼ U(Is) independent

Estimator
∫
Is
f(x)dx ≈

1

r

r∑
j=1

1

m

m∑
i=1

f(xi,j)



Randomized Quasi-Monte Carlo Integration

• Low discrepancy point set A = {a1, a2, . . . , am} where ai ∈ Is

r randomized replications of A x1,1 xi,1 xm,1

x1,j xi,j xm,j

x1,r xi,r xm,r

r r r r r r

r r r r r r

r r r r r r

rrr
rrr


qqqqqqqqqq

properties of A


qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqq

∼ U(Is) independent

Estimator
∫
Is
f(x)dx ≈

1

r

r∑
j=1

1

m

m∑
i=1

f(xi,j)

• Example: Cranley-Patterson rotation (1976)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqq

u

u
u

u

u

u
u

u

u

u
u

u

u

u
u

u

+
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

random shift
(mod 1)

⇒


qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqq

u

u
u

u

u

u
u

u
u

u
u

u

u

u
u

uqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

xi,j = ai ⊕ ξj := (ai + ξj) mod 1 where ξj ∼ U(Is) independent



Application to Bidirectional Path Tracing

1

r

r∑
j=1

1

m

m∑
i=1

f(xi,j) =
1

m

m∑
i=1

1

r

r∑
j=1

f(ξj ⊕ ai)

≈
1

m

m∑
i=1

∫
Is
f(x⊕ ai)dx =

∫
Is
f(x)dx

• Use high dimensional low discrepancy point set

• Structure of subpath generation

area sampling
scattering

}
⇒ 2d problems

• Padded replications sampling
For each 2d problem one random shift of the same 2d basis pattern



Subpath Generation by Padded Replications Sampling

Basis pattern


qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq

u
u u

u

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr



Subpath Generation by Padded Replications Sampling

Basis pattern


qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq

u
u u

u

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Random shifts

Randomized patterns

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

⇓
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq

u
u u

uqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

⇓
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq u

u
u

u
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

⇓
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq

u
uu

u

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq



Subpath Generation by Padded Replications Sampling

Basis pattern


qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq

u
u u

u

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Random shifts

Randomized patterns

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

⇓
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq

u
u u

uqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

⇓
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq u

u
u

u
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

⇓
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq

u
uu

u

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

w

w
w

w

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
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Numerical Experiments

• Comparison of bidirectional path tracing algorithms

– MC: Random sampling

– LHS: Latin hypercube sampling

– RQMC: Randomized scrambled Hammersley, padded Hammersley

– QMC: Scrambled Halton

• GLASS SPHERE and OFFICE scene
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Strictly Deterministic Sampling in Computer Graphics

• Developed by derandomizing randomized quasi-Monte Carlo integration

– quasi-Monte Carlo points

– dependent splitting by restricted Cranley-Patterson rotations

• Why it was not used in computer graphics

– misinterpretation of the Koksma-Hlawka as rate instead of upper bound !!!

– no scrambling was used

– misbelief that deterministic sampling must alias

• Why it should be used in computer graphics

– high dimension

– unknown discontinuities

– much better discrete density approximation

– much easier to parallelize and reproduce

– simpler and faster !!!
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You already saw it in...

• Grinch, Walking with Dinosaurs, The Cell, The City of Lost Children, ...

• Product design at Mercedes Benz

• Universal Studio’s Terminator 2/3D

• The game Riven

• etc.
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What’s behind: Distribution Ray Tracing

• Compute functionals 〈Ψ, L〉 of the solution of the radiance integral equation

L(x, ω) = Le(x, ω) + (TL)(x, ω)

=

 ∞∑
i=0

T iLe

 (x, ω)

Application of Neumann series yields distribution ray tracing

• Example problem: Direct illumination

〈Ψ, TfrLe〉 =
∫
I2

∫
I2
f(x, y)dxdy

– x point in pixel

– y point on light source, i.e. suppLe

• Tracing rays and shader calls are expensive

⇒ efficient, parallel, and deterministic solution
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• (t,m, s)-net in base b:

– Set PN of N = bm s-dimensional points of low discrepancy

– Every elementary interval of volume bt−m contains exactly bt points

• (0,2n,2)-net in base b = 2

– Set PN of N = (2n)2 2-dimensional points of low discrepancy

– Every elementary interval of volume 2−2n = 1
N contains exactly 1 point

– Stratification of the Hammersley points PN =
(
i
N ,Φ2(i)

)N−1
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⇒ Low dimension, low discrepancy
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– table size for the permutation 2nΦ2 only 2n instead of (2n)2

– Bit parallel computation of Φ2(i) in O(logw)

– index i(j, k) used to start out Faure-scrambled Hammersley point set for ray tree

• Cover whole plane by tiling the pattern

Z2 → {0, . . . ,2n − 1}2

(sx, sy) 7→ (j, k) := (sx mod 2n, sy mod 2n)
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• Interleaved method of dependent tests: Samples of same instance i form regular grid
– different sampling patterns in adjacent pixels
– low discrepancy properties preserved
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• Interleaved method of dependent tests: Samples of same instance i form regular grid
– different sampling patterns in adjacent pixels
– low discrepancy properties preserved

• Parallelization
– deterministic
– high coherence due to same instance i
– almost optimal load balancing
– Hardware: Simply interleave regular raster images in accumulation buffer
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Dependent Splitting and Low Discrepancy Sampling

• Choice of

– global quadrature rule PN,s1+s2 = (xi, yi)
N−1
i=0
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Dependent Splitting and Low Discrepancy Sampling

• Choice of

– global quadrature rule PN,s1+s2 = (xi, yi)
N−1
i=0

– local quadrature rule PM,s2 = (zj)
M−1
j=0∫

Is1

∫
Is2

f(x, y)dydx ≈
1

N

N−1∑
i=0

1

M

M−1∑
j=0

f(xi, (yi+zj) mod 1)

1. random PN,s1+s2, random PM,s2

2. random PN,s1+s2, low discrepancy PM,s2

∗ variance reduction by restricted Cranley-Patterson rotations

∗ benefit from superior discrepancy at special M and low dimensions s2
∗ benefit from intrinsic stratification of (0,m,2)-nets in base 2

3. deterministic low discrepancy PN,s1+s2, deterministic low discrepancy PM,s2

⇒ derandomized dependent splitting

• Adaptive sampling by using low-discrepancy sequences for PM,s2

– considering local minima of discrepancy



Strictly Deterministic Distribution Ray Tracing

• Comparison for the example of direct illumination

stratified random sampling strictly deterministic ray tree
25 samples / light 16 samples / light

uncorrelated correlated

• Faure-scrambled Halton sequences and Hammersley point sets
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– global illumination
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Conclusion
• Simple, compact, parallel, and strictly deterministic implementation mental ray

– anti-aliasing, motion blur, depth of field

– area light sources, glossy scattering, participating media

– global illumination

• Perfect reproducibility on parallel computer architectures

• No correlation problems of pseudo-random number generators

Images courtesy mental images and umlaut
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Our Research
• Monte Carlo methods

• Quasi-Monte Carlo methods

• Randomized quasi-Monte Carlo methods

• Realtime rendering

• High end computer graphics (mental ray )
Check out the report: Strictly Deterministic Sampling Methods in Computer Graphics

Visit us at

medien.informatik.uni-ulm.de/ ˜keller
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Image Synthesis

• Pixel antialiasing, area light sources, glossy reflections, motion blur, depth of field, . . .

⇒ integration of multidimensional discontinuous functions

• Monte Carlo integration:
∫
[0,1)s

f(x)dx ≈
1

N

N−1∑
i=0

f(ξi)

– ξi uniformly distributed ⇒ unbiased estimator

• Stratification
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Generalization

• ”All” stratifications

Latin hypercube Latin hypercubejittered

⇒ all elementary intervals in base 2 and dimension 2 with volume 1
16

• Elementary interval

E :=
s∏

j=1

[
aj

blj
,
aj + 1

blj

)
⊆ [0,1)s

• Volume

Vol(E) =
s∏

j=1

1

blj
= b

−
∑s

j=1 lj

3
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• Definition:
Given two integers 0 ≤ t ≤ m a set of N = bm s-dimensional points xi is called
a (t, m, s)-net in base b if every elementary interval with volume Vol(E) = bt−m

contains exactly bt points. t is called quality parameter.

• Definition:
For an integer t ≥ 0 an infinite point sequence (yi)

∞
i=0 is called a (t, s)-sequence

in base b, if for all k ≥ 0 and m > t the point set {ykbm, . . . , y(k+1)bm−1} is a
(t, m, s)-net.
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Randomization

• Monte Carlo integration

∫
[0,1)s

f(x)dx ≈
1

N

N−1∑
i=0

f(xi)

– xi uniformly distributed
⇒ unbiased estimator

– X := {x0, x1, . . . , xN−1} is a (t, m, s)-net (with probability 1)
⇒ for variance reduction by stratification

• Randomize deterministic (t, m, s)-net A := {a0, a1, . . . , aN−1}

X = randomize(A)
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One Way: Owen Scrambling

• Algorithm starting with H = [0,1)s (for each coordinate):

1. Slice H into b equal volumes H1, H2, . . . , Hb along the coordinate.

2. Randomly permute these volumes in an independent way.

3. For each volume Hh recursively repeat the procedure starting out with H = Hh.

• Example for b = 2:
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One Way: Owen Scrambling

• Algorithm starting with H = [0,1)s (for each coordinate):

1. Slice H into b equal volumes H1, H2, . . . , Hb along the coordinate.

2. Randomly permute these volumes in an independent way.

3. For each volume Hh recursively repeat the procedure starting out with H = Hh.

• Example for b = 2:

→ → → →

• Properties

– preserves (t, m, s)-net structure (with probability 1)

– each point is uniformly distributed

– finite precision terminates algorithm

– requires full b-ary tree of random permutations
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Cheap Way: Random Digit Scrambling

• Algorithm starting with H = [0,1)s (for each coordinate):

1. Slice H into b equal volumes H1, H2, . . . , Hb along the coordinate.

2. Randomly permute these volumes.

3. For each volume Hh recursively repeat the procedure starting out with H = Hh.

• Example for b = 2:
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Cheap Way: Random Digit Scrambling

• Algorithm starting with H = [0,1)s (for each coordinate):

1. Slice H into b equal volumes H1, H2, . . . , Hb along the coordinate.

2. Randomly permute these volumes.

3. For each volume Hh recursively repeat the procedure starting out with H = Hh.

• Example for b = 2:

→ → → →

• Properties

– preserves (t, m, s)-net structure (with probability 1)

– each point is uniformly distributed

– finite precision terminates algorithm

– efficient implementation for base 2: xi := 2nai XOR ξ
2n
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Implementation

double RI_vdC(uint bits, uint r = 0) {
bits = ( bits << 16) | ( bits >> 16);
bits = ((bits & 0x00ff00ff) << 8) | ((bits & 0xff00ff00) >> 8);
bits = ((bits & 0x0f0f0f0f) << 4) | ((bits & 0xf0f0f0f0) >> 4);
bits = ((bits & 0x33333333) << 2) | ((bits & 0xcccccccc) >> 2);
bits = ((bits & 0x55555555) << 1) | ((bits & 0xaaaaaaaa) >> 1);

bits ˆ= r;

return (double) bits / (double) 0x100000000LL;
}

double RI_S(uint i, uint r = 0) {
for(uint v = 1<<31; i; i >>= 1, v ˆ= v>>1)

if(i & 1)
r ˆ= v;

return (double) r / (double) 0x100000000LL;
}

double RI_LP(uint i, uint r = 0) {
for(uint v = 1<<31; i; i >>= 1, v |= v>>1)

if(i & 1)
r ˆ= v;

return (double) r / (double) 0x100000000LL;
}

11



Implementation

double RI_S(uint i, uint r = 0) {
for(uint v = 1<<31; i; i >>= 1, v ˆ= v>>1)

if(i & 1)
r ˆ= v;

return (double) r / (double) 0x100000000LL;
}

double RI_LP(uint i, uint r = 0) {
for(uint v = 1<<31; i; i >>= 1, v |= v>>1)

if(i & 1)
r ˆ= v;

return (double) r / (double) 0x100000000LL;
}

• Random digit scrambled (0,1)-sequences in base 2

– RI vdC van der Corput
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Implementation

double RI_LP(uint i, uint r = 0) {
for(uint v = 1<<31; i; i >>= 1, v |= v>>1)

if(i & 1)
r ˆ= v;

return (double) r / (double) 0x100000000LL;
}

• Random digit scrambled (0,1)-sequences in base 2

– RI vdC van der Corput

– RI S Sobol’
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Implementation

• Random digit scrambled (0,1)-sequences in base 2

– RI vdC van der Corput

– RI S Sobol’

– RI LP Larcher and Pillichshammer

(
i

2m
, RI vdC(i)

)2m−1

i=0
⇒ (0, m,2)-net (Hammersley)

(
i

2m
, RI LP(i)

)2m−1

i=0
⇒ (0, m,2)-net

(
RI vdC(i), RI S(i)

)∞
i=0

⇒ (0,2)-sequence (Sobol’)
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Efficient Multidimensional Sampling
• Exploit low dimensional structure of the integrand

• Multidimensional samples padded from independent randomized replications
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Efficient Multidimensional Sampling
• Exploit low dimensional structure of the integrand
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Results: Direct Illumination
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Results: Antialiasing

Latin hypercube random digit scrambled nets
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Results: HDRi-lighted Tetrahydron

jittered random digit scrambled nets Latin hypercube
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Summary

• Generalized concept of stratification

– extremely simple implementations

– very efficient sample generation

• Efficient multidimensional sampling

• Efficient trajectory splitting

• Outperforms previous sampling schemes

• Check out our code and more at

www.uni-kl.de/AG-Heinrich/SamplePack.html
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Goal: Interactive Global Illumination

• Immediate feedback (at least 1 fps) in dynamic environments for

– direct and indirect lighting by area light sources

– reflections and refractions

– caustics

⇒ preliminary restriction to

∗ diffuse, specular, and refractive material properties

∗ direct caustics

• High image quality after a short time of no interaction

2



The Framework: Fast Ray Tracing

• Optimized ray tracing engine handles

– distribution over a cluster of PCs

– user intervention

• Constraints imposed by the system

– coherent rays for efficient caching

– small budget of rays per pixel and frame

– parallelization on a non-shared memory system

– precomputations unlikely to be amortized

• Global illumination algorithm is realized as shaders
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Algorithm Overview: Preprocessing
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• Illumination computed by

L(x, ω) ≈ Le(x, ω) +
M∑

j=1

V (yj, x)fr(ωyjx, x, ω)Lj
cos θyj cos θx

|yj − x|2

+
1

πr2

N∑
j=1

Br(zj, x)fr(ωj, x, ω)Φj
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Algorithm Overview: Rendering

• Eye path generation

– random decision for
diffuse → end eye path generation
specular / refractive → prolong eye path

– variance reduction by splitting the eye path at the first hitpoint
⇒ at most 3 points per pixel have to be shaded

• Avoid spatial and temporal flickering by using the same random numbers

• Full solution during interaction

• Anti-aliasing by accumulation buffer during times of no interaction
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Algorithm Details: Caustics

• Original photon mapping algorithms for storage and query are too slow

• Use fixed filter size r and store photons in a grid of resolution 2r

⇒ 8 voxels have to be looked up
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• Only a fraction of the voxels contain photons
⇒ hashing
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Algorithm Details: Interleaved Sampling

• Pad 3× 3 tiles with 9 different identifications over the whole image plane
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Algorithm Details: Interleaved Sampling

• Pad 3× 3 tiles with 9 different identifications over the whole image plane
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• Different sets Pk of point lights and Ck of caustic photons for each identification k

• Straightforward and efficient parallelization

– Pk and Ck computed on demand by each client

– clients predominantly process pixels with equal k

⇒ no synchronization for global data structures
⇒ no network communication between clients
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Algorithm Details: Discontinuity Buffer

• Averaging the irradiance values of neighboring pixels if continuity is detected
⇒ variance reduction

• Continuity checked by

– path distance between endpoint of eye path and eye point

– normal at the endpoint of the eye path

interleaving
no 5× 5 5× 5 5× 5

no no 3× 3 5× 5
discontinuity buffer

• Interleaved sampling and the discontinuity buffer perfectly complement each other
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Algorithm Details: Randomized quasi-Monte Carlo
• Low discrepancy point set A = {a1, a2, . . . , am} where ai ∈ Is
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• Randomization: xi,j := ((232 · ai) xor bj) · 2−32

• Subsequent subsequences for generating the sets Pk and Ck

⇒ discontinuity buffer joins different subsequences in case of continuity

w w w w w w w w w w w w w w wx0,j x1,j · · ·︸ ︷︷ ︸
k=0

︸ ︷︷ ︸
k=1

︸ ︷︷ ︸
k=2 · · ·
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– server connected by a single Gigabit uplink



Results

• Cluster of dual AMD AthlonMP 1800+ machines with 512 Mb of RAM

– fully switched 100 Mb Ethernet

– server connected by a single Gigabit uplink

• Small set of parameters
⇒ interactively trade off rendering speed for image quality

• Frame rate scales up to 5 fps at a resolution of 640× 480 pixels:

– discontinuity buffer calculations have to be done on the server

– network bandwidth

– server workload

• Image quality scales without bottleneck over the range of available clients
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Simulation Quality: “Invisible Date”

• 9,000 triangles, 2 area light sources

• 2.6 fps on 8 clients

• Direct versus indirect lighting
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Simulation Quality: Conference Room Scene

• 290,000 triangles, 104 area light sources

• 1.7 fps on 12 clients

• Dynamic versus converged image

14



Summary and Future Work

• Interactive global illumination system by

– distributed, fast ray tracing engine

∗ constraining global illumination algorithm design

– hashed photon maps

– parallelization by interleaved sampling

– variance reduction by discontinuity buffer

– variance reduction by randomized quasi-Monte Carlo

• Server bottleneck limits resolution and frame rate

• Image quality scales without bottleneck

• Extensions to arbitrary material properties and high order caustics

15
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Abstract

In this paperwe studyrandomwalk estimatorsfor radiositywith
generalizedtransitionandabsorptionprobabilities.That is, a path
will travel from patchto patchaccordingto anarbitrarytransition
probability, andsurviveor beabsorbedin it accordingto anotherar-
bitrary absorptionprobability. Theestimatorsstudiedsofar, those
with arbitraryabsorptionprobabilitiesbut with theFormFactorsas
transitionprobabilities,areobviously a particularcaseof themore
generalcasepresentedhere.Practicalapplicationsof randomwalks
with generalizedprobabilitiesaregiven. Closedformsfor thevari-
ancesarefound, togetherwith necessaryandsufficient conditions
for their existence.The variancesareshown to fulfill a systemof
equations,which is a classicalresultby Halton. Someparticular
casesarestudied,includingnull varianceestimators,which repre-
senttheoptimalcase.

Keywords: Radiosity, MonteCarlo,RandomWalk, Variance

1 Introduction

Discreteor continuousrandomwalk estimatorshave beenwidely
usedin radiosity. Gatheringrandomwalk proceedssendingpaths
from thepatchesof interestto gatherenergy whena sourceis hit.
Path-tracing[7], and even distributed ray-tracing[2, 24] can be
consideredasthe limiting caseof gatheringrandomwalk for the
non-discretecase(without shadow rays). Shootingrandomwalk
shootspathscarryingenergy from thesources,to updatethevisited
patches[11], [1]. Thetechniquesin [20, 4] canbeseenasabreadth-
first approachto a shootingrandomwalk estimator, which in turn
wouldbethedepth-firstapproach.Bidirectionalray-tracing[23, 9]
is a mixture of non-discreteshootingandgathering.The random
walk proceedsaccordingto theFormFactorprobabilitytransitions
[20, 11, 4], or to biasedones[12, 10]. Thesurvival (or not absorp-
tion) probability on a patchhasusuallybeenconsideredequalto
its reflectivity. An exceptionto this survival probability is found
in [10], wherethe received importancewasconsideredinsteadof
the reflectivity. In [12] we alsofind a shortdiscussionunderthe
termsurvivalbiasing. Also, infinite pathlengthestimatorscanbe
consideredthosewherethesurvival probability is equalto one. A
studyof generalizedabsorptionprobabilitiesis foundin [19]. In it
thefinite pathlengthestimators[14] andinfinite ones[16] arede-
rivedasparticularcasesof thisgeneralizedone.
In thispaperwewill studyshootingandgatheringestimatorsresult-
ing of consideringany transitionandsurvival (or not absorption)
probability. Thatis, wewill relaxtheassumptionthatthetransition
probabilitiesaretheFormFactors.
Theorganizationof this paperis asfollows: In section2 theprevi-
ouswork onrandomwalk radiosityestimatorsis presented.In sec-
tion 3 westudythegatheringestimatorwith generalizedabsorption
and transitionprobabilities. A necessaryandsufficient condition

for theexistenceof thevariancesis given,togetherwith anheuris-
tics to beusedin somepracticalsituations.A systemof equations
that fulfill the variancesis given, and someparticularestimators
arestudied. The generalizedgatheringestimatoris alsoshown to
have thesamecomplexity (undercertainconstraints)asestablished
in [14]. And we show how to generalizethe given formulaefor
the non-diffuse case,that is, the generalRenderingequation[7].
Next, in section4, theshootingestimatoris studied.Optimalsur-
vive probabilities,for the casewhenwe keeptheForm Factorsas
transitionprobabilitiesandare interestedin the whole scene,are
given. Theresultingestimatorhappensto betheonewith survival
probabilityequalto thereflectivity. Someparticularcasesaregiven,
andthesamecomplexity resultsasfor thegatheringcaseareshown.
Wepresentsomeexperimentalevidencein section5, andfinally, in
section6wepresentsomeconclusionsandideasfor futureresearch.

2 Previous Work

In [14] the threeestimatorsdefinedin [21] werestudied,together
with theirgatheringdualones.In [16] thei nfinitepathlengthesti-
matorswerecharacterized, andin [18] it wasprovedthatthebestfi-
nitepathlengthestimatorbetterthanthebiasedinfinite pathlength
one.Finally, in [17] thevariancesfor thepreviousshootingestima-
torsfor any generalsourceselectionprobabilitywereobtained,and
it wasalsoproved that the resultsobtainedso far wereextensible
to thepureparticletracingcase,that is, whenwe keeptheimping-
ing point on a patchasnext exiting point. Theobtainedresultsare
summarizedin table1.

Table1: DifferentRandomWalk estimators.The meaningof the
differentquantitiesis in table3.

Shooting Patch scored Variance��������	� last

���
 � �	�������� ��� ��� �����	��������������	� all but last


 ��
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Gathering Patch scored Variance9 ����	� � last

�	���� 
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A featurecommonto thestudiedestimatorsis thatthetransition



Table2: Variancesfor RandomWalk estimatorswith generalized
absorptionprobabilities.Themeaningof thedifferentquantitiesis
in table3. >'?�@<@ 5/1 2	A

,
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probabilitiesusedaretheForm Factors,andassurvival (or not ab-
sorption)probability is usedthereflectivity of thepatch(exceptof
coursefor the infinite path length,wherethe survival probability
is always1). In [19] this secondassumptionwasrelaxed, that is,
generalizedabsorptionprobabilitieswereconsidered.The result-
ing variancesfor the so generalized


 *
and

: �
estimatorsarein

table2. Thealreadystudiedcases,whenthesurvival probabilityis
equalto reflectivity andtheinfinite case,canthenbeseenaspartic-
ular cases.TheForm Factorswerestill thetransitionprobabilities.
Theusefulnessof theestimatorsobtainedcanbeseenwhenconsid-
eringsurvival probabilitiesproportionalto importance(or betterto
receivedimportance).Thishasbeenusedin [10].
In this paperwe will relax the assumptionof the Form Factorsas
beingthetransitionprobabilities.Thus,wewill studyageneralized
randomwalk with any arbitrarysurvival andtransitionprobabili-
ties.Next wewill studythegatheringcase.

Table3: Meaningof the differentquantitiesappearingin table1.
Thesuffix

1
meansfor patch

1
, suffix

>
indexesthesources.: � Emissivity� � Reflectedradiosity= N � � : �=O� idemwith eachreflectivity substitutedby its square
 �

EmittedpowerP � AreaQ � ReflectivityB � Generalizedsurvival probability& � Received power (or radiosity) due to self-
emittedunit power (or emittance)� � � Reflectedradiosityon

1
dueto source

>
.� �SR 
 � � � �= � � idem with eachreflectivity substitutedby its

square.= � R 
 � = � �MT� � Reflected“radiosity”with eachreflectivity sub-
stituted by its squaredivided by the survival
probability. Doesn’t always have a physical
meaning.M � R 
 � M � �U � Probabilityfor apathto begin at

1
3 A gathering estimator with generalized

transition and absorption probabilities

We will considerthe discreterandomwalk here,that is, the one
which proceedsaccordingto patch-to-patchForm Factors. How-
ever, the formulaeandresultsobtainedarealsovalid for point-to-
pointFormFactors,asshown in [17].

Let us first considerwhat the expectedvalue of any unbiased
Monte Carlo estimatorshouldbe for the radiosityof a patch. Let

ussupposethat theemittanceof source

>
is

: �
, � � is the reflected

radiosityof patch
1
dueto thereceivedpower(thatis, � � R N � � : � ,

andso for a non-emitterpatch,it equalsthe total radiosity), VXWZY
denotestheFormFactorfrom patch[ to patch\ , and

Q W denotesthe
reflectanceof patch [ . Thenwe have, by developingtheradiosity
systemin aNeumannseries(droppingthezeroorderterm):� � R Q �^] � : � V � � # Q �^]^_`] � : � V � _ Q _ V _ �

# Q � ] _ ]Hab] � : � V � _ Q _ V _ a Q a V a � #dc�cZc
Thiscanbeexpressedas:� � R � � ���� #e� � � �� #e� �gf �� #hc�c�c
where� � ���� R Q � 
 � : � V � � , � � � �� R Q � 
 � 
 _ : � V � _ Q _ V _ �

,� �if �� R Q � 
C�4
 _ 
 a : � V � _ Q _ V _ a Q a V a �
andso on. That is,� � ���� representsthe radiositydueto direct illumination, � � � �� repre-

sentstheradiosityafteronebounce,andsoon. It is alsousefulto
definethefollowing quantities:� � � R � � ���� � #j� � � �� � #hc�c�c� � ���� � representstheradiositydueto direct illumination from source>
, � � � �� � representstheradiosityafteronebouncefrom source

>
, and

soon. It is clearthat: � � R ] � � � �
Now let usconsiderthefollowing simulation.A path k startsfrom
patch

1
with probability U � (this probability canbe consideredas

theinitial or emittedimportanceof thepatch),andfrom hereon it
evolvesaccordingto thetransitionprobabilitiesU � a . It will thenbe
absorbedin patchl with probability m � B a

, andsurvivewith prob-
ability

B a
. Next we definetherandomvariablesn � � �����o n � � � ��Co n � �gf ���o�p'p�p

in thefollowing way:
All of theserandomvariablesareinitially null. If thepath k hap-
pensto arriveatsource

>
with length \ , andif

1 o ? � o ? � oZp�p�p�o ? Y �S� o >
is thetrajectorythepathhasfollowed,thenthevalueof n � � Y �� is settoQ �<q ��r's� ��r s � r'sJ r s q r'strtu� r s r u p'p�p � r�v�w sJ r�v�w s q r�v�w s �� r�v�w s � 9 ��'� . Let us alsodefinea new

randomvariablen � � as: n � � R ] Y n � � Y ��
Now let usfind theexpectedvalueof theserandomvariablesn � � Y �� .
Applying the definition of expectedvalue,and rememberingthat
the probability of selectingpatch

1
is U � , andthat the conditional

probabilityof landingon source

>
justwhenleaving patch

1
is V � � ,

wehave : " n � � ���� (xRy] � Q � V � �U � � : �U ��z U � z U � � R � � ����
To gofrom patch

1
to asource

>
in apathof lengthtwo wecanpass

throughany patch

?
(aftersurviving on it with probability

B _
), so

wehave: " n � � � �� ({R ] _ ] � Q � V � _U � _ Q _B _ V _ �U _ � : �U � z U � U � _ B _ U _ �R � � � ��



andsoon. Then,wehave: " n � � (|R : " n � � ���� # n � � � �� #}c'c�c (xR : " n � � ���� ( # : " n � � � �� ( #hc�c�cR � � ���� #j� � � �� #dc�cZc R � �
So it is clearthat the randomvariablen � � Y �� is a centeredestimator
for the radiosity due to the power arrived on patch

1
after \ � m

bounces,and the sumof this whole family of estimatorsgives a
new centeredestimatorn � � which correspondsto the total radiosity
of patch

1
dueto the power arrived after any numberof bounces.

Our next aim is to obtainthe variancefor this estimator. We will
usea similar approachto the one in [14], [16] and[19]. We can
decompose~ F^I " n � � ( in thefollowing way~ FGI " n � � (�R ~ FGI " n � � ���� # n � � � �� #dc�cZc (R : "�� n � � ���� # n � � � �� #hc�c�c � � ( � � : " n � ��( � �R : " n � � ��� �� ( # : " n � � � � �� ( #}c'c�c# $ ]���	�^�O� : " n � � ���� n � � ���� ( �0� � � (1)

Thetermsof theform
: " n � � ���� n � � �+�� ( arenotzero,becauseif apath

arriveswith length
2

onsource

>
it canalsoarrive lateratsource

>'�
with length � . Next wefind them:: " n � � ���� n � � ���� (R ] � ] �/� ]._ s c�c�c ]_'� w s ]_'��� s c'cZc ]_8� w s Q � V � _ sU � _ s Q _ sB _ s V _ s _ uU _ s _ uc�c�c Q _'� w sB _'� w s V _'� w s �U _'� w s � : �U � c Q � V � _ sU � _ s Q _ sB _ s V _ s _ uU _ s _ uc�c�c Q _'� w sB _'� w s V _'� w s �U _'� w s � Q �B � V � _'��� sU � _'��� s Q _'��� sB _'��� s V _8��� s _'��� uU _8��� s _'��� uc�c�c Q _'� w sB _'� w s V _'� w s �/�U _'� w s �/� : � �U � cU � U � _ s B _ s c'c�c U _ � w s � B � U � _ ��� s B _ ��� s cZc�c U _'� w s �/�R B �G] � ] _ s c�c�c ]_'� w s Q ��B � V �� _ sU � _ s Q �_ sB _ s V �_ s _ uU _ s _ uc�c�c Q �_ � w sB _'� w s V �_ � w s �U _'� w s � : �U � c U � U � _ s c�c�c U _'� w s � c] �/� ]_8��� s cZc�c ]_'� w s Q � V � _8��� s Q _8��� s

c�c�c Q _'� w s V _'� w s �/� : �/�U �R B �U � ] �K� � ���� � ] �/� � � ���	����D�/� R B �U � ] ��� � ���� � � � ���O����
where� � ���� � is the

1
componentof the

2�5 ?
termcorrespondingto the

developmentin Neumannseriesof thelinearsystem� � � R ] a Q �� V �� aB � U � a " � a � #e� a � : � ( (2)

Then] ���	� � ]�G�	� : " n � � ���� n � � ���� (D��R B �U � ] � ] ���	� � � ���� � ]�^�	� � � ���	����

R B �U � ] � � � � � �
andalso : " n � � ��� �� (�R ] ��� Q � V � �U � � : �U �4� � z U � U � �R ] � B � : �U � Q �� V �� �B � U � � : �

R B �U � ] � : � � � ���� �
: " n � � � � �� (|R�] _ ] ��� Q � V � _U � _ Q _ V _ �B _ U _ � : �U � � � z U � U � _ B _ U _ �

R B �U � ] � : � � � � �� �
andsoon. Thenweobtain~ FGI " n � � (�R B �U � ] � : � " � � ���� � # � � � �� � #dcZc�c (# $ B �U � ] � � � � � � �)� � �R B �U � ] � " : � #%$8� � ( � � � �)� � �

where� � � is thesolutionof thesystem(2).
For the radiosityour estimatoris simply n � � # : � , andas

: � is a
constantwehave~ FGI " nN � (�R ~ FGI " n � � # : � (xR B �U � ] � " : � #%$8� � ( � � � �)� � � (3)

If weconsidereachpatchin turn, U � R m , andfor � � paths:~ FGI " nN � (�R m� � � B � ] � " : � #;$<� � ( � � � �0� � � � (4)

3.1 Existence of the variance

Wehavethatthe � � arethesolutionsof system(2). But anecessary
andsufficient conditionfor thesystemto have aniterativesolution
[22] (suchastheonegivenby theNeumanndecomposition)is that� " Q �� V �� aB � U � a (�� m (5)

where � is the spectralradius. It is obvious that if system(2) is
solvablewith the Neumanndecomposition,the solutionsmustall
be finite andpositive, and thus the variancesexist. On the other
hand,it is very easyto show that if a solutionof thesystemexists
suchthatall valuesarepositive, thissolutioncanbeobtainedin an
iterativeway with theNeumanndecomposition.Thus,a necessary
andsufficientconditionfor theexistenceof thevariancesis condi-
tion (5).
An examplewherethisconditionis notsatisfiedis givenwhentak-

ing
� u�J �h� m and U � a R V � a for all

1 o l . Thespectralradiusin this
caseis greateror equalthan1. Alternatively, it canbeshown that



the infinite sumsin formula(1) arenot convergent. This is simply
doneby showing that  g¡g¢ ��£¥¤ : " n � � ��� �� (§¦Rd¨ , andthusthesumcan
notconverge.: " n � � ��� �� (©R ] _ s c�cZc ]_'� w s ] � � Q � Q _ sB _ s p�p�p Q _8� w sB _'� w s : �U � � � cU � V � r s B _ s p�pZp V _'� w u _'� w s B _'� w s V _'� w s �R ]._ s c�cZc ]_'� w s ] � Q �� Q �_ sB _ s p�pZp Q �_'� w sB _ � w s : ��U � cV � r s p'p�p V _8� w s �� Q ��U � ] _ s c�c�c ]_8� w s ] � V � r's p�p�p V _'� w s � : ��

(6)

becausewehaveassumed
� u�J � � m for all

1
. But wehave] _ s c�cZc ]_'� w s V � r's p'pZp V _'� w s � R " V � ( � �

andin [15] it is proven that, whenever the Form Factormatrix is
irreducibleandaperiodic g¡ª¢��£©¤ " V � (/� � R P �P * (7)

where
P *

is the total areain thescene.We do not considerit ge-
ometricallymeaningfulfor a Form Factormatrix to beperiodic. If
thereareclosedrooms,it is reduciblewith onesubmatrixfor each
room. In this case,we considerin turn eachroomandwe have ir-
reduciblesubmatrices.
But now from (6) and(7) weobtain: g¡ª¢��£¥¤ : " n � � ��� �� ( � ] � "  g¡g¢��£¥¤ " V � (/� � ( : ��R ] � P �P * : ��|« ¨ (8)

3.2 Transition probabilities equal to the Form Fac-
tors

When U � a R V � a we have the casestudiedin [19]. Formula(2)
becomes: � � � R ] a Q �� V � aB � " � a � #e� a � : � ( (9)

Thesolutionof thissystemwascalled M � � in [19].
We have seenin theprevioussectionthatwhenfor all

1
,
B ��¬ Q �� ,

thenthevariancesdo not exist. But asthe condition
B � « Q �� for

all
1

is too restrictive for theexistenceof thevariance,thequestion
ariseswhethera weaker conditioncanbegiven. We have run sim-
ulationsandfound that thespectralradius(5) is approximatedby,
andin mostcases,is lessthan,theaveragevalue" Q �B (D­�®Z¯�R mP * ] P � Q ��B � (10)

Thisfindingis similarto theresultsin [5]. It is basedonthefollow-
ing:

Source
Region of interest

Region with low survival probability

Region with higher survival probability

Figure 1: Pathstracedfrom the region of interesthave a higher
survival probabilitywherethereflectedradiosityis higher.

If weconsidertheseries� " � u�J � " V � (/� a ( , its limit is � " � u�J � � �� � ( , but it
is veryeasyto checkthat� " Q ��B � P �P * (xR mP * ] � P � Q ��B � R " Q �B ( ­'®Z¯
Thus what we do is to approximatethe first term in the series,� " � u�J � V � a ( , by thelimit of theseries.
Thus,a heuristicsuchaskeepingthis averagevaluelessthan ¨ p °
or maybë p ± shouldbesafe.
An example of the use of such an estimatoris the following:
Supposewe have obtaineda coarsesolution for the radiosities.
This solution could be used to drive the random walk takingB �³² N � � : � , assuringthatenoughpathswill survive in patches
with high received radiosity. This is usefulin a scenelike theone
in Figure1. This casecanbeconsideredthedualof theonegiven
in [10] (seeFigure2).

Supposenow that
B � R m . This is the infinite pathlengthes-

timator,
� u�J � R Q �� and � � � in (9) hasnow a physicalmeaning:

the reflectedradiosityof patch
1

due to source

>
in a dual scene

wherewe simply have substitutedeachreflectivity by its square.
This quantitywascalled =	� � in [16], andwe againobtainthe for-
mulain table1. On theotherhand,when

B � R Q � we have the
: �

estimator,
� u�J � R Q � and � � � becomes� � � (which canbe seenby

directsubstitutionin formula(9):� � � R ] a Q � V � a " � a � #;� a � : � ( (11)

andagainobtainingtheformulafor the
: �

estimatorgivenin table
1.



3.3 Transition probabilities as biased Form Fac-
tors

Now let usconsiderthebiasedFormFactorsastransitionprobabil-
ities: U � a R Q � V � a N aN � � : �
It is easyto checkthat they areprobabilities,that is, they areall
positiveandsumto 1. Wewill considertwo differentsurvival prob-
abilities.Thefirst will be

B � R`´ � � 9 �´ � , andthesecond
B � R m , that

is, theinfinite estimator. In thefirst caseequations(2) convert into:� � � R ] a Q � V � a N �N a " � a � #;� a � : � ( (12)

It is notdifficult to obtainthesolutionof thissystem.Wehave� � � R N � � � �N � (13)

The varianceis obtainedsubstitutingthe
B � valuesandthe found� � � valuesin formula(3):~ FGI " nN � (�R N � � : �U � ] � " : � #L$<� � ( � � �N � �)� � � (14)

As
: � #©$<� � R N � #¥� � , and� � � N �

, thisvariancecanbebounded:~ F^I " nN � (�� N � � : �U � $ ] � � � � ��� � � R $8� ��U � ��� �� (15)

And for U � R m ~ FGI " nN ��(+� � �� (16)

In thesecondcase,thatis,
B �XR m , equations(2) convert into� � � Ry]Ha Q � V � a " N � � : � (N a " � a � #e� a � : � ( (17)

Multiplying the left andright termin thesystemby
: � #}$<� � and

summingover

>
:] � " : � #L$<� � ( � � � R ]Ha Q � V � a " N � � : � (N a c" ] � " : � #%$8� � ( � a �

# ] � " : � #%$8� � ( � a � : � (R�]Ha Q � V � a " N � � : ��(N a c" ] � " : � #%$8� � ( � a � # " : a #;$8� a ( : a (
(18)

This new systemcanbeseenby directsubstitutionto have theso-
lution ] � " : � #L$<� � ( � � � R � �� (19)

And substituting(19) and
B �XR m in (3):~ FGI " nN ��(xR N � � : �U � � � �0� � � R � ��U � �)� �� (20)

Thatmeansfor U � R m , thatis weconsidereachpatchin turn,anull
varianceestimator. Thus,the probabilitiesconsideredareoptimal
in thesensethatthey leadto null varianceestimators.

3.4 A system of equations for the variances

Let us supposethat for eachpath from
1
, we do the survival test

before it starts. This meansthat on averageonly a
B � fraction of

pathswill actuallystartoff, anda m � B � fractionwill never start,
thatis, will havezerolength.It is easyto show thatin thiscasethe
varianceis:~ FGI " nN � (xR ~ F^I " n � � # : � (xR mU � ] � " : � #%$8� � ( � � � �)� � � (21)

Multiplying theleft andright termsof system(2) by
: � #}$8� � and

summingover

>
] � " : � #;$<� � ( � � � R ] a Q �� V �� aB � U � a c" ] � " : � #L$<� � ( � a � #] � " : � #L$8� � ( � a � : � (R ] a Q �� V �� aB � U � a c" ] � " : � #L$<� � ( � a � # " : a #%$8� a ( : a (

(22)

Taking U � R m in (3)] � " : � #L$<� � ( � � � R ~ FGI " nN � ( #e� ��
thesystem(22)canbewrittenas:

~ F^I " nN ��(©Rµ] a Q �� V �� aB � U � a c" ~ FGI " nN a ( #e� �a # " : a #L$<� a ( : a ( #j� ��
(23)

andsimplifying

~ FGI " nN ��(�Ry] a Q �� V �� aB � U � a " ~ FGI " nN a ( # N �a ( #;� �� (24)

Thissystemwasobtainedfrom conditionalprobabilityconsider-
ationsin [6]. However, Haltonconsideredonly symmetricmatrices
(theonescorrespondingto our

Q � V � a ), andconsideredalso
thatsystem(24) alwayshada solution. His work is referencedin
[3], but Ermakow addsasconditionfor theexistence(andfinitness)



of a solutionthat the � @ I � � � u� q u�g¶J ���'�g¶ � � m (translatedto the ra-

diositysetting).
Equatingto zerotheindependenttermin (24) we will obtaina ho-
mogeneoussystemwith null solutionfor thevariances.Thus:

] a Q �� V �� aB � U � a N �a R � �� (25)

By direct substitutionit canbe checked that U � a R V � a and
B � Rm arethe solutionsof (25), andwe againobtainthe null variance

estimatorof theprevioussection.

3.5 Complexity

Thesameresultsoncomplexity asin [14] canbeobtainedhere.We
just have to find a boundfor thevarianceswhich is independentof
thenumberof patches.Let usseeit:

~ FGI " nN � (�R m� � � B �^] � " : � #L$<� � ( � � � �)� � � �¬ m� � � " : � ­'· #L$<� � ­'·H(�] � � � � � (26)

because
B � ¬ m .

But � ��R 
�� � � � canbe boundedsummingover

>
in the system

(2): � � R ] a Q �� V �� aB � U � a " � a # : a (¬ Q ��B ��¸ ] a V � a " � � ­'· # : � ­'· (R Q ��B ��¸ " � � ­'· # : � ­'· ( (27)

wherȩ R � F^¹ " q �ª¶���ª¶ ( . But then� � ­�· ¬ � FG¹ " Q ��B � ( ¸ " � � ­'· # : � ­�·H( (28)

andthus � � ­�· ¬ � FG¹ " � u�J � ( ¸ : � ­�·m � � FG¹ " � u�J � ( ¸ (29)

Thismeans

~ FGI " nN ��(�¬ m� �»º¼ " : � ­'· #%$8� � ­'·�( � FG¹ " � u�J � ( ¸ : � ­�·m � � FG¹ " � u�J � ( ¸¾½¿ (30)

and this bound staysvalid as long as we keep bounded ¸ R� FG¹ " q �ª¶���ª¶ ( , � FG¹ " � u�J � ( and
: � ­'· , as from [14] we know that� � ­'· ¬ Q � ­'· � FG¹ " 9 ����	��� ).

3.6 Other unbiased estimators

Justaswe have generalizedthe
: �

estimatorin section3,thesame
canbe donewith the

9 ������ � and
9 �� � estimators.The generalized

estimator
9 ������ � canbedefinedin a similarway asthe

: �
one,just

it will only scoreon a sourcewherethepathdies,andthevalueofn � � Y �� is, if
1 o ? � o ? � o�p�p�p'o ? Y �S� o > is thetrajectoryof thepath:n � � Y �� R Q � V � _ sU � _ s Q _ sB _ s V _ s _ uU _ s _ u p�p�p Q _ v�w sB _ v�w s V _ v�w s �U _ v�w s � : �U � " m � B � (

With asimilarapproachasin section3 wecanfind thevariance:~ FGI " nN � (xR B �U � ] � : �m � B � � � � �)� � � (31)

Thisestimatoris interestingbecauseit leadsto a(finite pathlength)
null varianceestimatorwhenU � a R Q � V � a N aN � � : �
and

B �xRÀ´ ��� 9 �´ � . Usingthesevalues,thevaluein (13) andsettingU �4R m , (31)convertsinto:~ FGI " nN � (�R N � � : �N � ] � : � N �: � N � � � �N � �)� � �R " N � � : � (O] � � � � ��� � � Rd¨ (32)

Thegeneralizedestimator
9 �� � is alsodefinedin asimilarway as

the
: �

one,just it will scoreon eachsourceit hits, exceptwhenit
dies,andthevalueof n � � Y �� is, if

1 o ? � o ? � oZp�p'p�o ? Y �4� o > is the trajec-
tory of thepath:n � � Y �� R Q � V � _ sU � _ s Q _ sB _ s V _ s _ uU _ s _ u p�p�p Q _ v�w sB _ v�w s V _ v�w s �U _ v�w s � : �U � B �
And thevariancecanbefoundto be:~ FGI " nN � (xR B �U � ] � : � #%$8� �B � � � � �)� � � (33)

3.7 The continuous case

So far we have consideredpatch-to-patchtransitionprobabilities.
Thismeansthat,in thesimulation,thepath,afterhaving hit apatch
on a given point, exits from a new randompoint to continueits
trajectory. This is differentfrom thepoint-to-pointtransitionprob-
abilities or pureParticle Tracingsimulationasexplainedin [11].
Thusit leadsto a differentsolutionthantheonegiven by the ren-
deringequation(althoughboth solutionscoincidein the limiting
case,whenthesizeof patchesdecreasesto zero). This is because
whenusingthepatch-to-patchtransitionprobabilitieswhatwe are
reallyobtainingaresolutionsof a systemof equations,which is an
approximationto therenderingequation.In thecontinuouscase,or
pureParticleTracing,what is obtainedis theaverageof the exact
solutionof therenderingequationoverapatch.However, usingthe
sameargumentationasin [17] it canbeseenthat thesameformu-
lae obtainedherearevalid for the pureParticleTracingcase,just
the quantitiesappearingareobviously not the same. That is, for
instance,the � � quantitywill meannow theaverageon thepatchof
theexactsolutionof therenderingequation,whenfor theprevious



caseit meantthe exact solutionof the radiosity systemof equa-
tions.And of coursein thecontinuouscasethesystem(2) becomes
anintegralequation:� � " ¹ (ÁRyÂ�Ã Q � " ¹ ( V � " ¹ o/Ä (B " ¹ ( U " ¹ o/Ä ( " � � " Ä ( # : � " Ä (�(DÅ Ä (34)

where Æ is the setof surfacesof the scene,and
: � " Ä ( is equalto: �

if Ä happensto bein source

>
andzerootherwise.The � � � value

is thentheaverageover thepatch
1

of � � " ¹ ( .
4 The shooting estimator

Now let us considerthe shootingestimatorwith generalizedtran-
sition andabsorptionprobabilities.Considerthefollowing simula-
tion. A path k startsfrom source

>
with probability U �

, andfrom
hereon it evolvesaccordingto thetransitionprobabilitiesU � a . On
eachhit patch

1
, a survival-absorptiontestis doneaccordingto the

probabilitiesÇ B � o m � B ��È . If thepath k happensto arrive at patch1
with length \ , thentheradiosityof this patchis updatedwith the

quantity
� �� � q �Dr�s� �Dr s � r'sJ r s q r'sTrZu� r s r u � rZuJ r u p�p�p � r�v�w sJ r�v�w s q r�v�w s �� r�v�w s � � �� � .

Now, thevariancecanbefoundeitherfrom duality considerations
asin [17] or usingthesameapproachasin section3:~ FGI " nN � (xR B �H] � 
 � " m #L$ Q � & � ( ��É� �P �� U � �)� �� (35)

where�OÉ� � is thesolutionof thesystem:

� É� � R ]Ha Q �� V �a �B � U a � " � Éa � #e� a � 
 � ( (36)

This systemcanbe consideredin a certainway thedualof (2),
asfar asthepower systemcanbeconsidereddual to the radiosity
system.

Source
Region of interest

Region with low survival probability

Region with higher survival probability

Figure2: Pathstracedfrom thesourcehaveahighersurvival prob-
ability wherethereceivedimportancetowardstheregionof interest
is higher.

Here the sameargumentationas in previous sectionaboutthe
existenceof thevarianceis alsovalid, andit is easyto checkthat� " Q ��B � V �� aU � a (xR � " Q ��B � V �a �U a � (

Formula(35),whentakingsourceselectionprobabilitiespropor-
tional to thepower of thesourcesU � R � ��Ê� , where


 *
is thetotal

power, convertsinto~ F^I " nN � (xR B � 
+* " m #L$ Q � & � ( ��É�P �� �)� �� (37)

where�OÉ� R 
 � �OÉ� � .
Also, takingeachsource

>
in turn, with � � R � U �

pathsfrom it,
weobtain~ F^I " nN ��(xR m� � � B � 
 � " m #%$ Q � & � ( �OÉ� �P �� ��� �� � � (38)

And aswehave independentsimulations:~ FGI " nN ��(�R ~ FGI " n � � (xR ~ FGI " ] � n � � � (xRy] � ~ FGI " n � � � (R ] � m� � � B � 
 � " m #L$ Q � & � ( �OÉ� �P �� �)� �� � � (39)

This is the variancewe obtain in real simulations,as we usually
precomputethenumberof raysto castfrom eachsourceaccording
to its probability, ratherthandoingit on thefly.

4.1 Transition probabilities equal to the Form Fac-
tors

In [19] thecaseU � a R V � a wasstudied,but theabsorptionprobabil-
itiesweregeneralones.Formula(36)becomes:� É� � R ] a Q �� V a �B � " � Éa � #j� a � 
 � ( (40)

which canbeshown to have thesolution
P � MT� � , where MT� � wasde-

finedin [19].
An exampleof theusefulnessof suchanestimatoris thefollow-

ing:
If wemake thesurvival probabilityproportionalto receivedimpor-
tance,that is,

B �§²�Ë'� � ~ � , wherethe ~ � is the initial and Ë'� the
total importance[10] (weuseherethenotationby Neumannetal.),
weassurethatthepathswill oftensurvive in patcheswhichareim-
portantto theselectedones.This couldbeusedto drive a random
walk in a scenelike theonein Figure2, thedualof Figure1. This
casewastheoneconsideredin [10], althougha breadth-firststrat-
egy wasusedthere,insteadof the considereddepth-firststrategy
here.
Now supposethat

B � R m . Thisis theinfinite pathlengthestimator,� u�J � R Q �� and � É� � in (40) now hasthesolution
P �!=	� : thereflected

power of patch
1

dueto source

>
in a dualscenewherewe simply

havesubstitutedeachreflectivity by its square.Substitutingin (35),
weobtainagaintheformulafor theinfinite estimatorin table1. On

theotherhand,when
B � R Q � wehave the


+*
estimator,

� u�J � R Q �
and � É� � becomes

P � � � � , whichcanbeseenby directsubstitutionin
formula(40):P � � � � R ] a Q � V a � " P a � a � #e� a � 
 � ( (41)



andagainobtaintheformulafor the

 *

estimatorgivenin table1.

Another interestingcaseis the estimatorpresentedin [8], al-
thoughKeller introducesit in the context of Quasi-MonteCarlo
estimators.Keller takestheaveragereflectivity of thesceneassur-
vival probabilityonall patches.

4.1.1 Optimal survival probabilities

Supposeweareinterestedin all patches,not just in asingleregion.
Wewantto find outtheoptimalsurvival probabilities

B � in thesense
to maximizetheefficiency. Thiscanbedefinedastheinverseof the
productof thevariancetimesthecost[13], for asinglepatch,or the
averageweightedvariances(expectedvalue of the Mean Square
Error) timesthe cost,for the whole scene.This means,taking as
averagecost

���� JTÌTÍÏÎ , to minimizethequantity: "�ÐyÑ : ( c mm � B ­'®Z¯ (42)

Now, usingthedefinitionof theMeanSquare,formula(37) for the
variance(we considera reasonablehypothesisU � R � �� � whenin-
terestedon thewholescene)andtheapproximationM �SÒ � u�J � 
 *P * " m � " � uJ (D­'®t¯Z(
weobtain,following thesameapproachasin [18]:: "�ÐÓÑ : ( Ò 
 �* Q �­'®t¯P * P ­'®Z¯ " m � " � uJ ( ­'®Z¯ (
which substitutedin (42), after approximating" � uJ ( ­'®t¯ by

� u ÌÏÍÏÎJ ÌÏÍÏÎ ,
givesasquantityto minimize:
 �* Q �­'®t¯P * P ­'®t¯ " m � " � u ÌÏÍÏÎJ ÌÏÍÏÎ (�( mm � B ­'®t¯ (43)

The behaviour of this quantity, taking
� u � � u ÌTÍtÎ� � � ÌÏÍÏÎ R m , is shown in

Figure3, for valuesof
Q ­'®Z¯ 0.3,0.5and0.8,respectively.

Theanalyticalsolutionis
B ­�®Z¯ R Q ­�®Z¯ . Thiswill obviouslyhap-

penwhenfor all
1 B � R Q � . Thuswecanstatetheresult:

Of all unbiasedshootingrandomwalk estimators with generalised
absorptionprobabilities and transition probabilities equal to the
FormFactors, themostefficientfor calculatingall radiositiesis the
onewith survivalprobabilityequalto thereflectivity.
Rememberthat the infinite pathlengthestimatoris not considered
here(thecostwould beinfinite), but from [18] we know thatbias-
ing it we obtaina muchworseestimatorthan


+*
. Thatmeansthat
 *

is the bestof all shootingrandomwalk estimatorswith tran-
sition probabilitiesequalto the Form Factors,biasedor not. And
from [14] we know thatshootingestimatorsaremuchbetterwhen
dealingwith thewholescenethangatheringestimators,sowe can
extendthis resultto all randomwalk estimatorsstudiedtill now. It
mustberememberedherethatthe


+*
estimatorin its breadth-first

approachwastheoneusedby Shirley [20] andFedaandPurgath-
ofer [4].

4.2 Transition probabilities as biased Form Fac-
tors

Now let us consideras transition probabilitiesthe biasedForm
Factors: U � a R Q a V � a ËHÔaË Ô� �)Õ �
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Figure3: Behaviour of the inverseof efficiency against
B ­'®Z¯ forQ ­�®Z¯ RÖ¨ p × , ¨ p Ø and ¨ p ° , respectively. The vertical asymptote

correspondsto
Q �­'®t¯



wherethe Ë Ô� valuesare the solutionsof the system(dual of the
powerÙ one): ËHÔ� R ] a Q a V � a ËHÔa #jÕ � (44)

and Õ � is the vectorof initial importance[17]. It is easyto check
thatthe U � a quantitiesareprobabilities,that is, they areall positive
andsumto 1 for a fixed

1
. We will considertwo differentsurvival

probabilities.Thefirst will be
B �ÁRbÚÏÛ� � Ô �ÚÏÛ� , andthesecond

B �ÁR m ,
thatis, theinfinite estimator. In thefirst caseequations(36)convert
into: � É� � R ]Ha Q � V a � " Ë Ôa �)Õ a (Ë Ô� �)Õ � " � Éa � #e� a � 
 � ( (45)

It is notdifficult to obtainthesolutionof thissystem.It is:� É� � R P � " Ë Ô� ��Õ � ( � � �ËHÔ� �)Õ � (46)

The varianceis then obtainedsubstitutingthe
B � valuesand the

found ��É� � valuesin (35):~ FGI " nN ��(�R mË Ô� ] � 
 � " m #%$ Q � & � ( " Ë Ô� ��Õ � ( � � �P � U � ��� � � (47)

Supposenow we areinterestedonly in a singlepatch [ (thus Õ �ÜR� W � ), andthatwe take U � R � � � Ú Û� � Ô � �
 � � ��� ÚÏÛ� � Ô � � . As nowË Ô� �)Õ � RhË W � �)� W �
where Ë W � is the importanceof source

>
to illuminatepatch [ (the

relation

�� Ë W � 
 � R P W N W holds),we obtainfor thevarianceof

thepatch[ , takingintoaccountthat

 ��
 � " Ë W � �Ý� W � (�R P W " N W �: W (xR P W � W and m #L$ Q W & W R $ Ë W�W � m [17]:~ FGI " nNÝW (eR m #%$ Q W & WP W Ë W�W ] � 
 � " Ë W � �0� W � ( " ] � � W � ( �)� W �R $ Ë W�W � mË W�W � W " ] � � W � ( �)� W �R � W ��" m � mË W�W (

(48)

Thisquantityis alwaysstrictly positive,becauseË W�W « m .
AnotherinterestingcasehappenswhenconsideringÕ �§R ��	�Þ� m
(wedonotusehereanormalizedÕ vector).Wecancheckby direct
substitutionin the system(44) that ËHÔ� R �� � . With thosevalues
pluggedin equation(47)weobtain:~ FGI " nN � (xR Q �^] � 
 � " m #%$ Q � & � ( � � �P � U � ��� � � (49)

which is exactly thesamevarianceasthecorrespondingto the

+*

estimator. In fact,bothestimatorsarethesame,becauseplugging
thevaluesfor ËHÔ� and Õ � in thesurvival andtransitionprobabilities

we obtain
B �©RßÚtÛ� � Ô �ÚÏÛ� R Q � , and U � a R �O¶ q �g¶ ÚÏÛ¶ÚtÛ� � Ô � R V � a . This

tellsusthatthe

+*

estimatorcanbeconsideredaparticularcaseof
importancebiasingin which theinitial importanceof eachpatchis
theinverseof its reflectivity minusone.

In thesecondcase,thatis,
B �4R m , equations(36)convert into� É� � R ]Ha Q � V a � " ËHÔa �)Õ a (Ë Ô� " � Éa � #;� a � 
 � ( (50)

Insteadof solving this systemin general,we will only obtainthe
solutionfor the particularcaseÕ �©R � � W . We will do it from the
duality betweenthis caseandthe onegiven by the equation(20).
Weobtain,following thesameapproachasin [17]:~ FGI " nË W � (�R " Ë W � �)� W � ( �U � � " Ë W � �0� W � ( � (51)

Consideringeachsourcein turn (U � R m ), andtakinginto account
that � W � R ���à " Ë W � �)� W � ( 
 �

,~ FGI " n � W � (áR ~ FGI " 
 �P � nË W � (R 
 ��P ��ãâ " Ë W � �)� W � ( � � " Ë W � �)� W � ( �'ä Rd¨
(52)

And as the � � � are independentestimatorsfor all

>
, ~ F^I " nN ��(åR~ FGI " n � � (xR 
 � ~ FGI " n � � � (�Rd¨ .

Thusthetransitionprobabilitiesconsideredareoptimalin thesense
thatthey leadto a null varianceestimator. Comparethemwith the
onesusedin [12]: U � a R V � a ËHÔa
 _ V � _ Ë Ô_
Our Ë Ôa quantitiesarePattanaik’s hemisphericalpotential.

4.2.1 Biasing with importances as dual of radiosities

Considerthedualof theradiositysystem:æ Ô� R ]Ga Q a V a � æ Ôa #eÕ � (53)

andsupposeweusetheprobabilities:U � a R Q a V a � æ Ôaæ Ô� �)Õ �
and B �SR æ Ô� �)Õ �æ Ô�
It canbeeasilyproventhat thesamecorrespondencebetweensys-
tems(53) and(44) existsasbetweenthe radiosityandpower sys-
tems.Thus,for Õ �� R P � Õ � , then Ë Ô �� R P � æ Ô� . Thus,thetransition
andsurvival probabilitiescanbeexpressedsimplyasU � a R Q a V � a ËHÔ �aË Ô �� �0Õ ��
and B � R ËHÔ �� �)Õ ��Ë Ô ��
where Õ �� R P � Õ � . In this way we obtainthesameresultsasin the
previoussection.



4.3 Complexity

We canusethesameargumentationasin section3.5,andalsothe
observation that ¸ R � FG¹ " q �g¶�'�g¶ (ÝR � FG¹ " q ¶����¶�� ( to bound


 � � É� �
using ¸ . Fromthis boundingwe canobtainthesameresultsasin
[14].

4.4 Other unbiased estimators

Justaswehavegeneralizedthe

 *

estimatorin section4, thesame
canbe donewith the

��������	� and
����	� estimators.The generalized

estimator
��������	� canbedefinedin asimilarway asthe


 *
one,just

it will only scoreon thepatchwherethepathdies,andthevalueofn � � Y �� is, if

> o ? � o ? � o�p�p�p�o ? Y �S� o 1 is thetrajectoryof thepath:n � � Y �� R Q �P � V � _ sU � _ s Q _ sB _ s V _ s _ uU _ s _ u Q _ uB _ u p�p'p Q _ v�w sB _ v�w s V _ v�w s �U _ v�w s � 
 �U � " m � B ��(
With thesameapproachasin section3 wecanfind thevariance:~ F^I " nN � (xR B �m � B � ] � 
 � � É� �P �� U � ��� �� (54)

This estimatoris interestingbecauseit leadsto a (finite path
length)null varianceestimatorwhenU � a R Q a V � a Ë ÔaËHÔ� �)Õ �Õ � R � W � , B � R ÚÏÛ� � Ô �Ú Û� andU � R � �8� Ú Û� � Ô � �
 � � � � Ú Û� � Ô � � . Usingthesevalues

andthevaluein (46),(54)converts(for thepatch
1
suchthat Õ �SR m )

into: ~ FGI " nN � ({R � mË Ô� ] � � � �P � ] � 
 � " ËHÔ� �)Õ � (D� �)� ��R � � �P � � � P � �ç�)� �� Rd¨ (55)

because

K��
 � " Ë Ô� �;Õ � (ÞR � � P � . This null variancecaseis ob-

viously optimalandis in apparentcontradictionwith the resultin
[17]. Theretheoptimalprobability for sourceselectionwasgiven
asU � ² 
 ��è Ë Ô� ��Õ � . But notethatin [17] thetransitionprobabil-
itiesconsideredwerepure,notbiased,FormFactors.
The generalizedestimator

�Ê��	� is alsodefinedin a similar way as
the


 *
one,just it will scoreon eachpatchit hits, exceptwhenit

dies,andthevalueof n � � Y �� is updatedwith, if
1 o ? � o ? � oZp�p�p'o ? Y �4� o >

is thetrajectoryof thepath:n � � Y �� R Q �P � V � _ sU � _ s Q _ sB _ s V _ s _ uU _ s _ u Q _ uB _ u pZp'p Q _ v�w sB _ v�w s V _ v�w s �U _ v�w s � 
 �U � B �
And thevariancecanbefoundto be:~ FGI " nN ��(�Ry] � 
 � " m #%$ Q � & ��( � É� �P �� U � ��� �� (56)

4.5 The continuous case

Thesameremarksasin section3.7 arevalid here. That is, all the
resultsobtainedarealsovalid for thepoint-to-pointForm Factors,
or pureParticle Tracing. Again, system(36) becomesan integral
equation.

5 Results

Herewepresentin figure5 someexperimentsperformedon avery
simplescene,a cubicalenclosurewith eachfacedivided into nine
equalsizepatches(Fig.4), the reflectivities of the facesbeing0.3,
0.4, 0.5, 0.6, 0.7, 0.8 respectively, anda sourcewith emissivity 1
in the middleof the first face,in patch5. Thuspatches1 to 9 re-
ceive no direct lighting andhave reflectivity 0.3, patches10 to 18
reflectivity 0.4,andsoon. For this scenewe computeda reference
solutionwith the


+*
estimator(asdefinedin [14]) and m ¨�é paths.

This provideduswith the � � values.The � � � valueswereobtained
with asimulationwith the infiniteshootingestimator(asdefinedin
[14], with threshold0.001)for thesamescenewith thereflectivities
substitutedby its squaredividedby theaveragereflectivity, that is,
weobtainedasolutionof equation9. Wecouldnotusethe


+*
esti-

matorbecausethereflectivity for thesixth faceis greaterthanone,
andthusit makesno senseto useit assurvival probability.
Then100runsof m ¨�ê pathseachfor bothshootingandgathering
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Figure4: Numberingthepatchesin thetestscene.Patches1 to 9,
with reflectance0.3,arenot shown. Patch5 is theemitter. Patches
10 to 18have reflectance0.4,19 to 270.5andsoon.

estimatorstakingassurvival probabilityfor eachpatchtheaverage
reflectivity (which is 0.55)andfor gatheringU �SR � �� � (thefraction
of total area).The transitionprobabilitieswerethe Form Factors.
Weusedthe100setsof resultsto obtainthesquareerrors,andthus
an estimatedvalueof the variancesfor a singlepath. The formu-
laefor theexpectedvariancesaretheformulae3 and 35, with the
approximation& � RK¨ (andfor eachpatch

B � Rë¨ p Ø�Ø , theaverage
reflectivity). Figure5 shows that the obtainedresultsare in con-
cordancewith thetheoreticallyexpectedones.Althoughthescene
usedin thetesthasno occlusions,it shouldbenotedthat thevari-
anceof a patchradiositydoesnot dependon whetherit is dueto
director indirectillumination.

6 Conclusions and future research

We have generalizedthe resultsof [14], [16] and[19] to the case
of generalizedtransitionprobabilities,obtainingclosedformulae
for thevariancesof theestimatorsstudied.Thosearepresentedin
table4. Someparticularcasesarestudied,includingdifferentnull
varianceestimators.A necessaryandsufficient condition for the
existenceof thevarianceis alsogiven.A heuristicfor theexistence
of thevariancein thegeneralcasewill alsobesearchedfor, similar
to the one given for the generalizedabsorptioncase. The study
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Figure5: Comparisonof theexpectedvariances(plottedassquare
dots)andtheexperimentallyobtainedsquareerrorsfor thegather-
ing (a)andshooting(b) estimatorwith survival probabilityequalto
theaveragereflectivity, for the54 equalareapatchesof a cube(on¹

axis),with facereflectivities0.3,0.4,0.5,0.6,0.7,0.8. A source
with emittance1 is in themiddleof thefirst face.

of thegeneral(non-diffuse)Renderingequationwill beundertaken
in two ways.First, theresultsobtainedherewill beextendedto the
continuous,non-diffusecasein asimilarwayasin [17]. Second,the
resultsin [3] on differentestimatorsfor thesecondkind Fredholm
integral equationwill beanalysedandcomparedto thepreviously
obtainedextensions.

Table4: Variancesfor the RandomWalk estimatorswith general-
izedtransition,U � a , andsurvival probabilities,

B � . � � � is thesolution

of thesystem� � � R 
 a � u� q u�ª¶J � � �ª¶ " � a � #L� a � : � ( and �OÉ� � is thesolu-

tion of thesystem� É� � R 
 a � u� q u¶��J �.�Z¶�� " � Éa � #e� a � 
 � (
Shooting Patch scored Variance��������	� last

J ���� J � 
���
 �»ì8í���� u� � � �0�'������	� all but last

 �4
 ��� ��, � �	�.-/��� ì8í���� u� � � ������
 *

all
B � 
 ��
 �4� ��, � �	��-D�D� ì í���� u� � � �)�'��

Gathering Patch scored Variance9 ����	� � last
J ��'� 
 � 9 ���� J � � � � �0� � �9 �� � all but last

J ���� 
 � 9 � , � � �� � � � � �)� � �: �
all

J �� � 
 � " : � #%$8� � ( � � � �)� � �
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Abstract
Image synthesis often requires the Monte Carlo estimation of integrals. Based on a generalized con-
cept of stratification we present an efficient sampling scheme that consistently outperforms previous
techniques. This is achieved by assembling sampling patterns that are stratified in the sense of jittered
sampling and N-rooks sampling at the same time. The faster convergence and improved anti-aliasing
are demonstrated by numerical experiments.

Categories and Subject Descriptors (according to ACM CCS): G.3 [Probability and Statistics]: Prob-
abilistic Algorithms (including Monte Carlo); I.3.2 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism.

1. Introduction

Many rendering tasks are given in integral form and
usually the integrands are discontinuous and of high
dimension, too. Since the Monte Carlo method22 is in-
dependent of dimension and applicable to all square-
integrable functions, it has proven to be a practical
tool for numerical integration. It relies on the point
sampling paradigm and such on sample placement. In-
creasing the uniformity of the samples is crucial for
the efficiency of the stochastic method and the level
of noise contained in the rendered images.

The most popular uniform sampling schemes in
graphics are jittered and Latin hypercube sampling.
Jittered sampling2 profoundly has been analyzed by
Mitchell13 and in fact can only improve efficiency.
Chiu et al.1 joined the concepts of jittered and Latin
hypercube sampling obtaining an increased uniformity
of the samples, but no minimum distance property
can be guaranteed that has been proved to be useful
in graphics2. In consequence care of the choice of the
strata has to be taken manually, since warping19 these
point sets in order to e.g. sample long thin light sources
can dramatically reduce the benefits of stratification.

We present an unbiased Monte Carlo integration
scheme that consistently outperforms the previous ap-
proaches, is trivial to implement, and robust to use
even with warping. This is obtained by an even more

general concept of stratification than just joining jit-
tered and Latin hypercube sampling. Since our sam-
ples are highly correlated and satisfy a minimum dis-
tance property, noise artifacts are attenuated much
more efficiently and anti-aliasing is improved.

2. Monte Carlo Integration

The Monte Carlo method of integration estimates the
integral of a square-integrable function f over the s-
dimensional unit cube by∫

[0,1)s

f(x)dx ≈ 1

N

N−1∑
i=0

f(ξi) , (1)

where the ξi ∈ [0, 1)s are independent uniform ran-
dom samples. The efficiency of the stochastic method
is inversely proportional to the variance σ2

MC of
the estimator (1). Among many variance reduction
techniques22, 23, 11, increasing the uniformity of the
samples by stratification has been proven to be bene-
ficial in graphics13, 2. We briefly review the facts rele-
vant to this paper; for a more complete survey we re-
fer to e.g. Glassner’s book6 or the notes9 of the course
’Beyond Monte Carlo’.

2.1. Jittered Sampling

For jittered sampling2 the unit cube is subdivided into
N cubes of equal measure 1

N
, where in each cube one

c© The Eurographics Association and Blackwell Publishers 2002.
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Figure 1: All elementary intervals in base b = 2 and
dimension s = 2 with volume λ2(E) = 1

16
.

random sample is taken (see figure 2 (a)). It is simple
to show7 that the variance of the resulting estimator
never can be higher than σ2

MC.

2.2. Latin Hypercube Sampling

The idea of Latin hypercube sampling (N -rooks sam-
pling) is to subdivide the unit cube into N intervals
along each coordinate. Then the samples are chosen
randomly such that each interval contains exactly one
point (see figure 2 (c)). Since there are more restric-
tions in the placement of Latin hypercube samples in
comparison to jittered sampling, the variance

σ2
LHS ≤

(
N

N − 1

)min{s−1,1}

· σ2
MC

can slightly increase. Nevertheless it never can be
much higher and often is reduced in practical applica-
tion.

3. Uniform Samples from (t, m, s)-Nets

Chiu et al.1 combined jittered and Latin hypercube
sampling in order to achieve more uniformity. An even
more general concept of stratification has been de-
veloped by Sobol’21 that finally yielded the so-called
(t, m, s)-nets and (t, s)-sequences14.

In order to explain the concept, the notion of the
elementary interval

E :=

s∏
j=1

[
aj

blj
,
aj + 1

blj

)
⊆ [0, 1)s

is required, where 0 ≤ aj < blj and 0 ≤ lj are integers.
Consequently the volume of E is

λs(E) =

s∏
j=1

1

blj
= b−

∑s
j=1 lj .

As an example figure 1 shows the structure of all ele-
mentary intervals with the volume λ2(E) = 1

16
in base

b = 2 for dimension s = 2.

Given two integers 0 ≤ t ≤ m a set of N = bm s-
dimensional points xi is called a (t, m, s)-net in base
b if every elementary interval with volume λs(E) =
bt−m contains exactly bt points.

t can be considered as a quality parameter that is

q q q qq q q qq q q q
q q q q

q
qq

q
q
q q

q
q
q q

q
q
qq
q

q
q
q qq q

qq
q
q
q
q qq

q
q

(a) (b) (c)

Figure 2: Realization of (a) jittered and (c) Latin hy-
percube sampling. The realization of a (0, 4, 2)-net in
base 2 in (b) not only combines both sampling tech-
niques, but imposes even more stratification as can be
seen from the corresponding dyadic elementary inter-
vals in figure 1.

best if chosen small. For t = 0 each elementary inter-
val contains exactly b0 = 1 point. Consequently the
bks points of a (0, ks, s)-net in base b with k ∈ N are
stratified like both jittered and Latin hypercube sam-
pling points at the same time as can be seen in figure 2
(b). In addition the structure of the elementary inter-
vals imposes even more stratification resulting in an
increased uniformity of the samples.

In the sequel we explain how to efficiently construct
such point sets suited for unbiased Monte Carlo inte-
gration.

3.1. Deterministic Generation

(t, m, s)-nets are much more uniformly distributed
than random samples can be. This is exploited by
quasi-Monte Carlo integration15, where deterministic
(t, m, s)-nets are used for the estimator (1): For cer-
tain, very restricted function classes a quadratically
faster convergence can be guaranteed as compared to
random sampling.

Most deterministic constructions of (t, m, s)-nets
are based on (t, s)-sequences: For an integer t ≥ 0
an infinite point sequence (yi)

∞
i=0 is called a (t, s)-

sequence in base b, if for all k ≥ 0 and m > t the
point set {ykbm , . . . , y(k+1)bm−1} is a (t, m, s)-net.

Consequently the first bm points of a (t, s)-sequence
form a (t, m, s)-net. A second approach is to add
the component i

bm to the first bm points of a (t, s)-
sequence always yielding a (t, m, s + 1)-net.

Since explaining explicit constructions is beyond the
scope of this paper, we refer to Niederreiter’s book15

and provide the compact implementation (section 7)
of three (0, 1)-sequences that can be used to generate
a (0, 2)-sequence and (0, m, 2)-nets.

c© The Eurographics Association and Blackwell Publishers 2002.
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→ → → → →

→ → → → →

Figure 5: Owen scrambling (top row) and random digit scrambling (bottom row) in base 2. A difference is hardly
perceivable. First intervals are swapped horizontally; the final image then includes the permutations along the
vertical direction, too.
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Figure 3: The effect of a Cranley-Patterson rotation
by the random vector ξ.
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Figure 4: Randomizing the (0, 4, 2)-net in base 2 in
a) by a Cranley-Patterson rotation can degrade the
uniformity as shown in b), whereas c) random digit
scrambling preserves the properties of the net.

3.2. Randomized Generation

The quasi-Monte Carlo method yields consistent but
biased estimators. However, it is possible to randomize
a (t, m, s)-net P := {a0, a1, . . . , aN−1} in such a way
that

a) the randomized point set X := {x0, x1, . . . , xN−1}
remains a (t, m, s)-net (with probability 1) and

b) xi is uniformly distributed in [0, 1)s for i =
0, 1, . . . , N − 1.

Condition b) is sufficient to make (1) an unbiased esti-
mator for all square-integrable functions16, 8. Preserv-
ing the uniformity properties of the samples by condi-
tion a) allows one to benefit from the improved conver-
gence of the quasi-Monte Carlo method. The resulting

variance reduction technique belongs to the domain of
randomized quasi-Monte Carlo integration18, 10.

3.2.1. Cranley-Patterson Rotations

Cranley and Patterson3 randomized a point set P by
just adding the same random shift ξ to each point
ai ∈ P modulo 1 as illustrated in figure 3. Originally
developed for point sets that tile periodically, applying
a so-called Cranley-Patterson rotation to a (t, m, s)-
net can destroy its stratification structure (see figure
4) thus violating condition a).

3.2.2. Owen Scrambling

Owen’s randomization scheme preserves the structure
of (t, m, s)-nets in base b (with probability 1). For the
(involved) formulas we refer to the original work16.
The actual algorithm, however, is simple to explain.
Starting with H = [0, 1)s the following steps are ap-
plied to each coordinate (see figure 5):

1. Slice H into b equal volumes H1, H2, . . . , Hb along
the coordinate.

2. Randomly permute these volumes in an indepen-
dent way.

3. For each volume Hh recursively repeat the proce-
dure starting out with H = Hh.

Owen17 proved that using an Owen-scrambled
(0, m, s)-net in (1) yields the upper bound

σ2
OS ≤

(
b

b− 1

)min{s−1,m}

· σ2
MC

for the variance σ2
OS of the resulting estimator. For

b = N this (0, m, s)-net sampling degenerates to Latin
hypercube sampling. Decreasing the base b implies
more restrictions to the sample placement resulting in
an increased variance bound. Although this variance
bound is strict17, for most functions to be integrated
the variance is reduced.

c© The Eurographics Association and Blackwell Publishers 2002.
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Figure 6: Multidimensional sampling. The highlighted
sample (a1, b1, c0, d0, e3, f3) is padded from the strati-
fied patterns (ai, bi),(ci, di), and (ei, fi) using random
permutations.

Due to the finite precision of computer arithmetic
the infinite scheme in fact becomes a finite algorithm.
Nevertheless the number of required random permuta-
tions behaves exponentially in the precision so that an
efficient implementation remains quite challenging5.

3.2.3. Random Digit Scrambling

Instead of using independent random permutations in
each level of the recursion of Owen scrambling, only
one random permutation can be used (see the bottom
row of figure 5). This subset of the original method
obviously still fulfills the conditions of section 3.2, but
requires only a number of permutations linear in the
precision. Opposite to Owen’s scrambling method, us-
ing random digit scrambling preserves minimum dis-
tance properties contained in the net to be scrambled.

A highly efficient implementation becomes available
for (t, m, s)-nets in base b = 2, where a permutation
simply can be realized by the XOR operation4, 5: Each
coordinate of the point set is randomized by just per-
forming a bitwise XOR of one random bit vector (i.e. a
random integer) and the components of the point set
(for the trivial realization see section 7).

4. Multidimensional Sampling

Typically the integrands in image synthesis ex-
pose high correlation with respect to certain low-
dimensional projections, e.g. the pixel area, lens
area, or area light sources. Therefore high-dimensional
samples are padded using low-dimensional strati-
fied patterns20. Correlation artifacts are avoided by
randomly permuting the sample order of the low-
dimensional patterns (see figure 6). Additionally the
number of samples becomes independent of dimen-
sion making this approach more practical than jittered
sampling.

Although constructions of (t, m, s)-nets exist for any
dimension, choosing the optimal quality parameter
t = 0 requires b ≥ s − 1 for m ≥ 2. For s > 3 this

light source
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Figure 7: Trajectory splitting, see the explanation in
section 4.1.

prohibits to use the extraordinarily efficient vector-
ized implementations in base b = 2. However, using
the simple algorithms from section 7, it is possible to
pad high-dimensional samples in an even simpler way:
Instead of using random permutations we just pad
independent realizations10 of randomly digit scram-
bled nets (or Owen-scrambled nets). Since condition
(2) (section 3.2) holds for the low-dimensional real-
izations, each resulting high-dimensional sample xi is
uniformly distributed in [0, 1)s for i = 0, 1, . . . , N − 1,
too, guaranteeing an unbiased estimate (1).

4.1. Trajectory Splitting

Considering the example of distribution ray tracing2

splitting trajectories8, e.g. tracing multiple shadow
rays for one eye ray, can increase efficiency depend-
ing on the correlation coefficient with respect to the
split dimensions22.

From the definition in section 3.1 it follows that the
first bl points of a (t, s)-sequence (yj)

∞
j=0 are a (t, l, s)-

net. In addition each point set {yibm , . . . , y(i+1)bm−1}
is a (t, m, s)-net for 0 ≤ i < bl−m. This observation can
be used to realize trajectory splitting by extending the
scheme from the previous section:

For the example of pixel anti-aliasing and illumi-
nation by an area light source two independent re-
alizations are required: An instance of a random-
ized (0, l − m, 2)-net of bl−m samples xi in the pixel
and the first bl = bl−m · bm samples yj of an in-
stance of a randomized (0, 2)-sequence on the area
light source. For the i-th sample in the pixel then bm

shadow rays have to be traced towards the samples

c© The Eurographics Association and Blackwell Publishers 2002.
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Figure 8: Comparison of pure random (MC), jittered (JS), and Latin hypercube (LHS) sampling with our approach
using random digit scrambling (RDS).

{yibm , . . . , y(i+1)bm−1} on the light source (see figure
7) yielding the estimator∫

[0,1)2

∫
[0,1)2

f(x, y)dydx

≈ 1

bl−m

bl−m−1∑
i=0

1

bm

(i+1)bm−1∑
j=ibm

f(xi, yj) . (2)

By using the subsequent (0, m, 2)-nets of a (0, 2)-
sequence to realize trajectory splitting, the samples
on the light source itself form a (0, l, 2)-net obtaining
superior stratification properties in a fully automatic
way. This would be rather costly to achieve by jittered
or Latin hypercube sampling.

5. Numerical Results

For the application examples two representative set-
tings were selected: An overcast sky model daylight
simulation and an indoor scene with very long and thin
light sources. The resulting four-dimensional integrals
compute pixel anti-aliasing with direct illumination.

The new scheme (2) with xi and yi from the al-
gorithms in section 7 is compared to pure random,

jittered, and Latin hypercube sampling. In the exper-
iments a splitting rate of 4 was used, i.e. for each eye
ray 4 shadow rays were traced. For each pixel an inde-
pendent realization of the sampling scheme was used.

Trajectory splitting for jittered and Latin hyper-
cube sampling was realized by generalizing the mul-
tidimensional sampling scheme20 in a straightforward
way: N samples and 4N samples were generated on the
pixel and the light source, respectively. Then the set
of 4N points randomly is split into N sets of 4 points
and each set is assigned a pixel sample in canonical
order.

The error graphs in figure 8 are determined by com-
puting the L2-norm of a measurement to a converged
master image. For the case of the hemispherical over-
cast sky integral our scheme slightly outperforms jit-
tered and Latin hypercube sampling, is much simpler
to implement, and saves about 10–15% of the total
number of rays to be traced in order to obtain the
same quality. Due to the complex shadowing the over-
all gain by stratification is small.

Warping the samples onto the long thin light sources
in the conferences room scene exposes the projection
regularity of the samples. Therefore Latin hypercube

c© The Eurographics Association and Blackwell Publishers 2002.
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Figure 9: Improved anti-aliasing and noise reduction
for the conference room scene with long light sources.
Latin hypercube sampling in the left image and our
new sampling scheme on the right.

sampling significantly outperforms jittered sampling.
The samples from the new scheme, however, are strati-
fied in a more general way and satisfy a minimum dis-
tance property reducing the error by approximately
15% as compared to Latin hypercube sampling.

Comparing the zoomed images in figure 9 shows
that the high correlation of the samples from the new
scheme results in superior anti-aliasing and noise re-
duction as compared to Latin hypercube sampling.
This becomes even more apparent in animations,
where uncorrelated noise causes distracting flicker.

6. Conclusion

We presented new algorithms for efficiently generating
high-dimensional uniform samples yielding unbiased
Monte Carlo estimators. The implementation of the
highly correlated sampling scheme is extremely simple
and due to the generalized concept of stratification
previous patterns are outperformed consistently.

7. Appendix: Algorithms

Using the following code fragments it is possible to
verify the results of the paper with any ray tracer in
a very short amount of time. The routines RI vdC,
RI S, and RI LP implement the radical inverse func-
tions by van der Corput15, Sobol’21, and Larcher
and Pillichshammer12, respectively, which are (0, 1)-
sequences in base b = 2 (see section 3.1). Random-
ized digit scrambling (section 3.2.3) is realized by
just calling the routines with a random integer in-
stead of the default parameter uint r = 0. Complet-
ing RI vdC with the component i

2m yields the famous
Hammersley point set, which in fact is a (0, m, 2)-net.
Using xi =

(
i

2m , RI LP(i)
)

instead, however, results
in a (0, m, 2)-net of much higher quality. Combining
yi = (RI vdC(i), RI S(i)) results in the first two com-

ponents of the Sobol’ sequence, which form a (0, 2)-
sequence as used in section 4.1.

typedef unsigned int uint;

double RI_vdC(uint bits, uint r = 0)

{

bits = ( bits << 16)

| ( bits >> 16);

bits = ((bits & 0x00ff00ff) << 8)

| ((bits & 0xff00ff00) >> 8);

bits = ((bits & 0x0f0f0f0f) << 4)

| ((bits & 0xf0f0f0f0) >> 4);

bits = ((bits & 0x33333333) << 2)

| ((bits & 0xcccccccc) >> 2);

bits = ((bits & 0x55555555) << 1)

| ((bits & 0xaaaaaaaa) >> 1);

bits ^= r;

return (double) bits / (double) 0x100000000LL;

}

double RI_S(uint i, uint r = 0)

{

for(uint v = 1<<31; i; i >>= 1, v ^= v>>1)

if(i & 1)

r ^= v;

return (double) r / (double) 0x100000000LL;

}

double RI_LP(uint i, uint r = 0)

{

for(uint v = 1<<31; i; i >>= 1, v |= v>>1)

if(i & 1)

r ^= v;

return (double) r / (double) 0x100000000LL;

}
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Abstract. As opposed to Monte Carlo integration the quasi-Monte Carlo method
does not allow for an error estimate from the samples used for the integral approxi-
mation and the deterministic error bound is not accessible in the setting of computer
graphics, since usually the integrands are of unbounded variation. We investigate
the application of randomized quasi-Monte Carlo integration to bidirectional path
tracing yielding much more efficient algorithms that exploit low-discrepancy sam-
pling and at the same time allow for variance estimation.

1 Introduction

The global illumination problem consists in rendering photorealistic images
of a virtual scene and camera descriptions (for a detailed introduction see
[Gla95]). A very basic algorithm for the solution of this light transport prob-
lem is the bidirectional path tracing algorithm [LW93,VG94], which in the
context of the quasi-Monte Carlo method has been investigated in [Kel98b].

We first generalize this work by introducing multiple importance sampling
using the balance heuristic for the quasi-Monte Carlo method, which is supe-
rior to the previous approaches of bidirectional path tracing. By sacrificing
only little performance randomized quasi-Monte Carlo algorithms allow for
integration error estimation. By numerical experiments we compare the effi-
ciency of different randomized quasi-Monte Carlo approaches and illustrate
how they smoothly blend between the pure Monte Carlo and the quasi-Monte
Carlo case.

As a result the new scheme of padded replications sampling yields a bidi-
rectional path tracing algorithm that is highly efficient, allows for an error
estimate and is very simple to implement.

2 Bidirectional Path Tracing

We briefly recall the path integral formulation of the global illumination
problem [Vea97], which in combination with multiple importance sampling
yields the bidirectional path tracing algorithm. Furthermore we define the
problem of insufficient techniques that is inherent with multiple importance
sampling.



2.1 The Global Illumination Problem in Path Integral Form

A light path x̄ = x0x1 . . . xk of length k is characterized by its interaction
points xi with the scene surface S. The union of all path spaces

Pk := {x̄ = x0x1 . . . xk | xi ∈ S for 0 ≤ i ≤ k}

of a specific light path length k forms the path space P :=
⋃∞

k=1 Pk. For
Lebesgue measurable subsets D0, D1, . . . , Dk ⊆ S we define the measure

µk(D0 ×D1 × . . .×Dk) := A(D0) ·A(D1) · . . . ·A(Dk) ,

where A is the area measure, and µ(D) :=
∑∞

k=1 µk(D ∩Pk) for D ⊆ P. For
a path x̄ ∈ Pk the measurement contribution function is

fj(x̄) := Le(x0 → x1) G(x0 ↔ x1)

·

(
k−1∏
i=1

fs(xi−1 → xi → xi+1) G(xi ↔ xi+1)

)
·W (j)

e (xk−1 → xk) ,

where the light sources are determined by the emittance Le and W
(j)
e are

the detector functionals, which formalize the camera description. The bidi-
rectional scattering distribution function fs describes the surface properties.

G(x ↔ y) := V (x ↔ y)
| cos θx|| cos θy|

|x− y|2

is the geometry term, where θx is the angle between the surface normal in
x and the vector between x and y; θy is defined analogously. The visibility
function V (x ↔ y) is 1 if x and y are mutually visible and 0 otherwise. Then
the global illumination problem consists in computing detector values Ij by
the path integral

Ij =
∞∑

k=1

∫
Pk

fj(x̄)dµk(x̄) =
∫
P

fj(x̄)dµ(x̄) . (1)

2.2 Multiple Importance Sampling

The problem of importance sampling [Sob94] is to find an efficient proba-
bility density function p. However, often it is possible to specify a whole set
p1, p2, . . . , pN of probability density functions instead of just one single p.
While each probability density function of the set may reduce the variance of
the importance sampling estimator only in a possibly unknown subdomain of
D, multiple importance sampling, a variance reduction technique introduced
by [VG94] and analyzed in [OZ99], allows for the combination of samples
which are distributed according to different probability density functions.



A probability density function p can be used as a technique, if we are able
to generate p-distributed samples and to evaluate1 p(x) for a given x ∈ D.
Assuming that we have N techniques with their associated probability density
functions

p1, p2, . . . , pN : D → IR+
0 ,

a so-called heuristic consists of N corresponding weight functions

w1, w2, . . . , wN : D → IR+
0 ,

such that

1.
∑N

i=1 wi(x) = 1 for all x ∈ D with f(x) 6= 0 and
2. wi(x) = 0 for all x ∈ D with pi(x) = 0 holds.

Note that these conditions imply that each x ∈ supp f can be generated by
at least one2 technique pi. Then the multiple importance sampling estimator∫

D

f(x)dx ≈ 1
n

n∑
j=1

N∑
i=1

wi(xi,j)
f(xi,j)
pi(xi,j)

(2)

is unbiased, where the xi,j are pi-distributed for 1 ≤ i ≤ N and 1 ≤ j ≤ n.
We use the so called balance heuristic which has the weight functions

wi(x) :=
pi(x)∑N

`=1 p`(x)
. (3)

The behaviour of the estimator (2) using (3) is comparable to importance
sampling with p ≡ 1

N

∑N
`=1 p`.

2.3 The Bidirectional Path Tracing Algorithm

The path space samples x̄ ∈ P are generated in three steps (see Fig. 1 (a)):

1. generate a light subpath by a random walk starting on a light source,
2. generate an eye subpath by a random walk starting on a detector, and
3. connect both subpaths deterministically.

Since the ray casting function is very expensive, we use all possible connec-
tions to form additional path space samples as illustrated in Fig. 1 (a). The
resulting associated probability density functions are denoted by pk,i, where
k is the path length and i the number of points of the light subpath. Figure
1 (b) shows all possible techniques with their associated probability density
functions for path length k = 3.
1 At least we must be able to decide whether x ∈ supp p holds for a given x ∈ D.
2 This can happen due to disjoint supp pi or the problem of insufficient techniques

as addressed in Sec. 2.4.
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Fig. 1. (a) Generation of path space samples and (b) techniques with their as-
sociated probability density functions for path length k = 3, where each p3,i is
positioned at its deterministic connection. A pinhole camera model is assumed
where the eye subpaths originate from the pinhole through the image plane.

Applying multiple importance sampling (2) with the balance heuristic (3)
to the path integral formulation of the global illumination problem (1) yields
the bidirectional path tracing estimator

Ij =
∞∑

k=1

∫
Pk

fj(x̄)dµk(x̄) ≈
∞∑

k=1

1
n

n∑
j=1

k∑
i=0

fj(x̄k,i,j)∑k
`=0 pk,`(x̄k,i,j)

, (4)

where n is the number of samples per technique and for 1 ≤ j ≤ n the x̄k,i,j

are generated according to pk,i. In order to handle the infinite sum we can use
absorbing Markov chains for subpath generation. A biased alternative is to
compute the approximation up to a maximum path length kmax. For example
kmax = 2 implies that instead of the full solution only direct illumination is
calculated.

The possibility to achieve a valid path using the eye connection techniques
pk,k, where the end of a light subpath is connected with the eye point, is very
small and most samples are of zero contribution, if the image is computed
pixel by pixel. Therefore we allow samples of these techniques to contribute
directly to any pixel of the image.

2.4 The Problem of Insufficient Techniques

Multiple importance sampling tries to hide the weaknesses of single probabil-
ity density functions, but nevertheless can fail. In order to illustrate the limits
of the estimator (2) suppose we have a subdomain G ⊆ D for which only one
technique is accessible. Then multiple importance sampling degenerates to
standard importance sampling on G due to an insufficient set of techniques.

For bidirectional path tracing the problem of insufficient techniques arises
for singular surface properties, e.g. mirrors that usually are modeled by a
Dirac delta distribution in the bidirectional scattering distribution function
fs. In Fig. 2 (a) such a difficult path is sketched: It can only be generated by
the technique pk,0 that uses no light subpath. The resulting high variance is
clearly visible in Fig. 2 (b) and is perceived as white dots on the mirror.
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Fig. 2. The problem of insufficient techniques: (a) sketch of difficult path and (b)
resulting high variance on the mirror.

3 Quasi-Monte Carlo Bidirectional Path Tracing

The Koksma-Hlawka inequality predicts that quasi-Monte Carlo integration
performs superior to Monte Carlo integration for integrands of bounded vari-
ation in the sense of Hardy and Krause [Nie92]. For integrands with unknown
discontinuities like the measurement contribution function in (1) only pes-
simistic error bounds are available [Hla71] due to unbounded variation. Nev-
ertheless numerical experiments [Kel98a] reveal that even for these functions
low-discrepancy sampling performs better than random sampling.

3.1 Multiple Importance Sampling for Quasi-Monte Carlo

In order to apply quasi-Monte Carlo integration to bidirectional path tracing
the subpath generation has to be done using high-dimensional low-discrep-
ancy points, where the dimension depends on the length of the subpaths.
Due to the transport operator points at the beginning of a subpath affect the
integration error more than points at the end of a subpath. In accordance the
lower dimensions of low-discrepancy points often are better equidistributed
than their higher dimensions. Therefore the first four dimensions are used to
determine the first point of each subpath, the next four for the first scattering
events and so on. This interleaving scheme is similar to [Kel98b], however,
now we use the multiple importance sampling estimator (2) with the bal-
ance heuristic (3) and deterministic low-discrepancy sampling. In order to
avoid aliasing different light subpaths have to be used for the estimation of
each pixel functional. This is particularly important for the eye connection
techniques pk,k (see also Fig. (5)) and is achieved by using consecutive subse-
quences of a low-discrepancy point sequence instead of a repeated finite point
set.



4 Randomized Quasi-Monte Carlo Bidirectional Path
Tracing

In [Owe98b] Owen surveys randomization techniques for quasi-Monte Carlo
integration. Randomized quasi-Monte Carlo integration exploits the benefits
of low-discrepancy sampling and at the same time allows for an efficient error
estimate, which is not accessible for quasi-Monte Carlo integration.

From an initial low-discrepancy point set P := {a1, a2, . . . , am} ⊂ Is we
generate r randomized replications Xj := {x1,j , x2,j , . . . , xm,j} ⊂ Is with
1 ≤ j ≤ r such that

1. each replication Xj preserves the low-discrepancy properties of the initial
point set P and

2. the replications xi,1, xi,2, . . . , xi,r of each point ai ∈ P are independent
and uniformly distributed on Is.

Then the randomized quasi-Monte Carlo estimator with a total of n = rm
samples ∫

Is

f(x)dx ≈ 1
r

r∑
j=1

1
m

m∑
i=1

f(xi,j) (5)

is unbiased. The expected error is bounded by the square root of the variance
σ2 of the above estimator and can be estimated in an unbiased way using the
samples of (5):

σ2 ≈ 1
r(r − 1)

r∑
k=1

 1
m

m∑
i=1

f(xi,k)− 1
r

r∑
j=1

1
m

m∑
i=1

f(xi,j)

2

. (6)

Choosing the number r of replications just large enough to obtain a good
variance estimate very little performance of the low-discrepancy quadrature
is sacrificed and adaptive sampling controlled by error estimation yields much
more efficient rendering algorithms.

As long as the replications xi,1, xi,2, . . . , xi,r are independent and uni-
formly distributed on Is the estimator (5) is unbiased and the variance esti-
mator (6) remains valid. Thus the initial point set P and its replications Xj

do not need to be of low-discrepancy, however, their choice affects variance
and therefore error.

For bidirectional path tracing the initial point set P with m points and
the replication scheme have to be selected. Then each pixel functional is
estimated by r independent random replications of P . The dimensions are
assigned identically to the quasi-Monte Carlo setting in Sect. 3.1.

4.1 Cranley-Patterson Rotations

Cranley and Patterson [CP76] suggested the following form of randomization:
For a replication Xj they added a random shift ξj to each point ai of the



initial point set P . Thus we have xi,j = (ai + ξj) mod 1 with independent
realizations ξj ∼ U(Is) for 1 ≤ i ≤ m and 1 ≤ j ≤ r.

Most low-discrepancy constructions are designed to minimize the star-
discrepancy in the sense of (t, m, s)-nets or (t, s)-sequences. By randomly
shifting a point set P this discrepancy of a replication Xj can be different
and especially worse than the original discrepancy [Tuf96], since the (t, m, s)-
net property is not shift invariant. Points designed to also minimize the torus
discrepancy [BC87] are better suited for Cranley-Patterson rotations. The
equidistribution properties of good lattice points remain almost unaffected
when being shifted [CP76,SJ94].

4.2 Owen Scrambling

In [Owe95] Owen presented a randomization scheme for (t, m, s)-nets and
(t, s)-sequences in base b. Starting with H = Is the following algorithm is
applied to each coordinate:

1. Slice H into b equal volumes H1,H2, . . . ,Hb along the coordinate.
2. Randomly permute these volumes in an independent way.
3. For each volume Hh repeat the procedure with H = Hh.

Due to the finite precision of computer arithmetic the infinite scheme in fact
becomes a finite algorithm [FK00].

4.3 Padded Replications Sampling

For the light transport problem the benefits of quasi-Monte Carlo integration
diminish in high dimensions [Kel98a]. So instead of using a computationally
expensive high-dimensional low-discrepancy point set as initial point set P
(see Fig. 4 (a)), the structure underneath the transport problem can be ex-
ploited: The light and eye subpaths are generated by area sampling and scat-
tering, which both are two-dimensional problems. Thus the idea of padded
replications sampling is to use a random replicate of one two-dimensional ba-
sis pattern for each two-dimensional subproblem as illustrated in Fig. 3. This
in fact only changes the initial point set P (see Fig. 4 (b)) of the replication
scheme. Of course P no longer is of low-discrepancy, but is much cheaper to
generate and performs at least as good as shown in the experimental section.

5 Latin Supercube Sampling

Similar to padded replications sampling Latin supercube sampling [Owe98a]
is a method to expand low-dimensional samples to high dimensions: The low-
dimensional point sets are randomly permuted before padding. Suppose that
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Fig. 3. Subpath generation by padded replications sampling using Cranley-
Patterson rotations for e.g. a light subpath. The basis pattern size is m = 4 and
the dimension of the padded points is s = 6.
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Fig. 4. Illustration of the initial point sets P used by the different approaches for
randomized quasi-Monte Carlo integration: (a) high-dimensional low-discrepancy
point set, (b) padded replications sampling, and (c) decorrelated padded replica-
tions sampling by index permutations.

Qi := {ai,1, ai,2, . . . , ai,m} ⊂ Isi for 1 ≤ i ≤ q with
∑q

i=1 si = s are (ran-
domized) quasi-Monte Carlo point sets. Then the Latin supercube samples
are

xj := (a1,π1(j), a2,π2(j), . . . , aq,πq(j)) ⊂ Is

for 1 ≤ j ≤ m, where the πi are independent uniform random permutations
over {1, 2, . . . ,m}.



In computer graphics Latin supercube sampling has been applied by Cook
[Coo86] (later formalized by Shirley [Shi90]) for distribution ray tracing,
which is not a consistent algorithm in the sense of (1) since it uses only
a subset of the techniques pk,0 and pk,1, where the end of an eye subpath has
to hit a light source or is connected with a point on a light source. However,
Cook and Shirley did not use (randomized) quasi-Monte Carlo point sets but
stratified random point sets for Latin supercube sampling.

5.1 Latin Supercube Samples from Deterministic
Low-Discrepancy Points

Using large two-dimensional quasi-Monte Carlo point sets for Latin super-
cube sampling is prohibitive due to the considerable amount of permutation
memory of order O(qm) = O(kmaxm),
if a finite maximum path length kmax

is used. On the other hand the num-
ber of different light subpaths that
can be generated by Latin supercube
sampling is limited by mkmax . There-
fore for small values of m Latin su-
percube sampling is only practicable
if the eye connection techniques pk,k

are not used, otherwise severely dis-
turbing aliasing artifacts will be vis-
ible (see Fig. (5)) that only can be
avoided by using huge values of m that
are of the order of pixels in the image.

Fig. 5. Aliasing caused by Latin su-
percube samples from deterministic
points with eye connection techniques.

5.2 Latin Supercube Samples from Randomized Low-Discrepancy
Points

For padded replications sampling the same basis pattern is padded together to
form the initial point set P . The resulting correlation between the dimensions
(see Fig. 4 (b)) can cause an increased variance for a larger number m of
points in the basis pattern. Latin supercube resolves this correlation when
being applied to the initial point set P before replication (see Fig. 4 (c)).

6 Numerical Experiments

For the numerical experiments we chose the Glass Sphere and Office test
scenes. Figure 6 shows the master images, which have been rendered with
the original bidirectional path tracing algorithm using more than a thousand
samples per pixel and technique. In our experiments the error of an image
is approximated by its L2-distance to these master images. Instead of using



Fig. 6. The Glass Sphere and Office scene are used as test scenes.

absorbing Markov chains for subpath generation we restricted the maximum
path length to kmax = 6 for the Glass Sphere and to kmax = 3 for the
Office scene.

The difficulties of the Glass Sphere scene are the caustic on the floor and
the light, which is reflected by the glass sphere onto the ceiling. The Office
scene has only diffuse surface properties. Besides the two big luminaries at the
ceiling the small spherical light source of the table lamp makes the rendering
complicated. Since here we have no singular surface properties we omit the eye
connection techniques pk,k, which are only useful in order to render directly
seen caustics.

6.1 Quasi-Monte Carlo Bidirectional Path Tracing

In Fig. 7 (a) the performance of several deterministic low-discrepancy se-
quences is compared. The Niederreiter sequence [Nie92] in base 2 is slightly
worse than the scrambled Halton sequence [Fau92] for a small number of
samples per technique and pixel and almost as good for more than 64 sam-
ples. Optimizing the t parameter by increasing the construction base of the
Niederreiter sequence leads to worse results. The Niederreiter-Xing sequence
[NX96,Pir00] in base 2 is even far less efficient except for multiples of 64
samples. The reason why the simple scrambled Halton sequence performs
best is that it better fits the structure of the global illumination problem:
The initial segments of the subpaths contribute most and consequently the
lower dimensions of the points are most important. In addition only a very
small number of samples is used to estimate a pixel functional. Looking at
the low-dimensional projections of short consecutive subsequences yields that
the projections of the scrambled Halton sequence expose better discrepancy
than the projections of the (t, s)-sequences, causing the superior performance
of the scrambled Halton sequence.
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Fig. 7. Convergence graphs for (a) quasi-Monte Carlo bidirectional path tracing
using different low-discrepancy sequences and (b) randomized quasi-Monte Carlo
bidirectional path tracing using different high-dimensional point sets as initial point
set P and different randomization schemes.

6.2 Randomized Quasi-Monte Carlo Bidirectional Path Tracing

Now different approaches to randomized quasi-Monte Carlo bidirectional
path tracing are compared, where high-dimensional low-discrepancy point
sets are selected as initial point set P . While the scrambled Hammersley
point set is chosen for Cranley-Patterson rotations (see 4.1), different (t, s)-
nets are used with Owen scrambling (see 4.2). Here each pixel functional is
estimated using only one independent replication. The resulting convergence
graphs in Fig. 7 (b) show that the scrambled Hammersley version performs
best. Using a Niederreiter sequence is slightly worse, where the increased
construction base affects the error less than in the quasi-Monte Carlo set-
ting. The Niederreiter-Xing sequence again performs even worse except for
multiples of 64 samples.

Usually for randomized quasi-Monte Carlo integration the size m of the
initial point set P is fixed and the desired sampling rate is obtained by in-
creasing the number r of replications, yielding a convergence rate of O(r−

1
2 ).

Seen that way the points of the graphs in Fig. 7 (b) can be considered as
starting points of the convergence graphs for fixed m and increasing r.

6.3 Blending between Monte Carlo and Quasi-Monte Carlo

So far we have analyzed quasi-Monte Carlo and randomized quasi-Monte
Carlo separately. Now the best of the above sampling schemes are compared:
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Fig. 8. Convergence graphs for MC, RQMC (m = 16), and QMC.

• Monte Carlo (MC). The original bidirectional path tracing algorithm
uses pure random sampling. For comparison we also implemented a ver-
sion using Latin hypercube sampling (LHS).

• Randomized quasi-Monte Carlo (RQMC). Besides using Cranley-
Patterson rotations with the scrambled Hammersley point set also its
padded replications sampling (see Sect. 4.3) counterpart using the two-
dimensional Hammersley point set has been applied. In both approaches
we can choose the fixed size m of the initial point set P .

• Quasi-Monte Carlo (QMC) using the scrambled Halton sequence.

In Fig. 8 convergence graphs are shown. As expected the convergence rates for
the Monte Carlo and randomized quasi-Monte Carlo versions are O(n−1/2),
where n denotes the total number of samples per technique and pixel. A
slightly improved rate of O(n−1/2−α) can be observed for the quasi-Monte
Carlo approach, where α ∈

[
0, 1

2

]
decreases with the maximum path length

kmax used in the simulation due to the discontinuities in the measurement
contribution function.

For a more detailed comparison we measured the number of samples re-
quired to achieve a given error in relation to the number needed by the origi-
nal bidirectional path tracing algorithm, i.e. the pure Monte Carlo algorithm.
The results are shown in Fig. 9. Far more than half of the expensive samples
can be saved by the quasi-Monte Carlo version. The randomized quasi-Monte
Carlo approaches form a smooth transition between the pure random and the
deterministic algorithm. With an increasing size m of the initial point set P
the error decreases due to the better equidistribution of the samples. It is
an interesting result that for bidirectional path tracing padded replications
sampling performs at least as good as a high-dimensional low-discrepancy
point set.

Along the lines of Cook [Coo86] and Shirley [Shi90] also Latin supercube
sampling by deterministic low-discrepancy points (see Sect. 5.1) has been
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Fig. 9. Number of samples needed to achieve a given error in relation to MC.
Padded replications sampling (right bars of RQMC) performs at least as good as
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Fig. 10. Using Latin supercube samples as input for Cranley-Patterson rotation
reduces the effect of correlation caused by padded replications sampling. For this
experiment Fibonacci lattice points have been used as basis pattern.

applied to render the Office scene, since here the eye connection techniques
are not required. For padding the two-dimensional Hammersley point set was
chosen. In comparison to the pure Monte Carlo algorithm only 35% of the
samples are needed to achieve the same error. Thus it performs similar to
the purely deterministic quasi-Monte Carlo approach (37% of the samples,
see Fig. 9).

6.4 Decorrelation of Padded Replications Sampling

Latin supercube sampling can reduce the correlation between the dimensions
of the points used by padded replications sampling. An increased variance due
to correlation becomes visible in Fig. 9 for the Office scene when increasing
the basis pattern size m from 16 (42%) to 32 (45%).

In Fig. 10 padded replications sampling with and without decorrelation
using Latin supercube samples is compared, where we padded replications
of the Fibonacci lattice points [SJ94]. The reduced correlation results in a
better performance when using bigger basis pattern sizes m. In computer



Fig. 11. Image comparison. The close-ups in the upper row were rendered with
pure Monte Carlo bidirectional path tracing and the close-ups in the lower row were
rendered by the padded replications sampling approach using the Hammersley point
set without decorrelation.

graphics, however, rm = n ≤ 128 so that the effect of decorrelation by Latin
supercube sampling is hardly perceivable.

6.5 Visual Comparison

For a visual comparison of images we rendered the Office scene with the
original bidirectional path tracing algorithm and with the padded replications
sampling using 16 samples per technique and pixel. Since the padded repli-
cations sampling version needs fewer pseudo random numbers its rendering
time was about 12% shorter. Figure 11 shows two close-ups of the images. The
reduced error results in a less noisy image. Even in only indirectly illuminated
regions (right column) there is less noise.

7 Conclusion

We investigated several new sampling approaches to bidirectional path trac-
ing speeding up the original algorithm by a factor of 2 to 5. By numerical



evidence we showed that padded replications sampling is almost as efficient as
the best quasi-Monte Carlo integration approach. However, padded replica-
tions sampling allows for variance estimation, is much simpler to implement
as compared to the high-dimensional low-discrepancy constructions, requires
much less random numbers than pure random sampling, and perfectly fits
the intrinsic two-dimensional structure of the global illumination problem.
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Abstract

Global illumination algorithms can be classified as local
and global transfer methods. Local methods find a sin-
gle point (or patch) in a given step and transfer its ra-
diance towards other point(s). Global methods, on the
other hand, select the source and the target of the trans-
fer simultaneously. Local methods are better if the radi-
ance distribution is heterogeneous and the scene is sparse,
while global methods can win for dense scenes of homo-
geneous radiance. This paper proposes the combination
of global and local global illumination algorithms in the
sense of multiple importance sampling. In this way, the
combined method can eliminate the higher noise at the cor-
ners produced by local methods and the need for first-shot
for global techniques.
Keywords: Global illumination, stochastic iteration,
finite-element techniques, Monte-Carlo methods

1 Introduction

Global illumination algorithms simulate the light trans-
port. If the radiance estimate is represented by function
L(~y, ω′), then the light transport produces a single reflec-
tion of the radiance function, which is obtained by apply-
ing the light transport operatorTfr :

Lr(~x, ω) = TfrL(~y, ω′) =
∫

Ω

L(~y, ω′) · fr(ω′, ~x, ω) · cos θ′~x dω′,

where~y is seen from~x at directionω′ andθ′~x is the angle
between this direction and the surface normal.

Since the light traverses the space along straight lines,
the simulation requires the generation of lines to identify
the points between the light is transported. There are many
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different possibilities of this line generation. Lines can be
obtained deterministically or randomly, which is used in
Monte-Carlo algorithms. Monte-Carlo methods random-
ize the light transport operator, that is, they use a random
operatorT ∗ that gives back the effect ofT in the average
case:

E[T ∗fr
L] = TfrL.

In order to find the expected value, Monte-Carlo algo-
rithms have to obtain many samples and approximate the
expected value as the average of these samples. The
method may produce individual lines or a bundle of lines
of certain similarity. Working with bundle of lines can
exploit the coherence of the scene and can thus signif-
icantly increase the computation speed. The formation
of the bundles depends on what kind of similarity can be
taken advantage of the algorithm. For example, hemicube
based radiosity algorithms consider lines of the same ori-
gin and passing through a regular grid, since the first in-
tersection of these lines can be computed by the z-buffer
hardware. Parallel ray bundles can transfer the radiance
of all points of the scene parallel to a random direction.
The visibility needed by this parallel transfer can also be
computed efficiently by incremental algorithms. Even if
conventional ray-shooting is used, it is worth computing
those lines simultaneously that visit the same nodes of the
space partitioning data structure [4]. Realizing that cur-
rent processors can execute four floating point instructions
concurrently, it also seems advantageous to follow always
four nearby lines [12]. Finally, line generation can also
be classified according to the strategy of finding the start-
ing point and its direction vector.Local line methodsfind
the starting point of the half-line first, then they obtain the
direction of the line, which will identify the intersection
point or the other point of the transfer. An alternative is
theglobal line approachwhich samples the two points si-
multaneously.

There have been many discussions about the compara-
tive advantages of these algorithms, but no method can be
claimed to be the best. This is not surprising since each
method has advantages and disadvantages in certain situ-
ations. Thus instead of insisting to a given technique, it
is worth combining several of them, in a way that the ad-



vantages are preserved. Such quasi-optimal combination
of Monte-Carlo sampling techniques is offered bymulti-
ple importance sampling. In this paper, the combination
of global and local line methods is considered.

2 Multiple importance sampling

In this section we recall the fundamental theory of mul-
tiple importance sampling [11, 10]. Assume that inte-
gral L =

∫
P

l(z)dz needs to be evaluated. Monte-Carlo

quadratures generate samples with certain probability den-
sity. Suppose that we haveN different sampling tech-
niques. Sampling methodi uses probability densitypi(z),
thus the primary estimator of this method isl(z)/pi(z).
Assume also that with methodi we obtainNi samples
zi1, . . . , ziNi

. The combined estimator is computed from
the samples of all sampling techniques, applying appropri-
ate weighting functionswi(z), and summing the results:

〈L〉c =
N∑

i=1

1
Ni

Ni∑

j=1

wi(zij) · l(zij)
pi(zij)

=
N∑

i=1

Ni∑

j=1

l(zij)
d(zij)

(1)
where the divider is

di(z) =
pi(z)Ni

wi(z)
.

The combined estimator is unbiased, i.e. the expected
value of this estimator gives back the original integral, if
for all z values

∑N
i=1 wi(z) = 1. In order to find an op-

timal weighting, the variance of the combined estimator
〈L〉c should be minimized by setting the weights appro-
priately and also taking into account the constraint of un-
biasedness. Unfortunately, this optimization problem can-
not be solved analytically, but different quasi-optimal so-
lutions can be obtained. One such approximate solution is
called thebalance heuristic[11]:

wi(z) =
Nipi(z)∑N

k=1 Nkpk(z)
. (2)

Substituting these weights into equation 1, we can con-
clude that balance heuristic divides with the total density

d(z) =
N∑

k=1

Nkpk(z)

instead of the original densitiesNipi(z) of the individual
methods.

This formula can be efficiently used in random walk al-
gorithms that obtain samples independently. However, the
application of multiple importance sampling in iteration
like algorithms requires further considerations. We could,
for example, use all sampling techniques to obtain a tenta-
tive value in the next iteration step then find the real value
as the weighted average of the results of the individual

methods, but this method would slow down the progress
of the iteration and thus the introduction of higher order
terms. Thus we propose to randomly select just a single
technique in each iteration step, compute just a single sam-
ple, and apply the other techniques to the already iterated
value.

To consider the random selection formally, let us as-
sume that the sample is computed with methodi with
probabilityPi.

The modified estimator uses the indicator functionsξi,
which are 1 if the respective method generates a sample:

〈L〉c =
N∑

i=1

wi(zi) · l(zi)
pi(zi)

· ξi. (3)

The requirement of the unbiasedness becomes:

N∑

i=1

Pi · wi(z) = 1.

The modified formulae of balanced heuristics is the fol-
lowing:

wi(z) =
pi(z)∑N

k=1 Pk · pk(z)
.

Thus when a sample is computed, its contribution is al-
ways divided by

d(z) =
N∑

k=1

Pk · pk(z)

no matter which sample strategy is used.
We are going to apply this approach for two sets of algo-

rithms. The first set contains local and global ray-shooting
to solve the diffuse radiosity problem, while the second set
includes parallel and perspective ray-bundle based trans-
fers and working in the general non-diffuse setting.

3 Combination of local and
global ray transfers

One of the simplest tool to transfer the radiance in the
scene is the generation of random lines and the identifi-
cation of those points that are intersected by these lines.

3.1 Transfer with local lines

Local line methods sample first the source of the oriented
lines, called rays, then they decide on the direction of these
rays. Suppose that patchj is selected with probability den-
sity pj as a source patch and the starting point of the ray
with uniform distribution. Thus the probability density of
sampling point~y as the starting point of the ray is:

p(~y) =
pj

Aj
.



Figure 1: An office that is tessellated to 14 thousand patches and lit by a blue light source, and is rendered using 5 million
global and 5 million local lines and 180 seconds computation time

According to the concepts of importance sampling, it
is worth settingpj to be proportional to the power of the
patch:

pj =
Φj∑n

k=1 Φk
.

If the surfaces are diffuse, thenΦj = LjAjπ, whereLj is
the radiance of the patch. It also means that the density of
the selection is proportional to the radiance:

p(~y) =
Φj

Aj

∑n
k=1 Φk

=
Lj∑n

k=1 AkLk
.

Having found the starting point, the direction of the ray
is sampled, which can take into account the local BRDF.
If the surface is diffuse, cosine distribution can be applied,
i.e. the density of the direction iscos θ~y/π. The starting
point and the direction establish the ray, which is traced
and its hit point~x is identified.

Since the solid angle in which a differential aread~x
around~x is seen from~y is d~x · cos θ~x/|~x− ~y|2, the proba-
bility that this strategy transfers the light from differential
aread~y to d~x is the following:

Pr(d~y → d~x) =
pj

Aj
· d~y · cos θ~y · d~x · cos θ~x

|~x− ~y|2 .

Thus the density is:

pl(~y → ~x) =
pj

Aj
· cos θ~y · cos θ~x

π|~x− ~y|2 =

Lj∑n
k=1 AkLk

· cos θ~y · cos θ~x

π|~x− ~y|2 . (4)

3.2 Transfer with global lines

Global line algorithms use uniformly distributed lines and
transfer the light between those points that are intersected

by the lines. Note that a line may intersect many patches,
when the radiance is transfered between all subsequent
pairs of patches.

In order to compute the probability density of such
transfers, the theory of integral geometry [7] can be used
here. The measure of the set of those uniformly distributed
lines, which intersect differential areasd~x andd~y is:

µ(d~y, d~x) =
d~y · cos θ~y · d~x · cos θ~x

|~x− ~y|2 .

Note that this is only an unnormalized measure and is not
a probability. To obtain a probability, we should compute
the ratio of this measure and the measure of the lines cross-
ing the sphere enclosing the whole scene. From integral
geometry we know that the measure of the set of lines in-
tersecting a convex body isπS/2, whereS is the surface
area of the body. Denoting the area of the enclosing sphere
by S, the probability of selecting differential areasd~y and
d~x as candidates for the transfer is:

Pr(d~y → d~x) =
2µ(d~y, d~x)

πS
=

2
S
·d~y · cos θ~y · d~x · cos θ~x

|~x− ~y|2 .

The density of global line transfer is then:

pg(~y → ~x) =
2
S
· cos θ~y · cos θ~x

π|~x− ~y|2 . (5)

3.3 Combination of local and global line
methods

Looking at equations 4 and 5 we can realize that the local
line methods will probably generate oriented lines start-
ing at the high radiance points. Global line methods, on
the other hand, provide more samples at average radiance
points. If the radiance distribution is homogeneous, then
the global line method will carry out roughly2

∑
Ak/S



more transfers. Since the ratio of the total area of the
object surfaces and the surface of the enclosing sphere is
about 5 in everyday scenes, global lines can result in the
multiplication of the effective samples by about 10.

In order to preserve this benefit, but to get also the good
properties of the local lines for heterogeneous radiance
scenes, the two methods are combined. Suppose that in
each step we decide randomly whether a local or a global
line is generated. The probability of the local line method
is Pl, while the global line method is applied with proba-
bility 1− Pl.

Having computed the transfer, the transferred radiance
is multiplied by the weights of multiple importance sam-
pling. The weight of local line method is:

wl =
pjS

2Aj(1− Pl) + pjSPl

The weight of the global line method is:

wg =
2Aj

2Aj(1− Pl) + pjSPl

The samples of both techniques are thus divided by the
following density:

d(~y) =
2
S

(1− Pl) +
pj

Aj
Pl.

In figure 1 we show the result of the proposed algorithm
when rendering a diffuse scene. Note that we should not
use first shot, and thus algorithm is unbiased.

4 Combination of methods using
ray-bundles

In this section we combine methods that transfer locally
and globally sampled bundles of rays. First, we quickly
review the individual methods that discuss their combina-
tion.

4.1 Method 1: Parallel ray-bundle trac-
ing

Parallel ray-bundle tracing transfers the radiance of all
patches parallel to a randomly selected global line in each
iteration cycle [8]. The random transport operator is:

T ∗1 L = 4π · L(~y, ω′) · fr(ω′, ~x, ω) · cos θ′~x.

where~y = h(~x,−ω′) is the point visible from~x at direc-
tion−ω′.

Indeed, if the orientation is sampled uniformly, then its
probability density isp(ω′) = 1/4π, thus the expectation
of the random transport operator gives back the effect of
the light transport operatorTfrL:

E[T ∗1 L] =
∫

Ω′

4π·L(h(~x,−ω′), ω′)·fr(ω′, ~x, ω)·cos θ′·dω′~x
4π

.

It is straightforward to extend the method to be bi-
directional, which transfers the radiance not only into di-
rectionω′, but also to−ω′. Note that this does not even re-
quire additional visibility computation. For bi-directional
transfers, the density of sampling isp(ω′) = 1/2π.

The radiance transfer needs the identification of those
points that are mutually visible in the global direction. In
order to solve this global visibility problem, a window is
placed perpendicular to the global direction. The window
is decomposed into a number of pixels. A pixel is ca-
pable to store a list of patch indices and z-values. The
lists are sorted according to the z-values. The collection of
these pixels is called thetransillumination buffer[6]. The
patches are rendered one after the other into the buffer us-
ing a modified z-buffer algorithm which keeps all visible
points not just the nearest one. Traversing the generated
lists the pairs of mutually visible points can be obtained.
For each pair of points, the radiance transfer is computed
and the transferred radiance is multiplied by the BRDF,
resulting in the reflected radianceLr.
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Figure 2: Organization of the transillumination buffer

From the reflected radiance the patch radiance can be
obtained by a simple averaging operation. Note that if the
integral is evaluated on the window, then the cosine factor
is compensated:

L(m)|i =
1
Ai

·
∫

Ai

T ∗fr
L(m− 1) d~x ≈

4π · δP
Ai

·
∑

P

Lin(P ) · fr(ω′, P, ω),

whereP runs on the pixels covering the projection of patch
i, Lin(P ) is the radiance of the surface point visible in
pixel P , fr(ω′, P, ω) is the BRDF of that point which re-
ceives this radiance coming through pixelP andδP is the
area of the pixels.

4.2 Parallel ray-bundle tracing with a
single transillumination plane

The drawback of the previous algorithm is that it cannot
exploit the hardware z-buffer since it can store only a sin-



gle value per pixel, but the algorithm requires all patches
that are projected onto this pixel. Fortunately, this require-
ment can be eliminated, thus the algorithm can be executed
on the hardware, if the visibility algorithm is further ran-
domized in the following way [5].
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Figure 3: Transferring the radiance through a single plane

Let us find randomly a point on the line of the transillu-
mination direction and place the transillumination window
at this point. The scene is rendered from the two sides of
the window supposing that the color of patchi is i. Hav-
ing read the two images from the frame buffer, the patches
that see each other from the opposite sides of the window
can be identified, and the radiance can be transferred be-
tween them. Of course, this method finds two points that
see each other in the transillumination direction only with
some probability. This probability is proportional to the
distance between the two points. If the distance of the
front and back clipping planes isR, then the probability is
|~x− ~y|/R. When the scene is rendered, thez coordinates
are transformed in a way that they fit in the [0,1] range for
the whole scene, that is, the distances are normalized with
R. It means that this probability equals to the sum of the
z values of the two visible points, as read out from the z-
buffer. In order to compensate those cases when the two
points are not on the opposite sides of the transillumination
window, when the radiance is transferred, it is divided by
the selection probability, i.e. by the normalized distance
of the two points. Formally, the random transport operator
is:

T ∗2 L = 2π ·L(~y, ω′)·fr(ω′, ~x, ω)·cos θ′~x ·ξ(~x, ~y)· R

|~x− ~y| ,

whereξ(~x, ~y) is the indicator function, which is 1 if and
only if the transillumination plane is between~x and~y.

4.3 Perspective ray-bundle shooting

Perspective ray-bundle shooting selects a single patch ran-
domly and sends its radiance from one of its randomly se-
lected point towards all directions [1]. According to im-
portance sampling, it is worth setting the selection proba-
bility pi proportional to the powers of the patches.

If patchj is selected with probabilitypj and point~y on
this patch with uniform1/Aj probability, then the random
transport operator is

(T ∗3 L)(~x, ω) =

Aj

pj
·v(~x, ~y) ·L(~y, ω′~y→~x) ·fr(ω′~y→~x, ~x, ω) · cos θ′~x · cos θ~y

|~x− ~y|2 ,

wherev(~x, ~y) is the mutual visibility indicator, which is 1
if the two points are visible from each other.

The expected value of this random variable is:

E[T ∗3 L] =
∑

j

pj ·
∫

Aj

(T ∗persL)(~x, ω)
d~y

Aj
=

∑
j

∫

Aj

v(~x, ~y)·L(~y, ω′~y→~x)·fr(ω
′
~y→~x, ~x, ω)· cos θ′~x · cos θ~y

|~x− ~y|2 d~y.

Using the formula of solid angles

d~y · cos θ~y/|~x− ~y|2 = dω~x

and assuming that illumination can only come from sur-
faces — i.e. there is no external sky light illumination —
the integration over all surfaces can be replaced by an in-
tegration over all incoming solid angles:

E[T ∗persL] =
∫

Ω′

L(h(~x,−ω′), ω′)·fr(ω′, ~x, ω)·cos θ′~x dω′~x.

To obtain the patch radiance, the radiances of the points
are averaged:

L(m)|i =
1
Ai

·
∫

Ai

T ∗fr
L(m− 1) d~x =

Aj

pjAi

∫

Ai

v(~x, ~y)·L(~y, ω′~y→~x)·fr(ω
′
~y→~x, ~x, ω)·cos θ′~x · cos θ~y

|~x− ~y|2 d~x.

(6)
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Figure 4: Perspective ray-bundle tracing with hemicubes

The integral in equation (6) can also be evaluated on the
five window surfaces (W ) that form a hemicube around the



source~y (figure 4). Note that this is similar to the famous
hemicube approach of the diffuse radiosity problem [3]. In
fact, radiance shooting requires the vertex-patch form fac-
tors that can be computed by the hemicube. In this section,
we re-derive the basic formulae to show that they can also
be used in cases when the reflection is non-diffuse.

To find formal expressions, let us express the solid angle
dΩp, in which a differential surface aread~x is seen through
pixel aread~p, both from the surface area and from the pixel
area:

dΩp =
d~x · cos θ′~x
|~y − ~x|2 =

d~p · cos θp

|~y − ~p|2 , (7)

whereθp is the angle between direction pointing to~x from
~y and the normal of the window (figure 4). The distance
|~y − ~p| between pixel point~p and the lightsource~y equals
to f/ cos θp wheref is the distance from~y to the window
plane, that is also called thefocal distance. Using this
and equation (7), differential aread~x can be expressed and
substituted into equation (6), thus we can obtain:

L(m)|i =
Aj

pjAif2
·

∫

W

v(~y, ~x) ·L(~y, ω′~y→~p) ·fr(ω′~y→~x, ~x, ω) ·cos θ~y ·cos θ3
p d~p.

Let Pi be the set of those pixels in which patchi is vis-
ible from the lightsource.Pi is computed by running a
z-buffer/constant shading rendering step for each sides of
the window surface, assuming that the color of patchi is
i, then reading back the “images”. The reflected radiance
on patchi is approximated by a discrete sum as follows:

L(m)|i ≈ AjδP

pjAif2
·

∑

P

L(~y, ω′~y→~p) · fr(ω′~y→~x, ~x(~p), ω) · cos θ~y · cos θ3
p,

whereδP is the area of a single pixel in the image. IfR is
the resolution of the image — i.e. the top of the hemicube
containsR×R pixels, while the side faces containR×R/2
pixels – thenδP = 4f2/R2.

4.4 Representation of the temporary ra-
diance

The discussed ray-bundle methods sample the radiance
function in each step and obtain a new function. The radi-
ance is a four variate function and usually has high varia-
tion, thus its accurate finite-element representation would
require many basis functions. Instead, in an iteration step
we compute only the irradiance on each patch, which is in-
dependent of the transfer direction of the next step. With
the irradiance information we also store the incoming di-
rection. In the next iteration step, when the output radi-
ance of a patch in a given direction is needed, it is obtained
on the fly, multiplying the irradiance by the BRDF of the

patch taking into account the previous and current direc-
tions.

In order to establish importance sampling for perspec-
tive ray-bundle shooting, the powers of the patches should
also be known. The computation of the powers from the
irradiance values is also straightforward, the irradiances
should be multiplied by the albedosai(ω) of the patches.

4.5 The combination of the ray-bundle
based strategies

So far, we introduced three different random radiance
transfer methods that use different sampling probabili-
ties. Parallel ray-bundle tracing samples the direction from
point~x with a uniform density, i.e. the probability of gen-
erating a direction indω is

dω

2π
.

Note that we use2π due to the bi-directionality of the al-
gorithm.

When just a single plane is used, contribution to point
~x is possible only if the plane is between point~x and that
point ~y which is visible from here. If the maximum size
of the scene isR, then the probability that a contributing
direction is indω is

|~x− ~y| · dω

2πR
.

For perspective ray-bundle shooting, the probability that
shooting point is in differential aread~y of patchj is

pj · d~y

Aj
=

Φj · d~y

Aj

∑
i Φi

.

Before applying the concept of multiple importance sam-
pling, we have to solve the problem that different meth-
ods formulate the light transport problem with different
integrals. Parallel ray-bundles use directional integrals
while perspective ray-bundle shooting applies surface inte-
grals. Converting directional integrals to surface integrals,
the probability densities used by the discussed ray-bundle
based methods are the following:

p1(~y) =
cos θ~y

2π · |~x− ~y|2 ,

p2(~y) =
cos θ~y

2πR · |~x− ~y| ,

p3(~y) =
pj

Aj
.

Each of them is good for particular illumination condi-
tions. Parallel ray-bundles are effective if the scene con-
sists of patches of similar radiance, while perspective ray
bundles are effective if one or several patches are much
brighter than the others (note that these bright points are



Parallel Perspective Combined

Figure 5: Comparison of stochastic iteration using parallel (left), perspective (middle) ray-bundles and the combination
of the two methods (right) using the same computation time (7 seconds on a P4/1.2GHz computer)

selected with much higher probability by perspective ray-
bundle shooting). Thus perspective ray-bundle shooting is
the best method if the scene contains small light sources. It
is thus highly intuitive why parallel ray-bundle algorithms
always apply a first shot to distribute the illumination of
the light sources, letting the algorithm compute only the
indirect illumination.

On the other hand, the transfer of nearby points is better
coped by parallel transfers than by perspective transfers.
Close points are obtained by parallel ray-bundle tracing
with the highest probability, this probability is smaller if
just a single plane is used and the smallest for perspective
ray-bundle shooting. Thus dense scenes and corners can
be rendered in a better way by parallel ray-bundle trans-
fers.

In order to obtain a method that does not require first
shot and can nicely render corners and close objects, the
presented techniques are combined according to multiple
importance sampling.

Suppose that each of the three methods is used with
probabilityP1, P2 andP3, respectively. Since one method
is applied in each stepP1 + P2 + P3 = 1. These probabil-
ities can be specified by the user, taking into account the
features of the scene and the time of the application of the
methods.

When combining the three ray-bundle algorithms, the
divider of balanced heuristic becomes:

d(~y) = P1
cos θ~y

2π|~x− ~y|2 + P2
cos θ~y

2πR|~x− ~y| + P3
pj

Aj
.

When parallel ray-bundles are used, this weight should be
multiplied byd~y/dω = |~x− ~y|2/cos θ~y in order to replace
differential surfaces areasd~y by differential solid angles
dω:

d(ω) = P1
1
2π

+ P2
|~x− ~y|
2πR

+ P3
pj

Aj

|~x− ~y|2
cos θ~y

.

In order to test the proposed method we have selected
the standard Cornell Box scene (figure 5). The images
have been rendered with500×500 resolution. The transil-
lumination buffer contained1000× 1000 pixels. Figure 5
shows the Cornell box rendered by parallel, perspective
ray bundles and by the combined method. The computa-
tion time was 7 seconds in all cases. Note that parallel
bundles distribute the energy with higher noise generally,
but are good in rendering corners. The result of perspec-
tive bundles is better except for the annoying spikes at the
corners. The combined method can combine the advan-
tages of both techniques and results in much more pleasing
image than its parents.
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Figure 6: Error of the parallel, perspective and combined
ray-bundle shooting algorithms for the Cornell box.



5 Conclusions

In this paper we proposed the combination of local and
global radiance transfer methods according to the concept
of multiple importance sampling. First local and global
lines based techniques were combined, where we could
preserve the efficiency of global transfers, but could get
rid of the necessity of the first shot. Secondly we proposed
the combination of three ray-bundle transfer methods. The
combined method is able to render complex glossy scenes
in a few tens of seconds and is particularly effective if the
surfaces are not highly specular. This estimation requires
just one or a few radiance values per patch, thus the storage
requirements is modest.
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