EUROGRAPHICS 2003 Tutorial

Efficient Monte Carlo and Quasi-Monte Carlo
Rendering Technigues

Alexander Keller, Thomas Kollig, Mateu Sbert, Laszlé Szirmay-Kalos

Abstract

The tutorial reviews advanced soft- and hardware rendering techniques that are based on Monte Carlo, quasi-
Monte Carlo, and randomized quasi-Monte Carlo methods. The morning session explains the basic theoretical
concepts along with the practical algorithmic aspects of Monte Carlo, quasi-Monte Carlo and randomized quasi-
Monte Carlo integration. We also focus on error reduction techniques emphasizing importance, correlated, and
Metropolis sampling. After reviewing the equations of image synthesis and global illumination in the continuous
and discrete setting, the afternoon session is devoted to the practical application of the aforementioned sampling
techniques in rendering algorithms. The tutorial presents the advanced tricks of gathering, shooting, and bidirec-
tional random walk methods, and a strikingly simple implementation of the Metropolis light transport algorithm.
Concerning improved efficiency, techniques based on reusing light paths are presented including applications like

e.g. instant radiosity and photon mapping. The tutorial is completed by production quality quasi-Monte Carlo

rendering techniques for anti-aliasing, parallelization,

deterministic RenderMan, distribution ray tracing, and

interactive global illumination. A basic understanding of rendering terms, equations, and techniques is assumed.

1. Lecturers
Alexander Keller, University of UIm

Alexander Keller is a professor in computer graphics at the
University of Ulm, Germany. He received his Ph.D. with dis-
tinction in 1997 at the University of Kaiserslautern. Based on

this work he designed and developed the quasi-Monte Carlo

techniques behind the rendering software mental ray which
is the backend renderer of Maya, 3d Studio Max, CATIA,
and many others. Due to its superior performance this ren-
dering software received a technical achievement award in
2003. Alexander Keller is continuously publishing and de-
veloping highly efficient quasi-Monte Carlo rendering tech-
niques for almost 10 years now. He had been invited to the
CalTech, the ETH Zirich, and the Saarland University for
giving courses on his quasi-Monte Carlo techniques.

Contact:
Abt. Medieninformatik, Geb. 027/338
Universitat Ulm
D-89069 Ulm, Germany

keller@informatik.uni-ulm.de
medien.informatik.uni-ulm.de/keller
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Thomas Kollig, University of Kaiserslautern

Thomas Kollig is an expert in Monte Carlo and quasi-Monte

Carlo integration. Following several successful international
publications, his Ph.D. thesis on randomized quasi-Monte
Carlo methods for photorealistic image synthesis is close to
submission.

Contact:

Fachbereich Informatik, Geb. 36/208
Universitat Kaiserslautern
D-67653 Kaiserslautern, Germany

kollig@informatik.uni-kl.de
www.uni-kl.de/AG-Heinrich/Thomas.html

Mateu Sbert, University of Girona

Mateu Sbert is an associate professor in computer science
at the University of Girona. He received a M.Sc. in theoret-
ical physics (1977) at the University of Valencia, a M.Sc.
in mathematics (statistics and operations research, 1983) at
U.N.E.D. University (Madrid) and his Ph.D. in computer
science at the U.P.C. (Universitat Politecnica de Catalunya,
1997, Best Ph.D. Award). Mateu Sbhert’s research interests
include the application of Monte Carlo, integral geometry
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and information theory techniques to radiosity, global illu-
mination and image based rendering. He has authored or
co-authored about 60 papers in his areas of research and
served as a member of program committee in several Span-
ish and international conferences. Mateu Sbert co-organized
the 2001 Dagstuhl Seminar No. 01242, entitled "Stochastic
Methods in Rendering".

Contact:

Campus Montilivi-Edifici
University of Girona
PIV 17071 Girona, Spain

mateu@ima.udg.es
ima.udg.estmateu

L&szl6 Szirmay-Kalos, Budapest University of
Technology

Laszlé Szirmay-Kalos is the head of the computer graphics
group at the Faculty of Electrical Engineering and Informa-
tion Technology at the Budapest University of Technology
and Economics. He received his Ph.D. in 1992 and full pro-
fessorship in 2001 in computer graphics. His research area
is Monte-Carlo global illumination algorithms and he pub-
lished more than a hundred papers.

Contact:

Magyar Tuddsok krt. 2.
Budapest University of Technology
Budapest, H-1117, Hungary

szirmay@iit.ome.hu
www.iit.ome.huiszirmay

2. Syllabus
9.30 - 11.00Part |

Introduction (Szirmay-Kalos) Why you should use
Monte-Carlo and quasi-Monte Carlo integration in
your renderer

Monte Carlo integration (Sbert) Variance Reduction:
importance sampling, partial analytic integration, cor-
related sampling, weighted sampling, multiple impor-
tance sampling

Quasi-Monte Carlo integration (Keller) Discrepancy
and discrete density approximation, algorithms for
low discrepancy sampling points, structure of low
discrepancy sampling points

11.00 - 11.30Coffee break
11.30 - 13.00Part Il

Randomized quasi-Monte Carlo integration (Keller)
Randomized low discrepancy sampling

Efficient multidimensional sampling (Kollig)

Metropolis sampling (Szirmay-Kalos)

Random walks in the radiosity context (Sbhert)

13.00 - 14.30Lunch break
14.30 - 16.00Part Il

Multipath algorithms (Sbert) A random walk approach
with global lines

Random walks (Szirmay-Kalos) The general setting,
the art of path building and reuse: distributed ray-
tracing, path tracing, light tracing, bi-directional path
tracing, photon map, instant radiosity, virtual light
sources, resuing path, discontinuity buffer, Metropolis
light transport

Stochastic iteration algorithms (Szirmay-Kalos)

16.30 - 18.00Part IV

Bidirectional path tracing (Kollig) Efficiency from
randomized low discrepancy sampling

Quasi-Monte Carlo rendering techniques (Keller)
Interleaved sampling and parallelization, efficient
volume rendering, strictly deterministic sampling
in RenderMan, strictly deterministic path and
distribution ray tracing, interactive global illumination
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Monte Carlo and Beyond

Course Notes

Alexander Keller

keller@informatik.uni-ulm.de

This course was first held at the Caltech July 30th through August 3rd, 2001.

Early 2002 it was held at the ETH Zirich.



'For every randomized algorithm, there is a clever deterministic one.
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— no real random on classical deterministic computers
— real random by measuring quantum registers
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Applications in Computer Graphics

° . Industry standard RenderMan by PIXAR
— stratified random sampling

e OMC: Derandomized RenderMan
— new graphics hardware

e (OMC: Ocean wave synthesis
— discrete Fourier transform independent of dimension
QMC: Error estimation for bidirectional path tracing
— simpler algorithms

e D OMC: Industry standard mental ray by mental images
— deterministic correlated low discrepancy sampling
— fastest performance
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Reengineering the Classics of Computer Graphics

e Uncorrelated sampling
— correlated sampling more efficient

e Uniformity is sufficient
— low-discrepancy sampling more efficient

e Either stratification or Latin hypercube sampling
— you can have both and even more...

e One dimensional stratified Monte Carlo integration
— Cranley-Patterson rotations more efficient

e Antialiasing only by random sampling
— deterministic low-discrepancy sampling more efficient



Monte Carlo and Beyond

[

e Monte Carlo integration

e Quasi-Monte Carlo points

e Quasi-Monte Carlo integration

e Monte Carlo extensions of quasi-Monte Carlo

e Application to computer graphics
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Interaction of Light and Matter

e Bidirectional scattering distribution function fs(w;, z,w) : 2 x AV X Q — RS’
— may depend on wavelength
— Helmholtz reciprocity principle fs(w;, z,w) = fs(w, x,w;)

e Scattered radiance
L(z,w) = [ falwi,w)Lo@,w)[A(@) - wilde

= /Q fs(ws, z,w) Li(z, w;) €Os 0;dw;
e Integral operator shorthand

LS — Tst'L
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Vacuum Radiance Transport

e Emitted radiance Le(x,w) : OV X Q — IR{E)"

e Looking for L(z,w) : V x Q — IR{(‘)"
— usually in RGB color space
— invacuum L(z,w) = L(h(x, —w),w)
= sufficient to consider radiance for x € 0V
L(x,w) =
Li(z, w;)

e Radiance integral equation
L(zx,w) =
L = Le+Ty,L
e Neumann series, convergent if ||T]9;|| <1

L — L€+Tf3L€+T]%L€+

w .
= > T} Le=:(I—Tp) 'Le
=0




Image Synthesis

e Fluxresponsivity W : V x 2 —- R

e Measurement
/V/QW(w,w)L(x,w)dwd:c =: (W, L)
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Image Synthesis

e Fluxresponsivity W : V x 2 —- R

e Measurement
W(xr,w)L(x,w)dwde =: (W, L
/V/Q (z,w)L(x,w)dwdx ( )
= (W,(I —Ty,) ‘L)
e Example: Pixelsensors Wy, 5 of a pinhole camera
— detects average radiance passing through a pixel

N7/

[/ /][] ]}



The Global lllumination Problem in Vacuum

e Given the
— scene surface 0V,
— scattering properties fs,
— radiance emission L., and
— asensor W

e compute
(W, (I —Ty,) tLe)

= the global illumination problem is reduced to an integration problem
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Principles of Rendering Algorithms

e Pipeline: Transformation, opt. cull, shade, clip, rasterize with Z-buffer

— Rasterization hardware
x e.g. nVidea, ATI, Matrox

e Pipeline: Split, cull, dice, shade micro-polygons, cull, cast rays with Z-buffer

— RenderMan (REYES) ray caster
x PIXAR, California

e Pipeline: Trace ray by culling, shade, recurse = no streaming
— Entropy (BMRT, Torro) ray tracer with analytic anti-aliasing
+x Exluna, California

— mental ray
+x mental images, Berlin



The Pinhole Camera: Camera Obscura

e Central projection onto image plane




Ray Tracing

e Image: Matrix of pixels
— Pix-el = ure Element

e 1980: Turner Whitted: An Improved lllumination Model for Shaded Display.

=y,

e Trace ray from center of pixel through focal point into the scene



A simple Ray Tracing Program: Sampling

#include "Graphics.h”
int main(int Parameters, char *Parameter)

{
Image* Picture;
Color Sample;
Color SumOfSamples;

Initialize(Parameters, Parameter);
Picture = new Image(SizeX, SizeY);

for (intx = 0; x < SizeX; x++)
for (inty =0;y < SizeY; y++)
{

Picture —Pixel(x, y) = Sample;

}

Savelmage(Picture);

return O;



Observation: Aliasing

e The image contains jaggies.




Anti-Aliasing by Supersampling

e In fact the pixel is an area, not a point !
= pixel color is average not a single sample
1 N

1
ixel color = —/ L dr ~ — L(x;



Anti-Aliasing by Supersampling

e In fact the pixel is an area, not a point !
= pixel color is average not a single sample

ixel color . / L(x)d . g: L(x;)
—_ r)ar <~ — €X;
P P Jp N A

e Multiple samples instead of only pixel center

axis-aligned, regular grid



Supersampling

for (intx =0; x < SizeX; x++)
for inty =0;y < SizeY; y++)
{

SumOfSamples = Black;

for(inti=0;1 < 3;1++)
for (intj=0;] < 3;J++)
{
Sample = Shade(x + ((double) i + 0.5) / 3.0, y + ((double) j + 0.5) / 3.0);
SumOfSamples = SumOfSamples + Sample;

}

Picture —Pixel(x, y) = SumOfSamples / 9;

}



Observation 1. Reduced Aliasing




Observation 2: Still Aliasing

e since the 9 points can behave like only 3
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Introducing Randomness

e Jittering

= use random numbers

e Estimation by throwing the dice is superior !
= Monte Carlo algorithms



Stochastic Supersampling

for (intx =0; x < SizeX; x++)
for (inty =0;y < SizeY; y++)
{

SumOfSamples = Black;

for (inti=0;1 < 3;1++)
for (intj=0;] < 3;j++)

{
Sample = Shade(x + ((double) i + )/ 3.0,
y + ((double) j + ) / 3.0);
SumOfSamples = SumOfSamples + Sample;
h

Picture —Pixel(x, y) = SumOfSamples / 9;

}



Antialiasing by Stochastic Supersampling

e Noise instead of aliasing




Monte Carlo and Beyond

e Principles of rendering algorithms

L
— Simulation of random variables and fields
— Monte Carlo integration
— Method of dependent tests
— Multilevel method of dependent tests
— Dependent sampling
— Replication heuristics
— Regularization of the samples

e Quasi-Monte Carlo points
e Quasi-Monte Carlo integration
e Monte Carlo extensions of quasi-Monte Carlo

e Application to computer graphics



Probability Spaces, Random Variables and Random Fields
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Probability Spaces, Random Variables and Random Fields

e Definition: A probability space is given by a set 2 = {wq,wn, ...} of elementary
events w;, where each elementary event is assigned a probability with

0 <Prob(w;) <1 and > Prob (w) = 1.
wes?

E C Qs called event with
Prob (E) = ) Prob (w).
wek
e Definition: Given a probability space on the set of elementary events €2, a mapping
X:Q2 —- R
w — Xy

IS called a random variable . X, is called a realization .

e Definition: A random field (also called random function )
X :Q — C(s,d)
w — Xu
maps the space of elementary events 2 into the space of continuous functions C'(s, d).
If s = 1 the random fields can be called random process .



Discrete Random Variables

e Definition: If the probability space €2 is finite or countable, the random variable X is
discrete .
Py :R — [0,1]
z — Prob(X <z)= ) Prob(X =2z')

/' <z
Is called cumulative distribution function (cdf) of the random variable X.



Continuous Random Variables

e Definition: A continuous random variable X and its underlying (real) probability
space are defined by an integrable density function

pXIR—>R(_)|_

with the property [ppx(z)dz = 1. Aset A C R that can be built by the union A =
U, I, of countably many pair-wise disjoint intervals of arbitrary kind (open, closed,
half-open, one-sided infinite) is called event. X takes a value from A with

Prob (A) =/ px(xz)dr = Z/ px(x)dz.
A I,
The cumulative distribution function (cdf) IS

Py () = Prob (X < z) = Prob ({t € R|t < }) = /x px (£)dt.



e Properties of the cumulative distribution function
— monotonicity and continuity
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e Properties of the cumulative distribution function
— monotonicity and continuity
— limg— oo Px(x) =0
— limg—oo Px(x) =1

e Corollary: Any differentiable function P that fulfills the above properties can be as-
signed a probability density function by

p = P/(2).
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Uniform Distribution ¢/ on [0, 1)%

e Probability density function

1 x€]0,1)%
0O else

py(z) = {

e Requirements for simulation, i.e. realization
— fast, deterministic algorithms
— mimic independence
= pseudo-random numbers

e Example: Linear congruential generators (starting value zq)

zi+1 = (az;+c) modm €{0,...,m—1}
Zi+1

Eit1 =
— discrete subset of [0, 1)
— finite period
— choice of a, ¢, m crucial for good statistical properties
— parallelization difficult



The Inversion Method

e Given a density p(x) > 0 on [0, 1] generate samples y that are p-distributed

e Determine

J§ p(T)dr
A 0,1
@) & p(r)dr 10, 1]
and use
y; = P71 (x;)

if P is invertible.



The Multidimensional Inversion Method

e Forp(z) > Oforz € I° and [;s p(x)dx < oo realize p-distributed samples
P~ l(z) =W, ..., y)) =y

from x ~ U by successively determining
y) using 2P =y (yD),
y(2) using 2(2) — FQ(y(l), y(Z))

using the bijections

tj (1 1
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e Forp(z) > Oforz € I° and [;s p(x)dx < oo realize p-distributed samples

P~ z) = W, ... ,y®)) =y

from x ~ U by successively determining
y) using 2P =y (yD),
y(2) using 2(2) — FQ(y(l), y(Z))

using the bijections
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The Multidimensional Inversion Method

e Forp(z) > Oforz € I° and [;s p(x)dx < oo realize p-distributed samples
P~ l(z) =W, ..., y)) =y

from x ~ U by successively determining
y) using 2P =y (yD),
y(2) using 2(2) — FQ(y(l), y(Z))

using the bijections

b 1 1
. fO]fO fO p(t17°°°7tj—177-j7°”77—8)de"'de
folfol”’fOlp(tla"'7tj—177-j7"-77-8)de"'de

o Ifp(z) = 15—, P19 (z(1))

Fj(tl, e ,tj) ;

Fj(t5) =

e Note: P—1 not unique, since there exist many mappings of the unit cube onto itself



Composition Method

e Simulation of composite probability density functions

K K
p(z) = wipi(z) w; eRT, Y w; =1
i=1 i=1
1. fix index 7z using & ~ U
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j=1 j=1

l.e. simulate a discrete random variable with Prob (w;) = w;
2. efficiently simulate p; by
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Composition Method

e Simulation of composite probability density functions

K K
p(z) = Y wppi(z)  w; eRT)Y w; =1
- =1l

1. fix index 7z using & ~ U

1—1 7
D> wi <E< ) wy,
j=1 j=1

l.e. simulate a discrete random variable with Prob (w;) = w;
2. efficiently simulate p; by

—1
§ — 2321 w4

)

cl

using only one random number
e Note: The composition method can raise variance.

e Applications: Russian Roulette, stochastic evaluation of sums
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Selection Methods

e Neumann rejection method, if ||p|lco < b < 00
— Choose two independent realizations of uniform random numbers &, ~ U
— If p(&) > b take £ as a sample
— else reject £ and try again
e Efficiency depends on graph of p
e Generalized Neumann rejection method
— density separable, i.e. p(z) = p1(z(1)) - po(x(2)
— multidimensional inversion method on invertible part p»

— Neumann rejection method on pq

e Metropolis sampling algorithm
— construct Markov chain with desired density p as stationary density

e Construction dimension , i.e. random numbers required for one realization

— now only finite expectation



Special Methods: Normal Distribution N (u, o)

e Probability density function

1 (=2

IN(uo) (@) = o= e 2

— expectation pu

— variance o2

e Trick: Simulate a pair (X,Y) ~ A (0,1) x AM(0, 1)

1 I
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Special Methods: Normal Distribution N (u, o)

e Probability density function

1 _(@—pw)?

IN(uo) (@) = Fo=re 207

— expectation pu

— variance o2

e Trick: Simulate a pair (X,Y) ~ A (0,1) x AM(0, 1)

1 _ z24y? 1 2
no.1)(@) - Faro1)(y)dedy = 5o '€ 2 dedy=_—-e Zrdrdg

27

e Polar method (Box-Mdller)

(X,Y) = \/—2 In(1 — &) - (cos2nv, Sin 27v)
where £, v ~ U on [0, 1)



Simulation of Periodic Random Fields

e Typical realization procedure of X : Q2 — C(s, d)

1. Realize Gaussian noise on s-dimensional regular grid K

No(k) ~ (NMV(0,1) x iN(0,1))¢, keK

2. Shape noise by spectrum S of phenomenon

X (k) = S(k)Nu (k)

3. Band limited evaluation by fast Fourier transform for each dimension

X,(x) = ¥ Xok)e2 K X ¢ (s, d)
ke K



Simulation of Periodic Random Fields

e Typical realization procedure of X : Q2 — C(s, d)

1. Realize Gaussian noise on s-dimensional regular grid K

No(k) ~ (NMV(0,1) x iN(0,1))¢, keK

2. Shape noise by spectrum S of phenomenon

X (k) = S(k)Nu (k)

3. Band limited evaluation by fast Fourier transform for each dimension
Xo(x) = 3 Xo()e2™ X € (s, d)
ke K
e Standard tensor product approach is exponential in s = dimx = dimk
= Curse of dimension



Curse of Dimension from Regular Grids

e Lattices of rank s with N = n® points from tensor product approach

0,7

I 4,7

o 5, 7

. 6, 7

A 7,7

L7 g2 7 g3 7 o

0, 6

I 1,6 2,6

o 3,6

~ 4, 6

o 5, 6

- 6, 6

A /7,6

0,5

I 1,5 2,5

o 3,5

~ 4,5

o 5,5

: 6, 5

A 7,5

0,4

I 1,4 2,4

~ 3,4

. 4, 4

o 5, 4

: 6, 4

A 7,4

0,3

o 1,3 2,3

~ 3,3

33 43

~ 5, 3

: 6, 3

a 7,3

0, 2

o 1,2 2,2

~ 3,2

. )

o 5, 2

: 6, 2

a 7,2

0,1

I 1,1 2,1

~ 3,1

- 4,1

o 5,1

~ 6, 1

A 7,1

D:0 1.0 20 3.0 4,0 5.0

- 6,0

A /7,0

e O (n°logn) for s fast Fourier transforms



Curse of Dimension

e Theorem (Bakhvalov): Let C, denote the set of functions on [0, 1)° with r continu-
ous, bounded derivates, i.e.

0" f(x)
< M for f € C}
e I €Cum
forall a1,...,as, suchthat >°°_; o; = r. Then there exists a function f € C%, such

that the error of approximating the integral of f using any N point quadrature rule with
weights w; and function values f(x;) is
N-1

Jio e F @ = 3 wif (o)

i=0
where the constant £ > O depends on M and r.

>k-N"s




Curse of Discontinuities

e Consider

1 ifxz< X*
f(x)_{o if 2 > X*

with z; =  and z; %= X*. Then

17?,1

f(fb‘)dw - Z fai)| ~

1
o O (N_E) error for s dimensions
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e Goal: Find e-approximations to numerical problems
— minimal cost algorithm for maximum error ¢

e Problem statement:

— Global information
x function class:

— Local, partial information
k

— Model of computation
x real number model
+ scalar products as class of algorithms:

e Analysis of e-complexity:
— lower bound by abstract structures

— upper bound by algorithm:
= matching bounds



Monte Carlo Integration

e Principle: Construct random variable with desired functional as expectation

e Numerical integration by

-

1 N-1

30(f) ) . o
Lsf(x)d$_ﬁi§f( )|< }>No.997 x; ~ U




Monte Carlo Integration

e Principle: Construct random variable with desired functional as expectation

e Numerical integration by

ol

e Simple, independent of dimension and smoothness, only f € L2

1 N-1
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Lsf(x)d$_ﬁi§f( )|< }>No.997 x; ~ U

e Problems
— Noise, slow convergence, difficult parallelization and reproducability
— No real random numbers



Monte Carlo Integration

e Principle: Construct random variable with desired functional as expectation

e Numerical integration by

-

e Simple, independent of dimension and smoothness, only f € L2

1 N-1

30(f) ) . o
Lsf(x)d$_ﬁi§f( )|< }>No.997 x; ~ U

e Problems
— Noise, slow convergence, difficult parallelization and reproducability
— No real random numbers

e Computational complexity

2
1 N-1

N -tg-0°(f) =N -tg-E|[| f(zx)ds—— fC )
S S /IS Nz';)




Monte Carlo Integration

e Principle: Construct random variable with desired functional as expectation

e Numerical integration by

-

e Simple, independent of dimension and smoothness, only f € L2

1 N-1

30(f) ) . o
Lsf(x)d$_ﬁi§f( )|< }>No.997 x; ~ U

e Problems
— Noise, slow convergence, difficult parallelization and reproducability
— No real random numbers

e Computational complexity
2
1 N-1

fref @z = 3 7C)

e Increase efficiency, not only variance reduction !!!
1
tg-o2(f)

N -tg-0%(f) =N -tg-E
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Error Control
e Unbiased estimator Y
EY = " f(x)dx
e Bias of estimator Y
By :=EY — ]Sf(az)da:

e Consistent estimator Y

N-—1
Prob ( lim 1 Z yz—/sf(a:)d:c> =1

N—oco N

e Error estimate of the estimate

1 V=1 —1
( 2 S >) | X N7 -
.:O

— adaptive sampling

, (N-1 2]
(£ 10)




Correlated Sampling: Separation of the Main Part

e Variance reduction by approximation, method of control variables

e Search g with

If — glloo < T €RT

e Then
/Is flx)de = \/Isg(@dgf_l_\/ls f(x): g(m)dwj

analytical




Correlated Sampling: Separation of the Main Part

e Variance reduction by approximation, method of control variables

e Search g with

If — glloo < T €RT

e Then
/IS f(x)dx

Jo@dzt [ @) —g(a)da

analytical
1 N—-1

~ (z)dz + — (fC )—gC ))
/Isg Ng:o ’

Note: The independent evaluation would destroy the advantages of the method.

e Variance of Monte Carlo part

A(f-9) < [ @) - g(a)Pdw < 72



Correlated Sampling: Separation of the Main Part

e Variance reduction by approximation, method of control variables

e Search g with

If — glloo < T €RT

e Then
/IS f(x)dx

Jo@dzt [ @) —g(a)da

analytical

1 N-1

~ [ g@de+ = S (FC ) —g( )
12 N =0
Note: The independent evaluation would destroy the advantages of the method.

e Variance of Monte Carlo part
(f-9) < [ 1f(@) - 9(@)Pde < 73

e Lower bound O (N_g_%) for f € C%, ([0, 1)%) obtained by Newton-Cotes methods
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e Principle: Construct random field with desired function as expectation

e Method of dependent tests (parametric Monte Carlo integration)
() = [ f@yde
1 N-1
N =o
for integro-approximation problems

e Computational complexity
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The Method of Dependent Tests

e Principle: Construct random field with desired function as expectation

e Method of dependent tests (parametric Monte Carlo integration)
() = [ f@yde
1 N-1
N =o
for integro-approximation problems

e Computational complexity

1 N-1

N -tg-E /]sf(x’y)dx_ﬁ Z f( 7y)
1=0

L2

e Note: One single set ( )7{\;—01 C I® of i.i.d. random samples

= exploit induced grid structure

e Examples
— accumulation buffer
— multilevel method of dependent tests



Hierarchical Function Representation

e Use multilevel function representation [Heinrich 1998]

m
Pmg = Pog+ > _[P,— P_1lg

[=1

for an arbitrary sequence (F}); 5 of interpolation operators

go- -y
+gan- y

Aé' /\(1) (y)

Ag, /\3 (y)
_|_>\% /\% (y)

)\(3), /\8 (y)
+A3. A3 (y)
+>\§' /\3 (y)

_|_)\§. /\3 (?J)

(Pog)(y)

_|_
([P — Polg) (y)

_|_
(P39)(v)
([P - Pilg) () L

([Ps — P2]g) (y)

1 Y
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e Method of dependent tests

R om 4 1

2¢ — 1
= : S : nal
— Z'Z:o f( ,yr)with =N S 2 ol D) 1



Multilevel Method of Dependent Tests

e Linear Lagrange interpolation of g;. := g(yr) = (Pmg)(yg) In yi, = 2%

e Method of dependent tests

—1

1 : 2Mm 41 I 2¢ — 1
= — with =N - LD
e Compute approximation g; ~ g;
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—1

1 : 2Mm 41 I 2¢ — 1
= — with =N - LD
e Compute approximation g; ~ g;
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Multilevel Method of Dependent Tests

e Linear Lagrange interpolation of g;. := g(yr) = (Pmg)(yg) In yi, = 2%

e Method of dependent tests

—1

1 : 2Mm 41 I 2¢ — 1
= — with =N - LD
e Compute approximation g; ~ g;
— boundary gg = go := (5 and gom = gom =
— refinement
_ 9p.om—(1-1) + g(k+1)2m—(l—l) )\l
g(2k+1)2m—l — > + \,]?/
Predictor Update
s _ 9p.om—(1-1) =+ g(k_|_1)2m—(l—1)
~ 92k+1)2m-t T >
_|_
" _ 2

A&




Implementation

e In-place reconstruction

l
G(2k+1)2m*l
l
G(Qk)Qm—l Gl
(2k+2)2m-!
Ak
Grom—-1) 9(2k+1)2m-
g(k+1)277L—(l—1)
fom—(-1) (k ;[ 1)2m7(l71) Som-I (2k n 2)2mfl
CLE YL

Coarser level — 1 Finer levell
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Efficiency Issues

e Individual functionals
— same high variance
— same sampling rate, even if correlated
— converged samples

e One function
— small detail contribution if correlated

- f( » Y m—l)_l_f( » Y m—l)
[ __ (2k)2 (2k+2)2
)\k — ﬁl ; (f( 73/(2]{;_|_1)2m—l) - > )

— adapt sampling rate NV; to support size
= reduced computational cost by exploiting correlation

e Localization heuristics
— range check
— predictor-corrector difference
— relative error

e With lifting scheme on arbitrary topology and boundaries



Numerical Results
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Importance Sampling

e Integral transformation by introducing a probability density p

p(z) W) ypey o LS £
J f@adz= [ f@y Sde = [ 2SR & Y

p() p(y) N = p g

e Variance

() J; 1;2(@;) (.7 (x)dwf




Importance Sampling

e Integral transformation by introducing a probability density p

P @ [ @y LN
frf@da = [ @7 de = [ SaP@ G X e

e \Variance
2(33) 2
0'2 <£> — /s J;(:C) diC — (/Isf(x)da:)

e Often f(z) = g(z)p(x)

1 N-1

/[Sf(ai)da:=/Isg(x>p($)da::/Isg(y)dP(y) ~ Z;O gl ) yy~p



Importance Sampling

e Integral transformation by introducing a probability density p

N-1
K)o [ D apgy LY IO

e p(y) N = p g

J@de = [ @2
I

e Variance

(1) = [ 2D ([ s

e Often f(z) = g(z)p(x)

1N1

/IS f(x)dx = /IS g(x)p(x)dxr = /IS g(y)dP(y) ~ Z g( ) Yi ~ P

e Often separating the main part is more efficient than importance sampling



Replication: Independent and Dependent Sampling

e Replication heuristic

)M—l

(’w]’, Rj j=0

— weight functions w;(z) : I* — R, and
— mappings R;(zx) : I° — I° so that

M-1 M-1
/Is el = /[s ng wj(CU)f(Rj(CU))dJZ — j;o /IS wj(m)f(Rj(m))dx
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Replication: Independent and Dependent Sampling

e Replication heuristic
M-1
(wj’ Rj)jzo
— weight functions w;(z) : I* — R, and
— mappings R;(zx) : I° — I° so that

M-1 M-1
/Is el = /[s ng wj(CU)f(Rj(CU))dJZ — j;o /IS wj(m)f(Rj(m))dx

e Either independent integral estimation

M-1 4 Nj—1

M—-1
X o @i e X5 5w O ),

j=0 "7 1=

or dependent, i.e. correlated sampling

1 N—-1M-1

M-1
[.3 wi@fRi@)de s~ Y3 wiC )R ),
j=0

N =0 i=0



Replication Heuristics: Multiple importance sampling

e Simple importance sampling can cause infinite variance

e For a set of techniques p;, i.e. R; = Pj_l, the weights are

Heuristic

Independent sampling

dependent sampling

Power (3 € RT)

Balance (8 = 1)

Uniform (G = 0)

NIp? () .
. - IR :
. N;
wjl@) = S ]ifkpk(l')
HEIRES )

pj(x) Ziw:_ol Ny,

p) () 1

wi (@) = s st

1
St pr(a)

w;(z) =

wi(%) = 373,02




Replication Heuristics: Multiple importance sampling

e Simple importance sampling can cause infinite variance

e For a set of techniques p;, i.e. R; = Pj_l, the weights are

Heuristic

Independent sampling

dependent sampling

Power (3 € RT)

Balance (8 = 1)

Uniform (G = 0)

NIp? () .
. - IR :
. N;
wjl@) = S ]ifkpk(x)
HEIRES )

pj(x) Ziw:_ol Ny,

p) () 1

wi (@) = s st

1
St pr(a)

w;(z) =

wi(%) = 373,02

e Problem of insufficient techniques




Stratification
e Partition of integration domain I$ = Uit 4y

e Monte Carlo integration on each of the disjoint strata A
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Stratification

e Partition of integration domain I° = U, A,

e Monte Carlo integration on each of the d|5]0|nt strata Ay

K K Np—1
fi@ae= 3 [ s@ars Y 2E0Y 5
k=1""k

k=1

e Variance reduction for standard choice N, = A\s(A)N

K Ns(Ap) 1
2N, Jap (f W) =5y Ja,

k=1
= at least as good as uniform random sampling
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Stratification

e Partition of integration domain I° = U, A,

e Monte Carlo integration on each of the d|5]0|nt strata Ay

K K >\S A Nk 1
fi@ae= 3 [ s@ars Y 2E0Y 5
[ k=17 k=1
e Variance reduction for standard choice N, = A\s(A)N
L As(Ap) 1 L(C)
> (100 = s f@e) < 7

= at least as good as uniform random sampling

o \s(Ap) = + vields
1 N-1

frf@don 5 3 FC )

— Lloyd-relaxation
— Jittered sampling



Stratification by Lloyd-Relaxation

e Algorithm (similar to vector quantization)
— Take N random initial points
— Loop: Move each point into the center of gravity of its Voronoi-cell

e Periodic boundary conditions
+ Fast convergence to regular patterns

= Small number of relaxation steps yields blue-noise-samples
- Expensive iteration step

- No incremental sampling



Stratification by Lloyd-Relaxation

4 ° % . .
[ o
o ° L4 A
y 0. () Y ([ ]
°
° O *
°* ®
3 . . °
° " .
° . ° . .
o ° o ® °
°
° °
) * ® o .. %
® ° °
°
® ()
o A ° o A o.
°. L od °
°
°
o ... 0.
° t ° ® o

e Iteration O



Stratification by Lloyd-Relaxation

e Iteration 1



Stratification by Lloyd-Relaxation

e Iteration 2



Stratification by Lloyd-Relaxation

e lIteration 3



Stratification by Lloyd-Relaxation

e Iteration 4



Stratification by Lloyd-Relaxation

e lteration 5



Stratification by Lloyd-Relaxation

e Iteration 6



Stratification by Lloyd-Relaxation

e Iteration 7



Stratification by Lloyd-Relaxation

e Iteration 8



Stratification by Lloyd-Relaxation

e lIteration 9



Stratification by Lloyd-Relaxation

e Iteration 10



Stratification by Lloyd-Relaxation

e Iteration 11



Stratification by Lloyd-Relaxation

e Iteration 12



Stratification by Lloyd-Relaxation

e Iteration 13



Stratification by Lloyd-Relaxation

e Iteration 14



Stratification by Lloyd-Relaxation

e Iteration 15



Stratification by Lloyd-Relaxation

e Iteration 16



Stratification by Lloyd-Relaxation

e Iteration 17



Stratification by Lloyd-Relaxation

e Iteration 18



Stratification by Lloyd-Relaxation

e Iteration 19



Stratification by Lloyd-Relaxation
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Stratification: Jittered Sampling

e Division of each axis into N; intervals for N = H§=1 N;
|

e Increased efficiency by increased uniformity of distribution

e Problem: N must be factorized



Latin Hypercube Sampling ( /NV-Rooks Sampling)

e Using s uniform random permutations a%) of size N yields
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Latin Hypercube Sampling ( /NV-Rooks Sampling)

e Using s uniform random permutations a(j) of size N yields

_ (@ +g7 @+
B N R N

where a](\,l) can be chosen as identity
‘ |

e Cannot be much worse than uniform random sampling

2 N
(fiws) = w3

o?(fuc)



Replication Heuristics: Stratification

e Heuristic with
— weights w; = A\s(4;), and
— mappings R; : I — A;
e Independent sampling for N; = As(A;)N

M—1 N —1

[ f@dzm Y Z As(A)) F(Ry(

7=0 .7 =
e Dependent sampling

1N1M1

frof @z~ G 3 AsAS (R C)

1=0 j=

DES

1 M-
N

7=0



Replication Heuristics: Regularization

e Antithetic variables
[ 1@as = [ L@ + 10— 0~ 1Y () ra- )
I I2 2 2N ‘=
— sample points doubled and symmetrized
— more efficient if variance reduced to less than half of original variance
— good for monotonic problems

— effect killed by independent sampling !



Replication Heuristics: Regularization

e Antithetic variables
[ 1@as = [ L@ + 10— 0~ 1Y () ra- )
I I2 2 2N ‘=
— sample points doubled and symmetrized
— more efficient if variance reduced to less than half of original variance
— good for monotonic problems

— effect killed by independent sampling !

e Combining stratification

fstrat(z) = % (f (g) T/ (1 - g))

and antithetic variables
1 N-1

[ ot ani@)dz ~ 3 (£(5)+F(1-5) +7 (% to)+S (% - )

=0



SYelljuilgle

e Instead of
1 N-1

Jis Jpoa FC@dd 5 52 £C )

computational complexity can be improved by

1 N—-1M-1

o J F@wdyde ~ == 3" 3 FC )

i=0 ;=0
e Low pass filtering of problematic dimensions of the integrand
— e.g. splitting for shadow rays



Replication Heuristics: Dependent Splitting

e Splitting considered as a replication heuristic restricted to selected dimensions

M-1
/I'Sl /132 f(:vyy)dyd:c — /181 /152 Z w](x,y)f(ij](g;’y))dydx

=0
1 N-1M-1

~ XY wiC, C R, ))dyds

i=0 j=0
e Realize splitting much more efficiently by e.g.
— stratification heuristic (independent sampling)
— randomized quadratures (dependent sampling)
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e Method of dependent tests

e Efficiency and time complexity
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Summary

e Simulation of random variables and fields
e Monte Carlo integration

e Method of dependent tests

e Efficiency and time complexity

e Dependent sampling

e Replication

— Use as few random numbers as possible



Monte Carlo and Beyond

e Principles of rendering algorithms
e Monte Carlo integration

o

— Discrepancy

— Deterministic low discrepancy
« Halton and Hammersley points
x Scrambling
* (t,m,s)-nets and (¢, s)-sequences
x Digital constructions
x Good lattice points

e Quasi-Monte Carlo integration
e Monte Carlo extensions of quasi-Monte Carlo

e Application to computer graphics



Discrepancy

e Definition: The discrepancy

1 N-1
D(Py, A) :=sup [As(A) — — Y xa(z;)
AcA N -
IS a measure of the uniform distribution of a given point set Py = {zqg,...,zny_1}

with respect to non-empty families A of Lebesgue-measurable subsets of I°. x4 IS
the characteristic function of the set A.
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Discrepancy

e Definition: The discrepancy

N-1
1
D(Py, A) :=sup [As(A) — — Y xa(z;)
AcA N -
IS a measure of the uniform distribution of a given point set Py = {zqg,...,zny_1}

with respect to non-empty families A of Lebesgue-measurable subsets of I°. x4 IS
the characteristic function of the set A.

e D(Py, A) ~ worst case integration error
e (Star-) discrepancy
S
D*(Py) :=D | Py, A|JA= ]] [0,a;) C I’
J=1
e Extreme discrepancy
S
D(Py) := D | Py, A|[A = ][] [a;,b;) C I°
J=1

e The (Star-) discrepancy and extreme discrepancy are anisotropic measures



Discrepancy Bounds

e Case s = 1: Discrepancy is size of largest gap

1
D*(P >
(N)_QN
1
D(P > —
(N)_N

e General case

s—1
log 2 N

N

D*(PN) > Bs
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Discrepancy Bounds

e Case s = 1: Discrepancy is size of largest gap

1
D*(P >
(Py) > o
1
D(P >
(Py) 2 =
e General case
s—1
log 2 N

D*(PN) > Bs

e Discrepancy of random points

log log N
D*(P]r\:;\ndom>€o< glog )

nY

e Discrepancy of regular grids

D*(PN) c O (\S/]-N>

— Includes points taken from space filling curves like e.g. the Hilbert curve
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e By the theory of uniform distribution
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Uniform and Completely Uniform Distribution

e By the theory of uniform distribution
(x;) is uniformly distributed in I*
S limy_. D(Py) =0
S limy_ oo D*(Py) =0

e Definition: A sequence (z;) of numbers in I is completely uniformly distributed
if for every s € N the sequence of points (zn, ;,41,- .., Zn4s—1) iS uniformly dis-
tributed in 7° for n € Nj.

e Formalization of independence
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Quasi-Monte Carlo Point Sets

e Low discrepancy means

log?® N)

D*(PN) e O ( N

e Low discrepancy sequences cannot be completely uniformly distributed

e Quasi-Monte Carlo points means
— low discrepancy and
— deterministic points

= Discrete density approximation of uniform distribution /



Halton Sequence and Hammersley Points

e Radical inverse (van der Corput sequence) in base b

i= Y aj(DV = (i) == Y a;(@)p I



Halton Sequence and Hammersley Points

e Radical inverse (van der Corput sequence) in base b

i= Y aj(DV = (i) == Y a;(@)p I

Note: The radical inverses are not completely uniform distributed !!!



Halton Sequence and Hammersley Points

e Radical inverse (van der Corput sequence) in base b

i= Y aj(DV = (i) == Y a;(@)p I

Note: The radical inverses are not completely uniform distributed !!!

e Halton sequence x; (= (CDbl(i), e q’bs(’i)) where b; is the i-th prime number
1 —1 b+ 1
D*(P]t',a'ton)<i+ H ( log N + : )
b,




Halton Sequence and Hammersley Points

e Radical inverse (van der Corput sequence) in base b

i= Y aj(DV = (i) == Y a;(@)p I

Note: The radical inverses are not completely uniform distributed !!!

e Halton sequence x; (= (CDbl(i), e q’bs(’i)) where b; is the i-th prime number

D*(PH alton)<i_|_ 1 H (

—1 - gN—I—b —2|—1>

J

e Hammersley point set ¢, := (%,dDbl(i), ooy Py 1(73)>

1
EIINEIS[E 1 g
D*(Py 7)< H (




Algorithm: Radical Inversion

double Radicallnverse(const int Base, int 1)

{

double Digit, Radical, Inverse;

Digit = Radical = 1.0 / (double) Base;
Inverse = 0.0;

while(i)

{
Inverse += Digit * (double) (i % Base);
Digit *= Radical,
| /= Base;

return Inverse;



Algorithm: Incremental Radical Inversion

double NextRadicallnverse(const double Radical, double Inverse)
/[ Radical = 1.0 / Base

{
const double AlmostOne = 1.0 - 1le-10;

double Nextinverse, Digitl, Digit2;
Nextinverse = Inverse + Radical;

if(Nextinverse < AlmostOne)
return Nextinverse;

else
{
Digitl = Radical;
Digit2 = Radical * Radical;
while(Inverse + Digit2 >= AlmostOne)
{
Digitl = Digit2;
Digit2 *= Radical,
}

return Inverse + (Digitl - 1.0) + Digit2;
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Other Discrepancies

e Isotropic discrepancy J( Py )
— A is family of all convex subsets of ¢
— by
D*(Py) < D(Py) < 2°D*(Py)
D(Py) < J(Py)< 4sD(Py)Y/s
x upper bound
J(Py) < 4sD(Py)Y/* < 4s(2°D*(Py)'/® = 8sD*(Py)'/*

* lower bound

J(Py) > D(Py) > D*(Py)

e Triangle discrepancy

e Edge discrepancy
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e [ >-norm based discrepancy
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Computing Discrepancies

e [ >-norm based discrepancy

D5(Py) =

[ -2 3 xaie o
Vi (A =y g xacn

where A(z) = 15_[0,2())
e Can be efficiently computed in contrast to L~.-norm based discrepancies

e Numerical example: Triangular discrepancy

D(Py,T) < J(Py) < 16y/D*(Py)

\ 10000 random triangles | 100000 random triangles | theoretical bound
4 0.539712 0.591708 16.971

16 0.18326 0.230355 9.381

64 0.0660696 0.0777368 5.099

256 | 0.032454 0.0364673 2.739

1024 | 0.0118695 0.0178952 1.458

4096 || 0.00521621 0.00715305 0.771




Correlation Problems of Projections

e Dimensions 7 and 8 of the Halton sequence




Scrambling Permutations by Faure

e Scrambled radical inverse

@) 0

i= Y a;(D — Y oyla;@)b I

=0 =0
using permutations o, by Faure

oo = (0,1)

o3 = (0,1,2)

oo = (0,2,1,3)

os = (0,3,2,1,4)

cg = (0,2,4,1,3,5)

0-7 — (07 27 5737 1747 6)
(07 47 27 67 17 57 37 7)

g8

e Construction rule
— bis even: Take 20, and append 20, + 1
2 2

— bis odd: Take o3,_1, increment each value > ®Z1 and insert ®1 in the middle



Scrambled Halton Sequence and Hammersley Points

e Scrambled Halton sequence

zi 1= Py, (5,03, -, Py, (3, 0,))

e Scrambled Hammersley point set

T; .= (N? (Dbl (7'7 O-bl)a sy Cbbs_l(’L, Jbs_l))



Scrambled Halton Sequence and Hammersley Points

e Scrambled Halton sequence

zi 1= Py, (5,03, -, Py, (3, 0,))

e Scrambled Hammersley point set

T; .= (N? (Dbl (7'7 O-bl)a sy Cbbs_l(’L, Jbs_l))

e Improvement by scrambling (scrambled Halton sequence dimensions 7 and 8)
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e Elementary interval
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(t, m, s)-Nets in Base b
e Elementary interval

B o= ﬁ aj aj—l—l
j=1 L0 b

> C I° for integers l; >0 and 0 < a; < bli

e Consequently its volume is

No(E) = ﬁ 1 1

e Definition: For two integers 0 < t < m, a finite point set of ' points in s dimensions
is called a (¢, m, s)-net in base b, if every elementary interval of volume \;(E) =
b!=™ contains exactly b points.

e For (t,m, s)-nets in base b we have

s—2
D*(Py) < B(s, b)bt +0 (btlog ~ N)

— t Is the quality parameter

e Note: So far the concept applies to random and deterministic points
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— Set Py of N = b™ s-dimensional points of low discrepancy
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Structure of (0, m, 2)-Nets in Base b = 2

e (¢, m,s)-netin base b:
— Set Py of N = b™ s-dimensional points of low discrepancy
— Every elementary interval of volume b'~™ contains exactly b points

e (O,m,2)-netinbaseb =2

— Set Py of N = 2™ 2-dimensional points of low discrepancy

— Every elementary interval of volume 27 = % contains exactly 1 point

e Example: All elementary volumes of a (0, 3,2)-net in base b = 2:

— more general than stratification and Latin hypercube sampling



Example ofa (1,3,2)-Netin Base b = 2

e All elementary volumes of a (0, 3,2)-net in base b = 2:

As(E) = bt=m = 203 = L with exactly b' = 20 = 1 point
— it cannot be a (0, 3, 2)-net !



Example ofa (1,3,2)-Netin Base b = 2

e All elementary volumes of a (0, 3,2)-net in base b = 2:

As(E) = bt=m = 203 = L with exactly b' = 20 = 1 point
— it cannot be a (0, 3, 2)-net !

e All elementary volumes of a (1,3, 2)-net in base b = 2:

As(E) = bi=m = 21=3 = 1 with exactly b* = 21 = 2 points

= itisonlya (1,3, 2)-net...



Structure of (0, 2n,2)-Netsin Base b = 2

e (¢, m,s)-netin base b:
— Set Py of N = b™ s-dimensional points of low discrepancy
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e (¢, m,s)-netin base b:
— Set Py of N = b™ s-dimensional points of low discrepancy
— Every elementary interval of volume b'~™ contains exactly b points

e (0,2n,2)-netin base b = 2
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Structure of (0, 2n,2)-Netsin Base b = 2

e (¢, m,s)-netin base b:

— Set Py of N = b™ s-dimensional points of low discrepancy

— Every elementary interval of volume b'~™ contains exactly b points
e (0,2n,2)-netin base b = 2

— Set Py of N = (2™)2 2-dimensional points of low discrepancy

— Every elementary interval of volume 272" = % contains exactly 1 point

|
|

[ [ ]
and LHS (N -rooks)

e (t,m,s)-nets: Much more general concept of stratification



(t, s)-Sequences in Base b

e Definition: For ¢t > 0, an infinite point sequence is called a (¢, s)-sequence in base
b, ifforall k > 0 and m > ¢, the vectors xyymy 1, . .. y T (fg1)pm € 17 forma (¢, m, s)-
net.
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(t, s)-Sequences in Base b

e Definition: For ¢t > 0, an infinite point sequence is called a (¢, s)-sequence in base
b, ifforall k > 0 and m > ¢, the vectors xyymy 1, . .. y T (fg1)pm € 17 forma (¢, m, s)-
net.

e For (t, s)-sequence in base b we have

s—1
D*(Py) < C(s,b)bt +0 <btlog — N)

e Adding the component - = - to a (¢, s)-sequence Vyields a (¢, m, s + 1)-net
N =%

e (0, s)-sequences can only exist for b > s

e Examples
— Van der Corput sequences are (0, 1)-sequences in base b
— adding the component % with N = ™ yields a (0, m, 2)-net
x €.¢g. Hammersley point set for s = 2 and N = 2™ points
« many applications in finance and particle transport problems
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Digital (¢, m, s)-Nets and (¢, s)-Sequences
e Fixed-point numbers with M digits in base b
[0, 1) s = {kb—M|k —=0,...,0M— 1} c [0,1)
e Components Agj) of a pointset A = {Ag,...,Axy_1}

. M : N . :
A,L(J) — Z agfk) bk — O.agl)arg,]z) . ag& e [0, 1)b,M
k=1
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Digital (¢, m, s)-Nets and (¢, s)-Sequences
e Fixed-point numbers with M digits in base b

[0, 1) s = {kb—M|k —0,...,6M_ 1} c [0,1)
e Components A(j) of a pointset A = {Ag,...,Axy_1}
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Digital (¢, m, s)-Nets and (¢, s)-Sequences
e Fixed-point numbers with M digits in base b
[0, 1) s = {kb—M|k —=0,...,0M— 1} c [0,1)
e Components A(j) of a pointset A = {Ag,...,Axy_1}

A,L(j) — Z a(]) p—F = 2(91) 2(32) ,&(]]\)46 [0, 1)y ps Where

o) = mﬁ”( Z c@ e )>

forl <5 <sand
—1
Soodiy b di €7y :={0,...,b—1}

e Arithmetic in commutative ring (R, 4+, -) with |R| = b elements
e Bijections n(J) R — Zyand ¢y : Zy — R
= If now A is a (¢, m, s)-net, it is called a digital (¢, m, s)-net

= If now A is a (¢, s)-sequence, it is called a digital (¢, s)-sequence



Deterministic Constructions of Digital Point Sets

e Generator matrix

o) = (Cg‘;

Y

M,M—1
PESWEN)
e van der Corput, Sobol’, Faure, Niederreiter, and Niederreiter-Xing
— Increased quality by decreased parameter ¢

— difficult computation of the generator matrices



Deterministic Constructions of Digital Point Sets

e Generator matrix

) = (a,ﬁ;? . RMXM

Y

>M,M1

k=1,1=0

e van der Corput, Sobol’, Faure, Niederreiter, and Niederreiter-Xing
— Increased quality by decreased parameter ¢
— difficult computation of the generator matrices

e Fast evaluation by
— Gray codes
— vectorization
— buffering of invariants
— rings implemented as lookup tables

e \ery often

agj) = cU)q,



Vectorization Example for Base b= 2

e Ring R = ({0,1},+,-) = Z» by bit vector operations

e One component at M bits precision

1 1 do(i) m—1
xi == =] -C- : where i = d;. (i)2F
(2 QM) (dM1(i) ,EO ¥



Vectorization Example for Base b= 2

e Ring R = ({0,1},+,-) = Z» by bit vector operations

e One component at M bits precision

1 1 do(2) m—1
xi:(—---—M)-C- : where 1 = Z dk(i)Qk
< dpr—1(%) k=0
e Basic vectorized algorithm
double x(int i)
{
forint y = 0, int kK = 0; I; 1 /= 2, k++)
if(il & 1)
y "= CIK];

return (double) y / (double) (1 << (M + 1));
}



Examples Matrices for Base
e (O,m,1)-netsat N = 2™

(o o ...
00 -

Cy =
0 1

implements ©z =

B

2
N

O
1

0

o

b=2



Examples Matrices for Base b= 2

e (0, 1)-sequences: Bit reversal, or ¢ (i) by van der Corput

Co=1



Examples Matrices for Base b= 2

e (0, 1)-sequences: Bit reversal, or ¢ (i) by van der Corput

Co=1
e Algorithm

double Radicallnverse(unsigned int bits) // M=32 bits version

{
bits = ( bits << 16) | ( bits >>  16);
bits = ((bits & 0x00ffO0ff) << 8) | ((bits & OxffOOff0O0) >> 8);
bits = ((bits & O0xOf0fofof) << 4) | ((bits & OxfOfof0f0) >>  4);
bits = ((bits & 0x33333333) << 2) | ((bits & Oxcccceccce) >> 2);
bits = ((bits & 0x55555555) << 1) | ((bits & Oxaaaaaaaa) >> 1);

return (double) bits / (double) 0x100000000L;



Examples Matrices for Base b= 2

e (0, 1)-sequences: Sobol’ scrambled radical inverse
1 O O

C3 = 8 =<];:11> mod 2
0

R = OO

O
1 1
1 O
1 1

o OO



Examples Matrices for Base b= 2

e (0, 1)-sequences: Sobol’ scrambled radical inverse

1 00 --- 0O
{110 - 00| (k-1
¢3=1101 .- 00 _<1—1> adleel
1 1 1 - OO0
e Algorithm
double SobolRadicallnverse(int i)
{
int r, v;
v =1 << M;
for(r = O; 1; 1 >>= 1)
{
if(i & 1)
r "= v;
v = v > 1;
}

return (double) r / (double) (1 << (M + 1));



Examples Matrices for Base b= 2

e (0O, 1)-sequences: Larcher-Pillichshammer scrambled radical inverse

(1 0 --- 0 0O)

11--- 00
Cy =

11 .- 10

\1 1 .- 1 1)



Examples Matrices for Base b= 2

e (0O, 1)-sequences: Larcher-Pillichshammer scrambled radical inverse

(1 0 --- 0 0O)
1 1 --- 00
C4 =
11 --- 10
\1 1 --- 1 1)
e Algorithm
double LarcherPillichshammerRadicallnverse(int i)
{
int r, v;
v =1<< M;
forr = 0; i; 1 >>= 1)
{
ifi & 1)
r "= v;

vV [= v > 1,

}
return (double) r / (double) (1 << (M + 1));



Digital (O, m, s)-Nets and (0, s)-Sequences in Base b =2

e (0O,m,2)-netsat N = 2™
— Hammersley points (worst constant)

(C1,C2)

— Larcher-Pillichshammer points (best constant)

(Cla 04)
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— Larcher-Pillichshammer points (best constant)
(Cla 04)

e (0, 2)-sequence: Sobol’ LPy-sequence

(C2,C3)



Digital (O, m, s)-Nets and (0, s)-Sequences in Base b =2

e (0O,m,2)-netsat N = 2™
— Hammersley points (worst constant)

(C1,C2)
— Larcher-Pillichshammer points (best constant)
(Cla 04)
e (0, 2)-sequence: Sobol’ LPy-sequence
(027 C3)
e (0,m,3)-netat N = 2" Sobol’ LPgy-net
(C17 CQ? C3)

e Very useful in particle transport, especially computer graphics



Software

e http://www.uni-kl.de/AG-Heinrich/SamplePack.html
— Sobol’ sequence
— Niederreiter sequence
— Niederreiter-Xing sequence

e http://www.dismat.oeaw.ac.at/pirs/niedxing.html
— generator matrices for the Niederreiter-Xing sequence

e http://www.multires.caltech.edu/software/libseg/index.html
— general package
— several sequences (Halton, Niederreiter, ...)

e Numerical Recipes
— Sobol’ sequence



Good Lattice Points: Rank- 1 Lattices
e Definition: A discrete subset
L = PN -+ 7° C R®

that is closed under addition and subtraction is called a lattice .
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e Rank-1 lattice
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by suitable generating vector g € N*
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Good Lattice Points: Rank- 1 Lattices
e Definition: A discrete subset
L = PN -+ 7° C R®

that is closed under addition and subtraction is called a lattice .

e Rank-1 lattice

_ )

by suitable generating vector g € N*

e Low discrepancy constructions
— Fibonacci lattices for s = 2
— lattices with generator vector of Korobov-form g = (1,1,12,...)

e NoO explicit construction - only tables



e One-periodic pattern L N [0, 1)

3 e 3
1 . 1°
4 * . 4
5 S 5
0 . 0
3 3
1 . 1°
4 . 4
5 e« . 5
0 S - * 0

e Low discrepancy

e Much better discrepancy than regular grids
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e Fibonacci numbers: F1 = F> =1, F,. = F,_1+ Fjp_ofork > 2

e Fibonacci lattice by generator vector g = (1, Fj._1) at N = F}, points

x; 1= (1, F_1)
k

— Low discrepancy
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e Fibonacci numbers: F1 = F> =1, F,. = F,_1+ Fjp_ofork > 2
e Fibonacci lattice by generator vector g = (1, Fj._1) at N = F}, points
= (1, Fhmy)
X; = — (1, F_
1 F, k—1

— Low discrepancy

e Example: N = Fj9 = 55, x;
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Example: Fibonacci Rank- 1 Lattice

e Fibonacci numbers: F1 = F> =1, F,. = F,_1+ Fjp_ofork > 2
e Fibonacci lattice by generator vector g = (1, Fj._1) at N = F}, points
= (1, Fhmy)
X; = — (1, F_
1 F, k—1

— Low discrepancy

e Example: N = Fj9 = 55, x;
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e Note: NN grows exponentially for Fibonacci lattices
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Lattice Sequences

e Rank-1 lattice

1

Xi = N g
e Hide N by choosing N = b and
x; = ¢p(2) - 8
e Similar to (¢, s)-sequences: xiym, . . . ) X (ke 1)bm—1 form a shifted lattice

e Shift A inthe k£ + 1strun for N = p™
op(i + kb)) g = (p(i) + Pp(kb™)) - g

= ¢p(i) g+ op(k)b " g
—=A
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e Quasi-Monte Carlo Points
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— deterministic
— Intrinsic stratification (Latin hypercube, symmetrized, regularized, antithetic)
* NO extra programming



Summary

e Quasi-Monte Carlo Points
— low discrepancy
— deterministic
— Intrinsic stratification (Latin hypercube, symmetrized, regularized, antithetic)
* NO extra programming

— no completely uniform distribution due to correlation



Monte Carlo and Beyond

e Principles of rendering algorithms
e Monte Carlo integration
e Quasi-Monte Carlo points

[
— Koksma-Hlawka inequality and variation in the sense of Hardy and Krause
— Discrete density approximation
— Error control
— Transferring Monte Carlo techniques to quasi-Monte Carlo
— Integrands of infinite variation
— Discrete Fourier transform on good lattice points

e Monte Carlo extensions of quasi-Monte Carlo

e Application to computer graphics



Quasi-Monte Carlo Integration

e Numerical integration by

1 N-1

fref @z =5 3 1)

with variation V' ( f) in the sense of Hardy and Krause and star-discrepancy

<V(HD*(Iy)

1 N-1
D'(Py)i= _sup || xa(@)dz—1 3 xa(@)
A=[[io1[0,ap)Crs (L2 y i=0
=Xs(A)



Quasi-Monte Carlo Integration

e Numerical integration by

1 N-1

fref @z =5 3 1)

with variation V' ( f) in the sense of Hardy and Krause and star-discrepancy

<V(HD*(Iy)

1 N-1
D'(Py)i= _sup || xa(@)dz—1 3 xa(@)
A=[[io1[0,ap)Crs (L2 y i=0
=Xs(A)

e Deterministic error bound by the Koksma-Hlawka inequality

e Independent of dimension by using quasi-Monte Carlo points
— roughly quadratically faster as compared to random sampling



Theorem: The Koksma-Hlawka Inequality

1 N-1
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e Proof for s = 1: Decompose
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and define
0
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e Note:
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1 N-1

fif@dz =5 ¥ £@)| S VHD"(Py)

e Proof for s = 1: Decompose

F@) =5~ [ fdu= 70 ~ [ X0, @)f (W)

and define
0
V(f) :=/I Q;U) du
e Note:

(2) = 1 z€[0,u) |1 z<u 1 u>x
X[0.u] ~ ]o else ~ ]o else 0 else
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Variation in the Sense of Vitali

o Difference operator for intervals of the form A = [[?_; [a;,b;) C I®

1 1 '
A(f,A) =Y - Y (D) 2k=1kf(Grag + (1 —j1)b1, - ., Jsas+ (1 — js)bs)

J1=0 Js=0

e Variation in the sense of Vitali

V() i=sup ¥ |A(F, A)
P Aep

where P is the set of partitions of 7° into subintervals A as above

e If f has a continuous derivative

V(S)(f):/ 8Sf(u17"'7u8) d’LL
S 8u1 o« o e aus
e Problem if f constant in only some of the variables uq, ..., us

= A(f,A)=0 =>VE(f)=0
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e Restrict variation in the sense of Vitali
V(k)(f; P1ye-.,1)
to the k-dimensional face {(u1,...,us) € [0,1]%|u; = 1for j & iq,..., 05}
e Variation in the sense of Hardy and Krause
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f is of bounded variation in the sense of Hardy and Krause, if V' (f) is finite.



Variation in the Sense of Hardy and Krause

e Restrict variation in the sense of Vitali

VB (frig, ..., i)
to the k-dimensional face {(u1,...,us) € [0,1]%|u; = 1for j & iq,..., 05}

e Variation in the sense of Hardy and Krause

Vi)=Y S vB(frig, i)

k=11<i1<--<ip<s
e Definition:
f is of bounded variation in the sense of Hardy and Krause, if V' (f) is finite.

e Estimating the variation in the sense of Hardy and Krause
— use regular grid at N = n® samples
— compute difference operator A on the grid
— sum up the approximations of the single Vitali variations

— N — 0



Variation Reduction

e Transfer Monte Carlo variance reduction techniques to quasi-Monte Carlo
— separation of the main part
— multilevel method of dependent tests
— Importance sampling
— replication heuristics (presmoothing the integrand)



Variation Reduction

e Transfer Monte Carlo variance reduction techniques to quasi-Monte Carlo
— separation of the main part
— multilevel method of dependent tests
— Importance sampling
— replication heuristics (presmoothing the integrand)

e Quasi-Monte Carlo importance sampling

1 & )
fred@de = 2 L)

<V <£> D*(Py)
p

where y; ~ p by the multidimensional inversion method
— Similar to the Monte Carlo case, the variation is not changed

— For low discrepancy points P quadratically faster than random sampling



Approximating Continuous by Discrete Measures

e Often integrands of the form f = gp
— p can be modeled using the multidimensional inversion method
— g Is hard to handle (e.g. discontinuous, expensive)



Approximating Continuous by Discrete Measures

e Often integrands of the form f = gp
— p can be modeled using the multidimensional inversion method
— g Is hard to handle (e.g. discontinuous, expensive)

e Avoid weighting by small probabilities

S)de = | g(z)p(z)de = | g(y)dP(y)
I I I

e Approximate measure P by discrete measure

1 N-1

PN::Ni;()(Syi

modeled by vy, = P~ 1(x;) from z; ~ U

e Then
1 N—-1

IROORS IOUNOES DD



Discrepancy Bounds for Transformed Points

e Definition: The discrepancy with respect to the density  pis

1 N-1

| xa@p(@)de =< 3 xaw)

D*(p,Cp) := sup
' i=0

AeTJ

where Cn = {yo,.--,YnN_1}
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Discrepancy Bounds for Transformed Points

e Definition: The discrepancy with respect to the density  pis

1 N-1

D*(p,Cp) := sup / x)p(x)der — — -
(p,Cn) i= sup ||| xa(2)p(z)de — Z;O xA(:)
where Cy = {yo,---,yn-1}

e Multidimensional inversion method: If p is separable, i.e. p(z) = H?zlp(j)(m(j))

D*(p,Cpn) = D*(Py)

otherwise

1
S

D*(p,Cn) < c(D*(Py)) ceRT

Discrete density approximation by elements of low discrepancy outperforms
random sampling !!!
e Generalized Koksma-Hlawka inequality

1 N-1

/[Sg(ﬂlf)p(w)daC -~ 2 9w S V(9)D(p, Cn)
1=0



Discrete Density Approximation

e Example: Particle emission (jittered sampling and Hammersley points at N = 16)




Discrete Density Approximation

e Example: Particle emission (jittered sampling and Hammersley points at N = 16)

e Note: Assigning dimensions is crucial



Iscrete Density Approximation

Random '

Halton B

Hammersley .-




Infinite Variation
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Infinite Variation

e Quasi-Monte Carlo is roughly quadratically faster than random sampling
e Case s =1: V(f) < oo for piecewise continuous functions
e General case: Usually infinite variation for piecewise continuous functions

e In computer graphics: Triangles and edges

0

Vi =co  oA(N=,

e Proof for the Hammersley points at N = 2!

1 N-1 L Jeven
|2 f@de -~ > )| = ﬁ e
= 2N



Far Too Pessimistic Bounds by Isotropic Discrepancy

e Restrict f to convex domains C, where f|~ is of bounded variation
N-1
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e Bound worse than the Monte Carlo rate for s > 2



Far Too Pessimistic Bounds by Isotropic Discrepancy

e Restrict f to convex domains C, where f|~ is of bounded variation
N-1
1

| f@dz == 3 xo@)f@)| £ (VO +1F..., D) J(PN)
1=0

< (V) +If(L,...,1)])8sD*(Py)>

e Bound worse than the Monte Carlo rate for s > 2

e Numerical experiments tell a different story...
— see e.g. the experiments on the triangle discrepancy
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Far Too Pessimistic Bounds by Isotropic Discrepancy

e Restrict f to convex domains C, where f|~ is of bounded variation
N-1
1

| f@dz == 3 xo@)f@)| £ (VO +1F..., D) J(PN)
1=0

< (V) +If(L,...,1)])8sD*(Py)>

e Bound worse than the Monte Carlo rate for s > 2

e Numerical experiments tell a different story...
— see e.g. the experiments on the triangle discrepancy

e Justification by discrete density approximation
— using low discrepancy sequences always is better

e Which function class other than bounded variation ?
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Convergence

e Quasi-Monte Carlo integration converges for Riemann-integrable functions

. . . _s+1
e Observed rate for discontinuous functions @ (N 2s )

e Argument in "Numerical Recipes”
— Weak assumption:

The behavior of low discrepancy samples at the border of characteristic sets
IS uncorrelated.

— In fact true for jittered sampling [Mitchell]
— generalized by Szirmay-Kalos

e Argument by [MC95]
— Weak assumption:

Rate of random sampling used as upper bound for low discrepancy sampling,
l.e. it is assumed, that low discrepancy sampling deterministically (!) does not
behave worse than random sampling.

— there exist proofs for some special cases for s = 2



The Spirit of the Numerical Recipes’ Argument

Proposition: Using stratified sampling to integrate the characteristic function x 4 for

some subset A C I%, As(A) > O, for N = H?:l N; and the axial subdivision into
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— Random sample z; € v; € V}, is Bernoulli random variable with

;= and )< —
p’l, )\S(’U,L) o (XAﬂUZ) — 4
— Then
1 N—-1 1 N—-1
Z XA(332|U@ =o° Z XAﬂvz(ajz)
— Z XAﬂvz ;) + — Z XAﬂvZ ;) + Z XAﬂvZ ;)
ZEV ’LEVb ’LEVO
= o° _|V| + = Z XAﬂv,L(fcz) + 0
ZEVb
— Z XAH’UZ ;)
ZEVb
% s—1 2 s+1
< V= =cN s N"“=cN s
N2



— By the Holder inequality the error is expected to be

1 N—1 s+1 s+1
/IS x A(x)dx — I > xalzy)| < \/CN_ s € O(N™ 2s) g.e.d.
1=0




— By the Holder inequality the error is expected to be

L A=- st+1 st
/IS XA(:c)d:I:—N > xalzy)| < \/CN_ s € O(N™ 2s) g.e.d.
1=0
e Note:
s+1 1

lim N 2s = N 2

S$—00
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Error Control

e Determinism: Variance of estimate is zero !
— no cheap error estimate from samples
— no efficiency - complex analysis by information based complexity theory
— quasi-Monte Carlo integration is "biased” but "consistent”

e Adaptive sampling by using low discrepancy sequences
— convergence is rather smooth due to intrinsic stratification properties
— choose fixed distance AN of samples
— compare difference of averages all AN to a threshold
— must be below the threshold 7" times

e The points "know” where to fall

e Consider local minima for AN!
— e.g. (t,s)-sequences at AN = bp™
— e.g. Hammersley in s = 2
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From Monte Carlo to Quasi-Monte Carlo Integration

e The basic algorithms transfer
— Integration
— Integro-approximation
— Separation of main part and multilevel method of dependent tests

e Faster convergence by deterministic low discrepancy sampling
— Intrinsically stratified, Latin hypercube, regularized, antithetic, ...

e The simulation of random variables becomes discrete density approximation
— no independence required due to averaging
— Importance sampling carries over
— rejection modeling impossible

e Adaptive sampling by difference comparison

e What about splitting ?
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Efficient Design of Quasi-Monte Carlo Algorithms

e Write down the integral

e Transform onto unit cube I°

e Separate the main part

e Apply (multiple) importance sampling

e Use quasi-Monte Carlo points
— sample size N
— assigning dimensions

e Use dependent splitting



Quasi-Monte Carlo Integration using Lattice Points

e Originally developed for the class E,(c) with ¢ > 0, « > 1, where

f € Ba(e) & |FW)] < (- = e = max{Lihl)hez

e Error bound
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Quasi-Monte Carlo Integration using Lattice Points

e Originally developed for the class E,(c) with ¢ > 0, « > 1, where

f € Ba(e) & |FW)] < (- = e = max{Lihl)hez

e Error bound

N 2 f(%g) _/Isf(fﬁ)da; < 3 1

h-g=0( mod N),h#0 (hy---hs)®

N
O [ ]
35|
2%

: 2 33 .
77 20 P

e Generalized to class of bounded variation



Curse of Dimension from Regular Grids

e Lattices of rank s with N = n® points from tensor product approach
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e O (n°logn) for s fast Fourier transforms
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Fourier Transform on Rank- 1 Lattices

e Choice of wave vectors
Ky :={ko,...,.ky_1} C 7Z°
such that
kim € Zm :={keZ° |kl -.g=m (mod N)}

since then
T

kI -xp, =kl - 8= (m+lmN)—

e Evaluate
A L N-1 L
f(xn) = Z f(k)eQMk e — Z f(km)GQMka”

kEKN m=0
N—-1

— Z f-(km)GQWi(m%—l—lmn)
=0
N-1 .

— Z f(km)€27mmw
=0

by one-dimensional Fourier transform = way to break curse of dimension !
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Determining the Wave Vectors
e Many possible choices for
ki € Zm :={keZ° |kl -g=m (mod N)}
e Choose largest waves first

k = min ||kl|»>.
[kmll2 = min |||z

lIJHL_L’_‘

e Enumerate along



Summary

e Quasi-Monte Carlo simpler and faster than Monte Carlo integration
e Most Monte Carlo techniques transfer
e However, no rejection sampling !

e Works fine on L2, too
— justification by discrete density approximation

e Breaks curse of dimension even for discrete Fourier transform



Summary

e Quasi-Monte Carlo simpler and faster than Monte Carlo integration
e Most Monte Carlo techniques transfer
e However, no rejection sampling !

e Works fine on L2, too
— justification by discrete density approximation

e Breaks curse of dimension even for discrete Fourier transform

« Use whenever you can write the problem as an integral



Monte Carlo and Beyond

e Principles of rendering algorithms
e Monte Carlo integration

e Quasi-Monte Carlo points

e Quasi-Monte Carlo integration

o
— Random field synthesis on good lattice points
— Randomized quasi-Monte Carlo integration
— Randomized replications
— Restricted randomized replications

e Application to computer graphics
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Periodic Random Field Synthesis on Good Lattice Points

e Applications of Periodic Random Fields f,(x) = f,(x + z) for z € Z% (Period 1)
— height fields: Waves, terrain
— caustics
— turbulent wind fields

e Typical procedure

1. Realize Gaussian noise

N (k) ~ (N(0,1) x iN(0,1))?

2. Filter noise by spectrum S of phenomenon

fu (k) = S(k)No (k)

3. Band limited evaluation by fast Fourier transform

fw(X) — Z fw(k>€27m'kT.X
keKpy



Fourier Transform on Rank- 1 Lattices

e Choice of wave vectors Ky := {kq, ..., kny_1} C Z*
such that
kim € Zm :={keZ° |kl -.g=m (mod N)}
hence with

mn n
kﬁ.xnzkﬂ.ﬁgz(mﬂmmﬁ

e By one-dimensional Fourier transform evaluate

— Z 62772' — Nz_:l e27m'
kEKN m=0

— Nil 627m
m=0
N-—1
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Application: Ocean Wave Simulation

e Ocean height field synthesis
1. Realize Gaussian noise random field & m, & m ~ N (0, 1)

2. Fourier coefficients by filtering with Philipps spectrum Py, (k)

" Py, (k . »
hw(km,t) e \/ h(2 m) ((é-,r?m _I_ igi’m)ezw(kﬁm)t + (é-r,m . i’gi,m)e Zw(km)t>
3. Height field h,, : R3 — R and normals by VA, : R3 — R3
N—1 o
hw (Xrn,, t) e Z BW(km, t>€27TZmN
m=0
N—1 ) -
Vho(Xn,t) = Y 2mikmhe(km, t)e?™™N
m=0

= dim x, = 2, but evaluation by one-dimensional fast Fourier transform



Example: Ocean Waves on Fibonacci Rank-

1 Lattices

e Fibonacci numbers: F1 = F> =1, F,. = F,_1+ Fjp_ofork > 2

e Fibonacci lattice by generator vector g = (1, Fj._1) at N = F}, points

n
Xn = — (1, F._
n Fk( k 1)

— Low discrepancy

e Example: N = Fyg = 55, xp 1= ££(1,34)

: 6 . 022021 03504043 48 ‘%‘§“$‘
g ’ 12 01;,3503‘:33 » “dﬂ ‘v“ A&%\‘

a 710°15 33028 °?'6°414449 ‘\

: 5 013018 °x°3:“ 39 475

e Barycentric interpolation on periodic Delauney triangulation
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e Monte Carlo Integration:
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— slow
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Breaking the Curse of Dimension
e Pointset Py = {xqg,...,zn_1}

e Monte Carlo Integration:

ol

— slow

1 N-1

| F@)de - Y 1O <5

< 30(f)}) ~ 0.997

e Quasi-Monte Carlo Integration:
1 N-1

fref @z =5 3 1G] < DUEVS)

— NO error estimate
— heavy math for BV

e Combine and take the best !

e Price: A little bit of , problems of
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e Monte Carlo estimate
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Randomized Quasi-Monte Carlo Integration

e Randomized replications of a QMC point set

X ={X o,..., X , q}for
such that
1. X o~ for fixed
2. X ,...,X arelow-discrepancy point sets with probability one

e Monte Carlo estimate
T off = f(X )
with error estimate
2
o () ( f(X,)—I,f)

e Presmoothing of the integrand by correlated sampling
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Randomized Replications

e Random bijections
Rw IS — IS

— In fact dependent sampling replication heuristics

e Cranley-Patterson rotations
— originally designed for error estimation with lattice points
— very simple

e Owen-Scrambling
— designed for (t, m, s)-nets and (¢, s)-sequences in base b
— advanced
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Randomized Replications by Cranley-Patterson Rotations

e Random shifts on the torus I° applied to
xU).— 40) 4 mod 1for1 < j <s

e Originally A was a lattice of low discrepancy

e Note: Cranley-Patterson rotations work with any arbitrary point set
— still unbiased Monte Carlo scheme

— especially for (¢, s)-sequences and (¢, m, s)-nets
x however discrepancy can be affected due to shifting

— example: Padded replications sampling
x pad A by low dimensional point sets, apply random shifts

x exploit problem structure, e.g. in transport problems
x cheaper point sets than quasi-Monte Carlo points in high dimensions
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e Scramble (¢, m, s)-nets and (t, s)-sequences in base b

e Algorithm: Start with H = [° and for each axis
1. slice H into b equally sized volumes Hq, Hp, ..., Hy along the axis
2. randomly permute these volume
3. for each Hy, recursively repeat the procedure with H = Hj,
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Randomized Replications by Owen-Scrambling

e Scramble (¢, m, s)-nets and (t, s)-sequences in base b

e Algorithm: Start with H = [° and for each axis
1. slice H into b equally sized volumes Hq, Hp, ..., Hy along the axis
2. randomly permute these volume
3. for each Hy, recursively repeat the procedure with H = Hj,

e Algorithm gets finite by finite precision of computation, i.e. digital constructions

e Net and sequence parameters remain untouched
— contrary to random shifts by Cranley-Patterson

e Much faster convergence for N > s°

s—1
log 2 N
o222
N2

due to extinction effects by full stratification




Replication by Scrambling

e Unit square [0, 1)2
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e Bitlofz
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e Bit3of =
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e All bits of =




Replication by Scrambling

e All bits of x and y

;
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Formalization of Scrambling

e Given a digital (¢, m, s)-net in base b with components
e A scrambled replicate of A is obtained by
where

e Independent random permutations

e Permutation depends on the £ — 1 leading digits of = permutation tree
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Efficient Implementation of Scrambling

e Main ideas for efficient scrambling:
— keep only one path of the permutation tree in memory
— traverse permutation tree paths that way, that each permutation is used only once

e Implies reordering of the points that should be scrambled

— sorting the components
) — 40U) (4) () (4)
AG) = (ay?, .. AR ) — ATty S - S ALy
— in this order scramble the components

= each branch of the permutation tree is traversed at most once

— undo the sorting using the inverse permutation aj_l



Example: Scrambled (0, m,2)-Netsin Base b= 2
e N =2"points A ={Aq,...,An_1}
e The components correspond to the inverse permutations aj_l(i) =\E Agj)
— e.g. Hammersley: o5 1 (i) = 2™ - & and o7 1 (5) = 2™ - 5 (4)

e Random permutations on Z, are random bit flips and can be vectorized
— l.e. applying a path of permutation means XORng the bit vector of bit permutations



Example: Scrambled (0, m,2)-Netsin Base b= 2
e N =2"points A ={Aq,...,An_1}

e The components correspond to the inverse permutations aj_l(i) = N - Agj)
— e.g. Hammersley: o5 1 (i) = 2™ - & and o7 1 (5) = 2™ - 5 (4)

e Random permutations on Z, are random bit flips and can be vectorized
— l.e. applying a path of permutation means XORng the bit vector of bit permutations

e Scrambling the component j:

— start out with a random bit vector and save it in X(j_)l(o)
o .
J

— permutation tree traversal by enumerating: = 1,...,2"m — 1
x detect were tree ramifies: Number f of leading shared digits of : — 1 and ¢
+x XORa bit vector with f leading zeros followed by a 1 filled by random bits
= change the branch and choose new random permutations

x store result in X (j_)l :
g ©)



Implementation: Scrambled Hammersley Point Set

N =1<< m;

Digits = ;
P(0, 0) = (double) Digits / (double) 0x100000000L;

Digits2 = ;

P(0, 1) = (double) Digits2 / (double) 0x100000000L;
for = 1; i < N; i++)

{

Difference = (i - 1) A

for(Bits = 0O; Difference; Bits++)
Difference >>= 1;

Shift = Log - Bits;

Digits A= (0x80000000 | ) >> Shift;
P(i, 0) = (double) Digits / (double) 0x100000000L;

Digits2 A= (0x80000000 | ) >> Shift;
P((int) ((double) ), 1) = (double) Digits2

/ (double) 0x100000000L:
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Example: Instance of a Randomly Scrambled (0, 4, 2)-Net

e All instances are of low discrepancy

e Not all instances are equally good...




Another Instance of a Randomly Scrambled (0, 4, 2)-Net

e All instances are of low discrepancy

e Not all instances are equally good...
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Trajectory Splitting and Dependent Sampling

e Increase efficiency by

1 N—-1 1 N—-1
N X @)~ [ [, fendedy~ 5o 33 f)

depending on the correlation coefficient of f(&,7n) and f(&, 1)

e EXxploit smoothness by sampling

M 1 ] M
>N, .z @)~ % |, #i(@da
: ]:

=1
’ M 1N1M
= [, 3 fi@de~ 3 > i)
1=1 1=0 j=

e.g. separation of the main part



Trajectory Splitting by Dependent Sampling
e Integrals invariant under Cranley-Patterson rotation by z; € I°2
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e Integrals invariant under Cranley-Patterson rotation by z; € I°2

R;: %2 — [52
/ d :/ : d
y — (y+z;) mod1l = /132 g(y)dy e g(R;(y))dy

e Presmoothing of selected dimensions by

/131 /132 f(x,y)dyde = /181 /152 f(z, s

e )

Q
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Further Randomization Technigues

e Padding quasi-Monte Carlo points for high dimensions
— by random numbers
— by Latin hypercube samples

e Jittered quasi-Monte Carlo point sets
— Latin hypercube samples, however deterministic permutation
Note: Rate of randomly permuted Latin hypercube samples does not apply !
— e.g. (0, m, 2)-net with jitter of size b= ™

e Latin supercube sampling
— biased
— unbiased if used for decorrelating padded replications sampling



Summary

e Random field synthesis on good lattice points

e Randomized quasi-Monte Carlo integration
— error estimate
N -
— almost as fast as pure quasi-Monte Carlo integration
— concept of randomized replications

e Dependent splitting



Monte Carlo and Beyond

e Principles of rendering algorithms

e Monte Carlo integration

e Quasi-Monte Carlo points

e Quasi-Monte Carlo integration

e Monte Carlo extensions of quasi-Monte Carlo

L
— Interleaved sampling
x Interleaved method of dependent tests
— Volume rendering
x dependent splitting by restricted Cranley-Patterson rotations
— Bidirectional path tracing
x padded replications sampling for cheap high-dimensional samples
— Distribution ray tracing
x Strictly deterministic
x dependent splitting by restricted Cranley-Patterson rotations
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Sampling

fast rasterizers
aliasing potential
slow convergence

no rasterizers
optimal spectral properties
low discrepancy
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Consequences and Theoretical Considerations

e Aliasing by pattern repetition
— spread out by larger-than-pixel-size patterns
— arbitrary interleaving

e Method of dependent tests ( )
— Accumulation buffer

op( )= [\ S Yz S fG )

— Interleaved sampling

op() = [ Xp@' @ o~ xp@)f (), )

e Exploit
— new hardware
— new software parallelization paradigm
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Sampling Patterns for Interleaved Sampling

e Precomputed Max-Lloyd relaxation points as basis pattern
— periodically tile seamlessly
— blue noise spectral characteristics (minimum distance property)
— low discrepancy (correlated)
— for arbitrary problem dimension

e Size N’ of irregular basis pattern
— blend between and sampling

e Choice of interleaving ratio by x p
— spread out aliasing artifacts




Application: Antialiasing

Accumulation Buffer Interleaved Sampling

e Reduced aliasing at only 4 samples per pixel
— artifacts spread out
— artifacts from repetition, not from deterministic sampling

e Simple to implement by hardware (current and future)
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Application: Motion Blur

Accumulation Buffer Interleaved Sampling Uncorrelated Sampling

e Artifacts replaced by noise at 16 samples per pixel

e Exactly one moment in time for each subimage
— finite number of time samples and consequently instances of the scene
— finally correct implementations of REYES/RenderMan and the photon map
— Sobol’ (0, m, 3)-net optimally can replace stratified random sampling



Other Applications

e All accumulation buffer techniques
— weighted sampling
— extended light source and the N-shadow problem
— deep shadow maps
— global illumination by instant radiosity

e CCD chip design
— high dynamic range capturing
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— z for integrating the density f along the ray
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"One-Dimensional’ Integration in Computer Graphics

e Linear light sources, spectral effects, volumetric effects

e The (example) problem

| 5 £ @y, )dadydz

— x,y for ray from the eye through a point in the pixel
— z for integrating the density f along the ray

e The z-component requires presmoothing

° Using one-dimensional stratified Monte Carlo for

9(x,y) = | f(x.y,2)dz
— uncorrelated ray marching: Fur, photon map with participating media, ...

° Use dependent splitting , e.g. by restricted Cranley-Patterson rotations

1M1

|3 3 oy Ry(z))dudyds

— correlated ray marching: Less random numbers and faster convergence
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e Discontinuous integrand mainly in x, y

e Fors=1
— lattices and (0, m, 1)-nets become identical, in fact the rectangle rule
— the best discrepancy is D*(Py) > ~
x Obtained by equidistant set of samples (correlated)

1

* (stratified) random sampling D*(Py) € O (\/N

) (uncorrelated)



Volume Rendering

oe(z,y, 2) oe(z,y, 2)
50 €1
JAN
zp=k-A 2 zr=(k+£A Z 2= (k+&)A z

dependent



Volume Rendering

oe(x,y, 2) oe(,y, 2)
0 3!
A
zr=k-A z ze=(k+&A z ze = (k+&)A Z

dependent

e Dependent sampling saves ~20% rendering time wasted for random numbers
e Equidistant, i.e. correlated, samples have lower discrepancy that stratified samples

e Combine with interleaved sampling: Coherent ray marching



Application: Volume Rendering

*

e Much improved depth antialiasing (unbiased)

e Simply interleaving images
— coherent ray marching









Application: Volume Rendering
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The Global lllumination Problem

e Three-point form of the light transport equation

Lly—=>2) = Le(y=>2) + [ Lz >y fs(z >y —>2)G(z<>)dA(x)
Measurement equation
I = stWe(j)(a:—>y)L(:I:—>y)G(:c<—>y)dA(y)dA(:c)
= Path integral formulation

L=3 Jp 5i@an@ = [ 5@du)

e Bidirectional path tracing
— Multiple importance sampling for quasi-Monte Carlo integration
— How much is sacrificed by randomized quasi-Monte Carlo integration ?
— Adapt to two-dimensional structure of integral equation
x padded replications sampling



Path Integral Formulation

e Path space and path measure

k
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Path Integral Formulation

e Path space and path measure

k
Pr.=4{r =x9x1...71 | T; € S} dpr(z) = ] dA(x;)
1=0

e Measurement contribution function

G
() )
fj:Le'G'fs'G’fs'G‘We(j)

e Integral for path length &
| 5@ du@
Py



Multiple Importance Sampling

e NN techniques to generate samples with associated probability density functions

P1,P2,---,PN - D — IR(_)I_
e Heuristic
W1, W2, ..., WN - D—)RE)F

— >N Jwi(z) = 1forallz € D with f(z) # O
— wi(x) = 0 forall x € D with p;(z) =0



Multiple Importance Sampling

e NN techniques to generate samples with associated probability density functions

P1,P2,---,PN - D — IR(_)I_
e Heuristic
W1, W2, ..., WN - D—)RE)F

— >N Jwi(z) = 1forallz € D with f(z) # O
— wi(x) = 0 forall x € D with p;(z) =0

e Estimator

N :
/D f(z)dz ~ Z w;(x; )f(ajZ ) where xz; ~ p;
Z ;i (x;



Multiple Importance Sampling

e NN techniques to generate samples with associated probability density functions

P1,P2,---,PN - D — IR(_)I_
e Heuristic
W1, W2, ..., WN - D—)RE)F

— >N Jwi(z) = 1forallz € D with f(z) # O
— wi(x) = 0 forall x € D with p;(z) =0

e Estimator

N :
/D f(z)dz ~ Z w;(x; )f(ajZ ) where xz; ~ p;
Z ;i (x;

e Example: Balance heuristic

N

w;(x) 1= ]\?9@(:13) = /D f(x)dx ~ Z fli )

i=1 Zé\le pé(fci )



Bidirectional Path Tracing

e Generation of path space samples



Bidirectional Path Tracing

e Generation of path space samples

1. generate light subpath



Bidirectional Path Tracing

e Generation of path space samples

1. generate light subpath

N



Bidirectional Path Tracing

e Generation of path space samples

1. generate light subpath

\ 2. generate eye subpath



Bidirectional Path Tracing

e Generation of path space samples

1. generate light subpath

\ 2. generate eye subpath



Bidirectional Path Tracing

e Generation of path space samples

1. generate light subpath

\D 2. generate eye subpath



Bidirectional Path Tracing
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Bidirectional Path Tracing

e Generation of path space samples

1. generate light subpath
2. generate eye subpath

e Techniques and probability density functions

(o)

e Estimator

k —
- N\ fi(@; ) _ _
/Pk fj (x)d/vbk(x) ~ Z;O Zlgzopk,ﬁ(i@ ) where I; Pk i
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Randomized Quasi-Monte Carlo Integration

Low discrepancy point set

r randomized replications of A

A =H{aq,ap,...
$171 o o o $i71
$1,j o o . CUz',j
a:177~ ¢« oo Ly

,am } Where a; € I°

-+ Im,1

c xm,j



Randomized Quasi-Monte Carlo Integration

e Low discrepancy point set A ={aq,ap,...,am} where a; € I°
r randomized replications of A
2 $171 o o . $i71 o o . wm71
331,]' « oo CUZ"]' « o e mm,j
L1 r Lg r Tm,r

fz ;)

e Example: Cranley-Patterson rotation (1976)

+ =

= ¢ = (( +£5) mod1l where ~ U(I%) independent



Application to Bidirectional Path Tracing

f( ;) f&i e )

Q

[ J@® ddr = | fa)da

e Use high dimensional low discrepancy point set

e Structure of subpath generation
area sampling

: } = 2d problems
scattering

e Padded replications sampling
For each 2d problem one random shift of the same 2d basis pattern



Subpath Generation by Padded Replications Sampling

Basis pattern |




Subpath Generation by Padded Replications Sampling

Basis pattern |

Y Y

U
Randomized patterns I \ ’I |




Subpath Generation by Padded Replications Sampling

Basis pattern |

Randomized patterns




Numerical Experiments

e Comparison of bidirectional path tracing algorithms

— LHS: Latin hypercube sampling
— RQMC: Randomized scrambled Hammersley, padded Hammersley
— QMC: Scrambled Halton

e GLASS SPHERE and OFFICE scene
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Visual Comparison of Images

Monte Carlo
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Strictly Deterministic Sampling in Computer Graphics

e Developed by derandomizing randomized quasi-Monte Carlo integration
— quasi-Monte Carlo points
— dependent splitting by restricted Cranley-Patterson rotations

e Why it was not used in computer graphics
— misinterpretation of the Koksma-Hlawka as rate instead of upper bound !!!
— no scrambling was used
— misbelief that deterministic sampling must alias

e Why it should be used in computer graphics
— high dimension
— unknown discontinuities
— much better discrete density approximation
— much easier to parallelize and reproduce

- simpler and faster !!!









You already saw It In...

e Grinch, Walking with Dinosaurs, The Cell, The City of Lost Children, ...
e Product design at Mercedes Benz

e Universal Studio’s Terminator 2/3D

e The game Riven

e efcC.



What's behind: Distribution Ray Tracing

e Compute functionals (W, L) of the solution of the radiance integral equation
L(z,w) = Le(z,w)+ (TL)(z,w)



What's behind: Distribution Ray Tracing

e Compute functionals (W, L) of the solution of the radiance integral equation
L(z,w) = Le(z,w)+ (TL)(z,w)

=0

Application of Neumann series yields distribution ray tracing



What's behind: Distribution Ray Tracing

e Compute functionals (W, L) of the solution of the radiance integral equation
L(z,w) = Le(z,w)+ (TL)(z,w)

o0 o
(Z TZL6> (z,w)
i=0
Application of Neumann series yields distribution ray tracing

e Example problem: Direct illumination

(W, T}, Le) / / f(x,y)dxdy

— x point in pixel
— g point on light source, i.e. supp Le



What's behind: Distribution Ray Tracing

e Compute functionals (W, L) of the solution of the radiance integral equation
L(z,w) = Le(z,w)+ (TL)(z,w)

(i TiLe> (z,w)
=0

Application of Neumann series yields distribution ray tracing

e Example problem: Direct illumination

(W, T}, Le) / / f(x,y)dxdy

— x point in pixel
— g point on light source, i.e. supp Le

= efficient, parallel, and deterministic solution
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Structure of (0O, 2n, 2)-Nets

e (¢, m,s)-netin base b:

— Set Py of N = b™ s-dimensional points of low discrepancy

— Every elementary interval of volume b'~™ contains exactly b points

e (0,2n,2)-netin base b = 2

— Set Py of N = (2™)2 2-dimensional points of low discrepancy

— Every elementary interval of volume 272" =

— Stratification of the Hammersley points Py = (ﬁ, CDQ(i))

l

N

1
N

contains exactly 1 point

N-1
=0

and

|

LHS (N -rooks)
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— table size for the permutation 2" ®5 only 2" instead of (2”)2

— Bit parallel computation of ®5(3) in O(log w)
— index (7, k) used to start out Faure-scrambled Hammersley point set for ray tree



Efficient (0, 2n,2)-Net Generation

e Access by cell index (j,k) € {0,...,2" — 1}

i(G,k) = 2"+ ®2(k)) € {0,...,N— 1}
iy = (120 920 _ (09 g00019) =

AL AL N
— table size for the permutation 2"*®5 only 2" instead of (27)2
— Bit parallel computation of ®5(3) in O(log w)
— index (7, k) used to start out Faure-scrambled Hammersley point set for ray tree

e Cover whole plane by tiling the pattern
7° — {0,...,2" —1}?
(sz,sy) — (4, k) := (sz mod 2", sy mod 2")
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e Color of pixel Py, (m,n) € {0,..., Ry — 1} x {0,..., Ry — 1}
1 N—1
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Antialiased Image Synthesis using (0, 2n, 2)-Nets
e Color of pixel Py, (m,n) € {0,..., Ry — 1} x {0,..., Ry — 1}
N—1

1 1
2 xPn @ @de =% xp,,( )f(@)

(=0

e Interleaved method of dependent tests: Samples of same instance ¢ form
— different sampling patterns in adjacent pixels
— low discrepancy properties preserved

e Parallelization
— deterministic
— high coherence due to same instance
— almost optimal load balancing
— Hardware: Simply interleave regular raster images in accumulation buffer
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Dependent Splitting and Low Discrepancy Sampling

e Choice of

/181 /152 f(z,y)dydz ~ f (=i, )

2. ,
x variance reduction by restricted Cranley-Patterson rotations
x benefit from superior discrepancy at special M and low dimensions s»
x benefit from intrinsic stratification of (0, m, 2)-nets in base 2
3. :
= derandomized dependent splitting

e Adaptive sampling by using low-discrepancy sequences for
— considering local minima of discrepancy
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Conclusion

e Simple, compact, parallel, and strictly deterministic implementation mental ray
— anti-aliasing, motion blur, depth of field
— area light sources, glossy scattering, participating media
— global illumination

e Perfect reproducibility on parallel computer architectures

e No correlation problems of pseudo-random number generators

Images courtesy mental images and umlaut
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Our Research
e Monte Carlo methods

e Quasi-Monte Carlo methods
e Randomized quasi-Monte Carlo methods
e Realtime rendering

e High end computer graphics (mental ray )
Check out the report: Strictly Deterministic Sampling Methods in Computer Graphics

Visit us at

medien.informatik.uni-ulm.de/ ~keller
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Image Synthesis

e Pixel antialiasing, area light sources, glossy reflections, motion blur, depth of field, . ..
= Integration of multidimensional discontinuous functions

1 N-1
Monte Carlo integration: / dr ~ — .
. g R IOL S PIE(C

— &; uniformly distributed =- unbiased estimator

e Stratification

Latin hypercube
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Latin hypercube Latin hypercube

= all elementary intervals in base 2 and dimension 2 with volume %

e Elementary interval

f[ [% a”“) C [0,1)*

bli’ bl

e \Volume
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e "All” stratifications
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= (0,4, 2)-netin base 2

e Definition:
Given two integers 0 < t < m a set of N = b s-dimensional points z; is called
a (t,m,s)-net in base b if every elementary interval with volume Vol(E) = bi=™
contains exactly b’ points. ¢ is called quality parameter.



Generalization

e "All” stratifications

P

r

Latin hy

= (0,4, 2)-netin base 2

e Definition

percube

Létin hypercube

Given two integers 0 < t < m a set of N = b s-dimensional points z; is called
a (t,m,s)-net in base b if every elementary interval with volume Vol(E) = bi=™

contains exactly b’ points. ¢ is called quality parameter.

e Definition

For an integer ¢ > O an infinite point sequence (y;):2 is called a (7, s)-sequence

in base b, if for all kK > 0 and m > t the point set {yym, ..

(t, m, s)-net.

5 Y(k+1)bm—17 1S @
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Randomization

e Monte Carlo integration

1 N-1

Jio e /@~ X fG

— x; uniformly distributed
= unbiased estimator

— X :=A{xg,z1,...,xNy_1} IS a (t, m,s)-net (with probability 1)
= for variance reduction by stratification

e Randomize deterministic (t,m, s)-net A .= {ag,a1,...,an_1}

X = randomize(A)
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e Algorithm starting with H = [0, 1)% (for each coordinate):
1. Slice H into b equal volumes H1, H», ..., H, along the coordinate.
2. Randomly permute these volumes.
3. For each volume Hj, recursively repeat the procedure starting out with H = Hj,.

e Example for b = 2:




Cheap Way: Random Digit Scrambling

e Algorithm starting with H = [0, 1)% (for each coordinate):
1. Slice H into b equal volumes H1, H», ..., H, along the coordinate.
2. Randomly permute these volumes.
3. For each volume Hj, recursively repeat the procedure starting out with H = Hj,.

e Example fo

ro = 2:
g

y

e Properties
— preserves (t, m, s)-net structure (with probability 1)
— each point is uniformly distributed

— finite precision terminates algorithm

21g; XOR ¢
2’)”&

— efficient implementation for base 2: z; :=



Implementation

double RI_vdC(uint bits, uint r = 0) {

bits = ( bits << 16) | ( bits >> 16);
bits = ((bits & O0x00ff00ff) << 8) | ((bits & Oxff00ff00) >> 8);

bits = ((bits & Ox0f0fofof) << 4) | ((bits & OxfOfofof0) >> 4);

bits = ((bits & 0x33333333) << 2) | ((bits & Oxccccccee) >>  2);

bits = ((bits & 0x55555555) << 1) | ((bits & Oxaaaaaaaa) >> 1),
bits "= r;

return (double) bits / (double) 0x100000000LL;

}
double RI_S(uint i, uint r = 0) {
for(uint v = 1<<31; i; i >>= 1, v "= v>>1)
ifi & 1)
r "= v;
return (double) r / (double) 0x100000000LL;
}
double RI_LP(uint i, uint r = 0) {
for(uint v = 1<<31; i; i >>= 1, v |= v>>1)
ifi & 1)
r'=v;

return (double) r / (double) 0x100000000LL,;
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e Random digit scrambled (0, 1)-sequences in base 2
— RI _vdC van der Corput
— RIS Sobol’

double RI_LP(uint i, uint r = 0) {
for(uint v = 1<<31; i; i >>= 1, v |= v>>1)
ifi & 1)
r'=v;

return (double) r / (double) 0x100000000LL,;



Implementation

e Random digit scrambled (0, 1)-sequences in base 2
— RI _vdC van der Corput
— RIS Sobol’
— RI_LP Larcher and Pillichshammer



Implementation

e Random digit scrambled (0, 1)-sequences in base 2
— RI _vdC van der Corput
— RIS Sobol’
— RI_LP Larcher and Pillichshammer

2m—1

(L,RIVdC(i)> = (0, m, 2)-net (Hammersley)
2m i=0

i . 2m_1

(Q—m, RI LP(z))i:O —  (0,m,?2)-net

(RI_vdC(:), RI S(z’));i

o = (0, 2)-sequence (Sobol’)
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Efficient Multidimensional Sampling
e EXxploit low dimensional structure of the integrand

e Multidimensional samples padded from independent randomized replications
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Results: Direct lllumination
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Results: Antialiasing

Latin hypercube random digit scrambled nets



Results: HDRI-lighted Tetrahydron

random digit scrambled nets Latin hypercube



Summary

e Generalized concept of stratification
— extremely simple implementations
— very efficient sample generation

e Efficient multidimensional sampling
e Efficient trajectory splitting

e Outperforms previous sampling schemes

e Check out our code and more at
www.uni-kl.de/AG-Heinrich/SamplePack.html



Interactive Global lllumination
Using
Fast Ray Tracing

Thomas Kollig

joint work with

Ingo Wald, Carsten Benthin, Alexander Keller, and Philipp Slusallek



Goal: Interactive Global lllumination

e Immediate feedback (at least 1 fps) in dynamic environments for
— direct and indirect lighting by area light sources
— reflections and refractions
— caustics

= preliminary restriction to
x diffuse, specular, and refractive material properties

* direct caustics

e High image quality after a short time of no interaction



The Framework: Fast Ray Tracing

e Optimized ray tracing engine handles
— distribution over a cluster of PCs
— user intervention

e Constraints imposed by the system
— coherent rays for efficient caching
— small budget of rays per pixel and frame
— parallelization on a non-shared memory system
— precomputations unlikely to be amortized

e Global illumination algorithm is realized as shaders



Algorithm Overview: Preprocessing

light

/ Q P = (y;, L)),
O\~
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Algorithm Overview: lllumination

light
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Algorithm Overview: lllumination

L M
P = (yj, Lj)i=1

A N
C .= (zj,wj, qu)j:l

e lllumination computed by

L(CIJ,CJ) ~ Le(CU,UJ)—l—

_|_



Algorithm Overview: Rendering

e Eye path generation

— random decision for

diffuse — end eye path generation
specular / refractive  — prolong eye path

— variance reduction by splitting the eye path at the first hitpoint
= at most 3 points per pixel have to be shaded

e Avoid spatial and temporal flickering by using the same random numbers
e Full solution during interaction

e Anti-aliasing by accumulation buffer during times of no interaction



Algorithm Detalls: Caustics

e Original photon mapping algorithms for storage and query are too slow

e Use fixed filter size » and store photons in a grid of resolution 2r
= 8 voxels have to be looked up

(.
N

N

e Only a fraction of the voxels contain photons
= hashing



Algorithm Detalls: Interleaved Sampling

e Pad 3 x 3 tiles with 9 different identifications over the whole image plane

6|78
3145
0 1|2




Algorithm Detalls: Interleaved Sampling

e Pad 3 x 3 tiles with 9 different identifications over the whole image plane

6/ 7(8|6|7|8|6|7|8
314,5(3(4|5|3|4

0 1/2(0|1/2|0|1(2
6,7, 8(6|(7|8|6|7|8
314(513(4|5|3[4/|5
0/1/2|(0]1/2]|0|1]|2



Algorithm Detalls: Interleaved Sampling

e Pad 3 x 3 tiles with 9 different identifications over the whole image plane

6/ 7(8|6|7|8|6|7|8
4.5(3(4|5|3|4
0/ 1(2]0/1(2|0(1|2
6,7, 8(6|(7|8|6|7|8
314(513(4|5|3[4/|5
011({2)0[1)|2[0)|1]|2

e Different sets P, of point lights and C}, of caustic photons for each identification k

e Straightforward and efficient parallelization
— P, and C;, computed on demand by each client
— clients predominantly process pixels with equal k

= no synchronization for global data structures
= no network communication between clients



Algorithm Details: Discontinuity Buffer

e Averaging the irradiance values of neighboring pixels if continuity is detected
= variance reduction

e Continuity checked by
— path distance between endpoint of eye path and eye point
— normal at the endpoint of the eye path

interleaving
no 5x5 5x5

no 3x3
discontinuity buffer

e Interleaved sampling and the discontinuity buffer perfectly complement each other
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Algorithm Detalls: Randomized quasi-Monte Carlo

e Low discrepancy point set A ={aq,ap,...,am} where a; € I°
r randomized replications of A 5 1...[T 1.1
:I:,j...:c,j...:c,j
x ,’r‘ e o o x ’f"’ e o o :,U 7T

~ U (I%) independent

: : 1~
Unbiased estimator /I f@)de =~ ) f(z ;)
S /ra : )
=1

e Randomization: =z ;.= ((232 .4 ) xor b:) - >—32

e Subsequent subsequences for generating the sets P, and C}.
= discontinuity buffer joins different subsequences in case of continuity

I
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e Cluster of dual AMD AthlonMP 1800+ machines with 512 Mb of RAM
— fully switched 100 Mb Ethernet
— server connected by a single Gigabit uplink



Results

e Cluster of dual AMD AthlonMP 1800+ machines with 512 Mb of RAM
— fully switched 100 Mb Ethernet
— server connected by a single Gigabit uplink

e Small set of parameters
= Interactively trade off rendering speed for image quality

e Frame rate scales up to 5 fps at a resolution of 640 x 480 pixels:
— discontinuity buffer calculations have to be done on the server
— network bandwidth
— server workload

e Image quality scales without bottleneck over the range of available clients



Simulation Quality: “Invisible Date”

e 9,000 triangles, 2 area light sources

e 2.6 fps on 8 clients

XA 2,381 fps

[=][o][x| | X4 2.597 fps

|
I i

e Direct versus indirect lighting



Simulation Quality: Conference Room Scene

e 290,000 triangles, 104 area light sources

e 1.7 fps on 12 clients

¥4 1.688 fps

e Dynamic versus converged image



Summary and Future Work

e Interactive global illumination system by

— distributed, fast ray tracing engine
x constraining global illumination algorithm design

— hashed photon maps

— parallelization by interleaved sampling

— variance reduction by discontinuity buffer

— variance reduction by randomized quasi-Monte Carlo

e Server bottleneck limits resolution and frame rate
e Image quality scales without bottleneck

e Extensions to arbitrary material properties and high order caustics



Random Walk Radiosity with generalized transition probabilities

MateuSbert Alex Brusi
Institutd’Informaticai Aplicacions,Universitatde Girona Universitatde Girona
RobertTobler
Institut fur Computgraphik,ViennaUniversity of Technology
WernerPugathofer

Institut fur Computegraphik,ViennaUniversity of Technology

Abstract

In this paperwe study randomwalk estimatordor radiosity with
generalizedransitionandabsorptiorprobabilities. Thatis, a path
will travel from patchto patchaccordingto an arbitrarytransition
probability andsurvive or beabsorbedh it accordingo anothear
bitrary absorptiorprobability The estimatorsstudiedsofar, those
with arbitraryabsorptiorprobabilitiesbut with the Form Factorsas
transitionprobabilities,areobviously a particularcaseof the more
generaktasepresentetiere.Practicalapplicationsf randomwalks
with generalizegbrobabilitiesaregiven. Closedformsfor the vari-
ancesarefound, togetherwith necessarandsuficient conditions
for their existence. The variancesare shawvn to fulfill a systemof
equationswhich is a classicalresultby Halton. Someparticular
casearestudied,including null varianceestimatorswhich repre-
senttheoptimalcase.

Keywords: Radiosity Monte Carlo,Randomwalk, Variance

1 Introduction

Discreteor continuousrandomwalk estimatorshave beenwidely
usedin radiosity Gatheringrandomwalk proceedsendingpaths
from the patchesf interestto gatherenegy whena sourceis hit.
Path-tracing[7], and even distributed ray-tracing[2, 24] can be
considerechsthe limiting caseof gatheringrandomwalk for the
non-discretecase(without shadav rays). Shootingrandomwalk
shootgpathscarryingenegy from thesourcesto updatethevisited
patche$11], [1]. Thetechnique# [20, 4] canbeseerasabreadth-
first approachto a shootingrandomwalk estimatoy which in turn
would bethedepth-firstapproachBidirectionalray-tracing[23, 9]
is a mixture of non-discreteshootingand gathering. The random
walk proceedsiccordingo the Form Factorprobabilitytransitions
[20, 11, 4], or to biasedoneg[12, 10]. Thesurvival (or notabsorp-
tion) probability on a patchhasusually beenconsideredequalto
its reflectvity. An exceptionto this survival probability is found
in [10], wherethe received importancewas considerednsteadof
the reflectvity. In [12] we alsofind a shortdiscussiorunderthe
termsurvival biasing Also, infinite pathlengthestimatorscanbe
consideredhosewherethe survival probabilityis equalto one. A
studyof generalizedbsorptiorprobabilitiesis foundin [19]. In it
thefinite pathlengthestimatorg14] andinfinite ones[16] arede-
rivedasparticularcasef this generalizedne.

In thispapemwewill studyshootingandgatheringestimatorsesult-
ing of consideringary transitionand survival (or not absorption)
probability Thatis, wewill relaxtheassumptiorthatthetransition
probabilitiesarethe Form Factors.

The organizationof this paperis asfollows: In section2 the previ-
ouswork onrandomwalk radiosityestimatorss presentedln sec-
tion 3 we studythegatheringestimatomwith generalizedbsorption
andtransitionprobabilities. A necessanand suficient condition

for the existenceof the variancesds given, togethemwith anheuris-
tics to be usedin somepracticalsituations.A systemof equations
that fulfill the variancess given, and someparticularestimators
arestudied. The generalizedyatheringestimatoris alsoshavn to
have thesamecompleity (undercertainconstraintspsestablished
in [14]. And we shav how to generalizethe given formulaefor
the non-difuse case,that is, the generalRenderingequation[7].
Next, in section4, the shootingestimatoris studied. Optimal sur
vive probabilities,for the casewhenwe keepthe Form Factorsas
transitionprobabilitiesand are interestedn the whole scene are
given. Theresultingestimatoappendo be the onewith survival
probabilityequalto thereflectvity. Someparticularcasesregiven,
andthesamecompleity resultsasfor thegatheringcaseareshavn.
We presensomeexperimentakvidencein sections, andfinally, in
section6 we presensomeconclusiongndideadfor futureresearch.

2 Previous Work

In [14] the threeestimatordefinedin [21] were studied,together
with their gatheringdualones.In [16] thei nfinite pathlengthesti-
matorswerecharacterizedandin [18] it wasprovedthatthebestfi-
nite pathlengthestimatoibetterthanthe biasedinfinite pathlength
one.Finally, in [17] thevariancedor the previousshootingestima-
torsfor arny generakourceselectiorprobabilitywereobtainedand
it wasalsoproved thatthe resultsobtainedso far were extensible
to the pureparticletracingcasethatis, whenwe keeptheimping-
ing pointon a patchasnext exiting point. The obtainedresultsare
summarizedn tablel.

Tablel1: DifferentRandomWalk estimators.The meaningof the
differentquantitieds in table3.

Shooting | Patch scored Variance
2 last >, P AWR(;’”R) b;
- allbutlast | > &, fidis (- 4 26) — b}
oy all > s By (l“l’;f’)”” — b2
infinite all >, @, s _
Gathering | Patch scored Variance
1—E—15=£s last 1:—: s (I_E—és)bis —b;?
L all but last hiy, Betepy — b
E, all 2 (Bs + 2b5)bis — bi?
infinite all 27 2o (Bs +2bs)Bis — b;2

A featurecommonto the studiedestimatorss thatthetransition



Table2: Variancedor RandomWalk estimatorswith generalized
absorptiorprobabilities. The meaningof the differentquantitiess
in table3.

0; ZS o, (1+21£ip£:)€¢s _ b?

9 R
i ZS (Es + 2bs)€zs b;

shooting, @1

gathering, E,

probabilitiesusedarethe Form Factors,andassurvival (or not ab-
sorption)probabilityis usedthereflectvity of the patch(exceptof
coursefor the infinite pathlength, wherethe survival probability
is always1). In [19] this secondassumptiorwasrelaxed, thatis,
generalizedabsorptionprobabilitieswere considered.The result-
ing variancedor the so generalizedbr and E; estimatorsarein
table2. Thealreadystudiedcasesyhenthe survival probabilityis
equalto reflectvity andtheinfinite case canthenbeseenaspartic-
ular cases.The Form Factorswerestill thetransitionprobabilities.
Theusefulnessf theestimatorobtainedcanbe seerwhenconsid-
eringsurvial probabilitiesproportionalto importanceor betterto
recevedimportance) This hasbeenusedin [10].

In this paperwe will relaxthe assumptiorof the Form Factorsas
beingthetransitionprobabilities. Thus,we will studyageneralized
randomwalk with ary arbitrary survival and transitionprobabili-
ties. Next we will studythegatheringcase.

Table3: Meaningof the differentquantitiesappearingn table 1.
Thesufiix ¢ meandor patchi, suffix s indexesthesources.

E; Emissvity

b; Reflectedadiosity= B; — F;

B; | idemwith eachreflectvity substitutedy its square

P, Emittedpower

A; Area

R; Reflectvity

0; Generalizedurvival probability

& Receved power (or radiosity) due to self-
emittedunit powver (or emittance)

bis Reflectedadiosityon dueto sources.
bi = bis

Bis idem with eachreflectivity substitutedby its
square8; = > Bis

€is Reflected‘radiosity"with eachreflectvity sub-

stituted by its squaredivided by the survial
probability Doesnt always have a physical
meaning.e; = > _ €

pi Probabilityfor a pathto begin ats

3 A gathering estimator with generalized
transition and absorption probabilities

We will considerthe discreterandomwalk here,thatis, the one
which proceedsaccordingto patch-to-patch-orm Factors. How-
ever, the formulaeandresultsobtainedare alsovalid for point-to-
point Form Factors asshavn in [17].

Let us first considerwhat the expectedvalue of ary unbiased
Monte Carlo estimatorshouldbe for the radiosity of a patch. Let

us supposedhatthe emittanceof sources is E,, b; is thereflected
radiosityof patch: duetotherecevedpower (thatis, b; = B; — E;,
andso for a non-emitterpatch, it equalsthe total radiosity), Fi;
denotesheFormFactorfrom patchk to patchl, andRy, denoteshe
reflectanceof patchk. Thenwe have, by developingthe radiosity
systemin aNeumanrseriegdroppingthe zeroorderterm):

b = R; ZE Fis+R; ZZE FinRp, Fis
+R; ZZ ZE FinRyFijRi Fjo + -

This canbeexpresseds:

b = bV + b + b +

whereb) = R; 3 EoFis, b = R Y, 3, EsFin Ry Fhs,
bl@ =Ry >, Ej E;F;n Ry F; R; Fj, andsoon. Thatis,

b representshe radiositydueto directillumination, b{* repre-
sentsthe radiosityafteronebounceandsoon. It is alsousefulto
definethefollowing quantities:

bis = b, + b2 +

bg) representsheradiositydueto directillumination from source

s, bg) represent¢heradiosityafteronebouncefrom sources, and
soon. It is clearthat:
bi = Z bis
8

Now let usconsiderthefollowing simulation.A path+y startsfrom
patchs with probability p; (this probability canbe consideredas
theinitial or emittedimportanceof the patch),andfrom hereonit
evolvesaccordingo the transitionprobabilitiesp;; . It will thenbe
absorbedn patchj with probabilityl — §;, andsurvive with prob-
ability 6;. Next we definethe randomvariablesh!", 5 %, . ..
in thefollowing way:
All of theserandomvariablesareinitially null. If the pathy hap-
pensto arrive atsources with lengthi, andif ¢, h1, ha, ..., hi—1,s
is thetrajectorythepathhasfollowed,thenthevalueof b(l) is setto
Ling By Pugng - Ty Phioie By ) oy s alsodefinea new
" Piny Ony Phihg ’

Oh;_q Phy_qs Pi
randomvariableb; as:

~ 3R

l

Now let usfind the expectedvalue of theserandomvariables@\gl).
Applying the definition of expectedvalue, and rememberinghat
the probability of selectingpatchs is p;, andthat the conditional
probability of landingon sources justwhenleaving patchi is F;,
we have

F, E,
EQY) = ZR 25 pi X pis = bV

To gofrom patchi to asources in apathof lengthtwo we canpass
throughary patchh (after surviving on it with probability8), so
we have

22) Fin By Fhs Bs
E(b;™) ZZR’ vin B phe i X PiPinbrDhs
h s
= @



andsoon. Then,we have
E(:) = EGM +5P +--) =
= b +57 4 =b;

EGM) + BG®) + -

Soit is clearthat the randomvariableggl) is a centeredestimator
for the radiosity dueto the power arrived on patch: after! — 1
bouncesandthe sum of this whole family of estimatorsgivesa

new centeredestimato@ which correspondso the total radiosity

of patch: dueto the power arrived after ary numberof bounces.

Our next aim is to obtainthe variancefor this estimator We will
usea similar approacho the onein [14], [16] and[19]. We can

decomposéfar(gi) in thefollowing way
Var(:) = Var@®® +2 +--)
= BB +80 +- --)2) - (E(E))2
= BOM)+EQ?) +
+ 2 > BEME™) - b (1)

1<n<m

Thetermsof theform E(5{3{™) arenotzero,becausé apath
arriveswith lengthn on sources it canalsoarrive laterat sources’
with lengthm. Next we find them:

BEH™)
OB

Bhy_y Frpis Es o, Finy Rpy Fhyng
1
Ohp_1 Phn_1s Di Diny Ohy DPhihy
. Rh, 4 Fh,_;s &Fshn+1 Rhn+1 th+1hn+2

ihl Rh1 Fhlhz
" piny Ohy Dhihe

PIPBDWL

hn—1hnt1r hm—1

Ohn_1 Phn_1s Os Dshnys Ohpys Phpyihmys
_ Ry, Fu,,_,s' Ey _
Ohmm—1 Php_ys’ Pi
DiPihy Ony -+

R? F2 R} F}
- Wy R

Rh th 18 Es
— *PiPshq *
6 hpn_1 Phy_1s Pi

2 Z Z RsFish, 1 Rhpys

s’ hnya hom—1

*Ph, _ 1sespshn+19hn+1 ot 'phm_ls’

““Dh,_1s "

By

hoap—18'
pi
— (n)zb(m n Z (n)b(m n)
S

Wheren(”) is thei componenbf thenth termcorrespondingo the
de/elopmemin Neumanrseriesof thelinearsystem

RIF,
Bip, (s 8ieE) @
Mg

Ry, Fn

KRis =
Then

¥ eoen) - ¢

1<n \n<m

MWD

s 1<n n<m

= — K,isb
Di
andalso
F B\’
7(1)2 1
B = (A
S
_ ZHE RQFZ?S
pl alp’LS
S
- Sy
Fin RiFrs Es\’
P22y _ Lin Lepbps Bis .
B = ZZ(% 010 B2) it

ZEs wd
andsoon. Thenwe obtain

0; Z 1 2

E - ES(K‘gs) +K‘§s) +)
0 2

+ 2— Kisbs _bz

6; 2
= E Es + 2bs Kis — bl
D " ( )

Var(gi)

wherek;s is thesolutionof the system(2).

For the radiosity our estimatoris simply b; + E;, andasE; is a
constantve have

~ ~ 91 2
Var(B;) =Var(b; + E;) = — Es + 2bs)kis — b~ (3
(Bi) = Var(bi + B) = - zsj( ) ©

If we considereachpatchin turn,p; = 1, andfor N; paths:

V(lT'(ﬁi) = _N'L <61 Z(Es + 2bs)fiis - b12> (4)

3
8

3.1 Existence of the variance

We havethatthek; arethesolutionsof system(2). Butanecessary
andsuficient conditionfor the systemto have aniterative solution
[22] (suchasthe onegivenby the Neumanrdecomposition)s that

RIF;

i 0ipij )<t ©)
wherep is the spectralradius. It is obvious thatif system(2) is
sohablewith the Neumanndecompositionthe solutionsmustall
be finite and positve, and thusthe variancesexist. On the other
hand,it is very easyto shawv thatif a solutionof the systemexists
suchthatall valuesarepositive, this solutioncanbe obtainedn an
iterative way with the NeumanmdecompositionThus,a necessary
andsuficientconditionfor the existenceof the variancesis condi-
tion (5).

An @(amplewherethis conditionis not satisfieds given whentak-

ing 6 5
caseis greateror equalthan 1. Alternatwely, it canbe shavn that




theinfinite sumsin formula (1) arenot corvergent. This is simply

doneby shawving thatlim, — oo E(3§“>2) # 0, andthusthesumcan
notcorverge.

N R Ry, |, E, ?
B =3 zz(ﬂw,’:---eh;;)

-1

lhl 9h1 "'Fh'n—2hn—19hn—1Fh'n—ls
2
2R}2Ll Rhn—l E‘z
SRS Ny
ht hooa s 1 n—1

F:

,th ..

—Z ZZ Fi, ...Fy,_,.E:

hp—1

. Fy

n—18

v

(6)

2
becausave have assumeu?—?' > 1 for all 5. Butwe have

Z ZF%... o

hp—1

_18 & (Fn)zs

andin [15] it is proventhat, wheneer the Form Factormatrix is
irreducibleandaperiodic

lim (Fn)is = As (7)
n— o0 AT
whereAr is thetotal areain the scene.We do not considerit ge-
ometricallymeaningfulfor a Form Factormatrix to be periodic. If
thereareclosedrooms,it is reduciblewith onesubmatrixfor each
room. In this case we considerin turn eachroomandwe have ir-
reduciblesubmatrices.
But now from (6) and(7) we obtain:

lim EG™?) > Y (lim (F")i) B
n—oo n—oo
_ As 2
= Y E ®)

3.2 Transition probabilities equal to the Form Fac-
tors

Whenp;; = F;; we have the casestudiedin [19]. Formula(2)
becomes:

R F;;
Ris = Z 0. 5 (’ijs + djs Es ) )

- [
J

Thesolutionof this systemwascallede;, in [19].

We have seenin the previous sectionthatwhenfor all i, §; < RZ,

thenthe variancesdo not exist. But asthe conditiond; > R? for

all 7 is toorestrictive for the existenceof the variance the question
ariseswhethera wealer conditioncanbe given. We have run sim-
ulationsandfoundthatthe spectralradius(5) is approximatedy;,

andin mostcasesis lessthan,theaveragevalue

R’ 1 R}
(7)(“)@ =1 ZAZG_,- (10)

Thisfindingis similarto theresultsin [5]. It is basednthefollow-
ing:

Region with low survival probability

Region of interest
Source

AN

f

Region with higher survival probability

Figure 1. Pathstracedfrom the region of interesthave a higher
survival probabilitywherethereflectedradiosityis higher

If we conS|de|theser|eSp(
is very easyto checkthat

(F")”) its limit is p(

2

R? A, 1 R? R
) = A—TZAle—i_(T)m
(2

Pl Ar

Thus what we do is to approximatethe first term in the series,
2

p(5-Fi;), by thelimit of theseries.

Thus, a heuristicsuchas keepingthis averagevaluelessthan0.8

or maybe0.9 shouldbesafe.

An example of the use of such an estimatoris the following:

Supposewe have obtaineda coarsesolution for the radiosities.

This solution could be usedto drive the randomwalk taking

0; < B; — E;, assuringhatenoughpathswill survive in patches

with high receved radiosity Thisis usefulin a scendike theone

in Figurel. This casecanbe consideredhe dual of the onegiven

in [10] (seeFigure?).

SupposenON thatd; = 1. Thisis theinfinite pathlengthes-

timator, 1;" R? and ;s in (9) hasnow a physicalmeaning:
the reflectedradmsnyof patchs dueto sources in a dual scene
wherewe simply have substitutedeachreflectiity by its square.
This quantitywascalled 8;s in [16], andwe againobtainthe for-

mulain tablel Ontheotherhand,whenf; = R; we have the E

estlmator—L = R; andk;s becomesd;, (which canbe seenby
dlrectsubstltutlonn formula(9):

bis = ZRiFij(bjs + dj.Es) (11)

J

andagainobtainingtheformulafor the E; estimatomivenin table
1.



3.3 Transition probabilities as biased Form Fac-
tors

Now let usconsidetthe biased~orm Factorsastransitionprobabil-
ities:
pii = RiFl'ij

Y Bi—E;
It is easyto checkthatthey areprobabilities,thatis, they areall
positive andsumto 1. Wewill considettwo differentsurvival prob-
abilities. Thefirstwill bed; = 2i=Zi andthesecond; = 1, that

B; . .
is, theinfinite estimator In thefirst caseequationg2) convertinto:

R;F;; B;

B; (Kjs + 955 Es) (12)

Kis =

It is notdifficult to obtainthe solutionof this system We have

B;b;s

B, (13)

Kis =

The varianceis obtainedsubstitutingthe 6; valuesandthe found
Kis Valuesin formula(3):

B; — E;

Var §@ =
(B =~

bis 2
D (Bt 2) 25 b (14)

8

As E;+2bs = B;+b,, andbs < By, thisvariancecanbebounded:

2b2

Bi - T2 (15)
p

= E; 2
Var(B;) < ——2 bis — b;° =
(B) < 22y

1
8

Andforp; =1
Var(B;) < b? (16)

In thesecondcasethatis, §; = 1, equationg?2) convertinto

R;F;;(B; — E;
Kis = Z %(Ms + ;5 Es) (17)
J

Multiplying theleft andright termin the systemby E + 2b, and
summingover s:

Y5+ 2w, = 3 BEG B

s J
(D (B + 2b0)rj
+ Z(Es + 2bs)6jsEs)
_ Z RiFij(Bi — Ei)
J B;
() (Bs + 2b5)rjs + (E; +2b)E)
s (18)

This new systemcanbe seenby direct substitutionto have the so-
lution

> (B +2b,)kis = b (19)

And substituting(19) andé; = 1 in (3):

R 2
Bi— By _p2= %y (20)

i Di

Var(gi) =

Thatmeandor p; = 1, thatis we considereachpatchin turn,anull
varianceestimator Thus,the probabilitiesconsideredare optimal
in thesensehatthey leadto null varianceestimators.

3.4 A system of equations for the variances

Let us supposehat for eachpathfrom ¢, we do the survival test
befoe it starts. This meansthat on averageonly a 8; fraction of
pathswill actuallystartoff, anda 1 — ; fractionwill never start,
thatis, will have zerolength.It is easyto shav thatin this casethe
variances:
Var(B;) = Var(b; + E;) = 1% Z(ES + 2b,)kis — bi” (21)
8

2

Multiplying theleft andright termsof system(2) by E, + 2bs and
summingover s

RIF}
— 6;pij
J

O (B +2b5)r5 +

> (Bq + 2b,)kis =

s

Z(Es + 2bs)6jsEs)

8
_ N~ RIF
~ §ipij
J

(Z(ES + 2bs)kjs + (Ej + 2b;)E;)
’ (22)
Takingp; = 1in (3)

> (Bq + 2b,)kis = Var(Bi) + b}

s

thesystem(22) canbe writtenas:

RF;
— 0:pij
J

Var(gq;) =

(Var(B;) +b] + (Ej + 2b;)E;) + b}
(23)

andsimplifying

N R2F2 —~
Var(B) =Y #(Var(Bj) +B})+ b} (24)
- )
J

.

This systemwasobtainedrom conditionalprobabilityconsider
ationsin [6]. However, Haltonconsidereanly symmetricmatrices
(theonescorrespondingo our R; F;;), andconsidereailso
that system(24) alwayshada solution. His work is referencedn
[3], but Ermalow addsasconditionfor the existencg(andfinitness)



2 2

. RIF:.
of a solutionthatthe Norm <#) < 1 (translatedo the ra-
iPij

diosity setting).
Equatingto zerotheindependentermin (24) we will obtaina ho-
mogeneousystemwith null solutionfor thevariancesThus:

R2F2
oo B2 =0} (25)
iDij

J

By directsubstitutionit canbe checled thatp;; = F;; and§; =
1 arethe solutionsof (25), andwe againobtainthe null variance
estimatorof the previoussection.

3.5 Complexity

Thesameresultson compleity asin [14] canbeobtainedchere.We
justhave to find a boundfor the variancesvhich is independentf
thenumberof patchesLet usseeit:

Var(B;) = NL <9¢ Z(Es + 2bs)Kis — bf)
1
< E ((Emax + meaac) Z ﬁis) (26)

8

becausd; < 1.
But x; = Es Kis canbeboundedsummingover s in the system

2):

R

IA

] oK Z Fj (Kmaz + Emaz)

2
= I;Z K(h‘/mam + Emaz) (27)

whereK = maz(;; ”) Butthen

2

R;
Bmazr < ma(ﬂ(?)K(K/mam + Emaac) (28)
andthus
R?
maz(4t) K Enas
Kmaz < l—Rz (29)
1 —maz(5)K
Thismeans
R2
~ 1 max ( G_I)KEma:c
Var(Bi) S F (Emax + 2bmam)1—Rg (30)

1 —maz(5-)K

and this bound staysvalid as long as we keep boundedK =
2
, max(lg—:) and Eqz, asfrom [14] we know that

Py
mazx( oy

bmam S Rmammaw( 15‘;{1 )

b is, if 4, ha, ha, ..

3.6 Other unbiased estimators

Justaswe have generalizedheEs estimaton'n section31hesame
canbe donewith th

estlmator1 5 canbedeflnedln aS|m|IarwayastheE one,just
it will only scoreon a sourcewherethe pathdies,andthe value of
hi—1, s is thetrajectoryof the path:

Rh1—1 Fh1—18 E;

30 — g Fire Bny Fhyin
ehl_l Phy_1s pl(l - 03)

2 e
Dihy Ohy Dhihs

With a similar approactasin section3 we canfind thevariance:

= Z = (31)

Thisestimatoiis interestingoecausd leadsto a (finite pathlength)
null varianceestimatowhen

Var( §

Pi= "B, &

andé; = —Bf];iEf. Usingthesevalues,thevaluein (13) andsetting
pi =1, (31) corvertsinto:

= B; - E; E;B; B;b;s
Var(Bi) = Bi Es Bs - bi2
e

Bi—E;)Y bis—b’=0 (32)

The generallzedestlmator is alsodefinedin a similarway as
the E; one,justit will scoreon eachsourceit hits, exceptwhenit
dies,andthevalueof?;\g” is, if 4, h1,ho, ..., hi_1, s is thetrajec-
tory of the path:

Rhl—l th—ls E;

31('1) — R Fipy Ry, Frin, .
hi_1 Phi_1s pies

Diny Ohy Dhiho

And thevariancecanbefoundto be:

VaT(B) 0; ZE’ + 2bs

o g s — bi® (33)

3.7 The continuous case

So far we have consideredratch-to-patctiransitionprobabilities.
Thismeanghat,in thesimulation the path,afterhaving hit apatch
on a given point, exits from a new randompoint to continueits
trajectory Thisis differentfrom the point-to-pointtransitionprob-
abilities or pure Particle Tracing simulationas explainedin [11].
Thusit leadsto a differentsolutionthanthe onegiven by the ren-
dering equation(althoughboth solutionscoincidein the limiting
casewhenthessizeof patcheslecreaseso zero). This is because
whenusingthe patch-to-patchransitionprobabilitieswhat we are
really obtainingaresolutionsof a systemof equationsyhichis an
approximatiorto therenderingequation.n the continuousase pr
pure Particle Tracing, whatis obtainedis the averageof the exact
solutionof therenderingequatiorover a patch.However, usingthe
sameargumentatiorasin [17] it canbe seenthatthe sameformu-
lae obtainedherearevalid for the pure Particle Tracingcase just
the quantitiesappearingare olviously not the same. Thatis, for
instancetheb; quantitywill meannow the averageon the patchof
the exactsolutionof the renderingequationwhenfor the previous



caseit meantthe exact solution of the radiosity systemof equa-
tions. And of coursean the continuousasethesystem(2) becomes
anintegral equation:

_ [ R@FP@y)
wiw) = [ D )+ vy @9

whereS is the setof surfacesof the sceneand E;(y) is equalto
E, if y happengo bein sources andzerootherwise Thek;, value
is thenthe averageover the patchi of k().

4 The shooting estimator

Now let us considerthe shootingestimatorwith generalizedran-
sition andabsorptiorprobabilities.Considerthe following simula-
tion. A path~ startsfrom sources with probability ps, andfrom
hereon it evolvesaccordingto the transitionprobabilitiesp;;. On
eachhit patché, a survival-absorptiortestis doneaccordingto the
probabilities{6;,1 — 6;}. If the path-y happengo arrive at patch
¢ with lengthl, thenthe radiosityof this patchis updatedwith the
Fshy Bry Fhyhy Bhy Bhy_y Fry_yi D

Pshy Ohy Phihg Ony """ Ony_; Phy_ji Ps’

Now, the variancecanbe found eitherfrom duality considerations
asin [17] or usingthe sameapproachasin section3:

quantity £¢

5 (1+2Ri&i)kis 40
Var(B;) =6; Z ¢ST - b (35)
wherex, is thesolutionof the system:
RIF};
Kl = Z 5o L (K5, + 02 ®a) (36)
g

J

This systemcanbe consideredn a certainway the dual of (2),
asfar asthe power systemcanbe considerediual to the radiosity
system.

Region with low survival probability

Region of interest
Source

AN

|

f

Region with higher survival probability

Figure2: Pathstracedfrom the sourcehave a highersurvival prob-
ability wheretherecevedimportanceowardstheregion of interest
is higher

Here the sameargumentatiorasin previous sectionaboutthe
existenceof thevariances alsovalid, andit is easyto checkthat
0; pij

R2 F2
)=p(g-—=
i Pji

p( )

Formula(35), whentakingsourceselectiorprobabilitiespropor
tionalto the power of the sourcep, = g—;, where®r is thetotal

power, convertsinto

(1 + 2R1§,)I€:

2

Var(éi) =60;,Pr
wheres; = 3" K.

Also, taking eachsources in turn, with Ny = Np, pathsfrom it,
we obtain

EVRE
Var(Bi) = NL (01"1)3 (1 + 21];;&)513 _ b?s) (38)

And aswe have independensimulations:

Var(gi) = Var(zgis) = Z Var(?)\is)

1 (1 + 2R¢§i)ﬁfs P
Z A (9@8 — b) (39)

Var(ﬁi) =

8

This is the variancewe obtainin real simulations,as we usually
precomputehe numberof raysto castfrom eachsourceaccording
to its probability ratherthandoingit onthefly.

4.1 Transition probabilities equal to the Form Fac-
tors

In [19] thecasep;; = F;; wasstudied but theabsorptiorprobabil-
itiesweregenerabnes.Formula(36) becomes:

* R?Fz *
Kia= 9,-J (K}s + 0js®s) (40)
J

which canbe shavn to have the solution A;¢;5, wheree;s wasde-
finedin [19].
An exampleof theusefulnessf suchanestimatoiis the follow-
ing:
If we male the survival probability proportionalto recevedimpor-
tance,thatis, §; o« I; — Vi, wherethe V; is theinitial andI; the
totalimportancg10] (we useherethenotationby Neumanretal.),
we assurghatthe pathswill oftensurvivein patchesvhich areim-
portantto the selectednes. This could be usedto drive arandom
walk in ascendike theonein Figure2, thedualof Figurel. This
casewasthe oneconsideredn [10], althougha breadth-firsistrat-
egy was usedthere,insteadof the considereddepth-firststratey
here.
Now supposéhatf; = 1. Thisis theinfinite pathlengthestimatoy
2
% = R? andk}, in (40) now hasthe solution 4;43;: thereflected
paNer of patchs dueto sources in a dual scenewherewe simply
have substitutecachreflectiity by its square Substitutingn (35),
we obtainagaintheformulafor theinfinite estimatorin table1. On

2
theotherhand,whené; = R; we havethe ®1 estimator LA R;

andk;, becomesa;b;,, which canbeseenby directsubstitutionin
formula(40):

Asbis = z R;Fji(Ajbjs + 055®s) (41)
J



andagainobtaintheformulafor the @+ estimatorgivenin tablel.

Another interestingcaseis the estimatorpresentedn [8], al-
thoughKeller introducesit in the context of Quasi-MonteCarlo
estimatorsKeller takesthe averagereflectvity of thesceneassur
vival probabilityon all patches.

4.1.1 Optimal survival probabilities

Supposeve areinterestedn all patchesnotjustin asingleregion.
Wewantto find outtheoptimalsurvival probabilitiesd; in thesense
to maximizetheefficiengy. Thiscanbedefinedastheinverseof the
productof thevarianceimesthecost[13], for asinglepatch,or the
averageweightedvariances(expectedvalue of the Mean Square
Error) timesthe cost, for the whole scene.This meanstaking as

averagecost#, to minimizethe quantity
B(MSE) - -—p— (42)

Now, usingthe definitionof the MeanSquareformula(37) for the
variance(we considera reasonabléypothesip, = 2 i

terestenthewhole scenejandthe approximation

z @T
AT(l — (5 )ave)

we obtain,following the sameapproachasin [18]:

2 R2

E(MSE) ATAave(l - ( )ave)

2
)ave by ave,

ave

which substitutedn (42), after approximating(’f,
givesasquantityto minimize:
% R2 1
ATAave(l —_ (M)) 1-— 00.1)5

Oave

(43)

The behaiour of this quantity taking A—W = 1, is shawvn in

Figure3, for valuesof R4y 0.3,0. 5and0 8,respectiely.
Theanalyticalsolutionis 8,ye = Rave. Thiswill obviously hap-
penwhenfor all 7 §; = R;. Thuswe canstatetheresult:
Of all unbiasedshootingrandomwalk estimatos with genealised
absorptionprobabilities and transition probabilities equal to the
Form Factors, themostefficientfor calculatingall radiositiesis the
onewith survival probability equalto thereflectivity
Remembethatthe infinite pathlengthestimatoris not considered
here(the costwould beinfinite), but from [18] we know thatbias-
ing it we obtaina muchworseestimatorthan®r. Thatmeanghat
®r is the bestof all shootingrandomwalk estimatorswith tran-
sition probabilitiesequalto the Form Factors,biasedor not. And
from [14] we know that shootingestimatorsaaremuchbetterwhen
dealingwith thewhole scenghangatheringestimatorssowe can
extendthis resultto all randomwalk estimatorsstudiedtill now. It
mustberememberetherethatthe & estimatorin its breadth-first
approachwasthe oneusedby Shirley [20] and Fedaand Puigath-
ofer[4].

4.2 Transition probabilities as biased Form Fac-
tors

Now let us consideras transition probabilitiesthe biasedForm
Factors:
RjFijIJq

pij =
v If—%'
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Figure 3: Behaviour of the inverseof efficiengy againstf, .. for

Rave = 0.3, 0.5 and 0.8, respeciiely. The vertical asymptote

correspond$o R2,,.



wherethe I valuesare the solutionsof the system(dual of the
powerone):

II=) RiF;I! +q (44)
J
andg; is the vectorof initial importance[17]. It is easyto check

thatthep;; quantitiesareprobabilities thatis, they areall positve
andsumto 1 for afixed:. We will conS|dertwo differentsurvial

probabilities. Thefirst will be8; = =1,

thatis, theinfinite estimatorIn theflrst caseequatlons{36) corvert
into:

R Fﬂ - ;)
(st +5J5¢ ) (45)

HZS_E

It is notdifficult to obtainthe solutionof this system.lt is:

o Ai(IE — qs)bis
Kis " a (46)

The varianceis then obtainedsubstitutingthe 6; valuesand the
found;, valuesin (35):

S0 1 N B (14 2RiE:) (TS — o )bis
Var(Bi):szZ (1+2Ri&i) (IS — gs)

2
s Aps — b (47)

Supposaow we areinterestednly in a singlepatchk (thusq; =
%), andthatwe take p, = % As now
—ds

I.g — Qs =Iks _Jks

whereTy, is theimportanceof sources to illuminate patchk (the
relationzs Is®, = Ay By holds),we obtainfor the varianceof
thepatchk, takinginto accounthatzS D, (Igs—0ks) = Ar(Br—
Ek) = Apbr andl + 2Rk§k =2Ixr — 1 [17]

Var(gk) = 1+2Rk§kz@ Iks—5ks Zbks)—bk

Ay
2Ikk — 1 Z
= brs) — bi”
= bp(1— —
e ( Ikk)

(48)

This quantityis alwaysstrictly positive, becausdy, > 1.
Anotherinterestingcasehappensvhenconsideringg; = - — 1
(we donotusehereanormalizedy vector) We cancheckby dlrect
substitutionin the system(44) thatI] = . With thosevalues

pluggedin equation(47) we obtain:

]- + 2R7. [ bzs
=R; Z yv Poll 4 2Ri&)bis 2 (g

whichis exactly the samevarianceasthe correspondingo the &
estimator In fact, both estimatorsarethe same becauselugging

the valuesfor If andqi in the survival andtransitionprobabilities

RjF;;1%

we obtainé; Iq = R;, andp;; = 7= .] = Fi;. This

tells usthatthe & estlmatorcanbecon3|dere(a partlcularcaseof
importancebiasingin whichtheinitial importanceof eachpatchis
theinverseof its reflectivity minusone.

Var i)

In thesecondtasethatis, §; = 1, equationg36) convertinto

RiFji(I? — g
Ko=) %(@s + 055 ,) (50)

Insteadof solvingthis systemin generalwe will only obtainthe
solutionfor the particularcaseq; = §;x. We will doit from the
duality betweerthis caseandthe one given by the equation(20).
We obtain,following the sameapproactasin [17]:

(Iks - 5195)2

Var(fks) = »

- (Iks - 6ks)2 (51)

Consideringeachsourcein turn (p, = 1), andtakinginto account

thatbks = ALk(Iks — Jks)q)s,
~ By~
Var(bes) = Var(A—Iks)
@2 ) )
= Az ((Iks (Sks) - (Iks - aks) ) =0

(52)

And asthe bis areindependentastimatorsfor all s, Var(gi) =

Var(b =), Var(bis) = 0.
ThusthetransmonprobablIltlesconsideredireoptimalin thesense
thatthey leadto a null varianceestimator Comparghemwith the
onesusedin [12]:

FyI!

Eh th

Our I quantitiesarePattanaiks hemisphericapotential.

4.2.1 Biasing with importances as dual of radiosities
Considerthedual of theradiositysystem:
JE =" RiFiJ¢ +q (53)
J

andsupposeve usethe probabilities:

pis = RijiJ]‘?
1] J,Lq _ql
and
sz — Qi
6; = —lJf

It canbe easilyproventhatthe samecorrespondenceetweersys-
tems(53) and (44) exists asbetweenthe radiosityand power sys-
tems.Thus,for g; = A;q;, thenI? = A;J?. Thus,thetransition
andsurvival probabilitiescanbe expresseagimply as

I —q
and
6; = If’ _, gi
It

whereq; = A;q;. In this way we obtainthe sameresultsasin the
previoussection.



4.3 Complexity

We canusethe sameamgumentatiorasin section3.5, andalsothe

obserationthat K = max(ff?) = max(f?f) to bound) " _ k7,
i i
using K. Fromthis boundingwe canobtainthe sameresultsasin

[14].

4.4 Other unbiased estimators

Justaswe have generalizedhe ® estimatotin sectiord, thesame

canbe donewith the ;2% and 2L estimators. The generalized

estimatorlf};, canbedefinedin asimilarway asthe ®r one,just
it will only scoreonthe patchwherethe pathdies,andthevalueof

35” is,if s, h1, ho, ..., hi_1,1isthetrajectoryof thepath:

30 _ B P By Fuany Bay  Rnuy Frcai @,
o _

Ai Pshy Ony Phihg Ony " Ony_y Phi_yi Ps(1—65)

With thesameapproactasin section3 we canfind thevariance:

*
bi Kis

2
=g 2.7y, O (54)

Var(l/B\i) =

This estimatoris interestingbecauset leadsto a (finite path
length)null varianceestimatomwhen

R;Fi; I
Dij = Ig —w
¢ = Oni, 0; = e andp, = —=2=Ui=%)  Usingthesevalues
Ii q)s(lg —qs)

andthevaluein (46),(54)con/erts(sforthepatcm suchthatg; = 1)
into:

5 1 bis
Var(B;) (F Z T Z &, (12 — q5)> — b2
4 8 ¢ 8
bi
- (A—ibiAi) —p2=0 (55)

becausezs ®,(I2 — qs) = biA;. Thisnull variancecaseis ob-
viously optimal andis in apparentontradictionwith the resultin
[17]. Therethe optimal probabilityfor sourceselectionwasgiven
asps x ®,+/I — qs. But notethatin [17] thetransitionprobabil-
ities consideredverepure,notbiasedForm Factors.

The generalizeobstimator% is alsodefinedin a similar way as
the &1 one,justit will scoreon eachpatchit hits, exceptwhenit
dies,andthevalueofggl) is updatedwith, if ¢, h1, ha,..., hi—1, s
is thetrajectoryof the path:

Ri Fony Rhy Fhiny By Bhuoy Fruoai @
A; Pshy Ony Dhihs Oho  On,_y Phy_yi Psbi

20 = R; Fspy Rpy Fhyny Rpy
.

And thevariancecanbefoundto be:

14 2R;&)K],

vor(B) =Y e LEEREE (o)

4.5 The continuous case

The sameremarksasin section3.7 arevalid here. Thatis, all the
resultsobtainedarealsovalid for the point-to-pointForm Factors,
or pureParticle Tracing. Again, system(36) becomesan integral
equation.

5 Results

Herewe presenin figure5 someexperimentgerformedon avery
simplescenea cubicalenclosurewith eachfacedividedinto nine
equalsize patcheqFig.4), thereflectvities of the facesbeing0.3,
0.4,0.5,0.6,0.7, 0.8 respectiely, anda sourcewith emissvity 1
in the middle of thefirst face,in patch5. Thuspatchesl to 9 re-
ceive no directlighting and have reflectiity 0.3, patcheslOto 18
reflectvity 0.4,andsoon. For this sceneve computedareference
solutionwith the &7 estimator(asdefinedin [14]) and10” paths.
This provided uswith theb; values.Thek;, valueswereobtained
with asimulationwith theinfinite shootingestimator(asdefinedin
[14], with threshold.001)for thesamescenewith thereflectvities
substituteddy its squaredivided by the averagereflectvity, thatis,
we obtainedasolutionof equatior. We couldnotusethe ®r esti-
matorbecausehereflectiity for the sixth faceis greaterthanone,
andthusit makesno sensdo useit assurvival probability
Then100runsof 10* pathseachfor bothshootingandgathering

39 \ 38 / 37
a2\ a1 [ a0
19 45 44 43 28
20 29
R1 80
12 11 10
/
22|23p4 15 14 13 B3[32|31
// \\
by 18 17 16  hg
26 35
25 57 53 57 34
51 / 50 49
48 / 47 46

Figure4: Numberingthe patchesn the testscene.Patchesl to 9,
with reflectanceé.3, arenot shavn. Patch5 is theemitter Patches
10to 18 havereflectancd.4,19to 27 0.5andsoon.

estimatorgakingassurvival probabilityfor eachpatchtheaverage
reflectvity (whichis 0.55)andfor gatheringp; = /’;‘; (thefraction
of total area). The transitionprobabilitieswerethe Form Factors.
We usedthe 100setsof resultsto obtainthesquareerrors,andthus
an estimatedvalue of the variancedor a single path. The formu-

laefor the expectedvariancesaretheformulae3 and 35, with the
approximatior¢; = 0 (andfor eachpatché; = 0.55, theaverage
reflectvity). Figure5 shaws thatthe obtainedresultsarein con-
cordancewith the theoreticallyexpectedones.Althoughthe scene
usedin thetesthasno occlusionsjt shouldbe notedthatthe vari-

anceof a patchradiosity doesnot dependon whetherit is dueto

director indirectillumination.

6 Conclusions and future research

We have generalizedhe resultsof [14], [16] and[19] to the case
of generalizedransition probabilities,obtaining closedformulae
for the varianceof the estimatorsstudied. Thoseare presentedn

table4. Someparticularcasesarestudied,including differentnull

varianceestimators. A necessaryand sufiicient conditionfor the
existenceof thevarianceis alsogiven. A heuristicfor theexistence
of thevariancen thegenerakasewill alsobesearchedor, similar
to the one given for the generalizedabsorptioncase. The study



AA
[ " LI 4
! [ ] [ Lo 2
A
m A am = I
A i ..A‘
05 ab m"ugnd 4 L s
A l
pligiepliy
0
4 Y~ 9o e 9 W W o® H ¥ E Q0 @ 9 o
S 838 28 R8I IS QL E B
0,04 (@
0,035 4
m Lt
Am
0,03
A g [ ]
- L]
0,025 Ha
R ag o R
- a a B
0,02 u L] ]
i AlAA .A;
A, a L]
[
0,015 = N R ]

L]

] A 0B
!‘., ph¥ga 2
0,005

AnpnmgEiin

0

4 Y N 9 @ 9 9 N L ® H TN QO © 9 o
4 49 94 3 8 83 8w e ¥ YOI TOD

(b)
Figure5: Comparisorof the expectedvarianceqplottedassquare
dots)andthe experimentallyobtainedsquareerrorsfor the gather
ing (a) andshooting(b) estimatomwith survival probabilityequalto
the averagereflectvity, for the 54 equalareapatchef acube(on

x axis),with facereflectiities 0.3,0.4,0.5,0.6,0.7,0.8. A source
with emittancel is in themiddle of thefirst face.

of thegeneralnon-difuse)Renderingequationwill beundertaken
in two ways. First, theresultsobtainecherewill beextendedo the
continuousnon-difusecasdan asimilarwayasin [17]. Secondthe
resultsin [3] on differentestimatorgor the secondkind Fredholm
integral equationwill be analysedandcomparedo the previously
obtainedextensions.

Table4: Variancedor the RandomWalk estimatorswith general-
izedtransitionp;;, andsurvival probabilities f;. ks is thesolution

R2F2 .
of thesystemk;s = Y. =4 (k;s + ;5 Es) andkj, is thesolu-

Jj 0ipij
. N RIF%
— i gi
tion of thesystemk}, = Zj m(njs +38;:%5)
Shooting | Patch scored Variance
@ 9; mis 2
=T last Togr D Ps Aty i
D (142R;€;)K], 2
(14+2R;&; )k}, 2
&7 all 0;y, ®s . b2
Gathering | Patch scored Variance
Es 9; Es .. _p.2
i—R, last Pi ZS mlﬂs bq,
Es 0; Es+2bs 2
£ allbutlast | 237 EedZbey —p,
0; 2
E, all i ZS(ES + 2bs)ﬁis —b;
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Abstract

Image synthesis often requires the Monte Carlo estimation of integrals. Based on a generalized con-
cept of stratification we present an efficient sampling scheme that consistently outperforms previous
techniques. This is achieved by assembling sampling patterns that are stratified in the sense of jittered
sampling and N -rooks sampling at the same time. The faster convergence and improved anti-aliasing

are demonstrated by numerical experiments.

Categories and Subject Descriptors (according to ACM CCS): G.3 [Probability and Statistics]: Prob-
abilistic Algorithms (including Monte Carlo); 1.3.2 [Computer Graphics]: Picture/Image Generation;
1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism.

1. Introduction

Many rendering tasks are given in integral form and
usually the integrands are discontinuous and of high
dimension, too. Since the Monte Carlo method?? is in-
dependent of dimension and applicable to all square-
integrable functions, it has proven to be a practical
tool for numerical integration. It relies on the point
sampling paradigm and such on sample placement. In-
creasing the uniformity of the samples is crucial for
the efficiency of the stochastic method and the level
of noise contained in the rendered images.

The most popular uniform sampling schemes in
graphics are jittered and Latin hypercube sampling.
Jittered sampling? profoundly has been analyzed by
Mitchell'® and in fact can only improve efficiency.
Chiu et al.! joined the concepts of jittered and Latin
hypercube sampling obtaining an increased uniformity
of the samples, but no minimum distance property
can be guaranteed that has been proved to be useful
in graphics?. In consequence care of the choice of the
strata has to be taken manually, since warping!® these
point sets in order to e.g. sample long thin light sources
can dramatically reduce the benefits of stratification.

We present an unbiased Monte Carlo integration
scheme that consistently outperforms the previous ap-
proaches, is trivial to implement, and robust to use
even with warping. This is obtained by an even more

@© The Eurographics Association and Blackwell Publishers 2002.
Published by Blackwell Publishers, 108 Cowley Road, Oxford OX4
1JF, UK and 350 Main Street, Malden, MA 02148, USA.

general concept of stratification than just joining jit-
tered and Latin hypercube sampling. Since our sam-
ples are highly correlated and satisfy a minimum dis-
tance property, noise artifacts are attenuated much
more efficiently and anti-aliasing is improved.

2. Monte Carlo Integration

The Monte Carlo method of integration estimates the
integral of a square-integrable function f over the s-
dimensional unit cube by

| Nt
r)dr ~ — i) 1

[, T 5 3 1E) 1)
where the & € [0,1)° are independent uniform ran-
dom samples. The efficiency of the stochastic method
is inversely proportional to the variance opjc of
the estimator (1). Among many variance reduction
techniques??: 23. 11 increasing the uniformity of the
samples by stratification has been proven to be bene-
ficial in graphics!3: 2. We briefly review the facts rele-
vant to this paper; for a more complete survey we re-
fer to e.g. Glassner’s book® or the notes? of the course
"Beyond Monte Carlo’.

2.1. Jittered Sampling

For jittered sampling? the unit cube is subdivided into
N cubes of equal measure %, where in each cube one
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Figure 1: All elementary intervals in base b = 2 and

dimension s = 2 with volume X2(E) = .

random sample is taken (see figure 2 (a)). It is simple
to show? that the variance of the resulting estimator
never can be higher than o%c.

2.2. Latin Hypercube Sampling

The idea of Latin hypercube sampling (N-rooks sam-
pling) is to subdivide the unit cube into N intervals
along each coordinate. Then the samples are chosen
randomly such that each interval contains exactly one
point (see figure 2 (c)). Since there are more restric-
tions in the placement of Latin hypercube samples in
comparison to jittered sampling, the variance

min{s—1,1}
UEHS < <L) ‘UI%/IC
—\N-1

can slightly increase. Nevertheless it never can be

much higher and often is reduced in practical applica-
tion.

3. Uniform Samples from (¢,m, s)-Nets

Chiu et al.! combined jittered and Latin hypercube
sampling in order to achieve more uniformity. An even
more general concept of stratification has been de-
veloped by Sobol’2! that finally yielded the so-called
(t,m, s)-nets and (¢, s)-sequences!?.

In order to explain the concept, the notion of the
elementary interval

L s a; aj—f—l s
E.—H{m, o )g[o,l)

j=1

is required, where 0 < a; < bl and 0 < l; are integers.
Consequently the volume of E is

“TT L iy

)\S(E)_HE_b =1l
Jj=1

As an example figure 1 shows the structure of all ele-

mentary intervals with the volume A2 (E) = 15 in base

b = 2 for dimension s = 2.

Given two integers 0 < t < m a set of N = b™ s-
dimensional points z; is called a (¢, m, s)-net in base
b if every elementary interval with volume A\ (E) =
b'™™ contains exactly b® points.

t can be considered as a quality parameter that is

O
o ol o

.
o
1
.
.

(a) (b) (c)

Figure 2: Realization of (a) jittered and (c) Latin hy-
percube sampling. The realization of a (0,4,2)-net in
base 2 in (b) not only combines both sampling tech-
niques, but imposes even more stratification as can be
seen from the corresponding dyadic elementary inter-
vals in figure 1.

best if chosen small. For ¢ = 0 each elementary inter-
val contains exactly b° = 1 point. Consequently the
b** points of a (0, ks, s)-net in base b with k € N are
stratified like both jittered and Latin hypercube sam-
pling points at the same time as can be seen in figure 2
(b). In addition the structure of the elementary inter-
vals imposes even more stratification resulting in an
increased uniformity of the samples.

In the sequel we explain how to efficiently construct
such point sets suited for unbiased Monte Carlo inte-
gration.

3.1. Deterministic Generation

(t,m, s)-nets are much more uniformly distributed
than random samples can be. This is exploited by
quasi-Monte Carlo integration!®, where deterministic
(t,m, s)-nets are used for the estimator (1): For cer-
tain, very restricted function classes a quadratically
faster convergence can be guaranteed as compared to
random sampling.

Most deterministic constructions of (¢,m, s)-nets
are based on (¢, s)-sequences: For an integer t > 0
an infinite point sequence (y;)i2 is called a (¢,s)-
sequence in base b, if for all £ > 0 and m > t the
point set {yrsm, ..., Yr+1pm_1} is a (t,m, s)-net.

Consequently the first ™ points of a (t, s)-sequence
form a (t,m,s)-net. A second approach is to add
the component ;& to the first b points of a (t,s)-
sequence always yielding a (t,m, s 4+ 1)-net.

Since explaining explicit constructions is beyond the
scope of this paper, we refer to Niederreiter’s book!®
and provide the compact implementation (section 7)
of three (0, 1)-sequences that can be used to generate
a (0, 2)-sequence and (0, m, 2)-nets.

© The Eurographics Association and Blackwell Publishers 2002.
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Figure 5: Owen scrambling (top row) and random digit scrambling (bottom row) in base 2. A difference is hardly
perceivable. First intervals are swapped horizontally; the final image then includes the permutations along the

vertical direction, too.

g . \
Figure 3: The effect of a Cranley-Patterson rotation
by the random vector &.

Figure 4: Randomizing the (0,4,2)-net in base 2 in
a) by a Cranley-Patterson rotation can degrade the
uniformity as shown in b), whereas ¢) random digit
scrambling preserves the properties of the net.

3.2. Randomized Generation

The quasi-Monte Carlo method yields consistent but
biased estimators. However, it is possible to randomize
a (t,m,s)-net P := {ao,a1,...,an—1} in such a way
that

a) the randomized point set X := {zo,z1,...,zn-1}
remains a (t,m, s)-net (with probability 1) and

b) z; is uniformly distributed in [0,1)° for i =
0,1,...,N —1.

Condition b) is sufficient to make (1) an unbiased esti-
mator for all square-integrable functions'6: 8. Preserv-
ing the uniformity properties of the samples by condi-
tion a) allows one to benefit from the improved conver-
gence of the quasi-Monte Carlo method. The resulting

© The Eurographics Association and Blackwell Publishers 2002.

variance reduction technique belongs to the domain of
randomized quasi-Monte Carlo integration!s- 10,

3.2.1. Cranley-Patterson Rotations

Cranley and Patterson® randomized a point set P by
just adding the same random shift £ to each point
a; € P modulo 1 as illustrated in figure 3. Originally
developed for point sets that tile periodically, applying
a so-called Cranley-Patterson rotation to a (t,m,s)-
net can destroy its stratification structure (see figure
4) thus violating condition a).

3.2.2. Owen Scrambling

Owen’s randomization scheme preserves the structure
of (¢,m, s)-nets in base b (with probability 1). For the
(involved) formulas we refer to the original work!6.
The actual algorithm, however, is simple to explain.
Starting with H = [0,1)° the following steps are ap-
plied to each coordinate (see figure 5):

1. Slice H into b equal volumes Hi, Ha, ..., Hp, along
the coordinate.

2. Randomly permute these volumes in an indepen-
dent way.

3. For each volume Hj, recursively repeat the proce-
dure starting out with H = Hj,.

Owen'” proved that using an Owen-scrambled
(0, m, s)-net in (1) yields the upper bound

) b min{s—1,m} )
00s < (m) S OMC

for the variance o%g of the resulting estimator. For
b = N this (0, m, s)-net sampling degenerates to Latin
hypercube sampling. Decreasing the base b implies
more restrictions to the sample placement resulting in
an increased variance bound. Although this variance
bound is strict!?, for most functions to be integrated
the variance is reduced.
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(ao,bo) (co, do) (€0, fo)
(a1,b1) (c1,d1) (e1, f1)
(az,b2) (c2,d2) (e2, f2)
(a3, bs) (c3,ds) (es, f3)

Figure 6: Multidimensional sampling. The highlighted
sample (a1, b1, co,do, €3, f3) is padded from the strati-
fied patterns (as,b;),(ci,ds), and (es, fi) using random
permutations.

Due to the finite precision of computer arithmetic
the infinite scheme in fact becomes a finite algorithm.
Nevertheless the number of required random permuta-
tions behaves exponentially in the precision so that an
efficient implementation remains quite challenging®.

3.2.3. Random Digit Scrambling

Instead of using independent random permutations in
each level of the recursion of Owen scrambling, only
one random permutation can be used (see the bottom
row of figure 5). This subset of the original method
obviously still fulfills the conditions of section 3.2, but
requires only a number of permutations linear in the
precision. Opposite to Owen’s scrambling method, us-
ing random digit scrambling preserves minimum dis-
tance properties contained in the net to be scrambled.

A highly efficient implementation becomes available
for (t,m, s)-nets in base b = 2, where a permutation
simply can be realized by the XOR operation 5: Each
coordinate of the point set is randomized by just per-
forming a bitwise XOR of one random bit vector (i.e. a
random integer) and the components of the point set
(for the trivial realization see section 7).

4. Multidimensional Sampling

Typically the integrands in image synthesis ex-
pose high correlation with respect to certain low-
dimensional projections, e.g. the pixel area, lens
area, or area light sources. Therefore high-dimensional
samples are padded using low-dimensional strati-
fied patterns20. Correlation artifacts are avoided by
randomly permuting the sample order of the low-
dimensional patterns (see figure 6). Additionally the
number of samples becomes independent of dimen-
sion making this approach more practical than jittered
sampling.

Although constructions of (¢, m, s)-nets exist for any
dimension, choosing the optimal quality parameter
t = 0 requires b > s — 1 for m > 2. For s > 3 this

light source

Yo
yb"” —1
pixel Ypm
Xo :
T > Y2 —1
Tyl—m_1
Ypl —pm
Ypl—1

Figure 7: Trajectory splitting, see the explanation in
section 4.1.

prohibits to use the extraordinarily efficient vector-
ized implementations in base b = 2. However, using
the simple algorithms from section 7, it is possible to
pad high-dimensional samples in an even simpler way:
Instead of using random permutations we just pad
independent realizations!® of randomly digit scram-
bled nets (or Owen-scrambled nets). Since condition
(2) (section 3.2) holds for the low-dimensional real-
izations, each resulting high-dimensional sample x; is
uniformly distributed in [0,1)° for ¢ =0,1,...,N —1,
too, guaranteeing an unbiased estimate (1).

4.1. Trajectory Splitting

Considering the example of distribution ray tracing?
splitting trajectories®, e.g. tracing multiple shadow
rays for one eye ray, can increase efficiency depend-
ing on the correlation coefficient with respect to the
split dimensions?2.

From the definition in section 3.1 it follows that the
first b' points of a (¢, s)-sequence (y;)52, are a (,1, s)-
net. In addition each point set {yim,...,Yut+1pm—1}
is a (t,m, s)-net for 0 < i < b'~™. This observation can
be used to realize trajectory splitting by extending the
scheme from the previous section:

For the example of pixel anti-aliasing and illumi-
nation by an area light source two independent re-
alizations are required: An instance of a random-
ized (0,1 — m,2)-net of b'~™ samples z; in the pixel
and the first 8 = b'~™ . b™ samples y; of an in-
stance of a randomized (0,2)-sequence on the area
light source. For the i-th sample in the pixel then 6™
shadow rays have to be traced towards the samples

© The Eurographics Association and Blackwell Publishers 2002.
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Figure 8: Comparison of pure random (MC), jittered (JS), and Latin hypercube (LHS) sampling with our approach

using random digit scrambling (RDS).

{yivm, ..., y@+1)pm—1} on the light source (see figure
7) yielding the estimator

/ / f(=z,y)dydzx
(0,12 J[0,1)
1V

m_q (i+1)b™ -1

Q

By using the subsequent (0,m,2)-nets of a (0,2)-
sequence to realize trajectory splitting, the samples
on the light source itself form a (0, [, 2)-net obtaining
superior stratification properties in a fully automatic
way. This would be rather costly to achieve by jittered
or Latin hypercube sampling.

5. Numerical Results

For the application examples two representative set-
tings were selected: An overcast sky model daylight
simulation and an indoor scene with very long and thin
light sources. The resulting four-dimensional integrals
compute pixel anti-aliasing with direct illumination.

The new scheme (2) with x; and y; from the al-
gorithms in section 7 is compared to pure random,

© The Eurographics Association and Blackwell Publishers 2002.

jittered, and Latin hypercube sampling. In the exper-
iments a splitting rate of 4 was used, i.e. for each eye
ray 4 shadow rays were traced. For each pixel an inde-
pendent realization of the sampling scheme was used.

Trajectory splitting for jittered and Latin hyper-
cube sampling was realized by generalizing the mul-
tidimensional sampling scheme?0 in a straightforward
way: N samples and 4N samples were generated on the
pixel and the light source, respectively. Then the set
of 4N points randomly is split into N sets of 4 points
and each set is assigned a pixel sample in canonical
order.

The error graphs in figure 8 are determined by com-
puting the Li-norm of a measurement to a converged
master image. For the case of the hemispherical over-
cast sky integral our scheme slightly outperforms jit-
tered and Latin hypercube sampling, is much simpler
to implement, and saves about 10-15% of the total
number of rays to be traced in order to obtain the
same quality. Due to the complex shadowing the over-
all gain by stratification is small.

Warping the samples onto the long thin light sources
in the conferences room scene exposes the projection
regularity of the samples. Therefore Latin hypercube
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Figure 9: Improved anti-aliasing and noise reduction
for the conference room scene with long light sources.
Latin hypercube sampling in the left image and our
new sampling scheme on the right.

sampling significantly outperforms jittered sampling.
The samples from the new scheme, however, are strati-
fied in a more general way and satisfy a minimum dis-
tance property reducing the error by approximately
15% as compared to Latin hypercube sampling.

Comparing the zoomed images in figure 9 shows
that the high correlation of the samples from the new
scheme results in superior anti-aliasing and noise re-
duction as compared to Latin hypercube sampling.
This becomes even more apparent in animations,
where uncorrelated noise causes distracting flicker.

6. Conclusion

We presented new algorithms for efficiently generating
high-dimensional uniform samples yielding unbiased
Monte Carlo estimators. The implementation of the
highly correlated sampling scheme is extremely simple
and due to the generalized concept of stratification
previous patterns are outperformed consistently.

7. Appendix: Algorithms

Using the following code fragments it is possible to
verify the results of the paper with any ray tracer in
a very short amount of time. The routines RI_vdC,
RI_S, and RI_LP implement the radical inverse func-
tions by van der Corput!®, Sobol’?!, and Larcher
and Pillichshammer!?, respectively, which are (0,1)-
sequences in base b = 2 (see section 3.1). Random-
ized digit scrambling (section 3.2.3) is realized by
just calling the routines with a random integer in-
stead of the default parameter uint r = 0. Complet-
ing RI_vdC with the component 2% yields the famous
Hammersley point set, which in fact is a (0, m, 2)-net.
Using z; = (%,RI_LP(i)) instead, however, results
in a (0,m,2)-net of much higher quality. Combining
yi = (RI_vdC(%),RI_S(i)) results in the first two com-

ponents of the Sobol’ sequence, which form a (0, 2)-
sequence as used in section 4.1.

typedef unsigned int uint;

double RI_vdC(uint bits, uint r = 0)

{

bits = ( bits << 18)

| ( bits >> 16);
bits = ((bits & 0x00ff00ff) << 8)

| ((bits & OxffOO0ff00) >> 8);
bits = ((bits & 0xOf0f0f0f) << 4)

| ((bits & 0xfOf0f0f0) >> 4);
bits = ((bits & 0x33333333) << 2)

| ((bits & Oxcccccccc) >> 2);
bits = ((bits & 0x55555555) << 1)

| ((bits & Oxaaaaaaaa) >> 1);
bits "= r;

return (double) bits / (double) 0x100000000LL;
}

double RI_S(uint i, uint r = 0)
{
for(uint v = 1<<31; i; i >>= 1, v ~= v>>1)
if(i & 1)
r "= v;

return (double) r / (double) 0x100000000LL;
}

double RI_LP(uint i, uint r = 0)
{
for(uint v = 1<<31; i; i >>= 1, v |= v>>1)
if(i & 1)
r "= v;

return (double) r / (double) 0x100000000LL;
}
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Abstract. As opposed to Monte Carlo integration the quasi-Monte Carlo method
does not allow for an error estimate from the samples used for the integral approxi-
mation and the deterministic error bound is not accessible in the setting of computer
graphics, since usually the integrands are of unbounded variation. We investigate
the application of randomized quasi-Monte Carlo integration to bidirectional path
tracing yielding much more efficient algorithms that exploit low-discrepancy sam-
pling and at the same time allow for variance estimation.

1 Introduction

The global illumination problem consists in rendering photorealistic images
of a virtual scene and camera descriptions (for a detailed introduction see
[ ]). A very basic algorithm for the solution of this light transport prob-
lem is the bidirectional path tracing algorithm [ , ], which in the
context of the quasi-Monte Carlo method has been investigated in | ]

We first generalize this work by introducing multiple importance sampling
using the balance heuristic for the quasi-Monte Carlo method, which is supe-
rior to the previous approaches of bidirectional path tracing. By sacrificing
only little performance randomized quasi-Monte Carlo algorithms allow for
integration error estimation. By numerical experiments we compare the effi-
ciency of different randomized quasi-Monte Carlo approaches and illustrate
how they smoothly blend between the pure Monte Carlo and the quasi-Monte
Carlo case.

As a result the new scheme of padded replications sampling yields a bidi-
rectional path tracing algorithm that is highly efficient, allows for an error
estimate and is very simple to implement.

2 Bidirectional Path Tracing

We briefly recall the path integral formulation of the global illumination
problem | ], which in combination with multiple importance sampling
yields the bidirectional path tracing algorithm. Furthermore we define the
problem of insufficient techniques that is inherent with multiple importance
sampling.



2.1 The Global Illumination Problem in Path Integral Form

A light path T = xgx1 ...z of length k is characterized by its interaction
points z; with the scene surface S. The union of all path spaces

Pr:={T=wx0x1...25 | 2; € Sfor 0 <i <k}

of a specific light path length k forms the path space P := (J,—, Pi. For
Lebesgue measurable subsets Dg, D1,..., D C S we define the measure

/J,k(DQ X D1 X ... X Dk) = A(Do) . A(D1> LR A(Dk) s

where A is the area measure, and pu(D) := > po, ui(D NPy) for D C P. For
a path € Py, the measurement contribution function is

[i(&) := Le(zo — x1) G(zg < 21)

k-1
: <H fs(@izn — 2 — 2i11) G(a; < $i+1)> W @y = 1)

=1

where the light sources are determined by the emittance L. and W are
the detector functionals, which formalize the camera description. The bidi-
rectional scattering distribution function fs describes the surface properties.

| cos 8| cos 0]

< = > —_—
Gz —y)=V(z<y) P
is the geometry term, where 6, is the angle between the surface normal in
x and the vector between z and y; 6, is defined analogously. The visibility
function V(z < y) is 1 if 2 and y are mutually visible and 0 otherwise. Then
the global illumination problem consists in computing detector values I; by
the path integral

=3 [ h@) = [ H@uta) M

2.2 Multiple Importance Sampling

The problem of importance sampling [ ] is to find an efficient proba-
bility density function p. However, often it is possible to specify a whole set
p1,P2,...,pNn of probability density functions instead of just one single p.
While each probability density function of the set may reduce the variance of
the importance sampling estimator only in a possibly unknown subdomain of
D, multiple importance sampling, a variance reduction technique introduced
by [ ] and analyzed in | ], allows for the combination of samples
which are distributed according to different probability density functions.



A probability density function p can be used as a technique, if we are able
to generate p-distributed samples and to evaluate' p(x) for a given x € D.
Assuming that we have N techniques with their associated probability density
functions

p1,P2,---,PN D_>|Ra> )

a so-called heuristic consists of N corresponding weight functions
wi,wa, ..., wy : D— R
1, W2, s WN 0
such that

1. Zivzl wi(z) =1 for all z € D with f(z) # 0 and
2. w;(z) =0 for all z € D with p;(z) = 0 holds.

Note that these conditions imply that each € supp f can be generated by
at least one? technique p;. Then the multiple importance sampling estimator

Lo~y f(@is)
fx)dr ~ — wlxl4 2
| 1@ 2 2 Yo o 2)
is unbiased, where the z; ; are p;-distributed for 1 <7 < N and 1< j < n.
We use the so called balance heuristic which has the weight functions
pi(®)
wi(r) == = - (3)
> o1 Pe(@)

The behaviour of the estimator (2) using (3) is comparable to importance
sampling with p = % Zévzl De-

2.3 The Bidirectional Path Tracing Algorithm
The path space samples T € P are generated in three steps (see Fig. 1 (a)):

1. generate a light subpath by a random walk starting on a light source,
2. generate an eye subpath by a random walk starting on a detector, and
3. connect both subpaths deterministically.

Since the ray casting function is very expensive, we use all possible connec-
tions to form additional path space samples as illustrated in Fig. 1 (a). The
resulting associated probability density functions are denoted by py ;, where
k is the path length and ¢ the number of points of the light subpath. Figure
1 (b) shows all possible techniques with their associated probability density
functions for path length k = 3.

1 At least we must be able to decide whether = € supp p holds for a given = € D.
2 This can happen due to disjoint supp p; or the problem of insufficient techniques
as addressed in Sec. 2.4.
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Fig.1. (a) Generation of path space samples and (b) techniques with their as-
sociated probability density functions for path length & = 3, where each ps; is
positioned at its deterministic connection. A pinhole camera model is assumed
where the eye subpaths originate from the pinhole through the image plane.

Applying multiple importance sampling (2) with the balance heuristic (3)
to the path integral formulation of the global illumination problem (1) yields
the bidirectional path tracing estimator

L=y /fj Y (2 zzz%, @)

k=1"" j=1i= Zz 0 Ph,t(Th,i,5)

where n is the number of samples per technique and for 1 < j <n the Zp; ;
are generated according to py ;. In order to handle the infinite sum we can use
absorbing Markov chains for subpath generation. A biased alternative is to
compute the approximation up to a maximum path length k.. For example
kmax = 2 implies that instead of the full solution only direct illumination is
calculated.

The possibility to achieve a valid path using the eye connection techniques
Dk.k, where the end of a light subpath is connected with the eye point, is very
small and most samples are of zero contribution, if the image is computed
pixel by pixel. Therefore we allow samples of these techniques to contribute
directly to any pixel of the image.

2.4 The Problem of Insufficient Techniques

Multiple importance sampling tries to hide the weaknesses of single probabil-
ity density functions, but nevertheless can fail. In order to illustrate the limits
of the estimator (2) suppose we have a subdomain G C D for which only one
technique is accessible. Then multiple importance sampling degenerates to
standard importance sampling on G due to an insufficient set of techniques.
For bidirectional path tracing the problem of insufficient techniques arises
for singular surface properties, e.g. mirrors that usually are modeled by a
Dirac delta distribution in the bidirectional scattering distribution function
fs. In Fig. 2 (a) such a difficult path is sketched: It can only be generated by
the technique py ¢ that uses no light subpath. The resulting high variance is
clearly visible in Fig. 2 (b) and is perceived as white dots on the mirror.
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Fig. 2. The problem of insufficient techniques: (a) sketch of difficult path and (b)
resulting high variance on the mirror.

3 Quasi-Monte Carlo Bidirectional Path Tracing

The Koksma-Hlawka inequality predicts that quasi-Monte Carlo integration
performs superior to Monte Carlo integration for integrands of bounded vari-
ation in the sense of Hardy and Krause [Nic92]. For integrands with unknown
discontinuities like the measurement contribution function in (1) only pes-
simistic error bounds are available [[1a71] due to unbounded variation. Nev-
ertheless numerical experiments [[Kel98a] reveal that even for these functions
low-discrepancy sampling performs better than random sampling.

3.1 Multiple Importance Sampling for Quasi-Monte Carlo

In order to apply quasi-Monte Carlo integration to bidirectional path tracing
the subpath generation has to be done using high-dimensional low-discrep-
ancy points, where the dimension depends on the length of the subpaths.
Due to the transport operator points at the beginning of a subpath affect the
integration error more than points at the end of a subpath. In accordance the
lower dimensions of low-discrepancy points often are better equidistributed
than their higher dimensions. Therefore the first four dimensions are used to
determine the first point of each subpath, the next four for the first scattering
events and so on. This interleaving scheme is similar to [[Kel98b], however,
now we use the multiple importance sampling estimator (2) with the bal-
ance heuristic (3) and deterministic low-discrepancy sampling. In order to
avoid aliasing different light subpaths have to be used for the estimation of
each pixel functional. This is particularly important for the eye connection
techniques py, 1, (see also Fig. (5)) and is achieved by using consecutive subse-
quences of a low-discrepancy point sequence instead of a repeated finite point
set.



4 Randomized Quasi-Monte Carlo Bidirectional Path
Tracing

In | ] Owen surveys randomization techniques for quasi-Monte Carlo
integration. Randomized quasi-Monte Carlo integration exploits the benefits
of low-discrepancy sampling and at the same time allows for an efficient error
estimate, which is not accessible for quasi-Monte Carlo integration.

From an initial low-discrepancy point set P := {a1,as,...,am}t C I° we
generate r randomized replications X; = {1 j,22;,...,%m,,;} C I° with
1 < j <r such that

1. each replication X preserves the low-discrepancy properties of the initial
point set P and

2. the replications x;1,%;,2,...,Z;, of each point a; € P are independent
and uniformly distributed on I°®.

Then the randomized quasi-Monte Carlo estimator with a total of n = rm
samples

I 1 &
. f(z)dr ~ ;; oo ;f(ﬂ%,j) (5)

is unbiased. The expected error is bounded by the square root of the variance
o? of the above estimator and can be estimated in an unbiased way using the
samples of (5):

T T m

Ry D PO CHET) S ) SHICH) BENNC

k=1 i=1 7j=1 =1

Choosing the number r of replications just large enough to obtain a good
variance estimate very little performance of the low-discrepancy quadrature
is sacrificed and adaptive sampling controlled by error estimation yields much
more efficient rendering algorithms.

As long as the replications z;1,%;2,...,%;, are independent and uni-
formly distributed on I° the estimator (5) is unbiased and the variance esti-
mator (6) remains valid. Thus the initial point set P and its replications X
do not need to be of low-discrepancy, however, their choice affects variance
and therefore error.

For bidirectional path tracing the initial point set P with m points and
the replication scheme have to be selected. Then each pixel functional is
estimated by r independent random replications of P. The dimensions are
assigned identically to the quasi-Monte Carlo setting in Sect. 3.1.

4.1 Cranley-Patterson Rotations

Cranley and Patterson | | suggested the following form of randomization:
For a replication X; they added a random shift &; to each point a; of the



initial point set P. Thus we have z; ; = (a; + §;) mod 1 with independent
realizations {; ~ U(I®) for 1 <i<mand 1 <j <r.

Most low-discrepancy constructions are designed to minimize the star-
discrepancy in the sense of (¢,m,s)-nets or (t,s)-sequences. By randomly
shifting a point set P this discrepancy of a replication X; can be different
and especially worse than the original discrepancy [ |, since the (t,m, s)-
net property is not shift invariant. Points designed to also minimize the torus
discrepancy | | are better suited for Cranley-Patterson rotations. The
equidistribution properties of good lattice points remain almost unaffected
when being shifted [ , ]

4.2 Owen Scrambling

In | ] Owen presented a randomization scheme for (¢,m,s)-nets and
(t, s)-sequences in base b. Starting with H = I° the following algorithm is
applied to each coordinate:

1. Slice H into b equal volumes Hy, Ho, ..., Hy along the coordinate.
2. Randomly permute these volumes in an independent way.
3. For each volume Hj repeat the procedure with H = Hy,.

Due to the finite precision of computer arithmetic the infinite scheme in fact
becomes a finite algorithm | ]

4.3 Padded Replications Sampling

For the light transport problem the benefits of quasi-Monte Carlo integration
diminish in high dimensions | ]. So instead of using a computationally
expensive high-dimensional low-discrepancy point set as initial point set P
(see Fig. 4 (a)), the structure underneath the transport problem can be ex-
ploited: The light and eye subpaths are generated by area sampling and scat-
tering, which both are two-dimensional problems. Thus the idea of padded
replications sampling is to use a random replicate of one two-dimensional ba-
sis pattern for each two-dimensional subproblem as illustrated in Fig. 3. This
in fact only changes the initial point set P (see Fig. 4 (b)) of the replication
scheme. Of course P no longer is of low-discrepancy, but is much cheaper to
generate and performs at least as good as shown in the experimental section.

5 Latin Supercube Sampling

Similar to padded replications sampling Latin supercube sampling | ]
is a method to expand low-dimensional samples to high dimensions: The low-
dimensional point sets are randomly permuted before padding. Suppose that
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Fig.3. Subpath generation by padded replications sampling using Cranley-
Patterson rotations for e.g. a light subpath. The basis pattern size is m = 4 and
the dimension of the padded points is s = 6.

Dimensions 1,2 3,4 5,6 7.8
A ) ) A
(a) Scrambled Hammersley 2 3 3 T3 2 5
B 4 4° B
1 i 1t 1
‘4 .4 .4 .4
(b) Padded Hammersley 2 2 2 2
.3 .3 .3 .3
1 1 1 1
4 3 4 1
(c) Latin supercube 2 ol 3 2
3 A 2 3
1 2 1 4

Fig. 4. Illustration of the initial point sets P used by the different approaches for
randomized quasi-Monte Carlo integration: (a) high-dimensional low-discrepancy
point set, (b) padded replications sampling, and (c) decorrelated padded replica-
tions sampling by index permutations.

Qi = {ai1,a:2,...,0;m} C I* for 1 < i < g with 23:1 s; = s are (ran-
domized) quasi-Monte Carlo point sets. Then the Latin supercube samples
are

5 7= (01,70 ()s Q2,ma () -+ -2 Vg (7)) © 1

for 1 < j < m, where the 7; are independent uniform random permutations
over {1,2,...,m}.



In computer graphics Latin supercube sampling has been applied by Cook
[Coo86] (later formalized by Shirley [Shi90]) for distribution ray tracing,
which is not a consistent algorithm in the sense of (1) since it uses only
a subset of the techniques py o and pg, 1, where the end of an eye subpath has
to hit a light source or is connected with a point on a light source. However,
Cook and Shirley did not use (randomized) quasi-Monte Carlo point sets but
stratified random point sets for Latin supercube sampling.

5.1 Latin Supercube Samples from Deterministic
Low-Discrepancy Points

Using large two-dimensional quasi-Monte Carlo point sets for Latin super-
cube sampling is prohibitive due to the considerable amount of permutation
memory of order O(gm) = O(kmaxm),
if a finite maximum path length kp.x
is used. On the other hand the num-
ber of different light subpaths that
can be generated by Latin supercube
sampling is limited by m*max. There-
fore for small values of m Latin su-
percube sampling is only practicable
if the eye connection techniques py
are not used, otherwise severely dis-
turbing aliasing artifacts will be vis-

ible (see Fig. (5)) that only can be
avoided by using huge values of m that
are of the order of pixels in the image.

Fig. 5. Aliasing caused by Latin su-
percube samples from deterministic
points with eye connection techniques.

5.2 Latin Supercube Samples from Randomized Low-Discrepancy
Points

For padded replications sampling the same basis pattern is padded together to
form the initial point set P. The resulting correlation between the dimensions
(see Fig. 4 (b)) can cause an increased variance for a larger number m of
points in the basis pattern. Latin supercube resolves this correlation when
being applied to the initial point set P before replication (see Fig. 4 (c)).

6 Numerical Experiments

For the numerical experiments we chose the GLASS SPHERE and OFFICE test
scenes. Figure 6 shows the master images, which have been rendered with
the original bidirectional path tracing algorithm using more than a thousand
samples per pixel and technique. In our experiments the error of an image
is approximated by its Ls-distance to these master images. Instead of using



Fig.6. The GLASS SPHERE and OFFICE scene are used as test scenes.

absorbing Markov chains for subpath generation we restricted the maximum
path length to kpax = 6 for the GLASS SPHERE and to kpmax = 3 for the
OFFICE scene.

The difficulties of the GLASS SPHERE scene are the caustic on the floor and
the light, which is reflected by the glass sphere onto the ceiling. The OFFICE
scene has only diffuse surface properties. Besides the two big luminaries at the
ceiling the small spherical light source of the table lamp makes the rendering
complicated. Since here we have no singular surface properties we omit the eye
connection techniques py, 5, which are only useful in order to render directly
seen caustics.

6.1 Quasi-Monte Carlo Bidirectional Path Tracing

In Fig. 7 (a) the performance of several deterministic low-discrepancy se-
quences is compared. The Niederreiter sequence [Nie92] in base 2 is slightly
worse than the scrambled Halton sequence [Fau92] for a small number of
samples per technique and pixel and almost as good for more than 64 sam-
ples. Optimizing the ¢ parameter by increasing the construction base of the
Niederreiter sequence leads to worse results. The Niederreiter-Xing sequence
[NX96,Pir00] in base 2 is even far less efficient except for multiples of 64
samples. The reason why the simple scrambled Halton sequence performs
best is that it better fits the structure of the global illumination problem:
The initial segments of the subpaths contribute most and consequently the
lower dimensions of the points are most important. In addition only a very
small number of samples is used to estimate a pixel functional. Looking at
the low-dimensional projections of short consecutive subsequences yields that
the projections of the scrambled Halton sequence expose better discrepancy
than the projections of the (¢, s)-sequences, causing the superior performance
of the scrambled Halton sequence.
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Fig. 7. Convergence graphs for (a) quasi-Monte Carlo bidirectional path tracing
using different low-discrepancy sequences and (b) randomized quasi-Monte Carlo
bidirectional path tracing using different high-dimensional point sets as initial point
set P and different randomization schemes.

6.2 Randomized Quasi-Monte Carlo Bidirectional Path Tracing

Now different approaches to randomized quasi-Monte Carlo bidirectional
path tracing are compared, where high-dimensional low-discrepancy point
sets are selected as initial point set P. While the scrambled Hammersley
point set is chosen for Cranley-Patterson rotations (see 4.1), different (¢, s)-
nets are used with Owen scrambling (see 4.2). Here each pixel functional is
estimated using only one independent replication. The resulting convergence
graphs in Fig. 7 (b) show that the scrambled Hammersley version performs
best. Using a Niederreiter sequence is slightly worse, where the increased
construction base affects the error less than in the quasi-Monte Carlo set-
ting. The Niederreiter-Xing sequence again performs even worse except for
multiples of 64 samples.

Usually for randomized quasi-Monte Carlo integration the size m of the
initial point set P is fixed and the desired sampling rate is obtained by in-
creasing the number r of replications, yielding a convergence rate of O(r‘é).
Seen that way the points of the graphs in Fig. 7 (b) can be considered as
starting points of the convergence graphs for fixed m and increasing r.

6.3 Blending between Monte Carlo and Quasi-Monte Carlo

So far we have analyzed quasi-Monte Carlo and randomized quasi-Monte
Carlo separately. Now the best of the above sampling schemes are compared:
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Fig. 8. Convergence graphs for MC, RQMC (m = 16), and QMC.

e Monte Carlo (MC). The original bidirectional path tracing algorithm
uses pure random sampling. For comparison we also implemented a ver-
sion using Latin hypercube sampling (LHS).

¢ Randomized quasi-Monte Carlo (RQMC). Besides using Cranley-
Patterson rotations with the scrambled Hammersley point set also its
padded replications sampling (see Sect. 4.3) counterpart using the two-
dimensional Hammersley point set has been applied. In both approaches
we can choose the fixed size m of the initial point set P.

e Quasi-Monte Carlo (QMC) using the scrambled Halton sequence.

In Fig. 8 convergence graphs are shown. As expected the convergence rates for
the Monte Carlo and randomized quasi-Monte Carlo versions are O(n~'/2),
where n denotes the total number of samples per technique and pixel. A
slightly improved rate of O(n~/2=%) can be observed for the quasi-Monte
Carlo approach, where a € [0, %] decreases with the maximum path length
kmax used in the simulation due to the discontinuities in the measurement
contribution function.

For a more detailed comparison we measured the number of samples re-
quired to achieve a given error in relation to the number needed by the origi-
nal bidirectional path tracing algorithm, i.e. the pure Monte Carlo algorithm.
The results are shown in Fig. 9. Far more than half of the expensive samples
can be saved by the quasi-Monte Carlo version. The randomized quasi-Monte
Carlo approaches form a smooth transition between the pure random and the
deterministic algorithm. With an increasing size m of the initial point set P
the error decreases due to the better equidistribution of the samples. It is
an interesting result that for bidirectional path tracing padded replications
sampling performs at least as good as a high-dimensional low-discrepancy
point set.

Along the lines of Cook | ] and Shirley | ] also Latin supercube
sampling by deterministic low-discrepancy points (see Sect. 5.1) has been
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Fig.9. Number of samples needed to achieve a given error in relation to MC.
Padded replications sampling (right bars of RQMC) performs at least as good as
the straight forward approach (left bars of RQMC).
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Fig. 10. Using Latin supercube samples as input for Cranley-Patterson rotation
reduces the effect of correlation caused by padded replications sampling. For this
experiment Fibonacci lattice points have been used as basis pattern.

applied to render the OFFICE scene, since here the eye connection techniques
are not required. For padding the two-dimensional Hammersley point set was
chosen. In comparison to the pure Monte Carlo algorithm only 35% of the
samples are needed to achieve the same error. Thus it performs similar to
the purely deterministic quasi-Monte Carlo approach (37% of the samples,
see Fig. 9).

6.4 Decorrelation of Padded Replications Sampling

Latin supercube sampling can reduce the correlation between the dimensions
of the points used by padded replications sampling. An increased variance due
to correlation becomes visible in Fig. 9 for the OFFICE scene when increasing
the basis pattern size m from 16 (42%) to 32 (45%).

In Fig. 10 padded replications sampling with and without decorrelation
using Latin supercube samples is compared, where we padded replications
of the Fibonacci lattice points | ]. The reduced correlation results in a
better performance when using bigger basis pattern sizes m. In computer



Fig.11. Image comparison. The close-ups in the upper row were rendered with
pure Monte Carlo bidirectional path tracing and the close-ups in the lower row were
rendered by the padded replications sampling approach using the Hammersley point
set without decorrelation.

graphics, however, rm = n < 128 so that the effect of decorrelation by Latin
supercube sampling is hardly perceivable.

6.5 Visual Comparison

For a visual comparison of images we rendered the OFFICE scene with the
original bidirectional path tracing algorithm and with the padded replications
sampling using 16 samples per technique and pixel. Since the padded repli-
cations sampling version needs fewer pseudo random numbers its rendering
time was about 12% shorter. Figure 11 shows two close-ups of the images. The
reduced error results in a less noisy image. Even in only indirectly illuminated
regions (right column) there is less noise.

7 Conclusion

We investigated several new sampling approaches to bidirectional path trac-
ing speeding up the original algorithm by a factor of 2 to 5. By numerical



evidence we showed that padded replications sampling is almost as efficient as
the best quasi-Monte Carlo integration approach. However, padded replica-
tions sampling allows for variance estimation, is much simpler to implement
as compared to the high-dimensional low-discrepancy constructions, requires
much less random numbers than pure random sampling, and perfectly fits
the intrinsic two-dimensional structure of the global illumination problem.
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Abstract different possibilities of this line generation. Lines can be
obtained deterministically or randomly, which is used in

Global illumination algorithms can be classified as local Monte-Carlo algorithms. Monte-Carlo methods random-

and global transfer methods. Local methods find a sin-ize the light transport operator, that is, they use a random

gle point (or patch) in a given step and transfer its ra- operator7* that gives back the effect af in the average

diance towards other point(s). Global methods, on thecase:

other hand, select the source and the target of the trans- E[T} L] =Ty L.

fer simultaneously. Local methods are better if the radi- } '

ance distribution is heterogeneous and the scene is spars& order to find the expected value, Monte-Carlo algo-

while global methods can win for dense scenes of homo-ithms have to obtain many samples and approximate the

geneous radiance. This paper proposes the combinatiofXPected value as the average of these samples. The
of global and local global illumination algorithms in the Method may produce individual lines or a bundle of lines
sense of multiple importance sampling. In this way, the of certain similarity. Working with bundle of lines can
combined method can eliminate the higher noise at the cor€XPI0it the coherence of the scene and can thus signif-

ners produced by local methods and the need for first-sholc@ntly increase the computation speed. The formation
for global techniques. of the bundles depends on what kind of similarity can be

Keywords: Global illumination, stochastic iteration, @ken advantage of the algorithm. For example, hemicube
finite-element techniques, Monte-Carlo methods based radiosity algorithms consider lines of the same ori-
gin and passing through a regular grid, since the first in-
tersection of these lines can be computed by the z-buffer
hardware. Parallel ray bundles can transfer the radiance
of all points of the scene parallel to a random direction.
The visibility needed by this parallel transfer can also be

Global illumination algorithms simulate the light trans- ted officiently by i tal algorith E ”
port. If the radiance estimate is represented by functioncoMPuted etliciently by incremental algorithms. Even |

L(y,w"), then the light transport produces a single reflec—fr?nveﬂgonalir;a%f:(mtm? Itsh uts\?idi,t Itthls W?:h nco(;nput:ﬁrlﬁ
tion of the radiance function, which is obtained by apply- 0se fines simuttaneously that visit the same nodes ot the

ing the light transport operatdF - space partitioning data structure [4]. _ Reah_zm_g that cur-
" rent processors can execute four floating point instructions
L' (#w) =T, L(f,w') = concurrently, it also seems advantageous to follow always
" four nearby lines [12]. Finally, line generation can also

1 Introduction

-, ;. L be classified according to the strategy of finding the start-
/L(y7w ) fr(o, &, w) - cos O du ing point and its direction vectot.ocal line method$ind
Q the starting point of the half-line first, then they obtain the
wherej is seen from? at directionw’ andé, is the angle direction of the line, which will identify the intersection
between this direction and the surface normal. point or the other point of the transfer. An alternative is

Since the light traverses the space along straight linestheglobal line approactwhich samples the two points si-
the simulation requires the generation of lines to identify multaneously.

the points between the light is transported. There are many There have been many discussions about the compara-
tive advantages of these algorithms, but no method can be

19%"%5_"@““3““’(-““ claimed to be the best. This is not surprising since each
roel@ima.udg.es . ; .
*fesonka@graphisoft hu mgthod has aplvantages .an.d Q|sadvantgges in cer.taln s!tu-
§mateu@ima.udg.es ations. Thus instead of insisting to a given technique, it

Yszirmay@iit.bme.hu is worth combining several of them, in a way that the ad-



vantages are preserved. Such quasi-optimal combinatiomethods, but this method would slow down the progress

of Monte-Carlo sampling techniques is offered itoylti- of the iteration and thus the introduction of higher order
ple importance samplingln this paper, the combination terms. Thus we propose to randomly select just a single
of global and local line methods is considered. technique in each iteration step, compute just a single sam-
ple, and apply the other techniques to the already iterated
. . . value.
2 Multlple |mp0rtance Samplmg To consider the random selection formally, let us as-

i _ sume that the sample is computed with methiodith
In this section we recall the fundamental theory of mul- probability P;.

tiple importance sampling [11, 10]. Assume that inte-

The modified estimator uses the indicator functigns
gral L = [I(z)dz needs to be evaluated. Monte-Carlo

A which are 1 if the respective method generates a sample:
guadratures generate samples with certain probability den- N
sity. Suppose that we haw different sampling tech- (L)e = Zw'('z') . 1(2;) s 3)
niques. Sampling methaduses probability density;(z), ST pi(w)

thus the primary estimator of this methodiig)/p;(z).

Assume also that with methodwe obtainV; samples  The requirement of the unbiasedness becomes:

Zi1, .-+, %iN;. The combined estimator is computed from
the samples of all sampling techniques, applying appropri- N
ate weighting functions; (z), and summing the results: Z Py wi(z) = L.
=1
L)e=3" 1 wilzy) Wzij) _ 3 U(zi5) The modified formulae of balanced heuristics is the fol-
¢ Py Ni = R pi(zij) P d(Z”) Iowing:
N _ () w;(z) = #
where the divider is Yoy P pr(2)
pi(2)N; Thus when a sample is computed, its contribution is al-
di(2) = i) ways divided by

The combined estimator is unbiased, i.e. the expected N

value of this estimator gives back the original integral, if d(z) = Z Py - pr(2)

for all z vaIuesZﬁ\;1 w;(z) = 1. In order to find an op- k=1

timal weighting, the variance of the combined estimator no matter which sample strategy is used.

(L) should be minimized by setting the weights appro- e are going to apply this approach for two sets of algo-
priately and also taking into account the constraint of un-rithms. The first set contains local and global ray-shooting
biasedness. Unfortunately, this optimization problem can+q golve the diffuse radiosity problem, while the second set

not be solved analytically, but different quasi-optimal so- inciudes parallel and perspective ray-bundle based trans-
lutions can be obtained. One such approximate solution igers and working in the general non-diffuse setting.

called thebalance heuristi¢11]:

wi(z) = —Nipi(z) .
Zszl Nipr(2)

Substituting these weights into equation 1, we can con- _ . _
clude that balance heuristic divides with the total density One of the simplest tool to transfer the radiance in the
scene is the generation of random lines and the identifi-

cation of those points that are intersected by these lines.

@ 3 Combination of local and
global ray transfers

N
d(z) = 3" Nipi(2)
k=1

3.1 Transfer with local lines
instead of the original densitids;p;(z) of the individual

methods. Local line methods sample first the source of the oriented

This formula can be efficiently used in random walk al- lines, called rays, then they decide on the direction of these
gorithms that obtain samples independently. However, the e_ltys. Suppose that pa';g :']B Seée;:ed ‘;V't? proba_tb;lltyf/ ?he n-
application of multiple importance sampling in iteration sty p; as a source palch and the starting point ot the ray
like algorithms requires further considerations. We could,W'th umform_dlstnbunon. Thus thg probability Qen3|ty of
for example, use all sampling techniques to obtain a tenta-samp“ng point as the starting point of the ray is:
tive value in the next iteration step then find the real value 7) = D

as the weighted average of the results of the individual p(y A



Figure 1: An office that is tessellated to 14 thousand patches and lit by a blue light source, and is rendered using 5 million
global and 5 million local lines and 180 seconds computation time

According to the concepts of importance sampling, it by the lines. Note that a line may intersect many patches,
is worth settingp; to be proportional to the power of the when the radiance is transfered between all subsequent

patch: pairs of patches.
D = P, In order to compute the probability density of such
DN T transfers, the theory of integral geometry [7] can be used

here. The measure of the set of those uniformly distributed

If the surfaces are diffuse, th@n, = L;A;m, whereL; is _ . _ : - L
kines, which intersect differential areds anddy is:

the radiance of the patch. It also means that the density o
the selection is proportional to the radiance:

oo dy - cos bz - dT - cos 0z
p(dy, dz) = — D)
S R |7 — 4]
= * = = .
Aj =1 @k 2p—1 Akl Note that this is only an unnormalized measure and is not

Having found the starting point, the direction of the ray & probability. To obtain a probability, we should compute
is sampled, which can take into account the local BRDEF.the ratio of this measure and the measure of the lines cross-

If the surface is diffuse, cosine distribution can be applied,i"d the sphere enclosing the whole scene. From integral
i.e. the density of the direction is»s 6;/7. The starting geometry we know that the measure of the set of lines in-

point and the direction establish the ray, which is tracedt€rsecting a convex body isS/2, wheres'is the surface
and its hit pointz is identified. area of the body. Denoting the area of the enclosing sphere

Since the solid angle in which a differential aréa ~ PY 5, the probability of selecting differential aredg and
aroundz is seen fromy is d - cos 95/@»_ mQ, the proba- dZ as candidates for the transfer is:

bility that this strategy tra_msfers the light from differential . . 2u(dij,dT) 2 dij- cosby - dii - cos bz
aready to d7 is the following: Pr(dj — dZ) = —— =& EREE
Pr(dj — dZ) = % 4 C°S|9j7 : ‘ig'?z 00s bz The density of global line transfer is then:
J r—=y
2 cosfy-coslz
. . . T T = —_—— 5
Thus the density is: pg(§ — 7) S AP (5)
.. pj costy-costz
=8 =3 e 3.3 Combination of local and global line
methods
L cos Oy - cos Oz 4
Shy AkLy ' nZ— g2 ) Looking at equations 4 and 5 we can realize that the local

line methods will probably generate oriented lines start-
ing at the high radiance points. Global line methods, on
the other hand, provide more samples at average radiance
Global line algorithms use uniformly distributed lines and points. If the radiance distribution is homogeneous, then
transfer the light between those points that are intersectethe global line method will carry out rough®>" A /S

3.2 Transfer with global lines



more transfers. Since the ratio of the total area of the It is straightforward to extend the method to be bi-
object surfaces and the surface of the enclosing sphere idirectional, which transfers the radiance not only into di-
about 5 in everyday scenes, global lines can result in therectionw’, but also to—w’. Note that this does not even re-
multiplication of the effective samples by about 10. quire additional visibility computation. For bi-directional

In order to preserve this benefit, but to get also the goodransfers, the density of samplingz&v’) = 1/27.
properties of the local lines for heterogeneous radiance The radiance transfer needs the identification of those
scenes, the two methods are combined. Suppose that ipoints that are mutually visible in the global direction. In
each step we decide randomly whether a local or a globabrder to solve this global visibility problem, a window is
line is generated. The probability of the local line method placed perpendicular to the global direction. The window
is P;, while the global line method is applied with proba- is decomposed into a number of pixels. A pixel is ca-
bility 1 — P,. pable to store a list of patch indices and z-values. The

Having computed the transfer, the transferred radiancdists are sorted according to the z-values. The collection of
is multiplied by the weights of multiple importance sam- these pixels is called theansillumination buffef6]. The
pling. The weight of local line method is: patches are rendered one after the other into the buffer us-
g ing a modified z-buffer algorithm which keeps all visible
= Pj points not just the nearest one. Traversing the generated

24;(1 = B) +p;SP lists the pairs of mutually visible points can be obtained.
The weight of the global line method is: For each pair of points, the radiance transfer is computed
and the transferred radiance is multiplied by the BRDF,
resulting in the reflected radiandg.

wy

_ 24;
- 24;(1-P)+p,;SP,

Wg

The samples of both techniques are thus divided by the

. . —».3
following density: 1 2]
) = 21—-p)+ 2ip
y) =gl —-H)+ 0. T
s 4
In figure 1 we show the result of the proposed algorithm
when rendering a diffuse scene. Note that we should not T
use first shot, and thus algorithm is unbiased. il {2]
transillumination buffer
global direction .
window

4 Combination of methods using
ray-bundles _ o o
Figure 2: Organization of the transillumination buffer

In this section we combine methods that transfer locally _ _
and globally sampled bundles of rays. First, we quickly From the reflected radiance the patch radiance can be

review the individual methods that discuss their combina-0btained by a simple averaging operation. Note that if the
tion. integral is evaluated on the window, then the cosine factor

is compensated:

4.1 Method 1: Parallel ray-bundle trac-
ing

Parallel ray-bundle tracing transfers the radiance of all

1 [, .
L(m)|; = E~/Ter(mfl) dZ =~
A;

patches parallel to a randomly selected global line in each dn-oP Z L™(P) - fo(w', P,w),
iteration cycle [8]. The random transport operator is: A I
TP L =dn - L(§,0) - fr(o', T, 0) - cos O, whereP runs on the pixels covering the projection of patch

i, L'"(P) is the radiance of the surface point visible in
wherey = h(#, —w') is the point visible fromz at direc-  pixel P, f,.(o’, P,w) is the BRDF of that point which re-
tion —u’. ceives this radiance coming through pixebandé P is the

Indeed, if the orientation is sampled uniformly, then its area of the pixels.
probability density ig(w’) = 1/4x, thus the expectation
of the random transport operator gives back the effect of4_2 Parallel ray-bundle tracing with a

the light transport operatdfy, L: single transillumination plane

/
E[T L] = /47T~L(h(f7 —'), W) fr(W, Z, w)-cos 9’.%_ The drawback of the previous algorithm is that it cannot

& A exploit the hardware z-buffer since it can store only a sin-



gle value per pixel, but the algorithm requires all patches If patchj is selected with probability; and pointy on
that are projected onto this pixel. Fortunately, this require-this patch with uniforrm /A; probability, then the random
ment can be eliminated, thus the algorithm can be executettansport operator is

on the hardware, if the visibility algorithm is further ran-

domized in the following way [5]. (75°L)(@,w) =
AL S, , - cos @, - cos by
B — (&, ) L(Y, wy_z) frwg_z T, w) —=——=5—
window Dj v e |T - y|2 7
wherev(Z, 3) is the mutual visibility indicator, which is 1
o if the two points are visible from each other.
The expected value of this random variable is:
1 y . dy
BIT; L =Y pi- | (T D)@ w) =
; J
J A
1\2 left image right image !
Y o ., cosf-cosfy
global direction Z / v(m, y)'L(y, Wg/jﬂf)'fr (wlyﬂaiﬁ ) ‘U)W dy.

Figure 3: Transferring the radiance through a single plane Using the formula of solid angles

- = 2
Let us find randomly a point on the line of the transillu- dyj - cos 05/ 7 — g = duw
mination direCtion and p|ace the transi”umination WindOW and assuming that i”umination can 0n|y come from sur-
at this point. The scene is rendered from the two sides ofaces — j.e. there is no external sky light illumination —
the window supposing that the color of paicts i. Hav-  the integration over all surfaces can be replaced by an in-
ing read the two images from the frame buffer, the patchegegration over all incoming solid angles:
that see each other from the opposite sides of the window
can be identified, and the radiance can be transferred beE[T* L= /L(h(:f )W) (W 7, w)-cos 0 du.
tween them. Of course, this method finds two points that ~ 7" ’ ' A e
see each other in the transillumination direction only with
some probability. This probability is proportional to the  To obtain the patch radiance, the radiances of the points
distance between the two points. If the distance of theare averaged:
front and back clipping planes B, then the probability is
|Z — ¢]/R. When the scene is rendered, theoordinates L(m)|; = 1 /Tf*‘L(m —1)di =
are transformed in a way that they fit in the [0,1] range for A; '
the whole scene, that is, the distances are normalized with
R. 1t means that this probability equals to the sum of the A, e
2 values of the two visible points, as read out from the z- p; A; /U(‘T’y)’L(y’w
buffer. In order to compensate those cases when the two 4
points are not on the opposite sides of the transillumination
window, when the radiance is transferred, it is divided by
the selection probability, i.e. by the normalized distance
of the two points. Formally, the random transport operator
is:

Q/

/
~cos 0z - cos Oy di
= —0 .
|7~ 4]

(6)

R
=g’

TL =27 L(§,w' ) fr(w', &, w)-cos 0% & (T, ) -

where(Z, ) is the indicator function, which is 1 if and
only if the transillumination plane is betweerandy.

D
k=]

L

P
o3
y ]

4.3 Perspective ray-bundle shooting

Perspective ray-bundle shooting selects a single patch ran-

domly and sends its radiance from one of its randomly se- Figure 4: Perspective ray-bundle tracing with hemicubes
lected point towards all directions [1]. According to im-

portance sampling, it is worth setting the selection proba- The integral in equation (6) can also be evaluated on the
bility p; proportional to the powers of the patches. five window surfacesl{’) that form a hemicube around the



sourcey (figure 4). Note that this is similar to the famous patch taking into account the previous and current direc-
hemicube approach of the diffuse radiosity problem [3]. In tions.

fact, radiance shooting requires the vertex-patch form fac- In order to establish importance sampling for perspec-
tors that can be computed by the hemicube. In this sectiontive ray-bundle shooting, the powers of the patches should
we re-derive the basic formulae to show that they can alsalso be known. The computation of the powers from the
be used in cases when the reflection is non-diffuse. irradiance values is also straightforward, the irradiances

To find formal expressions, let us express the solid angleshould be multiplied by the albedeg(w) of the patches.

dQ,, inwhich a differential surface are’ is seen through
pixel areadp, both from the surface area and from the pixel

area: 4.5 The combination of the ray-bundle

d - cost  dp-cosO, based strategies
de == = =12 = ry 2 (7)
|9~ 2] |9~ 1l So far, we introduced three different random radiance
wheref, is the angle between direction pointingidrom transfer methods that use different sampling probabili-
¢ and the normal of the window (figure 4). The distance ties. Parallel ray-bundle tracing samples the direction from
|7 — p| between pixel poing’and the lightsourcg equals  pointZ with a uniform density, i.e. the probability of gen-
to f/ cos 8, wheref is the distance frony to the window  erating a direction inlw is
plane, that is also called tHecal distance Using this

and equation (7), differential ar@a’ can be expressed and dﬁ
substituted into equation (6), thus we can obtain: 27
A Note that we us@r due to the bi-directionality of the al-
J

gorithm.

When just a single plane is used, contribution to point

Z is possible only if the plane is between paihand that

/U(?ﬁ ) L(§, wy_p) fr(Wj—z, @ ,w)-cosb5-cos b, dp.  point 7 which is visible from here. If the maximum size
w of the scene ik, then the probability that a contributing
Let P, be the set of those pixels in which pattlis vis-  direction is indw is
ible from the lightsource.P; is computed by running a
z-buffer/constant shading rendering step for each sides of
the window surface, assuming that the color of patch
i, then reading back the “images”. The reflected radiance For perspective ray-bundle shooting, the probability that
on patchi is approximated by a discrete sum as follows: shooting point is in differential ared; of patchj is

7= g dw
2rR

A;j6P pj-dy  ®;-dy
L(im)|; =~ J : J = J .
(m)l pjA;if? Aj Aj D P
Z L(§, wh_z) - fr(Wh_z,Z(B),w) - cos O - cos b2, B_efore applying the concept of multiple importance sam-
B ’ ’ pling, we have to solve the problem that different meth-

ods formulate the light transport problem with different
integrals. Parallel ray-bundles use directional integrals
while perspective ray-bundle shooting applies surface inte-
grals. Converting directional integrals to surface integrals,
the probability densities used by the discussed ray-bundle
based methods are the following:

whered P is the area of a single pixel in the image Rfis

the resolution of the image — i.e. the top of the hemicube
containsRk x R pixels, while the side faces contalitx R/2
pixels —them P = 42/ R%.

4.4 Representation of the temporary ra-

diance m(y) = Fr ST ?(I);@zjlw
The discussed ray-bundle methods sample the radiance
function in each step and obtain a new function. The radi- . cos Oy
ance is a four variate function and usually has high varia- p2(y) = R |7 — |
tion, thus its accurate finite-element representation would )
require many basis functions. Instead, in an iteration step p3(y) = Z—]

we compute only the irradiance on each patch, which is in- J

dependent of the transfer direction of the next step. With Each of them is good for particular illumination condi-

the irradiance information we also store the incoming di- tions. Parallel ray-bundles are effective if the scene con-
rection. In the next iteration step, when the output radi- sists of patches of similar radiance, while perspective ray
ance of a patch in a given direction is needed, it is obtainedundles are effective if one or several patches are much
on the fly, multiplying the irradiance by the BRDF of the brighter than the others (note that these bright points are



Parallel Perspective Combined

Figure 5: Comparison of stochastic iteration using parallel (left), perspective (middle) ray-bundles and the combination
of the two methods (right) using the same computation time (7 seconds on a P4/1.2GHz computer)

selected with much higher probability by perspective ray- In order to test the proposed method we have selected
bundle shooting). Thus perspective ray-bundle shooting ighe standard Cornell Box scene (figure 5). The images
the best method if the scene contains small light sources. Ihave been rendered wilo0 x 500 resolution. The transil-
is thus highly intuitive why parallel ray-bundle algorithms lumination buffer contained000 x 1000 pixels. Figure 5
always apply a first shot to distribute the illumination of shows the Cornell box rendered by parallel, perspective
the light sources, letting the algorithm compute only the ray bundles and by the combined method. The computa-
indirect illumination. tion time was 7 seconds in all cases. Note that parallel
On the other hand, the transfer of nearby points is bettebundles distribute the energy with higher noise generally,
coped by parallel transfers than by perspective transfersbut are good in rendering corners. The result of perspec-
Close points are obtained by parallel ray-bundle tracingtive bundles is better except for the annoying spikes at the
with the highest probability, this probability is smaller if corners. The combined method can combine the advan-
just a single plane is used and the smallest for perspectivéages of both techniques and results in much more pleasing
ray-bundle shooting. Thus dense scenes and corners cdamage than its parents.
be rendered in a better way by parallel ray-bundle trans-
fers.
In order to obtain a method that does not require first
shot and can nicely render corners and close objects, the
presented techniques are combined according to multiple , , , feraoe B , , ,
importance sampling. pCEht“d' Eg Egi —
Suppose that each of the three methods is used with 5|
probability P;, P, and Ps, respectively. Since one method
is applied in each step, + P, + P; = 1. These probabil- 04l
ities can be specified by the user, taking into account the
features of the scene and the time of the application of the o5}

methods.
When combining the three ray-bundle algorithms, the oz I
divider of balanced heuristic becomes: T, S
01k e
cos 0= cos @z ;i e e
d(y) =P L Y Pyl
W) =Promz—ge " Pormz—g T P, :

L L L L L L L L
50 100 150 200 250 300 350 400 450 500
number of iteration

When parallel ray-bundles are used, this weight should be
multiplied bydy/dw = |Z — | /cos 65 in order to replace
differential surfaces areagj by differential solid angles  Figure 6: Error of the parallel, perspective and combined
dw: ray-bundle shooting algorithms for the Cornell box.

|7 — ¥ pi 1T -9

P. .
2rR + 3Aj cos Oy

1
dw) =P — + P,
(w) 127T+ 2



5 Conclusions 8]

In this paper we proposed the combination of local and
global radiance transfer methods according to the concept
of multiple importance sampling. First local and global
lines based techniques were combined, where we could
preserve the efficiency of global transfers, but could get
rid of the necessity of the first shot. Secondly we proposed
the combination of three ray-bundle transfer methods. The
combined method is able to render complex glossy sceneﬁo]
in a few tens of seconds and is particularly effective if the
surfaces are not highly specular. This estimation requires
just one or a few radiance values per patch, thus the storage
requirements is modest.
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