
Vom Fachbereich für Mathematik und Informatik
der Technischen Universität Braunschweig

genehmigte Dissertation
zur Erlangung des Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

Gordon Müller

Object Hierarchies for Efficient Rendering

Tag der mündlichen Prüfung: 24.05.2004

1. Referent: Prof. Dr. Dieter W. Fellner
2. Referent: Prof. Dr. Wolfgang Straßer
eingereicht am: 20.01.2003

http://www.eg.org
http://diglib.eg.org

Abstract

The efficient synthesis of computer generated images for large three-dimensional models
is one of the major challenges of computer graphics research. Despite the rapid growth of
available computational power of todays microprocessors and highly optimized graphics chips
used for efficient rendering of graphical primitives, this growth was even outbeaten by the sheer
increase of complexity of three-dimensional data sets to be visualized.

This growth of complexity made it necessary to invent acceleration schemes for different
types of rendering algorithms. A common basic idea is to build spatial data structures that
allow for efficient spatial retrieval of primitives in the rendering process. This retrieval may be
used to detect visible objects efficiently or to detect invisible objects prior before sending them
through the graphics pipeline, such that expensive computations likeshadingor rasterization
may be omitted.

This thesis examines different acceleration schemes in detail and analyses related data struc-
tures for their utility within several rendering algorithms. We focus on acceleration schemes that
make use ofobject hierarchies, i.e. scene geometry that is managed hierarchically.

We also present a novel technique for automated generation of object hierarchies. The es-
sential idea of our algorithm is to build the hierarchy such that the average rendering costs when
traversing the scene hierarchy are minimized. This technique applies successfully in the fields
of photorealisitic visualization usingray tracingandradiosity. First, we achieve a significant
improvement of run-time efficiency by accelerating the visibility tests. Also, we demonstrate
that the generated object hierarchies may ideally be used to approximate the computation of
light exchange between complex distant scene objects forradiosity with clustering. Only the
use of objects clusters made it feasible to run an radiosity computation on huge data sets.

This thesis also covers the area of real-time rendering, especially with a deeper look atoc-
clusion cullingalgorithms, which have attracted much attention in the recent past. Occlusion
culling schemes try to detect occluded scene geometry early to remove these objects from the
graphics pipeline. We describe the usefulness of object hierarchies within the occlusion culling
process and compare different hierarchy generation schemes. By the utilization of our new hi-
erarchy generation scheme we could achieve a significant increase in frame rate when rendering
complex scenes.

Finally, we present a system for interactive visualization of huge data sets by combining
occlusion culling and ray casting. This system increases the frame rate further compared to
classical occlusion culling. Additionally, our method has only a minimal overhead for scenes
with almost no occlusion. Occlusion tests are automatically activated and de-activated when
needed.

Zusammenfassung

Die effiziente Bildsynthese für die computergenerierte Darstellung grosser dreidimensio-
naler Datenmodelle, ist nach wie vor eine der grössten Herausforderungen für die Forschung
im Bereich der Computergrafik. Trotz des starken Wachstums der verfügbaren Rechenresour-
cen durch neue Mikroprozessoren und hochgradig optimierte Grafikchips, welche die effiziente
Darstellung einfacher grafischer Grundobjekte beschleunigen, wurde doch dieses Wachstum
noch durch den noch gewaltigeren Anstieg der Komplexität der 3D-Modelle geschlagen, die
visualisiert werden sollen.

Dieses Problem hat es notwendig gemacht, Beschleuningungstechniken für unterschiedliche
Renderingverfahren zu entwickeln. Eine Grundidee hierbei besteht darin, Datenstrukturen auf-
zubauen, die es dem Darstellungsprozess ermöglichen, effizient die relative räumliche Lage von
Darstellungsobjekten abzuleiten. Sichtbare Objekte lassen sich so leichter identifizieren, bzw.
nicht-sichtbare Objekte frühzeitig vor der Weiterverarbeitung eliminieren, um dadurch weite-
re aufwendige Berechnungen, wie etwa dieBeleuchtungsrechnungoder dieRasterisierung, zu
unterdrücken.

Diese Dissertation untersucht detailliert unterschiedliche Beschleunigungstechniken sowie
die jeweils benötigten Datenstrukturen bezüglich ihrer Nützlichkeit in vielfältigen Darstellungs-
algorithmen. Hierbei wird der Fokus auf Verfahren gelegt, dieObjekt-Hierarchienausnutzen,
also eine Szenengeometrie hierarchisch verwalten.

In Rahmen dieser Arbeit wird ein neues Verfahren zur automatischen Hierarchiegenerierung
präsentiert, wobei die Grundidee darin liegt, die Hierarchie derart aufzubauen, dass die erwarte-
ten späteren Rendering-Kosten beim Traversieren der Szenengeometrie minimiert werden. Sol-
che Hierarchien werden erfolgreich in dem Bereich der fotorealistischen Visualisierung mittels
Ray-TracingundRadiosityeingesetzt. Hierbei wird zum einen eine deutliche Verbesserung der
Laufzeit durch eine Beschleunigung der Sichtbarkeitsberechnungen erzielt. Zum anderen wird
für das Radiosity-Verfahren gezeigt, dass die erzeugten Objekt-Hierarchien ideal zur effizienten
Berechnung des Lichtflusses zwischen entfernten, komplexen Szenenobjekten verwendet wer-
den können (Radiosity Clustering). Hierdurch wurde die Verwendung sehr grosser Datensätze
innerhalb der Radiosity-Berechnung überhaupt erst ermöglich.

Diese Arbeit geht ebenso auch auf den Bereich des Echtzeit-Renderings ein, dabei insbe-
sondere aufOcclusion Culling-Algorithmen, denen in letzter Zeit viel Aufmerksamkeit zuteil
wurde. Hierbei wird versucht, von anderen Objekten verdeckte Szenengeometrien frühzeitig
zu entdecken, um sie aus der Graphikpipeline zu entfernen. Dabei wird die Nützlichkeit von
Objekt-Hierarchien für den Prozess des Occlusion Cullings hervorgehoben und es werden un-
terschiedliche Generierungsalgorithmen für solche Hierarchien verglichen. Als Resultat konn-
te durch Einsatz eines neuen Verfahrens zu Hierarchieerzeugung eine deutliche Erhöhung der
Bildgenerierungsrate bei komplexen Szenen erzielt werden.

Schliesslich wird ein System zur interaktiven Visualisierung grosser Szenenmodelle präsen-
tiert, welches durch Kombination von Occlusion Culling und Strahlschnitttests wiederum eine
Erhöhung der Bildgenerierungsrate im Vergleich zu klassischem Occlusion Culling erreicht. Es

wird zudem aufgezeigt, dass dieses Verfahren in Szenen mit geringer Verdeckung nahezu kei-
nen Overhead beinhaltet. Die Occlusion-Tests werden hierbei genau dann automatisch aktiviert
bzw. deaktiviert, wenn es notwendig ist.

ii

Contents

Abstract i

List of Figures iv

List of Tables vi

Acknowledgements vii

1 Introduction 1
1.1 Three-Dimensional Image Synthesis . 1
1.2 The Graphics Rendering Pipeline . 1
1.3 Illumination algorithms . 2

1.3.1 Real-Time Rendering . 2
1.3.2 Ray Tracing . 4
1.3.3 Radiosity . 5

1.4 Thesis contribution and outline . 6

2 Object Hierarchies 8
2.1 Bounding Volumes . 8

2.1.1 Bounding Volumes and Visibility . 8
2.1.2 Selected Bounding Volume Types . 10

2.2 Hierarchical Bounding Volumes . 11
2.3 Hierarchy Generation . 11

2.3.1 Median Cut . 12
2.3.2 OBBTree . 12
2.3.3 k-DOPTree . 12
2.3.4 Bounding volume optimization . 12
2.3.5 Space Subdivision . 13

3 Ray Tracing 14
3.1 Introduction . 14
3.2 Hybrid Scene Structuring . 16

3.2.1 Hierarchical Bounding Volume Optimization 17
3.2.2 Classifying Scene Nodes . 19
3.2.3 Locally Uniform Space Subdivision . 21

3.3 Results . 22

i

CONTENTS

3.3.1 Description of Compared Acceleration Techniques 22
3.3.2 Comparision of Run-Time Efficiency . 24

3.4 A Framework for Scene Structuring . 25
3.5 Conclusion and Further Work . 26

4 Hierarchical Radiosity 27
4.1 Introduction . 27
4.2 Finding Object Clusters . 28

4.2.1 Overview . 28
4.2.2 Construction . 29
4.2.3 Optimizing Ray Acceleration . 32

4.3 Radiosity with Optimized Clusters . 33
4.3.1 Overview of the Implementation . 33
4.3.2 Using the Cluster Hierarchy . 34

4.4 Results . 35
4.5 Discussion . 36

5 Occlusion Culling Hierarchies 39
5.1 Introduction . 39

5.1.1 Related Work . 39
5.2 Occlusion Culling . 40
5.3 Generating Hierarchies . 41

5.3.1 Dimension-oriented Bounding Volume Decomposition (D-BVD) 41
5.3.2 Polygon-based Hierarchical Bounding Volume Optimization (p-HBVO) . . 42
5.3.3 Octree-based Regular Space Decomposition (ORSD) 43
5.3.4 SGI’s opoptimize (SGI) . 43

5.4 Results . 44
5.5 Conclusion and Future Work . 47

6 Occlusion Culling Traversal 50
6.1 Introduction . 50
6.2 Hierarchical Occlusion Culling . 51

6.2.1 Object Hierarchy Generation . 51
6.2.2 Tree Traversal . 52
6.2.3 Analysis . 54

6.3 Dynamic Occluder Selection . 54
6.3.1 Visibility Sampling . 55
6.3.2 Exploiting Frame-to-Frame Coherence 55

6.4 Frame Coherent Control . 56
6.4.1 Node Activation Oracle . 56

6.5 Results . 58
6.6 Conclusions . 59

ii

CONTENTS

7 Conclusion 61
7.1 Thesis Summary . 61

7.1.1 Ray Acceleration . 61
7.1.2 Hierarchical Radiosity . 61
7.1.3 Occlusion Culling . 62

7.2 Future Work . 62
7.3 Acknowledgments . 62

Bibliography 64

Publications 71

iii

List of Figures

1.1 Rendering pipeline. 2
1.2 Vectors used in the Phong reflection model. 3
1.3 Visibility classification. 4
1.4 Recursively tracing illumination rays. 5
1.5 Energy transfer between clusters. 6

2.1 Spherical bounding volume embrassing a rather complex object. 8
2.2 Non-visible bounding volumes relative to an observer. 9
2.3 Complex object not hit by a tracing ray. 9
2.4 Bounding volume types. 10
2.5 Tribox. 11

3.1 Hierarchy of bounding volumes. 15
3.2 Uniform and adaptive spatial subdivision. 15
3.3 Combining bounding volumes hierarchies and space subdivisions. 16
3.4 Scene structuring using a cost function based bounding volume optimization. . . 18
3.5 Detecting scene nodes/regions suitable for uniform space subdivision 19
3.6 Testing spatial neighborhood between subscenes. 20
3.7 Comparing average object sizes between subscenes. 20
3.8 Test scenes balls, lattice, and tree. 23
3.9 Test scene trees . 23

4.1 Possible object partitions along a single coordinate axis 29
4.2 Visualization of bounding volumes of the aircraft test scene 31
4.3 Visualization of bounding volumes of the vrlab test scene 31
4.4 Combining bounding volume hierarchies and space subdivisions. 33
4.5 Radiosity renderings of four large test scenes. 37
4.6 Rendering times and statistics for the rendered test scenes. 37
4.7 High quality renderings of the scene wichmann (47 min) 38

5.1 Cathedral dataset . 46
5.2 Decomposition results . 48
5.3 Datasets . 49

6.1 Sample scene geometry . 52
6.2 Bounding volumes outside the view frustum . 53

iv

LIST OF FIGURES

6.3 Visible primitives. 54
6.4 Subdivision of sampling areas . 56
6.5 Distribution of image sample positions on test scene Frankfurt 57
6.6 Example walkthrough scenarios . 57
6.7 Occlusion culling performance. 59
6.8 Occlusion culling tests. 59
6.9 Occlusion culling efficiency. 60

v

List of Tables

3.1 Run-Time statistics for ray tracing . 25

5.1 Walk-Through Measurements . 44
5.2 Occlusion Culling Models . 45

vi

Acknowledgements

First of all, I would like to thank my supervisor Dieter Fellner. He was both the initiator and
the catalyst of this work. To cut a long story short, without his continuing support this thesis
simply wouldn’t exist.

Next, I wish to thank all members of the computer graphics groups at the Universities of
Bonn and Braunschweig. They provided me fruitful discussions, broadband internet access,
and a hailstorm of curious ideas about the ultimate rendering API. Especially, I want to thank
my former collegue Stephan Schäfer. It was really fun!

I would also like to acknowledge theDeutsche Forschungsgemeinschaft(DFG) for funding
this research.

Finally, I would like to thank my wife Angela Müller for everything else. She knows best
what I mean.

vii

CHAPTER 1

Introduction

1.1 Three-Dimensional Image Synthesis

The computer aided generation of images for both, photorealistic and real-time visualization, is
the core of computer graphics research. This thesis is about rendering algorithms, i.e. methods
that create computer generated images either as realistic still images or such that a viewer can
interact with a virtual three-dimensional environment. Other interesting fields such as modeling,
animation, spatial sound, user input, simulation etc. which are needed to build complex systems
are beyond the scope of this thesis.

Especially the rise of more and more complex data sets has led to the need for new data
structures and algorithms that process these data sets efficiently, e.g. allow the fast hierarchical
retrieval of information. The generation of such data structures and the related information
retrieval is the core of this thesis, but before we can describe these optimized methods we have
to understand classic techniques used in the field of image synthesis to start from a solid base.
First, we will present the rendering pipeline, which is the core of rendering systems, next we
will present the basic ideas behind acceleration techniques used for hardware assisted rendering
and global illumination algorithms such asray tracingor radiosity.

Section1.4 will conclude with a summary on the major contributions of this thesis and
presents an overview on subsequent chapters.

1.2 The Graphics Rendering Pipeline

The rendering pipeline[Rog97] can be seen as an underlying tool for the rendering system.
Its main scope is to generate two-dimensional images depending on a given scene database, a
virtual camera, light sources, lighting models, textures, etc. This tool is typically subdivided
into several stages. Figure1.1 shows three conceptual stages which are always common to
different implementations of a rendering pipeline.

Application: In this stage rendering primitives, like polygons or light sources, are set up under
the control of an specific application. This stage is performed in software, since it is
highly application specific.

Geometry: This stage handles per-polygon or per-vertex operations. It is mostly subdivided
into stages such as model & view transformation, lighting, projection, clipping, and

1

INTRODUCTION 1.3 ILLUMINATION ALGORITHMS

screen mapping. Modern graphics cards implement this stage in hardware and even allow
to re-program the per-vertex operations [LKM01].

Rasterizer: This stage handles per-pixel operations. Typically, in a scan-line conversion pro-
cess projected and transformed vertices colors and texture coordinates from the geometry
stage are used to convert two-dimensional vertices into pixels on the screen. Visibility
is mostly resolved using the z-buffer-algorithm [Cat74]. Almost every graphics card im-
plements this stage in hardware. Modern graphics cards also allow to combine several
textures and colors in a single hardware cycle such that high-quality surface effects such
asbump mapping[Bli78] can be done in real-time without rendering in multiple passes
[DB97].

For efficient utilization of the rendering pipeline it is important to understand that pipeline
stages may process input in parallel. New input to a specific stage may already be processed by
the same stage when previous output completed (although the end stage of the total pipeline is
not yet finished). This theoretically allows for massive speed-ups depending of the pipeline lay-
out. Graphics developers always must have in mind not to block certain stages of the rendering
pipeline: many tiny polygons with a projected size of only a few pixels will be fast to rasterize
but a huge number will block the geometry stage. On the other hand a very large single poly-
gon will stress the rasterizer while it will go very fast through the geometry stage. The slowest
stage always determines therendering speed, i.e. the update speed of the generated images.
For this reason, the basic stages are mostly subdivided into sub-stages. Typically, it is up to the
developer to care for good appropriate utilization within the application stage.

Application Geometry Rasterizer

Figure 1.1 Rendering pipeline.

1.3 Illumination algorithms

1.3.1 Real-Time Rendering

Systems that allow for real-time rendering make simplifying assumptions on the shading steps
within the geometry and rasterizing stage of the graphics pipeline. The illumination of a point
or surface element only depends on the surface properties and the light sources which makes it
rather easy to compute the illumination of a surface element. Mostly,local illumination algo-
rithms found in current graphics hardware use variants of the Phong equation [Pho75] (Equation
1.1) to compute the intensity of a surface element to be illuminated. Assumingn light sources
the illumination valueI can be computed as

2

INTRODUCTION 1.3 ILLUMINATION ALGORITHMS

I = Iaka +
n

∑
i=1

Ii(kd cosθi +kscosc(2αi)) (1.1)

where

• ka, kd, andks describe the ambient, diffuse and specular material properties respectively.
In the past these values very often assumed to be constant after the geometry stage, but
recent hardware with extended texture mapping capabilities [NVI01] allows to change
these values efficiently even within the rasterizer stage on a per-pixel base.

• Ii describes the intensities of the light sources. It is important to understand that no check
is performed if the surface elements are actually illuminated by this source or shadowed
by other scene elements.

• θi describes the angle between the vector to the light sourcei and the surface normal at a
given surface point. According to Lambert’s law the amount of reflected light for diffuse
surfaces is proportional to the cosine of this angle.

• The term cosc(2αi) approximates the amount of light speculary reflected from a light
sourcei into the direction of the eye.α i is the angle between a perfect reflection vector on
the surface according to light sourcei and the vector pointing to the eye point.c describes
the sharpness of the reflection cone and is material specific. We can conclude from the
formula that we get largest specular intensity values if the reflection vector and the eye
vector coincide.

• Ia is the ambient term. It tries to approximate all illumination not directly received from
light sources (indirect illumination).

E

N

LR

α θ θ

Figure 1.2 Vectors used in the Phong reflection model.

When rendering complex scenes containing hundreds of thousands of primitives, often only
few of these primitives contribute to the final raster image. Primitives may be outside the field
of view of an observer or may be occluded by other primtives (Figure1.3). Although they
do not contribute to they final image they either have to pass the geometry stage (primitive
outside the field of view) or the rasterization stage (z-buffer tests) of the graphics pipeline.

3

INTRODUCTION 1.3 ILLUMINATION ALGORITHMS

Acceleration algorithms that detect invisible geometry are calledculling algorithms. View-
frustum cullingdetects objects outside the field of view andocclusion cullingdetects objects
behind other scene objects before they are sent through the graphics pipeline. In Sections5
and6 we describe these algorithms in detail and present a new occlusion algorithm utilizing
object hierarchies that structure the scene data base hierarchically, i.e. inner scene nodes hold
sub-scenes as children.

visible
occluded
out of view frustum

Figure 1.3 Visibility classification.

1.3.2 Ray Tracing

Ray tracing[Whi80] belongs to the family ofglobal illumination techniques. Instead of us-
ing rough approximations of the indirect illumination like using a single ambient constant, ray
tracing samples several directions from the point to be shaded to gather additional direct and
indirect illumination contribution (Figure1.4). In its simplest form a single ray sample is used
along the direction of a perfect mirror to simulate the behaviour of specular reflective surfaces.
Also, rays are traced to every light source to identify if a light source contributes to the illu-
mination of this point. This process is repeated recursively until some predefined threshold on
recursion depth or intensity contribution is reached. This scheme can easily be extended by also
tracing a refracted ray according to the surface properties.

The quality of images generated by the ray tracing algorithm may easily extended by send-
ing more than a single ray to sample the reflection cone of the surface point to be illuminated.
Also, complex area light sources may be simulated by sampling the surface of the light source.
Such techniques are summarized under the termDistributed Ray Tracing[RTL84], since rays
are distributed according to some statistical distribution depending on surface properties. This
idea is consequently generalized by techniques that utilize Monte Carlo integration [Kaj86] to
take every possible way of light transport into consideration by sampling the whole hemisphere
around a surface point.

For large scene geometries the visibility tests between light sources and surface points and
traced reflection and refraction rays dominate the run-time of the ray tracing algorithm and its

4

INTRODUCTION 1.3 ILLUMINATION ALGORITHMS

variants. For this reason many acceleration schemes have been invented to find the intersection
between a ray and a large set of scene objects. To minimize the number of objects that have to
be tested indexing schemes were developed that group scene objects according to their spatial
distribution [Gla89]. Chapter3 presents a survey on ray acceleration techniques and compares
them in detail.

E

N1

L1

R1

N2

L2

R2

Figure 1.4 Recursively tracing illumination rays.

1.3.3 Radiosity

The radiosity method[GTGB84, NN85] is a different global illumination technique. It allows
to compute the energy transfer between diffuse surfaces in closed systems by using results from
the theory of radiative heat transfer. A complete discussion on radiosity algorithms is far beyond
the scope of this thesis. In this section, we will only describe the basic foundation of the method
and motivate where its computational complexity arises. For a complete overview on radiosity
methods we refer to [Sch00].

Based on an energy equilibrium model, the total radiosityBi of a surface patchFi (which is
the physical measure of the power radiated per unit area of a surface) equals the sum of its self-
emissivityEi plus the product of its reflectivityρi (fraction of incoming energy that is reflected
back) and the amount of energy arriving from alln patches (Equation1.2). The amount of
energy arriving from a single patchFj can be written as the radiosityBj times a geometrical
termFi j that describes the fraction of the total energy that arrives atFi from the sending patch
Fj . Fi j are called theform factorsof the radiosity system.

Bi = Ei +ρi

N

∑
j=1

Fi j Bj (1.2)

Assuming constant radiosity over each surface patch the radiosityBi may be computed by
solving a system ofn linear equations. Several publications cover the efficient solving of this
system, e.g. [CCWG88] describes a progressive refinement method that only stores a single
column of the linear equation system matrix and computes missing form factors dynamically
only when needed.

The computation of form factor dominates the run-time of the radiosity method for every
radiosity algorithm, since for every pair of patches a mutual visibility computation is needed

5

INTRODUCTION 1.4 THESIS CONTRIBUTION AND OUTLINE

Figure 1.5 Radiosity Clustering: the computation of the energy transfer between distant complex geom-
etry is sped-up by using object clusters instead of using a patch-to-patch model. (Figure by S.
Schäfer [Sch00])

(which may be solved by tracing visibility rays between the patches). Further improvements on
the radiosity method concentrated on the reduction of form factor computation by modeling the
energy exchange at different resolution levels of the mesh (Hierarchical Radiosity [HSA91]).

The basic idea of the hierarchical radiosity algorithm was further extended by grouping
blocks of patches hierarchically which led to radiosity clustering algorithms [Sil95, SAG94].
Figure1.5 shows the main idea behind this acceleration technique: instead of computing the
energy transfer between distant objects patch-by-patch, objects are grouped into clusters and
energy transfer is computed between these clusters. In Chapter4 we will present an algorithm
for hierarchy generation that finds clusters of objects automatically which are appropriate for
radiosity computations.

1.4 Thesis contribution and outline

This thesis contributes to the field of rendering acceleration by the use of object hierarchies.
It also gives an overview on rendering algorithms such as ray tracing, radiosity and visibility
culling. Chapter2 presents an overview on available hierarchy generation techniques and shows
how hierarchy information can be used within many rendering algorithms to speed them up.

Chapters3 to 6 are the core of this thesis and present innovative techniques for render-
ing acceleration. These chapters consist of updated refereed conference and journal papers
that have been slightly adapted to fit the style of this thesis. The basic idea behind these im-
provements over previously known techniques is the fact that the underlying object hierarchy is
automatically generated by a minimization algorithm that tries to optimize the overall expected

6

INTRODUCTION 1.4 THESIS CONTRIBUTION AND OUTLINE

rendering costs. The actual cost function varies among different rendering algorithms but the
overall technique is mostly unchanged.

The contribution of Chapter3 is two-fold. First, a new hierarchy generation scheme is
developed that outperforms the standard technique from Goldsmith and Salmon [GS87] sig-
nificantly. Possibly more important, a hybrid scheme is presented that combines different ac-
celeration techniques (namely object hierarchies and space subdivision) with superior run-time
behaviour than any of the single schemes. This work was originally published as [G. MÜLLER,
D.W. FELLNER: Hybrid Scene Structuring with Application to Ray Tracing.Proceedings of
International Conference on Visual Computing (ICVC’99), pp. 19–26, Goa, India, February
1999].

In Chapter4 we adapt the automatic hierarchy generation scheme to the field of radiosity
[G. MÜLLER, S. SCHÄFER, D.W. FELLNER: Automatic Creation of Object Hierarchies for
Radiosity Clustering.Proceedings of Pacific Graphics ’99 (Seventh Pacific Conference on Com-
puter Graphics and Applications), IEEE Computer Society Press, Seoul, Korea, October 1999].
We demonstate how object clusters can automatically be found for improved radiosity algo-
rithms such as hierarchical radiosity working with object clusters [Sil95, SAG94]. The clusters
that are generated by the new algorithm fulfill many of the properties that have been previously
reported as required [HDSD99]. This work was selected for the PG99 special edition of the
Computer Graphics forum and re-published as [G. MÜLLER, S. SCHÄFER, D.W. FELLNER:
Automatic Creation of Object Hierarchies for Radiosity Clustering.Computer Graphics forum,
Vol. 19, No.4, number 4, pp. 213-221, December 2000].

Next, we apply our hierarchy generation to the field of real-time rendering in Chapter5,
more precisely to the field of hierarchical occlusion culling [GKM93]. We show how our
adapted hierarchy generation scheme can be used to eliminate most of the occluded geome-
try of a huge scene geometry, thus yielding a performance boost compared to naive rendering
[M. M EISSNER, D. BARTZ, T. HÜTTNER, G. MÜLLER, J. EINIGHAMMER: Generation of
Decomposition Hierarchies for Efficient Occlusion Culling of Large Polygonal Models,Vision,
Modeling, and Visualization (VMV 2001), Stuttgart, November 2001]. A more detailed version
of this chapter is also available as a technical report [M. MEISSNER, D. BARTZ, T. HÜTTNER,
G. MÜLLER, J. EINIGHAMMER: Generation of Decomposition Hierarchies for Efficient Occlu-
sion Culling of Large Polygonal Models, WSI/GRIS technical report, University of Tübingen,
WSI-99-13, ISSN 0946-3852, June 1999].

Chapter6 [G. MÜLLER, D.W. FELLNER: An Adaptive Hierarchical Occlusion Culling Al-
gorithm for Interactive Large Model Visualization,Computer Graphics forum, 2001 (submit-
ted)] presents many ideas in the field of hierarchical occlusion culling. We show how visibility
queries may be answered by the apriori knowledge of partially visible and invisible geometry.
This knowlegde is propagated into the object hierarchy which may lead to dramatic reduction
of visibility queries. The chapter also presents a hybrid visibility determination scheme which
combines standard z-buffered rendering with a ray casting approach to improve the rendering
performance. In this framework, rays from the eyes are shot to sample the environment and
collect visibility information for the z-buffer pass.

The thesis concludes with Chapter7 which summarizes our work and presents an outlook.

7

CHAPTER 2

Object Hierarchies

2.1 Bounding Volumes

Bounding Volumes are probably the most valuable tool for the acceleration of rendering al-
gorithms. A bounding volume of a geometrical object is defined as a (geometrically simple)
body which embrasses the object completely (Figure2.1). It must be guaranteed that every
point within the geometrical object or on its surface lies within the body defined by the bound-
ing volume. The empty space between the surface of the bounding volume and the bounded
geometrical object is called thevoid-area.

Figure 2.1 Spherical bounding volume embrassing a rather complex object.

2.1.1 Bounding Volumes and Visibility

Bounding volumes may help to speed-up rendering algorithms significantly by the acceleration
of some underlying visibility tests. Figure2.2a. shows an example where a rather complex
object is outside the field-of-view of an observer. We can easily conclude that if the bounding
volume of an object is not visible the object itself cannot be visible by definition. Algorithmi-
cally, we can draw our conclusion by a simple bounding volume / view-frustum test without
looking at the (rather complex detail) of an underlying object. In Figure2.2b. we can conclude
from the knowlegde that the bounding volume is occluded by a closeby opaque barrier that the
object must be invisible and further visibility tests may be omitted. Similary, in Figure2.3 we
can conclude that the ray does not hit the object since it does not hit the bounding volume.

8

OBJECT HIERARCHIES 2.1 BOUNDING VOLUMES

a. b.

field of view

field of view

eye eye

Figure 2.2 Non-visible bounding volumes relative to an observer, a. complex object outside the field-of-
view, b. complex object occluded by a blocking object.

But there is also drawback involved in this test: the visibility test may come to the conclusion
that the object is potentially visible because the bounding volume is (at least partially) visible.
In this case the test did not help at all to increase the rendering performance but instead has
wasted computational resources without a gain. The average costsC of a visibility test for
objects using the bounding volume optimization may be formally described as

C(s) = CB(s)+ pB(s)Co(s), (2.1)

whereCB(s) describes the costs involved when testing the bounding volume surrounding
s, pB(s) the probability that the bounding volume is visible, andCo(s) the costs of testing the
objects for visibility.

When choosing the appropriate bounding volume one has to take into consideration that two

ray

Figure 2.3 Complex object not hit by a tracing ray.

9

OBJECT HIERARCHIES 2.1 BOUNDING VOLUMES

criteria influence the bounding volume’s efficiency. On the one hand the void-area should be
minimal, i.e. the bounding volume should fit the object as tight as possible to avoid unnecessary
object tests (this will reduce the termpB(s)). On the other hand testing the bounding volume for
visibility should be as fast as possible (to minimize termCB(s)). But these criteria contradict,
since tight fitting bounding volumes tend to be hard to check, and vice versa. Thus, we have to
use a compromise bounding volume.

2.1.2 Selected Bounding Volume Types

Frequently used bounding volume types include (see [MH99] for a complete dissusion of inter-
section algorithms for these bounding volumes):

a. b. c.

Figure 2.4 Bounding volume types: a.) axis-aligned box, b.) oriented box, c.) 8-DOP.

Axis-aligned Bounding Box (AABB): An axis-aligned bounding boxis a box whose face nor-
mals coincide with the standard coordinate axes. (Figure2.4a.)

Oriented Bounding Box (OBB): An oriented bounding boxis a box where adjacent faces are
orthogonal. (Figure2.4b.)

Discrete Oriented Polytope (k-DOP): A discrete oriented polytopeof degreek is defined by
k/2 (k even) normalized normalsni (1≤ i ≤ k/2) and with eachni two associated scalar
valuesdmin

i anddmax
i , wheredmin

i ≤ dmax
i . Each triple(ni,dmin

i ,dmax
i) defines a slabSi

which is the volume between the two planesπmin
i : ni · x+ dmin

i = 0 andπmax
i : ni · x+

dmax
i = 0, and where the intersection of all slabs,

⋂
1≤l≤k/2Sl , is the actualk-DOP volume.

(Figure2.4c.)

Tribox: Triboxes[CR99] are a compromise between the efficient testing of AABBs and the
tight fitting of generalk-DOPs. A tribox is the intersection of bounding boxes formed in
three different coordinate systems, each obtained by rotating the global coordiante system
by 45 degree around one of the principal axes. In three dimensions a tribox has at most
18 polygonal faces. The authors of [CR99] present several optimization for this special
case of a generalk-DOP.

10

OBJECT HIERARCHIES 2.2 HIERARCHICAL BOUNDING VOLUMES

Figure 2.5 2-dimensional Tribox. A tribox is the intersection of bounding boxes formed in three different
coordinate systems, each obtained by rotating the global coordiante system by 45 degree
around one of the principal axes [CR99].

2.2 Hierarchical Bounding Volumes

It seems naturally to extend the basic idea of using bounding volumes to a hierarchical approach.
Imagine how you would represent a city model in a scene data base: The city consists of many
areas, these areas contain houses, houses can be subdivided into rooms, rooms contain furniture,
etc. This defines an object hierarchy. If we assign a bounding volume to each hierarchy node
we obtain a bounding volume hierarchy where an inner node of the related scene tree embrasses
all bounding volumes of its children.

Concerning rendering algorithms, such a hierarchy can be used to speed-up visibility further.
Starting at the root of the hierarchy nodes are tested for visibility as follows. If an inner node of
the hierarchy is invisible descending the sub-tree is unnecessary since all of its child nodes must
be invisible, too. If an inner node of the hierarchy is at least partially visible, we also recursively
check its child nodes. These early rejection tests help to improve the rendering performance in
many situations, but there is again the danger to introduce an unwanted overhead, i.e. if most
of the scene objects are (partially) visible the hierarchical testing algorithm is no gain at all.
Chapter6 will present some ideas to eliminate this overhead.

2.3 Hierarchy Generation

Although a hand-modeled bounding volume hierarchy may improve the overall rendering per-
formance compared to naive object-by-object visibility test, there is no guarantee that it may be
useful for a certain rendering algorithm. Also, only few real-world models contain hierarchy
information useful for the purpose of efficient rendering – if at all. This leads to the need of
algorithms that create bounding volume hierarchies automatically.

11

OBJECT HIERARCHIES 2.3 HIERARCHY GENERATION

2.3.1 Median Cut

Median Cutschemes such as [KK86a, Grö95] sort a set ofn objects along one or more coordi-
nate axes and build two new sub-sets of size�n/2� and�n/2� which comprise the first�n/2�
and last�n/2� object in order. This process is repeated recursively which leads to the creation
of a binary tree.

2.3.2 OBBTree

TheOBBTreealgorithm [GLM96] creates a binary tree which contains an OBB at each internal
node and holds single objects in the leafs. The original algorithm handles only triangles as input
objects. In a first step a close fitting OBB is searched. This OBB is subdivided along the longest
axis of the OBB, which categorizes the triangles into individual sets depending on their relative
location. In a recursive step for each of the the newly generated set of objects a new OBB is
generated.

The challenging part of the algorithm is to find a well oriented OBB. As shown in the
original paper [GLM96] this can be accomplished by computing an orientation of the triangles
of the convex hull. Please refer to the original publications for details on this computation.

2.3.3 k-DOPTree

Thek-DOPTree[HKM96, KHM+98] algorithm also creates a binary tree and demand for trian-
gles as input. Again, a top-down approach is used to build the hierarchy. First, all the vertices of
the set are projected onto each normalni of thek-DOP, the resulting extreme values (min,max)
are stored indmin

i anddmax
i . This gives the optimalk-DOP parameters for a given set. The

original paper does not discuss the selection of normal vectorsni.
After the k-DOP is found it will be subdivided into two subvolumes and the algorithm

continues recursively. There are many potential ways to actually perform the subdivision. First
the axis must be selected, along which the subdivision should take place. The most successful
technique [KHM+98] computes the variance of the projections of the centroids of the triangles
onto each axis and selects the axis that yields the one with the largest variance. Finally, the
mean of the projected centroid coordinates determines the subdivision position. Triangles are
assigned to the respective subvolumes based on their centroid location.

2.3.4 Bounding volume optimization

Goldsmith and Salmon [GS87] describe in the context of ray tracing a technique for automatic
creation of bounding volume hierarchies. Their basic idea is to create a hierarchy that minimizes
the approximated average intersection costs between a ray and a bounding volume hierarchy.
The definition of a cost function (that is a hierarchical extension of Equation2.1) allows to
evaluate every given bounding hierarchy.

For hierarchy generation the authors propose an algorithm that incrementally adds objects
to the initially empty hierarchy. New objects added to the hierarchy start at the root of the tree.
Next, the subtree is determined that has the minimal bounding volume embrassing both the
newly added object and all the objects within this subtree. This process is repeated until the

12

OBJECT HIERARCHIES 2.3 HIERARCHY GENERATION

new object reaches a leaf of the tree. Finally, for every position along the path from the root
to the leaf it is checked at which position adding the new object would minimize the overall
hierarchy costs.

This scheme depends on the order in which objects are added to to hierarchy. The authors
suggest to run the algorithm several times using random object order and select the resulting
tree with minimal approximated costs.

2.3.5 Space Subdivision

Space-subdivision schemes likeoctrees[Gla84] or bsp trees[Jan86] are not object hierarchies
in the strict sense. These techniques subdivide the space in which objects are lying in, rather
than partitioning the set of objects in sub-sets. The space is subdivided intovoxelsor half-spaces
depending on the underlying algorithms. Subdivided entities may contain multiple objects and
objects may even be located within several subdivision entities.

13

CHAPTER 3

Hybrid Scene Structuring with Application
to Ray Tracing

Abstract

The handling of highly complex 3D scenes is one of the major challenges in computer graph-
ics. Several data structures were proposed in the past to address this problem. Many of these
schemes are only suited for specific spatial distribution of objects in 3D space, making it dif-
ficult for a developer to select the appropriate data structure for the scene and/or application.
Further, the selection of initialization parameters is typically a non-trivial task.

Using a ray casting environment this chapter presents an algorithm that automatically builds
a hybrid data structure combining bounding volume hierarchies and uniform spatial subdivi-
sions for a given scene. Our data structure is built by first creating a cost function based volume
hierarchy, subsequently detecting regions of uniformly distributed objects using the scene hier-
archy, and, as the last step, locally integrating uniform spatial subdivisions into the scene tree.
We will show that the data structure can be built with low costs, both with regard to space and
to run-time.

Finally, we present rendering times that demonstrate the usefulness of the new approach
compared to standard techniques by comparing run-time efficiency. The memory requirements
of the new data structure are, on average, linear in the number of scene objects. Further appli-
cations of the hybrid approach are also proposed.

3.1 Introduction

Ray tracing [Whi80] is a common technique for photorealistic visualization of three dimen-
sional scenes. The high quality of rendered images is achieved by spending huge computational
resources on the simulation of millions of light paths from the light sources to the eye of an ob-
server. Many techniques have been developed to reduce the number of ray/object intersections
by pre-structuring the scene [AK89].

A common algorithm to reduce the number of required intersection tests is the intersection
of rays with a hierarchy of bounding volumes, rather than with the whole set of objects [KK86a,
GS87] (Figure 3.1). A performance gain is achieved because one can conclude that if the
bounding volume of a subscene is not hit by a ray, no object within the subscene can be hit.
Creation of good bounding volume hierarchies is a difficult problem, though, since the number

14

RAY TRACING 3.1 INTRODUCTION

of possible hierarchies grows exponentially with the number of objects.

Figure 3.1 Hierarchy of bounding volumes.

Space subdivision techniques sudivide the space enclosing a scene into non-overlapping
regions, calledvoxels. For each voxel a list of objects is created describing the objects that
intersect the voxel. When a ray passes through space, only those objects that lie in voxels
intersected by the ray must be tested to detect ray/object intersections. Depending on the dif-
ferent space subdivision strategies one distinguishes between regular and adaptive techniques
[FTI86, Gla84, Jan86, CDP95] (Figure3.2).

Figure 3.2 Uniform and adaptive spatial subdivision.

Because ray tracing acceleration schemes differ in their relative efficiency from scene to
scene, no single technique can be optimal under all circumstances [Arv90]. Bounding vol-
ume hierarchies are well suited for inhomogeneous scenes, uniform space subdivisions are well
suited for scenes with homogeneous object distribution in space, while adaptive space subdi-
vision are well applicable to many types of scenes without giving optimal efficiency [Mül97].
These results led us to the development of a hybrid scheme combining the advantages of bound-
ing volume hierachies and uniform subdivision. Results proof that this new technique outper-
forms each of the single techniques.

15

RAY TRACING 3.2 HYBRID SCENE STRUCTURING

An example of a resulting data structure is shown in Figure3.3: A scene is partioned into two
(possibly distant) subscenes using a bounding volume hierarchy. One subscene contains many
subscenes uniformly distributed in space, thus we are building a uniform spatial subdivision to
represent the subscene. Note, that highly inhomogeneous detail contained in one of the resulting
voxels, could again be modeled using a hierarchy of bounding volumes.

Figure 3.3 Combining bounding volumes hierarchies and space subdivisions.

3.2 Hybrid Scene Structuring

In this section we will present our new scene structuring algorithm that is best described by
three subsequently performed stages:

1. In the first stage, we create a bounding volume hierarchy for a given scene of objects.
The basic idea is close to the median cut scheme described in [KK86a] which recursively
computes partitions of the objects in two equally sized subsets based on their spatial lo-
cation relative to a coordinate axis. We extend that scheme by introducing a cost function
similar to [GS87] to gain better scene partitions.

2. Stage 2 of our algorithm detects scene regions in which objects have similar size, have
close-by neighbors, and are uniformly distributed in space. Such regions (identified by
testing the bounding volumes of subscenes within the scene hierarchy) are marked for
later usage. This detection phase makes heavy use of hierarchy information created in
stage 1 of our algorithm. The different levels of the tree (corresponding to the scene
hierarchy) hold precious information on object distribution at multiple levels of detail.

3. Finally, we create uniform spatial subdivisions for those nodes of the scene tree that were
marked in the previous stage of the algorithm. Again, the hierarchical scene representa-
tion can be used to speed-up the space partioning significantly.

16

RAY TRACING 3.2 HYBRID SCENE STRUCTURING

3.2.1 Hierarchical Bounding Volume Optimization

Our scene hierarchy tree is built top-down by recursively subdividing the set of scene objects
into two disjoint sub-sets. Each node of the corresponding binary tree represents a specific
subscene of the whole scene and stores an axes-aligned bounding box of this subscene.

At each subdivision step we sort the objects along all coordinate axes. The center of an
object’s bounding box serves as the sorting key in this process. Next, we are evaluating several
potential subdivision positions along each coordinate axis by splitting the sorted list of objects
into a left andright part. This is similar to the median cut scheme presented in [KK86a], but
we don’t have a predefined split position. Instead, we minimize a cost function describing the
approximated costs for computing the ray/scene-intersection for a specific subdivision posi-
tion by testingall possible split positions in the sorted list of objects. Subdivision stops if the
intersection cost associated to a subscene falls below a predefined threshold.

Our cost function is based on the observation that – assuming an uniform distribution of rays
– the conditional probability that a ray will intersect a convex bounding volumeB given that
it intersects a surrounding convex bounding volumeA is S(B)

S(A) , with S representing a bounding
volume’s surface area [GS87]. The costs of intersecting a ray with a subscene are approximated
by summing the invidial intersection costs predetermined for each object type. This leads di-
rectly to the definition of our cost functionC describing the approximated intersection cost of
a ray with a given scene hierarchyH with direct childrenL j andRj . L j andRj result from a
subdivision of the sorted object list covered byH (|H|= n)1 into two sub-lists by performing a
split along a given coordinate axis (|L j |= j, |Rj | = n− j; j ∈ {1,2, . . .,n−1}):

CH(j,axis) =
SB(L j)
SB(H)

· ∑
i∈Lj

Cob j(oi)

+
SB(Rj)
SB(H)

· ∑
i∈Rj

Cob j(oi) (3.1)

with

• Cob j(o) being the average ray/object intersection costs intersecting a random ray with
elementary objecto

• SB(X) being the surface area of the bounding box associated to (sub)sceneX

• axis∈ {X,Y,Z}
When performing a subdivision step at an inner node of the hierarchy, the cost function must

be evaluated for all potential subdivision positions and coordinate axes. For a single coordinate
axis andn objects, this needs 2· (n− 1) bounding volume computations (which can be done
in time O(n) by incrementally unifying bounding volumes assigned to the elementary objects).
The sorting of all objects should be done in a pre-sorting process for each coordinate axis, since
the relative positions of objects will not change along an axis. Thus, the run-time costs for a
single subdivision step is linear in the number of objects to be subdivided. Assuming random
split positions, this leads to a overall run-time complexity ofO(nlogn) in the average case.

1 |H| is the number of objects stored in the leafs of hierarchyH.

17

RAY TRACING 3.2 HYBRID SCENE STRUCTURING

Figure 3.4 Scene structuring using a cost function based bounding volume optimization.

18

RAY TRACING 3.2 HYBRID SCENE STRUCTURING

void Node::classify()
{

m_uniform_base = false;
// no space subdivision by default

m_avgObjSize = boundingVolumeDiameter();
if (leaf()) {

m_uniform_base = true;
m_voxels = 1;
return;

}
Node* son1 = leftSon(); son1→classify();
Node* son2 = rightSon(); son2→classify();

if (compact(son1,son2) == true) {
m_uniform_base = true;
if (objSizeSimilar(son1,son2)

&& son1→m_uniform_base == true
&& son2→m_uniform_base == true) {

unsigned vox1 = son1→m_voxels;
unsigned vox2 = son2→m_voxels;
m_voxels = vox1 + vox2;
double w1 = vox1 * son1→m_avgObjSize;
double w2 = vox2 * son2→m_avgObjSize;
m_avgObjSize = (w1 + w2) / m_voxels;
son1→m_uniform_base = false;
son2→m_uniform_base = false;

} else {
m_voxels = 2;

}
}
return;

}

Figure 3.5 Detecting scene nodes/regions suitable for uniform space subdivision and marking subscene
corresponding nodes by setting m_uniform_base true.

Figure 3.4 shows the top levels of a scene hierarchy built with the presented algorithm.
Each node of the tree visualizes the subscene that is bounded by the corresponding node of the
generated hierarchy. For the sample scene in Figure3.4, most ray/scene intersections happen
with the floor area of the visualized landscape. This is taken into consideration by automatically
placing the floor area close to the root of the hierarchy, thus, testing it very early when doing a
ray/scene intersection.

3.2.2 Classifying Scene Nodes

In the second stage of our algorithm we want to detect possibly large scene regions that are best
structured by a uniform spatial subdivision of the scene, i.e. regions with objects of similar size,
uniform distribution of objects within the region, and small empty spaces between neighbor ob-
jects. Regions that do not have these characteristics will be left unchanged, i.e. structured using
the bounding volume hierarchy created in the previous stage of the algorithm. Our algorithm

19

RAY TRACING 3.2 HYBRID SCENE STRUCTURING

bool Node::compact(Node* son1, Node* son2)
{

Box a = boundingBox(),
a1 = son1→boundingBox(),
a2 = son2→boundingBox();

double s = a.surfaceArea(),
s1 = a1.sufaceArea(),
s2 = a2.surfaceArea();

double v = a.volume(),
v1 = a1.volume(),
v2 = a2.volume();

const double cs = .250; // suitable
const double cv = .125; // compactness parameters

if ((s1+s2) < cs * s) { return false; }
if ((v1+v2) < cv * v) { return false; }
return true;

}

Figure 3.6 Testing spatial neighborhood between subscenes.

bool objSizeSimilar(Node* son1, Node* son2)
{

const double cd = .3; // similarity
double size1 = son1→m_avgObjSize;
double size2 = son2→m_avgObjSize;

if (size1 < size2) {
return (size1 > cd * size2);

} else {
return (size1 < cd * size2)

}
}

Figure 3.7 Comparing average object sizes between subscenes.

marks scene nodes dependent on the fact if they are suitable base nodes for a uniform subdivi-
sion for the corresponding subscene (Figure3.5). Additionally, the algorithm also computes an
appropriate number of subdivision voxels for all marked nodes/subscenes.

The classification method is quite simple: First, resursively classify all subscenes. (By def-
inition all leafs will be marked.) Then, check if the two bounding volumes of an inner node’s
direct sons arecompact2 (Figure3.6). Finally, mark the current node based on the result of
testing the bounding box for compactness. If the boxes are not compact, the subscenes have a
large distance to each other and a uniform subdivision is counter-productive: the node will not

2 We define two boxesB1 andB2 to becompact, iff a) the summed surface area ofB1 andB2 is not larger than
the surface area (timescs) of the smallest boxB boundingB1 andB2 and b) the summed volume ofB1 andB2 is not
larger than the volume (timescv) of B (cs,cv > 0). If two boxes are not compact they have a large spatial distance.

20

RAY TRACING 3.2 HYBRID SCENE STRUCTURING

be marked. Otherwise – the boxes are compact – we have to check the sons, provided they are
also marked and contain objects of similar size (measured with the bounding volumes’ diame-
ters). If this is the case, we have detected two uniform regions that, again, may be combined to
a larger uniform region. Thus, we delete the marks associated with the sons, indicating that we
have found a new base for uniform subdivision. The number of voxels associated to a uniformly
subdividable subscene is set to the sum of the number of voxels associated to each son. If the
sons are compact, but at least one of them is not marked or the objects contained in the corre-
sponding subscene have significantly different sizes (by a factor ofcd, Figure3.7), we treat the
current node as an elementary object in any subscene it is contained. This enables us to build
a (typically small) uniform subdivision over a set of subscenes that lie close together, but have
highly non-uniform inner structure.

Note, that our algorithm will not destroy the underlying scene hierarchy within a region to
subdivide. We will use the hierarchy in the next stage of scene structuring. Also note, that the
number of voxels associated to each marked node equals the largest possible number of scene
nodes (which may be leafs or inner nodes) that are uniformly distributed below a marked scene
node.

3.2.3 Locally Uniform Space Subdivision

The final stage of our scene structuring algorithm will show how to build uniform space subdi-
visions for those subscenes that were marked in the previous step. Assume we have a marked
node withm being the number of space subdivision voxels assigned to this node. We create
a uniform space subdivision withm voxels by uniformly subdividing the axes-aligned box en-
closing the subscene represented by the marked scene node. Similar to [Spa90] and [Grö95],
we create the space subdivision by recursively subdividing the bounding box. At each step, we
subdivide all voxels along the dominant coordinate axis into two equally sized voxels and com-
pute those objects that have a non-empty intersection with those voxels. The recursion stops if
the pre-determined number of voxels is reached.

At each voxel subdivision step, we have to compute those objects that intersect a given
voxel. Using scene hierarchy information gained in Section3.2.1, we can speed-up the voxel
membership tests significantly:

• If the bounding volume of a scene node lies completely inside the current voxel all sub-
scenes must also lie within the voxel.

• If the bounding volume of a scene node lies completely outside the current voxel all
subscenes must also lie outside the voxel.

In both cases, tests with subscenes can be omitted. Only in the case that a bounding volume of
a voxel is partially inside and partially outside the current voxel, each direct sub-node must be
tested for membership recursively. When storing the objects lying completely inside a voxel we
store scene nodes whenever possible instead of lists of elementary objects to preserve hierarchy
information in the recursion.

Because of the regular structure of the subdivided space, we can expect that, on average, a
single voxel split operation can be done in constant time, independent of the number of scene

21

RAY TRACING 3.3 RESULTS

objects. At each subdivision step, we test voxel membership for the top nodes of those sub-
scenes being left after the previous recursion level. Their bounding volume size is very similar
to the size of the current voxel because of uniform distribution of the objects (and the subscene
bounding volumes containing the objects). Thus, for a single uniform voxelization withk vox-
els we need only timeO(k), if a single voxel subdivision can be done in timeO(1) on average.
Since marked subscenes are treated as elementary objects if they lie within a larger marked
subscene, all uniform regions of a scene can then be subdivided in timeO(n) using the scene
hierarchy.

This is a remarkable fact, because it implies, that the whole scene voxelization can be done
in a very short time, provided the scene hierarchy from Section3.2.1 is available. We could
compute the scene hierarchyonce, save the result to an external storage medium, and perform
a fast voxelization based on the precomputed scene hierarchy, whenever using the scene.

As already mentioned before, we perform a uniform space subdivision for each marked
node. The number of subdivision voxels equals the number associated to each of these nodes.
Since we are subdividing space within which objects or subscenes are distributed uniformly,
the space to store a subdivided region will be approximately linear in the number of voxels.
Note, that a marked scene node within a larger marked subscene only counts as one elementary
object. For this reason, the overall space time complexity, on average, isO(n) (n = number of
elementary objects).

3.3 Results

We have compared absolute rendering times to visualize several test scenes (Figures3.8 and
3.9) with different ray-acceleration techniques in a ray-tracing framework (Table3.1). Mea-
sured times are split intosetup(creation of data structures in a preprocessing step) andrender
(computing ray/scene intersections and shading). Table3.1also includes the accumulated num-
ber of ray/object intersections and intersection tests. The test scenes were taken from the the
SPD package [Hai87] and cover different kinds of object distributions in space making them
a suitable testbed for our performance measurements. All measurements were done on a PC
having a 300 Mhz Pentium II CPU and 64 MB of main memory.

3.3.1 Description of Compared Acceleration Techniques

BVolC: Cost function based hierarchical bounding volume creation described in Section3.2.1.

BVolM: Similar toBVolC but only evaluating cost functionC at subdivision positionj = �n/2�
(median cut).

RegSub: Uniform space subdivision of the whole space covered by the scene’s axes-aligned
bounding box (10,000 voxels). Voxels are distributed in space such that the number of
voxels in x, y, and z direction is roughly proportial to the scenes bounding volume extents
in these dimensions.

RegSub*: Same asRegSub, but using 40,000 instead of 10,000 voxels.

22

RAY TRACING 3.3 RESULTS

Figure 3.8 Test scenes balls, lattice, and tree.

Figure 3.9 Test scene trees. The right picture shows the scene regions that are uniform subdivided by
method Hybrid.

HVoxel: Same asRegSub, but in a preprocessing step aBVolC-hierarchy is created. When
doing space subdivision, a voxel that covers a subscene completely stores a subscene
node instead of a list of elementary objects. This may drastically reduce the run- and
space-time cost for the case that many elementary objects fall into a single voxel by using
the hierarchy information available.

BSP: Binary space partitioning scheme which recursively subdivides the scene’s bounding box
into 2 equally sized sub-boxes [SS92]. The maximum subdivision depth was chosen to
be 18, recursion is also stopped when a region contains less than 4 elementary objects.

KDTree: Similar toBSP but the subdivision plane is selected to minimize a cost function very
similar to functionC from Section3.2.1. The costs of aBSP-node are defined as the
summed object intersection costs of the objects contained in the 2 sub-boxes weighted by
the surface area of the sub-box they are contained in [Mül97]. In a preprocessing step the
objects are sorted along all coordinate axes for efficient cost function minimization.

23

RAY TRACING 3.3 RESULTS

Octree: Space-subdivision scheme that subdivides the scene’s bounding box recursively into 8
equally sized sub-boxes. The maximum subdivision depth was chosen to be 6, recursion
is also stopped when a region contains less than 4 elementary objects.

Octree*: Same asOctree, but maximum subdivision depth was changed to 8.

HUG: Hierarchy of Uniform Grids [CDP95]: Objects are filtered by size yielding 3 equally
sized sets/levels of objects. Then, objects in each set are clustered to identify spatially
distant sub-sets which are subdivided using an uniform grid. Finally, a hierarchy of these
grids is built by inserting grids containing smaller elementary objects into intersected
higher level grid cells containing larger elementary objects.

HUG*: Same asHUG, but voxels of each grid are distributed in space such that the number
of voxels in x, y, and z direction is roughly proportional to the scenes’ bounding volume
extends in these dimensions.

Hybrid: Our hybrid acceleration technique described in Section3.2.

3.3.2 Comparision of Run-Time Efficiency

ComparingBVolC and BVolM we see that the cost function based hierarchy construction
scheme is superior to a simple median cut scheme concerning rendering efficiency. Compar-
ing setup times,BVolC is slightly slower thatBVolM mostly because the cost function must
be computed for many potential split positions. The median cut scheme has a worst and best
case complexity ofO(nlogn) while BVolC has only an average case complexity ofO(nlogn),
assuming random subdivision positions.

The chain of argumentation is similar when comparing the adaptive space subdivision schemes
BSP andKDTree. Again, it seems to be worth to spend more time in the preprocessing phase
to find good subdivision positions. This overhead is mostly compensated in the render phase.

Results for theHUG-scheme are rather disappointing for the test scenesballs, tree, and
trees. The main problem seems to be that the filter technique used is simply to naive (3 levels,
same number of objects each) to guaranteeO(1) objects per grid cell, which is a must for
efficient space subdivision techniques. On the other hand, the overall technique sounds very
promising. Further research has to concentrate on finding more appropriate filter functions.

When comparing run-time results forBVolC andRegSub one can easily see thatBVolC
is better suited for inhomogeneous object distributions (balls, tree) in space thanRegSub. On
the other handRegSub is an appropriate scheme for regulary structured scenes likelattice.
The RegSub results can be improved by applying theHVoxel-optimization, though, which
guarantees that for test scenesballs, tree, andtreesa hierarchical scene structure for densely
populated voxels is generated.

Finally, comparing our new techniqueHybrid with the other schemes presented, one can
easily see the benefit of the new approach. For all test scenes we can further reduce the rendering
times compared with the other schemes – sometimes even significantly (balls). Even, if the
rendering times were of similar magnitude compared with the fastest of the other techniques, our
algorithm has the advantage that no user interaction is needed to select an appropriate scheme
together with its initialization parameters. A drawback of our scheme is the fact that it has

24

RAY TRACING 3.4 A FRAMEWORK FOR SCENE STRUCTURING

balls (7383 objects)
method intersections setup (sec) render (sec)

BVolC 42,526,503 1.58 52.51
BVolM 80,248,331 1.36 97.79
RegSub 374,426,211 0.60 264.23
RegSub* 142,908,934 1.06 111.14
HVoxel 78,032,975 1.68 80.93
BSP 89,572,197 0.60 118.25
KDTree 21,073,145 3.54 39.18
Octree 168,124,433 0.50 189.67
Octree* 16,456,617 0.76 82.76
HUG 352,291,425 2.13 281.65
HUG* 290,883,945 2.29 154.62
Hybrid 13,293,618 2.59 26.65

lattice (8281 objects)
method intersections setup (sec) render (sec)

BVolC 136,627,223 2.27 207.67
BVolM 157,338,109 2.08 296.60
RegSub 18,682,257 2.31 47.34
RegSub* 21,015,736 3.67 41.85
HVoxel 12,955,345 5.56 38.34
BSP 14,506,553 3.62 64.08
KDTree 14,621,822 5.73 63.52
Octree 10,680,034 4.68 100.06
Octree* 10,621,667 5.89 101.20
HUG 17,831,280 3.96 46.62
HUG* 17,831,280 4.12 46.54
Hybrid 12,159,322 5.63 39.45

tree (8192 objects)
method intersections setup (sec) render (sec)

BVolC 15,692,221 2.01 22.57
BVolM 44,714,514 1.76 47.31
RegSub 1,144,488,683 1.73 2258.38
RegSub* 432,183,008 2.25 805.23
HVoxel 76,184,307 5.56 38.34
BSP 343,908,664 1.71 834.06
KDTree 8,175,353 5.68 34.26
Octree 723,241,229 1.95 1616.75
Octree* 56,728,797 2.37 172.43
HUG 1,197,585,510 3.87 2694.29
HUG* 681,488,036 3.98 1387.39
Hybrid 9,923,958 5.07 21.10

trees (24572 objects)
method intersections setup (sec) render (sec)

BVolC 3,413,744 7.32 6.98
BVolM 13,977,722 6.21 18.70
RegSub 538,128,376 6.80 1119.92
RegSub* 205,420,337 7.70 435.35
HVoxel 11,048,194 9.31 22.65
BSP 379,922,862 5.37 788.56
KDTree 1,540,374 11.14 7.35
Octree 767,520,736 7.39 1666.09
Octree* 50,222,304 8.84 108.48
HUG 153,262,282 5.34 211.45
HUG* 153,262,172 5.23 211.68
Hybrid 2,888,736 9.01 7.00

Table 3.1 Run-time statistics for ray tracing several different scenes using different acceleration tech-
niques.

slightly larger initialization costs on average, but these amortize if larger number of rays have to
be traced, either because a larger image resolution is selected or a more complex ray integration
technique is used.

3.4 A Framework for Scene Structuring

The algorithms described in the previous sections were implemented using the MRT rendering
package (Minimal Rendering Tool) [Fel96], an extensible library of rendering algorithms and
data structures. Through an object-oriented interface its functionality can be accessed at several
levels of abstraction to suit the needs of different applications.

MRT’s base class for all geometric objects is class t_Object. Important virtual messages
of class t_Object include boundingVolume() which returns the bounding volume of an object,
intersect() computes the intersection between a ray and the object, rayIntersectCosts() compute
the average intersection cost between a ray and the object, and checkBoxIntersect() is provided
for the initialization of spatial data structures by testing if the object has an non-empty intersec-

25

RAY TRACING 3.5 CONCLUSION AND FURTHER WORK

tion with an axes-aligned bounding box.
A remarkable fact of the MRT design is that the whole scene as well as all subscenes within a

hierarchy are handled consistently as elementary geometric objects, i.e. class t_Scene is derived
from class t_Object and thus also provides the above messages. To compute the intersection of
a ray with a scene, the scene first tests for an intersection with its bounding volume and then
sends message intersect() to all objects it contains which can either be elementary objects or
scenes. Introducing new acceleration schemes is very simple by directly deriving from class
t_Scene and overloading methods of t_Object like intersect(). Because all scene structuring
schemes share the interface with classes t_Scene and t_Object, it is possible to combine different
acceleration schemes within a single hierarchy of scene representations.

3.5 Conclusion and Further Work

We have presented a new data structure for ray tracing complex scenes. We have shown that
ray tracing computation times can be significantly reduced using the new scheme compared
to many other acceleration schemes. As a key feature, the new data structure does not need
any user supplied setup parameters to initialize properly, thereby outperforming all competing
algorithms. The constantscs, cv, andcd used in our definitions of compactness and similarity of
bounding volumes have been determined empirically by evaluating many test scenes. We have
found these constants to be independent of the actual scene geometry. Future work will check
this out in more detail.

Recently, independently of our work, Klimansezewski and Sederberg have presented a ray
accelleration method [KS97] that uses a bounding volume hierarchy to control the construction
of an adaptive grid structure. They use a different bounding volume creation technique [GS87]
and a different heuristic from ours to decide which sub-grids have to be merged to build a larger
grid. Though, a more detailed comparision of the two methods has yet to be done.

Beyond the scope of this chapter we are also testing the usefulness of the new scheme for
applications other than ray tracing. We have prelimenary results indicating that the automatic
creation of object hierarchies presented in this chapter produces bounding volume hierarchies
that are well suited for many applications ranging from hierarchical view frustrum culling to
occlusion testing and collision detection in complex scenes.

We will also test the hybrid data structure as a scene structuring tool for a hierarchical
radiosity algorithm using object clusters. Our bounding hierarchies will define a natural scene
hierarchy while the uniformly subdivided sub-spaces represent object clusters.

26

CHAPTER 4

Automatic Creation of Object Hierarchies
for Radiosity Clustering

Abstract

Using object clusters for hierarchical radiosity greatly improves the efficiency and thus usabil-
ity of radiosity computations. By eliminating the quadratic starting phase very large scenes
containing about 100k polygons can be handled efficiently. Although the main algorithm ex-
tends rather easily to using object clusters, the creation of ’good’ object hierarchies is a difficult
task both in terms of construction time and in the way how surfaces or objects are grouped
to clusters. The quality of an object hierarchy for clustering depends on its ability to accu-
rately simulate the hierarchy of the energy flow in a given scene. Additionally it should support
visibility computations by providing efficient ray acceleration techniques.

In this chapter we will present a new approach of building hierarchies of object clusters.
Our hybrid structuring algorithm provides accuracy and speed by combining a highly optimized
bounding volume hierarchy together with uniform spatial subdivisions for nodes with regular
object densities. The algorithm works without user intervention and is well suited for a wide
variety of scenes. First results of using these hierarchies in a radiosity clustering environment
are very promising and will be presented here.

The combination of very deep hierarchies (we use a binary tree) together with an efficient
ray acceleration structure shifts the computational effort away from form factor and visibility
calculation towards accurately propagating the energy through the hierarchy. We will show how
an efficient single pass gathering can be used to minimize traversal costs.

4.1 Introduction

Clustering for hierarchical radiosity [Sil95, SAG94] works by grouping patches or objects to
clusters and performing approximative energy exchange between these clusters. Starting with a
single self-link the algorithm checks if a given link accurately represents the energy exchange
between two object clusters or if it has to be refined. Link refinement means deleting the current
link and establishing new links to or from the next level of the object hierarchy, thus defining
a recursive refinement process. Once the surface level of the hierarchy is reached a standard
hierarchical radiosity algorithm proceeds.

After introducing clustering algorithms for radiosity computations enhancements to the ra-

27

HIERARCHICAL RADIOSITY 4.2 FINDING OBJECT CLUSTERS

diosity algorithm like incorporating glossy reflection [CLSS95] and the efficient use of error-
bounds [GH96, SSS98] have been published. Recent research however, focuses on the efficient
and accurate creation of object hierarchies that can be used as a starting point for the radiosity
calculation.

Hasenfratz et al. [HDSD99] give a thorough analysis of different clustering algorithms used
for radiosity computations. Their investigation was driven by two issues. First, the quality of
the simulation, i.e. the accurate flow of energy, and second, the overall application performance
which is typically dominated by the ray casting costs due to visibility checks. Attention must
also be paid to the cluster creation time, which can be significant if an elaborate optimization
step is involved. Comparing different clustering strategies by applying them to ’real-world’
scenes, i.e. scenes modeled for other purposes than radiosity calculations, they made the fol-
lowing observations: Clustering schemes based on hierarchical bounding volumes typically
behave the most predictable but do not always result in best performance. The combination of
a k-d tree with a local bounding volume optimizations in densely populated inner nodes how-
ever, gives good ray acceleration results, thus probably improving overall performance (but not
necessarily image quality). Finally, bottom-up construction methods generally produce better
object hierarchies although the costs for the creation step can easily become quadratic.

Led by these observations we will present a new clustering algorithm that can be character-
ized by the following properties:

• hierarchical bounding volumes in a binary tree

• fast creation time (O(nlogn))

• reliable detection of original scene objects

• efficient ray-acceleration

The structure of our chapter is as follows. In the next section the clustering algorithm will
be explained. Section 3 describes our radiosity implementation and finally we will present and
discuss our results.

4.2 Finding Object Clusters

4.2.1 Overview

Our new clustering algorithm creates a hierarchy of bounding volumes which define the indi-
vidual clusters for the radiosity process.

The algorithm examines the existing objects and their mutual spatial relationship. This
yields very high quality hierarchies with structures which are often calledintuitive or natural.
The cluster hierarchies adapt well to the spatial distribution of objects:

• Spatially separated geometry is identified and placed into separate clusters.

• Overlaps between clusters are reduced and tight bounding volumes are built by finding
bounding volumes with minimal surface areas.

28

HIERARCHICAL RADIOSITY 4.2 FINDING OBJECT CLUSTERS

The basic idea behind the construction scheme is close to the median cut scheme described
in [Grö95, KK86a] which recursively computes partitions of the objects in two equally sized
subsets based on their spatial location relative to a coordinate axis. We extend this scheme by
introducing a cost function similar to [GS87] to gain significantly better scene partitions. Also,
we will show that the data structure can be built very efficiently.

4.2.2 Construction

Our hierarchical bounding volume optimization method subdivides recursively the set of scene
objects into two disjoint subdivision entities. Each node of the corresponding binary tree repre-
sents a specific subscene of the whole scene. At each subdivision level, the individual objects
are assigned to exactly one subdivision entity of that level. No objects are split, hence no new
objects (e.g. polygons, triangles, etc.) are created by this method.

Starting from the root node, we sort the objects along all major coordinate axes, where the
center of an object’s bounding box serves as sorting key. Based on these sorted lists, we evaluate
potential partitioning positions along each axis for each entry in the respective list by splitting
the sorted list of object into aleft andright part. In contrast to the median cut scheme applied
in [Grö95], we don’t have a predefined partitioning position. Instead, we minimize a cost
function describing the approximated costs computing the ray/scene-intersection for a specific
subdivision position. By minimizing the cost function overall partitioning positions, we obtain
an optimal subdivision position which generates two new subdivision entities; one containing
theleft objects, one containing theright objects (Figure4.1). The subdivision process terminates
for subscenes which contain only a single object.

Figure 4.1 Possible object partitions along a single coordinate axis for a simple example scene contain-
ing 5 objects. The partition with minimal costs according to function C will be used in the
subsequent recursion step.

The cost function used has already been successfully applied in a ray-tracing environment
and has shown its superiority compared to other bounding volume schemes. The costs of a

29

HIERARCHICAL RADIOSITY 4.2 FINDING OBJECT CLUSTERS

subdivision entityH, with childrenHle f t andHright , is given by:

CH(axis) =
S(Hle f t)

S(H)
· |Hle f t|+

S(Hright)
S(H)

· |Hright|

with

• |H| the number of objects within hierarchyH

• S(H) being the surface area of the bounding box associated to sceneH

• axis∈ {X,Y,Z}
Applying hierarchies based on this cost function to radiosity clustering is primarily a con-

sequence of two observations:

• An efficient ray acceleration scheme is needed for fast visibility computations based on
ray casting.

• Results in [MF99] show that this algorithm generates hierarchies that adapt well to the
distribution of objects in the scene. E.g. polygons of individual objects are detected and
clustered together, and overlaps of bounding volumes are minimized (although overlaps
are still possible).

Construction Costs

Many previously proposed bounding volume schemes fail for large scenes because of the high
computational complexity involved in the respective construction method. Their complexities
easily become quadratic by checking mutual spatial relationship making them unusable for
large geometries composed of many objects. Our method will need only timeO(nlogn) in
the average case while guaranteeing hierarchies of very high quality comparable to bottom-up
methods.

When performing a subdivision step at an inner node of the hierarchy, the cost function has
to be evaluated for all potential subdivision positions and coordinate axes. This can be done in
time linear in the number of objects by incrementally unifying bounding volumes assigned to
the elementary objects. The sorting should be done in a pre-process for each coordinate axis,
since the mutual relative object positions will not change throughout the construction algorithm.
For the analysis of run-time complexity, we assume randomly chosen split positions for object
partition, which leads to an overall run-time complexity ofO(nlogn) in the average case. The
actual subdivision position is determined by the cost function, though.

Quality of Hierarchies

Figure4.2 illustrates the resulting bounding box hierarchy when our method is applied to a
real-world test scene (aircraft) containing more than 180,000 triangles. Even at a very low level
of hierarchy (level 10) individual basic structural objects like seats and overhead compartments
emerge. At level 12 details of the individual objects appear like armrests, backrests, or head-
rests. The total number of boxes at level 12 is less that 212, which is only about 2% of the total
number of scene objects.

30

HIERARCHICAL RADIOSITY 4.2 FINDING OBJECT CLUSTERS

Figure 4.2 Visualization of bounding volumes of the aircraft test scene at tree levels 10, 12, 14, 16, and
18. The image at bottom right shows the Gouraud shaded original scene model.

Figure 4.3 Visualization of bounding volumes of the vrlab test scene at tree levels 10, 12, 14, 16, and 18.
The image at bottom right shows the Gouraud shaded original scene model.

31

HIERARCHICAL RADIOSITY 4.2 FINDING OBJECT CLUSTERS

Figure4.3shows the results for an architectural scene containing more that 36,000 polygons.
Again, close fitting bounding volumes emerge at a relatively low level of the hierarchy. Please
note that at level 12 details of the scene like chairs, tables, cubicles, monitors, and keyboard are
detected at a very abstract but informing degree. At level 14 smaller details like a ladder to the
second floor or book shelves emerge.

The clustering scheme even detects inhomogeneous detail at a very early level of hierarchy
and is thus suitable for a vast range of scene arrangements.

4.2.3 Optimizing Ray Acceleration

Besides the quality of the cluster hierarchy the performance of the radiosity algorithm is mostly
influenced by the efficiency of the underlying ray acceleration scheme. Although bounding vol-
ume hierarchies deliver acceptable performance in many cases, these schemes involve high tree
traversal costs which can often be reduced by using hierarchical grid approaches. To answer
visibility queries, we have presented a novel hybrid ray acceleration scheme [MF99] that com-
bines the advantages of bounding volume hierarchies with uniform grid approaches. We have
shown that the performance is at least equal to similar schemes like [CDP95] and [KS97]. In
this chapter, we will only summarize the major subdivision algorithm and its results:

Given a bounding volume hierarchy, our goal is to detect inner scene nodes that are suitable
base nodes for a local space subdivision. To achieve this goal, we recursively classify scene
nodes based on the

• surface area of neighbor hierarchy nodes

• volume of neighbor hierarchy nodes

• average size of elementary objects below a hierarchy node

We classify an inner scene node as a suitable base node for a uniform space subdivision if the
surface area and the volume of the node are not significantly larger than respective summed
values of its child nodes. Also, we demand that the elementary objects below each child node
have similar size to justify a locally uniform space subdivision for this sub-scene. The involved
threshold constants were determined empirically.

Additionally, all scene nodes hold a counter representing the number ofuniformclassified
sub-nodes which will be used in the actual space subdivision phase. In the next phase, uni-
form space subdivisions are built for sub-scenes marked in the previous step. This is efficiently
achieved by recursively subdividing the bounding box of a scene node along the dominant co-
ordinate axis. The node counter is used to determine the number of voxels or subdivisions. The
available bounding volume hierarchy can be used to speed-up the voxel initialization signifi-
cantly by applying hierarchical voxel membership tests.

Figure4.4 shows an example of a resulting data structure. A scene is partitioned into two
(possibly distant) subscenes using a bounding volume hierarchy. One subscene contains many
subscenes uniformly distributed in space, thus we are building a uniform spatial subdivision to
represent the subscene. Note that highly inhomogeneous detail contained in one of the resulting
voxels, could again be modeled using a hierarchy of bounding volumes.

32

HIERARCHICAL RADIOSITY 4.3 RADIOSITY WITH OPTIMIZED CLUSTERS

Figure 4.4 Combining bounding volume hierarchies and space subdivisions.

Construction Costs

We have shown in [MF99] that both, run-time complexity and space complexity of the space-
subdivision approach is linear in the number of scene objects. Thus, the overall complexity of
the cluster construction is dominated by the time to build bounding volume hierarchy. This is
a remarkable fact, because it implies, that the whole scene voxelization can be done in a very
short time, provided the scene hierarchy from Section4.2.2 is available. We could compute
the scene hierarchyonce, save the result to an external storage medium, and perform a fast
voxelization based on the precomputed scene hierarchy, whenever using the scene.

4.3 Radiosity with Optimized Clusters

4.3.1 Overview of the Implementation

Our radiosity implementation mainly follows the one presented in [GH96], where the authors
propose using an error driven refinement technique to improve the efficiency of the algorithm.
To decide whether a given link has to be subdivided, upper and lower error bounds on the
energy transfer are compared. These error bounds are a combination of bounds on form factors,
visibility and irradiance transfer involved in that particular interaction. During energy exchange
bounds are gathered and propagated exactly like radiosity thus accurately reflecting the quality
of the transfer. BF-refinement [HSA91], which is often used in standard hierarchical radiosity
only uses the product of form factor and radiosity as an indicator for link refinement. The error
driven approach leads to fewer links when compared to BF-refinement and it produces more
subdivisions at the element level, thereby improving the detection of shadow boundaries.

The second important detail is the way how energy is transferred from and to clusters. En-
ergy received by a cluster is directly deposited on the contained surfaces obeying their orien-
tation with respect to the source. An iteration process that pushes the energy down the tree is
started once the top level surfaces are reached. When energy is gathered from a cluster, surface
orientation inside that cluster also plays an important role. To account for the non-diffuse re-

33

HIERARCHICAL RADIOSITY 4.3 RADIOSITY WITH OPTIMIZED CLUSTERS

flection property of a surface cluster, the reflection of each contained surface is weighted by its
orientation to the receiver.

Visibility calculations between patches or between patches and clusters are done via ray
casting. Only if visibility between two clusters is needed, we use the approximative visibility
approach based on a voxel grid with extinction coefficients [Sil95].

4.3.2 Using the Cluster Hierarchy

The algorithm described in Section4.2.2builds a binary tree containing a bounding volume
hierarchy. If the algorithm detected regions of regular object densities inner nodes encapsulating
these regions are specially marked. Inside these regular nodes, however, the bounding volume
hierarchy still persists. This is important, because the algorithm might find regular regions
quite early, thus probably resulting in no hierarchy at all. Because we want to use the same
hierarchy for ray tracing (i.e. visibility checks) and for clustering we decided to combine both
data structures. Ray tracing can benefit from regular regions whereas the radiosity algorithm
needs the full hierarchy. Nodes with a regular structure are derived from standard inner nodes
(our implementation is done in C++) and overload the method performing a ray intersection
test. Instead of just propagating the test to their child nodes, regular nodes use a local voxel
array created during the construction of the hierarchy.

When performing our first tests with this data structure applied to large models, we found
that most time was spent during gathering energy over the links and propagating it through
the hierarchy. The refinement steps consisting of form factor calculations, visibility checks,
and subdivision of links however, only used a fraction of the gathering time. The reason for
both observations lies in the nature of our hierarchy. The subdivision of links is very fast due
to the branching factor of two in a binary tree. The visibility checks are performed either
approximatively or based on ray casting which greatly benefits from the tight fitting bounding
volumes and the local voxel arrays. The problem we encountered in the gathering step however,
is the depth of the tree.

Optimizing the Directional Transfer

As mentioned above, propagation of energy in a cluster is performed by depositing energy di-
rectly to the inner surfaces. This means traversing the hierarchy below a cluster to enumerate
all leaves and computing a dot product of each surface normal with the direction of transfer.
Thus, performing this step for each link and at all levels of the hierarchy results in an excessive
number of partial sweeps through the hierarchy. Because the same traversal has also to be done
for the sending cluster, deep hierarchies degrade the performance of this process. To optimize
the number of iterations on both sides (sender and receiver) our gathering step for clusters first
loops over all links. While visiting each link, the sender’s weighted radiosity is computed once
and pushed on a stack together with the direction of transfer. After all links are visited, the
receiving cluster’s resembling surfaces are enumerated and the saved radiosities are accumu-
lated on these children, again weighted by their orientation. This results in only two traversals
for each link. This approach is similar to theα-links proposed by Smits et al. [SAG94]. In
our implementation however, the direction of transfer for each individual contribution to the
receiver’s radiance is taken into account. Smits computes a single average value for the sender

34

HIERARCHICAL RADIOSITY 4.4 RESULTS

and uses it to update all patches of the receiving cluster which can be wrong if most patches
are oriented sideways regarding the direction of transfer. Using the technique described above
a higher accuracy is obtained without increasing the complexity.

Efficiently Solving the System

The original hierarchical radiosity algorithm [HSA91] and subsequent clustering algorithms
[Sil95, SAG94] split the solution process in two passes. In a gathering step the energy is trans-
ferred across the links, which is done for all links of all nodes. In a second pass the radiances
must be swept to each object’s parents and children to obtain the proper amount of energy at all
levels of the hierarchy. The radiosity received by a parent node is pushed down the hierarchy to
the children and on the way up the parents receive the area-weighted average radiosities from
their children. The separation of agatheringand apush-pullpass corresponds to the Jacobi
iteration, where the solution vector is only updated after a full iteration step [SP94]. To speed
up the convergence rate and thereby minimizing the number of full hierarchy traversals Gauss-
Seidel iteration should be used, which means that the entries of the solution vector are updated
in place during an iteration. A combined gather and push-pull procedure is recursively called
for each child node. At each element radiosity is gathered and pushed down the hierarchy. At
the leaf level the emissivity is added and the radiosities are area-averaged on the upward pass
[GH96]. Thus, energy can be propagated in a single sweep without an additional push-pull step
as required for Jacobi iterations. We consider a gathering step to be complete when the max-
imum energy gain drops below some fixed threshold. For our test scenes this never required
more than 3 full iterations for a single gathering step.

4.4 Results

To test the overall behavior and efficiency of our clustering algorithm we computed radiosity
solutions for several large scenes containing up to 180,000 polygons (see Figure4.5).

The scenes chosen cover a broad range of features that are typically not found in ’synthetic’
test scenes. Theaircraft is a highly tesselated model of the interior of an aircraft with mainly
curved surfaces.wichmannis an architectural model of an office building containing moderately
subdivided furniture and many large light sources. Most surfaces of the scene are textured. The
vrlab scene has lower overall complexity than the former one but here the chairs are highly tes-
selated. Theatrium scene has the lowest complexity of our test scenes, but it is rather irregular
due to several trees on the ground floor.

For rendering times and additional statistics please refer to Table4.6 (all tests were run on
a 250MHz R10k with 2GB RAM). To measure the quality of the clustering algorithm, we have
chosen the error threshold to not subdivide more than about 20% of the initial polygons. This
ensures that the timings reflect the quality of the bounding volume hierarchy as well as the ray-
tracing speed. Finer error thresholds shift the main computational effort towards ray tracing.
Solutions of higher quality are presented in Figure4.7.

35

HIERARCHICAL RADIOSITY 4.5 DISCUSSION

4.5 Discussion

Our impression from these tests is that the algorithm in generally behaves very well. This
confirms the results regarding the quality of our bounding volume hierarchy documented in
Figures4.2and4.3. Although we did not directly compare our algorithm to one of the clustering
algorithms published before, two of our test scenes (aircraft andvrlab) have already been used
in [HDSD99]. Comparing our rendering times at the given visual quality to the former results
shows that using the same hierarchy for clustering and ray acceleration is a very promising
approach.

Beyond these observations our algorithm closely matches several requirements found to be
useful in clustering algorithms [HDSD99]: The creation time of the hierarchy is very efficient
and tightly fitting bounding volumes are generated. These bounding volumes are stored in a
binary tree, which allows for fast link refinement steps. Additionally, the pure ray-tracing speed
of our bounding volume hierarchy combined with voxel grids has been shown to be superior to
most other approaches [MF99].

The reliable detection of almost arbitrary scene details, even at moderate hierarchy depths
opens several perspectives for future work. Rapid prototyping applications using the tight
bounding boxes as an approximation of a scene could improve the efficiency of various al-
gorithms. For instance, a radiosity computation could be performed on only a fraction of the
number of the original scene elements. Projecting the results obtained by this method onto the
real scene polygons (i.e. using texture mapping hardware) would deliver high-speed approxi-
mative solutions, applicable to dynamic environments.

36

HIERARCHICAL RADIOSITY 4.5 DISCUSSION

Figure 4.5 Renderings of the four test scenes. From left to right and from top to bottom: aircraft (Light-
Work Design Ltd.), wichmann, atrium, vrlab

aircraft wichmann atrium vrlab

number of polygons 183,114 59,844 13,558 36,337
max. hierarchy depth 26 27 25 27
hierarchy creation [min:sec] 0:53 0:22 0:03 0:12
rendering time [min:sec] 14:37 7:01 3:29 6:55

Figure 4.6 Rendering times and statistics for the rendered test scenes.

37

HIERARCHICAL RADIOSITY 4.5 DISCUSSION

4.7.a) interior view

4.7.b) view from outside

Figure 4.7 High quality renderings of the scene wichmann (47 min)

38

CHAPTER 5

Generation of Decomposition Hierarchies
for Efficient Occlusion Culling of Large

Polygonal Models

Abstract

Efficient handling of large polygonal scenes has always been a challenging task and in recent
years, view-frustum and occlusion culling have drawn a lot of attention for accomplishing this
goal. The problem of how to efficiently organize such scenes for fast image synthesis is widely
neglected, although the answer heavily affects the overall performance. In this chapter, we
present three adapted algorithms for efficient scene decomposition and compare those with
another already available algorithm for decomposing general polygonal models into a hierarchy
of sub-models for an occlusion culling application. While the latter is available as a commercial
product, the three other approaches introduce new algorithms for scene decomposition which
achieve significant better results.

5.1 Introduction

Hierarchical methods are crucial for the efficient handling of large computer graphics scenes.
Several approaches address the problem of generating scene hierarchies, such as subdivision
surfaces [ZSD+00], multi-resolution frameworks [Hop96], scene databases [ZMHH97], or reg-
ular decomposition schemes such as BSP-trees [FKN80] or octrees [Sam94]. An important
application field of scene organization is view-frustum and occlusion culling, which specifi-
cally requires appropriate decomposition schemes. However, most available approaches lack
either flexibility or efficient handling.

5.1.1 Related Work

Several previous papers on visibility and occlusion culling touch the topic of scene organization.
Generally, we observed that decomposition schemes for arbitrary polygonal models are difficult
to derive. Hong et al. [HMK+97] used a technique which decomposes a CT-based colon volume
dataset along its skeleton. The size of the different decomposition entities depends on how

39

OCCLUSION CULLING HIERARCHIES 5.2 OCCLUSION CULLING

many voxels belong to this entity. While this scheme produced good results for a tube-like
colon model, it is not efficient for general models.

Snyder and Lengyel [SL98] proposed that the designer of the scene needs to provide the
scene organization. Similarly, Zhang et al. used a pre-defined scene database [ZMHH97,
HMC+97]. Models built in large Computer-Aided-Design (CAD) systems might already in-
clude appropriate hierarchical organization information, due to the design process which uses
hierarchical notions like grouping and replication. Besides approaches which use a building
floor plan for this purpose [ARB90, Air90, TS91, LG95], no other methods for deriving de-
composition hierarchies from CAD models are known to us.

A more general approach is to organize a polygonal model into regular spatial decomposi-
tion schemes, such as BSP-trees [FKN80, Nay92, Gre96] or Octrees [Gre95, GKM93, CT96,
CT97, SG96]. While these decomposition schemes produce good results on polygonal mod-
els extracted by the Marching Cubes algorithm from uniform grid volume datasets — which
provide a “natural” decomposition on Marching Cubes cell base —, these schemes run into
numerous problems on general models. If a polygon of the model lies across a decomposition
boundary, it must be either split into several parts, in order to produce a disjunct representation
of the bounding entities, or handled in another special way. Splitting polygons however, can
increase the number of small and narrow polygons tremendously.

Significant work on model organization has been published in the field of collision detec-
tion. Methods based on oriented bounding boxes (OBB) were explored by Gottschalk et al.
[GLM96]. A bottom-up approach for the construction of a model hierarchy is suggested in
[BCG+96] in which nodes representing small parts of the geometry are “merged” into higher
hierarchy nodes. A similar approach is used in [KMM +98]. Related model organization strate-
gies are also known from global illumination.

In [BMH99], the spatialization functionality of SGI’s OpenGL Optimizer package [SGI97]
was used to generates scene hierarchies automatically. However, these decomposition hierar-
chies needed to be tuned manually in order to get sufficient performance and motivated the work
described in this chapter.

5.2 Occlusion Culling

Generally, a polygonal scene can be decomposed into a hierarchical or non-hierarchical decom-
position, denotedscene treeor scene graph. Each part of it is ascene entitywhich can be either
be ascene nodeor ageometry node. The latter contains geometry of the actual scene.

The decomposition quality of the four presented approaches is evaluated with a standard hi-
erarchical occlusion culling algorithm [BS99] based on the HP-Occlusion-Culling-Flag [SOG98]
and a basic view-frustum culling algorithm [BMH99]. A given scene tree hierarchy is processed
in top-down, left-right order. Initially, the actual polygons of the geometry node closest to the
eye is rendered into the empty framebuffer. Then, each scene entity of the tree is tested for
intersection with the view-frustum (view-frustum culling). Thereafter, all the remaining scene
entities are depth-sorted according to their associated bounding boxes and tested for occlusion
using the HP flag. All further rendering is performed in an interleaved fashion. First, bounding
box of the next closest scene entity is rendered in a special occlusion mode which does not alter
the framebuffer. If this bounding box would not have any contribution to the framebuffer, the

40

OCCLUSION CULLING HIERARCHIES 5.3 GENERATING HIERARCHIES

HP Occlusion Culling Flag is set FALSE by the graphics hardware and consequently this scene
entity is culled. Otherwise (flag is set TRUE), the child scene entities are processed unless the
entity itself is a geometry node; in this case, the polygons are rendered in standard render mode.

5.3 Generating Decomposition Hierarchies

Generating hierarchical decomposition of very large models can be done in numerous ways. In
this section, we will present three research algorithms and one commercial tool which generate
a decomposition hierarchy starting from given models:D-BVD, p-HBVO, ORSD, andSGI.
The latter is part of SGI’s OpenGL Optimizer toolkit (opoptimize), while the other three novel
algorithms have been developed and implemented by the authors. All approaches decom-
pose general polygonal models, whereas the octree-based ORSD only decomposes regular grid
datasets.

5.3.1 Dimension-oriented Bounding Volume Decomposition (D-BVD)

The goal of the dimension oriented D-BVD decomposition algorithm is to generate evenly-
sized, cube-shaped bounding boxes, hence minimizing the area of the screen projection of these
bounding boxes. This goal is approached by splitting the bounding boxes multiple times in the
largest dimension. The size of the bounding boxes and the associated sub-models is controlled
by user-specified parameters, such as the minimal number of polygons.

Starting with the root scene entity – which contains the whole model – the associated bound-
ing volume (bv) is splitn times along its largest dimension such that each fraction is approxi-
mately of the same size as the second largest dimension.

n =
largest bv dimension

second largest bv dimension
(5.1)

This process continues recursively until the termination criteria are met. These criteria give
lower bounds for the number of polygons of the scene entities or the size of the dimensions
of the associated bounding boxes, in order to avoid undersized decomposition entities which
increase the occlusion culling overhead without improving the cull rate sufficiently.

Occasionally, the split-operation of the decomposition process splits a polygon which lies
across the decomposition boundary into two new polygons (this is usually not the case for uni-
form grid datasets). This can tremendously increase the number of polygons and frequently,
these polygons are small and narrow, thus resulting in numerical problems. To compensate this,
we apply two techniques. First, the decomposition plane is moved along the decomposition
dimension to reduce the number of additional polygons. The direction and value of the move-
ment is controlled by user-specified parameters. Nevertheless, very large polygons cannot be
handled by this technique, because they cover several high-level scene entities (i.e., a single
polygon representing the floor of a factory). To account for this, we use a second technique,
where those polygons arepulled upinto a geometry node located at the appropriate level in the
scene tree.

In general, this algorithm can handle all types of polygonal scenes without producing signif-
icantly more polygons. It optimizes shape and size of the scene entities, hence their bounding

41

OCCLUSION CULLING HIERARCHIES 5.3 GENERATING HIERARCHIES

boxes. However, the polygon load is not evenly distributed to the scene entities, possibly result-
ing in a less balanced scene tree.

5.3.2 Polygon-based Hierarchical Bounding Volume Optimization
(p-HBVO)

The polygon-based Hierarchical-Bounding-Volume-Optimization (p-HBVO) method decom-
poses recursively a set of polygons into two sets. Instead of arbitrarily selecting possible de-
composition planes, these planes are given by the barycenter of each polygon (triangle). By
evaluating a cost-function, an optimal decomposition plane is established. At each decomposi-
tion level, the individual polygons are assigned to exactly one scene entity of that level resulting
in possibly partially overlapping bounding boxes but in no additional polygons.

Starting from the root node, at each decomposition step, we sort the polygons along all co-
ordinate axes, where the barycenter of each polygon serves as sorting key. Based on these three
ordered lists, we evaluate the potential decomposition planes along each axis for each entry
in the respective list by splitting the sorted list of polygons into aleft andright part. In con-
trast to pre-defined decomposition planes of the median cut scheme [KK86b], we evaluate for
each possible decomposition plane – defined by the entries in the lists – a cost function which
approximates the costs of rendering the polygons of one of the two scene entities, generated
by the respective decomposition plane. By minimizing this cost-function over all possible de-
composition planes, we obtain an optimal decomposition plane which generates two new scene
entities; one contains allleft polygons, the other one contains allright polygons. The decom-
position process terminates when either the number of polygons, or the decomposition depth
exceeds one of the two pre-defined parameters:Max_Triangles_Per_Decomposition_Entityor
Max_Decomposition_Depth. These parameters are specified by the user and supplied at the
start of the decomposition process.

In most cases, our cost function is identical to one which has already been successfully
applied in ray tracing environments [MF99]. Adopting this cost function is possible since the
objective is the same; both algorithms traverse the scene graph in a similar way to determine
visibility. The costs of a scene entityH, with left Hl and rightHr children, is given by:

CH(axis) =
S(Hl)
S(H)

· |Hl |+ S(Hr)
S(H)

· |Hr |

where

• |H| is the number of polygons within hierarchyH,

• S(H) the surface area of the bounding box associated to sub-sceneH, and

• axis∈ {X,Y,Z}.

Overall, this algorithm generates well balanced scene trees with respect to their polygon
load. Furthermore, polygons of individual objects are detected and clustered together (see Sec-
tion 5.4, city dataset). The highest culling performance was achieved with finer decomposi-
tions, which usually require more occlusion culling tests, resulting in higher culling costs. If
these culling costs are not compensated by lower rendering costs, it results in an overall lower
rendering rate (see ventricular system in Table5.1).

42

OCCLUSION CULLING HIERARCHIES 5.3 GENERATING HIERARCHIES

5.3.3 Octree-based Regular Space Decomposition (ORSD)

As mentioned earlier, regular decompositions are well suited for uniform grid datasets, such as
generated by MRI or CT scanners (i.e., ventricle dataset). Uniform grid datasets consist of a set
of sample values (voxels), arranged on an uniform grid. A cube of eight neighboring voxels is
called a cell, where cells with a non-empty intersection with the selected isosurface are called
relevant cells.

The Octree-based Regular Space Decomposition method (ORSD) exploits these natural de-
composition borders to generate a non-polygon splitting model decomposition. In contrast to
the other approaches, ORSD uses a cell-based (voxel-based) evaluation criterion, where the
number of relevant cells (relevant cell load or RCL) controls the decomposition process. This
criterion is only a rough approximation of the actual number of extracted polygons, considering
that each relevant cell represents between one and five triangles. In our experiences however,
RCL turned out to be sufficiently accurate.

After the construction of the entire octree, the RCL of each octant is already calculated. Sub-
sequently, the octree is traversed recursively, starting with the superblock. If the RCL is above
a user-specified threshold, the block is classified as a scene node, thus being further decom-
posed into its child blocks. Otherwise, a geometry node is instantiated with the corresponding
polygons (associated relevant cells).

Overall, ORSD is a simple but efficient decomposition scheme which generates an adequate
polygon load balance and bounding box sizes. As shown in the results (see Section5.4), the
indirect evaluation method (RCL instead of number of polygons) does not adversely affect
the occlusion culling performance. However, the implemented version of ORSD is limited to
regular grids.

5.3.4 SGI’s opoptimize (SGI)

SGI’s OpenGL Optimizer is a C++ toolkit for CAD applications that provides scene graph
functionality for handling and visualizing large polygonal scenes. It includes mechanisms for
the decomposition of model databases as well as for tessellation, simplification, and others.

Opoptimize(depicted in the following sections as “SGI”), which is part of the toolkit, pro-
vides functionality for the decomposition of model databases. The decomposition method re-
alized in SGI is similar to the construction of an octree; each geometry set is split into eight
equally sized sets. This process is repeated recursively, until a certain threshold criteria for the
iterated decompositions is reached.

Octree-based spatial decomposition is a simple and efficient decomposition scheme. How-
ever, the SGI decomposition mechanism decomposes space not by simply bisecting edges of a
cube, as in an octree, but by choosing decomposition planes such that the rendering loads of
the resulting parts are similar. As a result, the amount of geometry after each decomposition on
each side of the decomposition plane is approximately the same. Polygons which are split due
to the decomposition are distributed to the respective geometry nodes. The main parameters
that can be used to control the decomposition are hints for the lowest and highest amount of
triangles(trimin, trimax) in each geometry node at the leaf-level of the decomposition hierarchy.
However, the decomposition algorithm only tries to meet these criteria but is not bound to it.

In general, SGI generates decomposition hierarchies with a well balanced polygon load.

43

OCCLUSION CULLING HIERARCHIES 5.4 RESULTS

However, the bounding boxes of the scene nodes are less suited for occlusion culling applica-
tions, because the cost function determining the subdivision is obviously not optimized with
respect to the volume of the bounding boxes. We observed that the right-most branch of the
scene tree frequently contained large subsets (bounding box volume size) of the model, even in
the lower tree levels.

5.4 Results

Ventricle Cathedral dataset City dataset
pHBVO D-BVD ORSD SGI pHBVO D-BVD SGI pHBVO D-BVD SGI

80 41 6 29 9 59 51 2722 266 420
81 41 28 36 10 67 52 2723 495 420

0.008 0.007 0.003 0.004 0.002 0.008 0.01 0.02 0.01 0.01
0.03 0.02 0.01 0.016 0.004 0.032 0.03 0.05 0.03 0.03
0.05 0.06 0.06 0.06 0.136 0.124 0.14 0.01 0.08 0.08
16.0 19.7 22.4 19.7 30.0 25.9 30.1 0.1 4.1 3.6
12.3 13.4 15.3 13.6 12.4 8.8 7.8 14.0 10.9 11.8
29.4 21.3 17.0 21.1 33.1 25.9 22.2 47.0 50.7 50.4
5.5 5.3 5.3 5.3 12.4 10.8 9.5 1.0 1.4 1.4

Table 5.1 Walk-through Measurements: rows from top to bottom: #Scene nodes. #Leaf nodes. View-
frustum culling time [s]. Occlusion culling time [s]. Rendering time [s]. Rendering rate [% of
original polygon count]. Frame rate [fps]. Rendering rate [%], view-frustum culling only. Frame
rate [%], view-frustum culling only.

In this section, we discuss the efficiency of our three novel algorithms and opoptimize of
SGI’s OpenGL Optimizer (SGI) with respect to their occlusion culling-based render perfor-
mance. All measurements are performed on a HP B180/fx4 graphics workstation. The three
different polygonal datasets (see Table5.2) represent typical scenarios of different application
areas. During our evaluation, we measured the time spent for view-frustum culling, occlusion
culling, and rendering of the not occluded geometry of different decomposition granularities.
For the evaluation, the decomposition with the best culling-based render performance was se-
lected at the averaged results are shown in Table5.1. In addition, frame rates of walk-throughs
of the datasets and the respective render rate, which mirrors the percentage of the geometry of
the scene which was rendered (this is reciprocal to the cull rate) are presented, see Figure5.2.

Ventricle Dataset

The first dataset is a polygonal model of the ventricular system of the human brain extracted
from a MRI scan, see Figure5.3(a,b) and Table5.2. We explore the dataset by moving through
the lower part (Cisterna Magna) of the polygonal model. Most of the model structures through-
out the walk-through are located within the view-frustum, while the structures with the largest

44

OCCLUSION CULLING HIERARCHIES 5.4 RESULTS

Dataset Grid Type/ #Triangles FR
Source

Ventricular Uniform/ 270,882 4.6
System MRI
Cathedral Unstructured/ 416,763 3.8

CAD
City Unstructured/ 1,408,152 0.9

Modeler

Table 5.2 Models; as gold standard for the speed-up due to occlusion culling, we show the frame rate for
the datasets without any culling mechanism (FR).

number of polygons (located in the upper part or lateral ventricles) were not visible due to oc-
clusion. All polygons of this model are aligned on the uniform cell grid and are approximately
of the same size. All three adapted algorithms were able to detect this “natural” decomposi-
tion boundaries; only SGI generated approximately 15% additional polygons due to splitting
operation between the grid points.

Figure5.2show frame rate (a) and render rate (b) of the four evaluated algorithms and Ta-
ble 5.1 shows the averaged time measurements. The most interesting detail is the low amount
of time consumed by view-frustum and occlusion culling by ORSD, due to its coarse decompo-
sition. The render rate of p-HBVO and D-BVD was approximately 25% better than the render
rate of the ORSD approach. However, the finer decomposition introduced additional culling
costs twice as much as for ORSD, resulting in a lower frame rate.

Cathedral Dataset

This dataset represents the interior of a gothic cathedral, designed with a CAD system (see
Fig. 5.3(c,d) and Table5.2). Occlusion is limited to small parts of the model, because a large
share of the polygons are visible from most view points within the model. Figure5.1 shows
three fine decompositions of the cathedral model. Especially the p-HBVO approach (a) adapts
very nicely to the structures of the model, such as pillars and arcs. In contrast, the decomposition
generated by SGI (c) introduces very large bounding boxes, which do not adapt properly to the
actual geometry.

The p-HBVO approach performed best on this dataset (see Figure5.2(c,d)) which is due to
the low culling costs, compared to SGI and D-BVD (see Table5.1). The bounding boxes of
D-BVD and SGI are not really suited for occlusion culling; especially their occlusion culling
time is significantly higher compared to p-HBVO, thus severely reducing the frame rate. Con-
sequently, view-frustum culling only is faster than occlusion culling for those approaches, while
it is basically as fast as occlusion culling based on the p-HBVO hierarchy (see Table5.1).

City Dataset

The city dataset is an artificial model of 400 basic building models with some interior, which
contains most of the polygonal complexity, see Fig.5.3(e,f) and Table5.2. Consequently, most

45

OCCLUSION CULLING HIERARCHIES 5.4 RESULTS

(a) (b) (c)

Figure 5.1 Cathedral dataset – decomposed by (a) p-HBVO, (b) D-BVD, and (c) SGI; the arts and pillars
of the cathedral are well detected by p-HBVO and D-BVD. SGI only used a regular spatial
decomposition.

of the polygons of this model are occluded. However, only the p-HBVO approach was able to
decompose all the interior into individual scene entities, hence resulting in a large number of
nodes, a very low render rates, and high occlusion culling costs which were more than compen-
sated by the small amount of potentially visible geometry (see Table5.1 and Figure5.2(e,f)).
In contrast, the D-BVD approach did not detect the interior objects. The optimal computed
decomposition was of coarser granularity (10% of the scene entities of p-HBVO), resulting in
less time spent for culling (vfc and occ), but a higher render rate of 41 times larger than the ren-
der rate of p-HBVO (see Table5.1). Similar, the SGI approach did also not detect the interior
objects. It used a coarse granular decomposition, which consequently increased the rendering
time in comparison to p-HBVO.

Summary

Overall, two of our three adapted model organization approaches were able to generate decom-
positions with faster rendering due to higher cull performance. This was achieved by reducing
culling costs or by reducing the render rate of the dataset. On uniform grid datasets, the basic
ORSD approach produced a model decomposition which performed best, mostly due to the low
time spent to establish occlusion or non-occlusion.

Generally, we observed that models with high occlusion do not require very fine decom-
position (ventricle dataset, D-BVD vs. ORSD). On the other hand, a fine decomposition pays
off if interior (thus completely occluded) objects are clustered in a scene entity (city dataset,
p-HBVO vs. SGI). In contrast, models with low occlusion (cathedral dataset) can benefit from
finer decompositions if the culling costs loss is only a fraction of the rendering costs gain (see
city dataset, p-HBVO). However, this was not true of the cathedral dataset (D-BVD).

Note that the p-HBVO approach builds a binary scene tree. This usually results in deeper
trees, hence more intermediate scene entities. This increases the time spent for occlusion culling

46

OCCLUSION CULLING HIERARCHIES 5.5 CONCLUSION AND FUTURE WORK

significantly. Once this binary tree was re-build into a quad tree representation, we accom-
plished a frame rate increase by approximately 20%.

To summarize, we always achieved a speed-up due to occlusion culling-based rendering.
Especially with the city dataset, we accomplished a speed-up of 15.6 after culling of 99.9%
of the model geometry with the p-HBVO algorithm. The other approaches obtained a similar
speed-up, while culling less polygons.
On the ventricle dataset, the ORSD approach accomplished the best results; 77.6% of the geom-
etry were culled, due to view-frustum and occlusion culling. This culling performance resulted
in a frame rate speed-up of 3.3.

5.5 Conclusion and Future Work

Four different approaches for hierarchical decompositions of large polygonal models were pre-
sented and discussed. One of them is a commercially available product (SGI’s OpenGL Opti-
mizer), while the other approaches are still research projects. Overall, the former approaches
achieved similar (D-BVD) or better performance — evaluated with an occlusion culling appli-
cation — than the tool of SGI’s OpenGL Optimizer. It turned out that a simple octree-based
scheme (ORSD) suits very well to uniform grid datasets; bounding box size as much as polyg-
onal load balance were handled well. However, this scheme does not work on unstructured grid
datasets because of the missing “natural” decomposition on cell-base. In particular the p-HBVO
approach performed well on all datasets. Whereas the D-BVD approach optimized the size and
shape of the bounding boxes, the p-HBVO approach was able to generate good bounding boxes,
while also balancing the polygon load.

So far, only spatial coherence information is exploited in order to combine raw triangles into
scene entities. If neighborhood connectivity information –, i.e., semantic information which
describes what kind of object should be combined (like the roof of a house in the city dataset)
– is used, we expect decompositions which perform better than the current ones. This will be a
major future research focus.

47

OCCLUSION CULLING HIERARCHIES 5.5 CONCLUSION AND FUTURE WORK

0

5

10

15

20

25

30

40 60 80 100 120 140

fp
s

p-HBVO
D-BVS
ORSD

SGI

(a)
10

15

20

25

30

35

40 60 80 100 120 140

%
 to

 b
e

dr
aw

n

p-HBVO
D-BVS
ORSD

SGI

(b)

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90

fp
s

p-HBVO
D-BVS

SGI

(c)
5

10

15

20

25

30

35

40

45

50

55

10 20 30 40 50 60 70 80 90

%
 to

 b
e

dr
aw

n
p-HBVO

D-BVS
SGI

(d)

0

5

10

15

20

10 20 30 40 50 60 70 80 90

fp
s

p-HBVO
D-BVS

SGI

(e)

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90

%
 to

 b
e

dr
aw

n

p-HBVO
D-BVS

SGI

(f)

Figure 5.2 Decomposition results: Left column shows frame-rate and right column shows final geometry
drawn. (a,b) Ventricle dataset; window of frames 40 to 140. (c,d) Cathedral dataset; all frames
of the path are shown. (e,f) City dataset; window of frames 10 to 90 (out of 200).

48

OCCLUSION CULLING HIERARCHIES 5.5 CONCLUSION AND FUTURE WORK

(a) (b)

(c) (d)

(e) (f)

Figure 5.3 Ventricle dataset: (a) Overview, (b) Inside view. Cathedral dataset: (c) Overview, (d) Inside
view. City dataset: (e) Overview, (f) Inside view.

49

CHAPTER 6

An Adaptive Hierarchical Occlusion
Culling Algorithm for Interactive Large

Model Visualization

Abstract

This chapter describes a new occlusion culling technique for efficient visibility determination
in real-time environments. There are two major contributions of our work. First, we present an
efficient algorithm to determine a set of potential occluders by sampling the virtual environment
by sending rays from the camera into the view frustum. Thus, the set of potential occluders is
always a subset of actually visible objects. We show how we can reduce the number of occlusion
tests based on the fact that we use only visible occluders. Second, we present an algorithm that
reduces the number of unsuccessful tests for occlusion significantly. We control the activation
and de-activation of potential occluders for actual testing based on previous testing results. This
control reduces the number of occlusion tests by a factor of 1.5-10 depending on the underlying
scene geometry compared to testing against all potential occluders. This results in a significant
increase of the frame rate. Our algorithms do not make any assumptions on how the actual
occlusion test for a single object against a different object is implemented. Rather, we present a
high level frame-work to control the occlusion tests. We exploit frame-to-frame coherence and
the underlying techniques can easily be adapted to dynamic environments with moving objects.

6.1 Introduction

Over the last few years the complexity of 3D models used for real-time visualization has grown
significantly. Despite the fast increase of raw rendering power that has lead to extremely pow-
erful graphics processor capable of handling millions of polygons per second, this growth was
beaten by the explosion of the size of architectural and scientific data sets. These huge data
sets can hardly be displayed interactively with acceptable speed even with most modern hard-
ware available. We can expect that this trend will continue in the future, since there does not
seem to be a natural upper limit in model complexity to realize more and more realistic artificial
environments.

To adress the discrepancy between available raw rendering power and model size, several
acceleration techniques have been developed in the past:

50

OCCLUSION CULLING TRAVERSAL 6.2 HIERARCHICAL OCCLUSION CULLING

Level-of-detail (LOD) techniques internally represent the 3D model at multiple resolutions
and select for display an appropriate (often low-resolution) representation depending of
the current view parameters. Simple LOD schemes only hold a fixed number of resolu-
tions while improved techniques such asprogressive meshesallow for smooth transitions
between arbitrary levels [Hop96].

Impostors approximate complex objects by texture mapped polygons. Such images are typ-
ically generated dynamically and should be re-used over several subsequent frames to
achieve a performance gain. Improved techniques make use of object hierarchies [SS96]
and include depth information into the image (nailboards) to extend an imposter’s life-
time [Sch97].

Culling techniques reduce the geometric complexity of the model by removing invisible parts
before sending them to the graphics pipeline.View frustum cullingeliminates objects
outside the field-of-view of a spectator andocclusion cullingalgorithms detect geometry
occluded by other objects.Portal culling [TS91]techniques discretize object space into
cells and assign potential visible sets (PVS) of objects to each of the cells. PVS compu-
tation is mostly done in a computationally expensive pre-process, but recently a dynamic
PVS construction scheme was presented in [WWS01].

Overview

This chapter will present speed-up techniques that improve both view frustum and occlusion
culling algorithms by reducing the number of visibility tests performed during scene traversal.
Section6.2describes occlusion culling algorithms that rely on an underlying hierarchical scene
description. We analyse this class of algorithms in detail to identify situations where we can
avoid useless visibility tests. Section6.3 presents our scheme to dynamically select potential
occluders from the scene of objects. An improved occlusion culling control scheme which acti-
vates and de-activates certain occlusion tests based on statistical results collected from previous
frames is presented in Section6.4. We compare our controlled occlusion culling framework to
a standard implementation in Section6.5and conclude in Section6.6.

6.2 Hierarchical Occlusion Culling

Many occlusion culling schemes rely on a hierarchical organisation of scene elements to allow
for visibility checks at multiple levels of detail. Figure6.1 shows an example distribution of
objects1 to 6 in a scene, Figure6.2shows a bounding volume hierarchy derived from these ob-
jects. Leafs nodes in this hierarchy represent elementary object, inner nodes represent bounding
volumes enclosing their sub-scenes completely.

6.2.1 Object Hierarchy Generation

For hierarchy construction we use a top-down approach which was previously presented in
[MF99] and [MSF99]. Basically, a cost function is minimized which approximates the expected
costs to render the scene. The costs of rendering an inner scene node are approximated by

51

OCCLUSION CULLING TRAVERSAL 6.2 HIERARCHICAL OCCLUSION CULLING

1

2

3

4

5

6

eye

Figure 6.1 Sample scene geometry. Hierarchical bounding volumes are shown as boxes around objects
1 to 6. Objects 1 to 4 are located within the view frustum originating from the eye position.

summing up the individual costs of all of its sub-nodes times the probability of descending
that sub-tree. The probability is approximated by the surface area of the sub-node’s bounding
volume and the costs are approximated by the surface area of primitives within this subtree.
This results in very tight fitting (natural) bounding volumes as we have shown in [MSF99].

In a pre-processing step, primitives are sorted along the main coordinate axes. Then, for
each coordinate axis,n primitives are binary partioned into aleft and aright subsets containing
at least 1 primitive. Each of the resultingn−1 partitions is evaluated using the previously men-
tioned cost function. The partition that minimizes the costs over all subdivision positions and
all coordinate axes is chosen for subdivision and the algorithm continues recursively. Recursion
is stopped when a predefined machine-specific minimum is reached. For our experiments we
stopped subdivision when a set of less then 100 elementary objects resulted from subdivision.
This number was found as the empirically determined limit where raw rendering was faster that
testing for visibility plus rendering.

6.2.2 Tree Traversal

The occlusion algorithm which renders the whole scene works recursively and starts at the
root of the hierarchy with a depth first traversal. We will concentrate on conservative culling
techniques, which means that we will only remove an object from further processing if we are
completely sure that the object will be invisible in the final output. The set of potential occluders
is initiallly assumed to be empty and will be updated throughout the algorithm. Depending on
the current type of the node, different actions take place, as follows.

Rendering Objects

If the current node is a leaf, the contained primitives are passed to the graphics pipeline and
added to the set of potential occluders.

52

OCCLUSION CULLING TRAVERSAL 6.2 HIERARCHICAL OCCLUSION CULLING

1 2

3 4

5 6

A

B C

D E

occluded outside

Figure 6.2 Knowing that an bounding volume in the object hierarchy is invisible from the current view, we
can conclude that all sub-scene must also be invisible.

View Frustum Test

If the current node is an inner node of the scene hierarchy, the bounding volume of this node
is tested against the current view frustum. If it is outside the current view frustum, no object
within this bounding volume can be visible. The whole subtree may be pruned, no object
within this subtree must be sent to the graphics pipeline. In the example of Figure6.2 node
E lies completey outside the view frustum, thus nodes5 and6 are not visible. If the current
node is at least partially visible, the algorithm performs the occlusion test. If the current node is
completely within the frustum further view frustum tests below this node may be omitted, since
we can easily conclude that all objects must be inside the view frustum.

Occlusion Test

Next, the occlusion test is performed. The occlusion test determines if the bounding box of the
current node is completely occluded from objects included in the set of potential occluders.

There are a lot of algorithms available to implement the occlusion test. Most of them work
in image space and find out if rendering of the bounding volume would leave the frame buffer
unchanged [GKM93, ZMHH97, BMH99, SOG98]. In this case we can conclude that the bound-
ing box is occluded by previously rendered objects. In the example of Figure6.2nodeD could
only be detected as occluded if object3 was previously added to the set of potential occluders.
This makes clear that objects should be rendered from front to back to find potential occluders
as early as possible. For this reason we sort the sons of the current node with increasing distance
from the eye point before descending the scene hierarchy . Since we have a binary tree when we
use the algorithm from Section6.2.1for hierarchy generation, this sorting can be implemented
easily as simple pointer swap operations.

53

OCCLUSION CULLING TRAVERSAL 6.3 DYNAMIC OCCLUDER SELECTION

6.2.3 Analysis

Most culling algorithms work similarly to the one described in Section6.2.2. Although often
a significant boost in rendering speed is achieved there is still the problem that every culling
algorithm has some computational overhead compared to raw polygon rendering. Especially,
occlusion tests resulting in "potentially visible" are quite disappointing, since we have wasted
computational resources without any gain. In a worst case scenario where only few objects are
occluded by others, we can even expect a performance degregation compared to raw rendering.
Ideally, one should only perform visibility tests, if the result isinvisible – at least with some
high probability. Section6.4will present a framework that eliminates most of these unwanted
tests.

Before we describe this occlusion culling control scheme, we will present a further opti-
mization that deals with the rare case of recognizing a node as "definitively visible". If we know
in advance that some object is visible from the view point, we can conclude that all bounding
volumes on the path from the root of the hierarchy to this object must also be visible. At these
nodes the visibility test can thus be omitted. E.g., if we knew that nodes3 and4 were visible,
we may omit visibility test at nodesB, C, andA (Figure6.3).

1 2

3 4

5 6

A

B C

D E

visiblevisible

Figure 6.3 Knowing that certain primitives are visible from the current view point, we can conclude that
all nodes on the path from this node to the root in the associated bounding volume hierarchy
must also be visible.

6.3 Dynamic Occluder Selection

This section presents an optimization on the occlusion culling algorithm presented in Section
6.2. The basic idea is to find objects that are visible from the view point. These objects are
added into the set of potential occluders before the hierarchy traversal starts up from the root.
The choice of visible objects as occluders is promising, since they tend to hide many other
objects in complex scenes. More importantly, the knowledge of visibility from a certain view,
allows the propagation of this information up the bounding volume hierarchy which avoids all

54

OCCLUSION CULLING TRAVERSAL 6.3 DYNAMIC OCCLUDER SELECTION

occlusion or view frustum tests along the path from the root to the visible object. Thus, from
knowledge of a small set of visible objects we eliminate many nodes close the root from testing.
Since nodes near the root of the tree tend to have a rather large (projected) bounding volume,
we can avoid many costy visibility tests, which would yield a "partially visible".

6.3.1 Visibility Sampling

The problem of identifying definitely visible objects to add to the set of occluders is rarely
recognized in culling literature. The reason for this is that the visibility of a certain primitive
in a classical z-buffered visualization environment is typically only known after all primitives
have been rendered. Because we only need to find some visible objects to eliminate top level
visibility tests, we simply sample the image space to identify visible objects at certain pixel
coordinates. This could be done by using a z-buffer rendering into a 1x1 image buffer, but we
have decided to use a ray casting approach since we can utilize otherwise unused CPU power
resources.

The selection of sample positions is done using a quadtree like approach, the subdivision
stops if a predefined number of samples is reached. Assuming uniform object distribution we
assume that roughlyn

2
3 objects are visible after projection ifn is the number of leaves in the

object hierarchy. The distribution of samples is adapted to the success of the sampling process
(Figure6.4). This is implemented as follows. A queue holds the sampling areas. Initially, the
whole image area is added to this queue. While the queue is not empty and the maximum num-
ber of samples is not tested, an area element is taken from the queue and a random subdivision
positionx is chosen (stratified sampling). Next, the visibility test is performed at this sample. If
no visible object is found at the sampling position which was not found with previous samples,
the area is simply subdivided into 4 sub-areas and these areas are pushed back into the queue.
Otherwise, the area will also be subdivided as in the previous case but additionally the sub-area
that included the samplex will be further subdivided to guide the subdivision into populated
areas first.

6.3.2 Exploiting Frame-to-Frame Coherence

Since object distribution rarely changes rapidly from frame to frame we can re-use successful
sample positions which found visible objects in a previous frame. The samples are transformed
by a global simple translation in image space to approximately compensate the camera move-
ment between two consecutive frames.

The subdivision scheme from Section6.3.1will only be initiated after the previously suc-
cessful samples were tested again. The total number of newly generated samples per frame will
be limited ton

2
3 −s, wheres is the number of samples of the previous frame to test only a max-

imum of n
2
3 samples. Additionally, the number of samples will also be limited by the number

of pixels times the (approximated) average projected size in pixels of successful samples in the
previous frame.

Figure6.5 shows an example distribution of image samples in two consecutive frames. At
frame 1 no coherence information was used, but most samples were adaptively placed in the

55

OCCLUSION CULLING TRAVERSAL 6.4 FRAME COHERENT CONTROL

s

s0s0 s1

s2 s2 s3s3

s10 s11

s12 s13

Ray sample xRay sample x does not
hit geometry hits geometry

x

x x

Figure 6.4 Subdivision of sampling areas. If previously untested geometry is found at position x, the
sub-division gets finer around x.

densely populated areas of the image. At frame 2 only very few samples miss geometry and
many potential occluders are found only by using a very small number of visibility samples.

6.4 Frame Coherent Occlusion Testing Control

In this section we will describe a valuable technique for dynamic control of occlusion culling
tests. As we have learned from Section6.2.3, expensive occlusion tests must be avoided if we
can expect a "potentially visible" result.

To achieve this, we add an extraactivationflag to each inner node of the scene geometry.
Only if the activation flag is set we will perform the occlusion test. Initially we set the activation
flag for every node. The basic idea is to gain visibility results from previous frames by exploiting
frame-to-frame coherence. We assume that there is a rather low probability (on average) that an
object is occluded in framei while it is visible in framei + 1. Thus, we disable the activation
flag if the occlusion test returnspotentially visible.

6.4.1 Node Activation Oracle

Asymptotically, this algorithm would disable all the activation flags over time. Thus, we need
a technique that re-activates scene nodes after several frames. This is done using anactivation
oracle which knows when an occlusion test must be re-initiated. Our current implementation
of this oracle re-activates nodest frames after the de-activation (to compensate for temporary

56

OCCLUSION CULLING TRAVERSAL 6.4 FRAME COHERENT CONTROL

frame 1 frame 2

Figure 6.5 Distribution of image sample positions on test scene Frankfurt. Frame-to-frame coherence is
exploited to find visible object with low computational effort.

Figure 6.6 Example walkthrough scenarios. Low geometrical occlusion on the left, high on the right.

57

OCCLUSION CULLING TRAVERSAL 6.5 RESULTS

changes in the view such as moving object in front of complex geometry). Additionally, if no
node is re-activated at a certain frame, a random node is selected from the visited nodes and re-
activated. If re-activation succeeds (i.e. the occlusion test after re-activation returns "invisible)",
we also re-activate the node’s parent node in the hope to find a larger occluded region.

This occlusion test control is the core of our occlusion culling optimization and can be used
in conjunction with many other occlusion algorithms. It is not limited to hierarchical occlusion
culling schemes but allows for certain optimization such as the propagation of visibility results
up and down the scene hierarchy.

6.5 Results

We have tested our algorithms for occlusion culling control on a 3D city model of Frankfurt
consisting of more than 850.000 triangles. Two completely different walkthrough scenarios
have been created for testing the algorithm in high- and low-occlusion environments. The low-
occlusion scenario is a flight over the city, where the high-occlusion scenario is a walkthrough
between houses and skyscrapers at an average human height above ground (Figure6.6).

On the hardware side, we have used an Intense3D/Wildcat 4210 graphics system that is
capable to perform the HP occlusion test [SOG98] in hardware. We have also implemented or
used different occlusion test such as [Inc99], but the relative results were quite similar to the
Intense3D system, thus we consider the Wildcat a representative environment.

Figures6.7to 6.9compare three culling algorithms. All algorithms traverse the same object
hierarchy that was created using the technique presented in Section6.2.1.

view frustum culling (VFC) implements standard view frustum culling from Section6.2.2,

occlusion culling (OC) implements classical hierarchical occlusion culling from Section6.2
including view frustum culling,

adaptive occlusion culling (AOC) implements occlusion culling plus our extensions of Sec-
tions6.3and6.4.

The low-occlusion scenario is rather a worst-case situation for every occlusion culling al-
gorithm since there is hardly any occlusion. We can expect that no occlusion culling algorithm
will beat a simple VFC here. Surprisingly, our AOC performs very well under this situation.
The frame rate curves from Figure6.7go hand in hand for VFC and AOC. Figure6.8gives us
the explanation: the number of occlusion tests performed is very low because of de-activation
of occlusion tests. In contrast, OC will test every scene node for occlusion with very low suc-
cess, only 20% of these test were successful (Fig.6.9), which costs around 25% of rendering
performance.

In the high-occlusion scenario, occlusion culling algorithms outperform VFC by an order of
magnitude. More interesting is a comparison between OC and AOC. Again, AOC beats OC by
around 25%. From Figures6.8and6.9can we see that the number of occlusion tests performed
by AOC is much lower that those of OC. Again, AOC has found the relevant occlusion tests
automatically.

From Figure6.8 we can derive the minimal number of inner nodes that must be traversed
when rendering the scene. This number equals the number of occlusion tests for OC since the

58

OCCLUSION CULLING TRAVERSAL 6.6 CONCLUSIONS

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700

fp
s

frame

low occlusion

adaptive hierarchical occlusion culling
hierarchical occlusion culling

view frustum culling

0

5

10

15

20

0 100 200 300 400 500 600 700

fp
s

frame

high occlusion

adaptive hierarchical occlusion culling
hierarchical occlusion culling

view frustum culling

Figure 6.7 Occlusion culling performance.

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700

oc
cl

us
io

n
te

st
s

frame

low occlusion

adaptive hierarchical occlusion culling
hierarchical occlusion culling

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

oc
cl

us
io

n
te

st
s

frame

high occlusion

adaptive hierarchical occlusion culling
hierarchical occlusion culling

Figure 6.8 Occlusion culling tests.

occlusion test is performed at each inner node. For AOC the fraction of nodes tested for occlu-
sion compared to nodes visited is around 0.1 for the low-occlusion scenario, while it rises up to
0.5 for the high-occlusion scenario. Occlusion tests are activated when it is useful, otherwise
they are disabled. This works completely automatically without any user intervention. In both
scenarios the number of unsuccessful occlusion tests is very low compared to successful tests.
The achievable performance is very competitive to VFC and OC by combining the individual
strengths of these methods.

6.6 Conclusions

In this chapter we have presented an innovative occlusion culling scheme that improves hierar-
chical occlusion culling techniques by avoiding unnecessary visibility tests. Our algorithm does
not make any special assumption on the distribution of objects in space such as many occlusion
culling schemes for architectural walkthroughs or 2.5D-data sets like height fields [COFHZ98].
Also, it adapts extremely well to the degree of occlusion of a given scene. If all objects are

59

OCCLUSION CULLING TRAVERSAL 6.6 CONCLUSIONS

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700

su
cc

es
sf

ul
 o

cc
lu

si
on

 te
st

 r
at

io

frame

low occlusion

adaptive hierarchical occlusion culling
hierarchical occlusion culling

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700

su
cc

es
sf

ul
 o

cc
lu

si
on

 te
st

 r
at

io

frame

high occlusion

adaptive hierarchical occlusion culling
hierarchical occlusion culling

Figure 6.9 Occlusion culling efficiency.

visible and no occlusion occurs, visibility tests are deactivated. In this situation there is almost
no overhead compared to raw rendering of such a scene without culling techniques. On the
other hand, if many objects are occluded our algorithm not only reduces the total number of
occlusion tests, it only identifies the significant nodes for testing.

There is no pre-processing needed – only a hierarchical scene representation must be avail-
able which is often the case. Otherwise we can generate a bounding volume hierarchy within
a few seconds using the algorithm presented in Section6.2.1. The algorithm may easily be
used to dynamic or at least partially dynamic environments, since we have not made special
assumptions that the scene geometry must be static.

In our implementation of the algorithm we used axes-aligned boxes as bounding volumes,
since they seem to be a good compromise between tight fitting volumes and fast visibility test-
ing. Alternatively, we could have usedtriboxes[CR99], which promise tighter bounding vol-
umes which might be faster to test for occlusion.

60

CHAPTER 7

Conclusion

In this thesis we have presented several acceleration schemes for global illumination algorithms
and real-time rendering. We have identified object hierarchies as a compact model for scene
representation and a natural decomposition scheme for efficient visibility determination. A
major contribution of this thesis is the presentation of a novel algorithm for fully automatic
generation of object hierarchies using a cost function that minimizes the expected rendering
costs for traversing the scene geometry. None of our algorithms makes special assumptions
on the type of graphical primitives beeing used (polygons, spheres, etc.), such that all of these
primitives may be easily integrated into a system using our algorithms by simply redefining
individual object costs used within the cost function.

7.1 Thesis Summary

7.1.1 Ray Acceleration

Making use of the hierarchy generation algorithm, we have developed a new hybrid ray accel-
eration scheme that combines the advantages of regular grids and bounding volume hierarchies.
Based on an available object hierarchy neighbouring nodes are automatically classified to be
candidates for insertion into a common grid. This process starts from the leaf of the object
hierarchy and propagates hierarchically up to the root. The outcome is an object hierarchy that
contains grid nodes and simple bounding volumes nodes referencing sub-scenes. Grid nodes
are automatically created in regions that contain homogeneously distributed nearby objects.
Thus, a data structure is set up that reflects the appropriate acceleration scheme (grids or object
hierarchies) dependent on object distribution and size. We could improve the ray tracing perfor-
mance using this hybrid approach compared to other implemented state-of-the-art acceleration
schemes.

7.1.2 Hierarchical Radiosity

We have also used the ray acceleration scheme successfully for form-factor-calculation in our
Radiosity framework. More importantly, the algorithm has been proven to create a hierarchy
well suited for radiosity clustering. The resulting bounding volumes are very tight and closeby
objects form grids, which can be interpreted as object clusters in the context of hierarchical
radiosity algorithms that speed-up the computation of energy transfer between clusters of ob-
jects instead of using single objects. We had to invent several techniques that minimize the total

61

CONCLUSION 7.2 FUTURE WORK

number of tree traversal operations, which are relevant for deep object hierarchies like the ones
generated by our hierarchy generation algorithm. We could show that it is feasible to compute
accurate radiosity solutions even for highly complex data sets within a few minutes by using
object hierarchies.

7.1.3 Occlusion Culling

We applied our hierarchy generation scheme to build the underlying data structure for the hierar-
chical occlusion culling algorithm. The resulting cull rates (percentage of geometry eliminated
by occlusion tests) were higher than the respective rates of alternatively used algorithms in most
cases at slightly higher traversal costs as a side effect. Next, we optimized the object traversal
code such that most occlusion tests can be avoided. E.g., our rendering algorithm automatically
adapts to the degree of occlusion in a walktrough, performing many occlusion tests when it is
promising and avoiding tests when useless. This is achieved by implementing an oracle that
determines if an occlusion test should be performed when doing scene traversal for every scene
node. The current implementation of the oracle extrapolates results from previous frames, ex-
ploits frame-to-frame coherence, and carefully samples the view frustum using ray samples to
update internal statistical data.

7.2 Future Work

So far, we have not yet applied our hierarchy generation algorithm to dynamic environments
or to the field of collision detection. It should be rather easy to integrate our basic construc-
tion algorithm into such a framework in a first step but we currently would have to rebuild the
whole object hierarchy from scratch if any geometry in an optimized object hierarchy changes.
Though, we think that it should be possible to extend our hierarchy generation code to support
for (minor) dynamic changes in the scene geometry. Update threads may rebuild the object hier-
archy whenever computational resources are available concurrently to the main scene traversal
thread.

It would be interesting to research our ray tracing code and our hierarchical radiosity algo-
rithm in a distributed environment. Recently, Wald et al. [WBWS01, WSB01] have presented
an interesting paper exploiting fine and coarse level parallelism with modern microprocessors
using vector operations and distributing parts of a scene over an Ethernet network. But there is
currently little research in the field of distributed radiosity, thus we think that the distribution of
object clusters may be worth investigating.

7.3 Acknowledgments

We would like to thank all members of the Institute of Computer Graphics at the Technical
University of Braunschweig for their contribution to our rendering platform.

Theaircraft model was kindly provided by LightWork Design Ltd. Thanks to Simon Gibson
for the corrected version of theatrium scene. Thevrlab scene was kindly provided by Fraun-
hofer Institut für Graphische Datenverarbeitung. We would like to thank T-Mobile International

62

CONCLUSION 7.3 ACKNOWLEDGMENTS

for providing us with theFrankfurt scene model. Thewichmannscene was kindly provided by
4-e-motions.

Funding of this project by the German Research Foundation (DFG) under grants Fe 431/1-2,
Fe 431/4-1, and Fe 431/4-3 is gratefully acknowledged.

63

Bibliography

[Air90] J.M. Airey. Increasing Update Rates in the Building Walkthrough System with
Automatic Model-Space Subdivision and Potentially Visible Set Calculations. PhD
thesis, Department of Computer Science, University of North Carolina, Chapel-
Hill, 1990. 40

[AK89] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. In A. S.
Glassner, editor,An Introduction to Ray Tracing, pages 201–261. Academic Press,
London, 1989.14

[ARB90] J. Airey, J. Rohlf, and F. Brooks. Towards Image Realism with Interactive Update
Rates in Complex Virtual Building Environments. InProc. of ACM Symposium
on Interactive 3D Graphics, pages 41–5, 1990.40

[Arv90] J. Arvo. Ray tracing with meta-hierarchies. InSIGGRAPH Course Notes - Ad-
vanced Topics in Ray Tracing, volume 24, August 1990.15

[BCG+96] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and A. Tal. BOXTREE: A
Hierarchical Representation for Surfaces in 3D. InProc. of Eurographics, pages
387–396, 1996.40

[Bli78] J. Blinn. Simulation of wrinkled surfaces.Computer Graphics (SIGGRAPH ’78),
12(3):286–292, August 1978.2

[BMH99] D. Bartz, M. Meißner, and T. Hüttner. OpenGL-assisted Occlusion Culling of
Large Polygonal Models.Computers & Graphics, 23(5):667–679, 1999.40, 53

[BS99] D. Bartz and M. Skalej. VIVENDI - A Virtual Ventricle Endoscopy System for
Virtual Medicine. InProc. of Symposium on Visualization, pages 155–166, 1999.
40

[Cat74] E. Catmull.A Subdivision Algorithm for Computer Display of Curved Surfaces.
PhD thesis, University of Utah, 1974.2

[CCWG88] Michael Cohen, Shenchang Eric Chen, John R. Wallace, and Donald P. Green-
berg. A Progressive Refinement Approach to Fast Radiosity Image Generation.
In Computer Graphics (ACM SIGGRAPH ’88 Proceedings), volume 22, pages
75–84, August 1988.5

64

BIBLIOGRAPHY

[CDP95] F. Cazals, G. Drettakis, and C. Puech. Filtering, clustering and hierarchy con-
struction: a new solution for ray-tracing complex scenes. InProceedings of Euro-
graphics ’95, pages 371–382, 1995.15, 24, 32

[CLSS95] Per Henrik Christensen, Dani Lischinski, Eric J. Stollnitz, and David H. Salesin.
Clustering for Glossy Global Illumination. Technical Report 95-01-07, Depart-
ment of Computer Science and Engineering, University of Washington, Seattle,
Washington, January 1995.28

[COFHZ98] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative visibility
and strong occlusion for viewspace partitioning of densely occluded scenes. In
EUROGRAPHICS 98, pages 243–253, 1998.59

[CR99] A. Crosnier and J. R. Rossignac. Tribox bounds for three-dimensional objects. In
Computers & Graphics, volume 23, pages 429–437, 1999.10, 11, 60

[CT96] S. Coorg and S. Teller. Temporally Coherent Conservative Visibility. InProc. of
ACM Symposium on Computational Geometry, pages 78–87, 1996.40

[CT97] S. Coorg and S. Teller. Real-Time Occlusion Culling for Models with Large Oc-
cluders. InProc. of ACM Symposium on Interactive 3D Graphics, pages 83–90,
1997. 40

[DB97] P.J. Diefenbach and N.I. Badler. Multi-pass pipeline rendering: Realism for dy-
namic environments. InProceedings 1997 Symposium on Interactive 3D Graph-
ics, pages 59–70, April 1997.2

[Fel96] Dieter W. Fellner. Extensible image synthesis. In Peter Wisskirchen, editor,
Object-Oriented and Mixed Programming Paradigms, Focus on Computer Graph-
ics, pages 7–21. Springer, 1996.25

[FKN80] H. Fuchs, Z. Kedem, and B. Naylor. On Visible Surface Generation by a Priori
Tree Structures. InProc. of ACM SIGGRAPH, pages 124–133, 1980.39, 40

[FTI86] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated ray-tracing system.
IEEE CG&A, 6(4):16–26, April 1986.15

[GH96] Simon Gibson and R. J. Hubbold. Efficient hierarchical refinement and clustering
for radiosity in complex environments.Computer Graphics Forum, 15(5):297–
310, December 1996.28, 33, 35

[GKM93] N. Greene, M. Kass, and G. Miller. Hierarchical Z-Buffer Visibility. InProc. of
ACM SIGGRAPH, pages 231–238, 1993.7, 40, 53

[Gla84] Andrew S. Glassner. Space subdivision for fast ray tracing.IEEE CG&A,
4(10):15–22, October 1984.13, 15

[Gla89] Andrew S. Glassner.Introduction to Ray Tracing. Academic Press, New York,
NY, 1989. 5

65

BIBLIOGRAPHY

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. OBBTree: A Hierarchical Structure
for Rapid Interference Detection. InProc. of ACM SIGGRAPH, pages 171–180,
1996. 12, 40

[Gre95] N. Greene.Hierarchical Rendering of Complex Environments. PhD thesis, Com-
puter and Information Science, University of California, Santa Cruz, 1995.40

[Gre96] N. Greene. Hierarchical Polygon Tiling with Coverage Masks. InProc. of ACM
SIGGRAPH, pages 65–74, 1996.40

[Grö95] Alwin Gröne. Entwurf eines objektorientierten Visualisierungssystems auf der
Basis von Raytracing. Ph. D. thesis, Fakultät für Informatik der Eberhard-Karls-
Universität Tübingen, 1995. In German.12, 21, 29

[GS87] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for ray
tracing. IEEE Computer Graphics and Applications, 7(5):14–20, May 1987.7,
12, 14, 16, 17, 26, 29

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Bat-
taile. Modelling the Interaction of Light Between Diffuse Surfaces. InComputer
Graphics (ACM SIGGRAPH ’84 Proceedings), volume 18, pages 212–222, July
1984. 5

[Hai87] E. A. Haines. A proposal for standard graphics environments.IEEE Com-
puter Graphics and Applications, 7(11):3–5, November 1987. code available via
ftp://princeton.edu/pub/Graphics. 22

[HDSD99] J. M. Hasenfratz, C. Damez, F. Sillion, and G. Drettakis. A practical analysis of
clustering strategies for hierarchical radiosity.Computer Graphics Forum (Proc.
Eurographics ’99), 18(3):C–221–C–232, September 1999.7, 28, 36

[HKM96] M. Held, J.T. Klsowski, and J.S.B. Mitchell. Real-time collision detection
for motion simulation within complex environments.Visual Proceedings (SIG-
GRAPH’96), 1996. 12

[HMC+97] T Hudson, D. Manocha, J. Cohen, M. Lin, Kenneth E. Hoff, and H. Zhang. Ac-
celerated Occlusion Culling Using Shadow Frusta. InProc. of ACM Symposium
on Computational Geometry, pages 2–10, 1997.40

[HMK +97] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual Voyage: Interactive
Navigation in the Human Colon. InProc. of ACM SIGGRAPH, pages 27–34,
1997. 39

[Hop96] Hugues Hoppe. Progressive Meshes. InComputer Graph-
ics Proceedings, Annual Conference Series, 1996 (ACM SIG-
GRAPH ’96 Proceedings), pages 99–108, 1996. Available from
http://www.research.microsoft.com/research/graphics/hoppe.39, 51

66

BIBLIOGRAPHY

[HSA91] Pat Hanrahan, David Salzman, and Larry Aupperle. A Rapid Hierarchical Ra-
diosity Algorithm. InComputer Graphics (ACM SIGGRAPH ’91 Proceedings),
volume 25, pages 197–206, July 1991.6, 33, 35

[Inc99] Silicon Graphics Inc.Silicon Graphics 320 Visual Workstation. 1999. available
from http://visual.sgi.com/products/320/index.html.58

[Jan86] F. W. Jansen. Data structures for ray tracing. In L. R. A. Kessener, F. J. Peters, and
M. L. P. van Lierop, editors,Data Structures for Raster Graphics, Eurographic
Seminars, pages 57–73. Springer, 1986.13, 15

[Kaj86] James T. Kajiya. The Rendering Equation. InComputer Graphics (ACM SIG-
GRAPH ’86 Proceedings), volume 20, pages 143–150, August 1986.4

[KHM +98] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. Efficient col-
lision detection using bounding volume hierarchies of k-dops.IEEE Transactions
on Visualization and Computer Graphics, 4(1), 1998. 12

[KK86a] T. L. Kay and J. T. Kajiya. Ray tracing complex scenes.Computer Graphics
(ACM SIGGRAPH ’86 Proceedings), 20(4):269–278, 1986.12, 14, 16, 17, 29

[KK86b] T. L. Kay and J. T. Kajiya. Ray Tracing Complex Scenes. InProc. of ACM
SIGGRAPH, pages 269–278, 1986.42

[KMM +98] J. Klosowski, M.Held, J. Mitchell, H. Sowizral, and K. Zikan. Efficient Collision
Detection Using Bounding Volume Hierarchies of k-DOPs.IEEE Transactions
on Visualization and Computer Graphics, 4(1):21–36, 1998.40

[KS97] K. Klimansezewski and T. Sederberg. Faster ray tracing using adaptive grids.
IEEE Computer Graphics and Applications, 17(1):42–51, 1997.26, 32

[LG95] D. Luebke and C. Georges. Portals and Mirrors: Simple, Fast Evaluation of Po-
tentially Visible Sets. InProc. of ACM Symposium on Interactive 3D Graphics,
pages 105–106, 1995.40

[LKM01] Erik Lindholm, Mark Kilgard, and Henry Moreton. A user programmable vertex
engine. 2001. http://developer.nvidia.com/view.asp?IO=SIGGRAPH_2001.2

[MF99] G. Müller and D. Fellner. Hybrid Scene Structuring with Application to
Ray Tracing. InProceedings of the International Conference on Visual Com-
puting (ICVC’99), pages 19–26, Goa, India, 1999. available online via
http://www.cg.cs.tu-bs.de/people/mueller/publications.30, 32, 33, 36, 42, 51

[MH99] T. Möller and E. Haines.Real-Time Rendering. A.K. Peters, 1999.10

[MSF99] Gordon Mueller, Stephan Schaefer, and Dieter Fellner. Automatic creation of
object hierarchies for radiosity clustering. InProceedings of Pacific Graphics
’99 (Seventh Pacific Conference on Computer Graphics and Applications), Los
Alamitos, CA, October 1999. IEEE Computer Society Press.51, 52

67

BIBLIOGRAPHY

[Mül97] G. Müller. Beschleunigung strahlbasierter rendering algorithmen. M.Sc.. thesis,
Rheinische Friedrich-Wilhelms-Universität Bonn, May 1997. in German, avail-
able online via http://www.cg.cs.tu-bs.de/people/mueller/.15, 23

[Nay92] B. Naylor. Partitioning Tree Image Representation and Generation From 3D Ge-
ometric Models. InProc. of Graphics Interface, pages 201–212, 1992.40

[NN85] Tomoyuki Nishita and Eihachiro Nakamae. Continuous Tone Representation of
Three-Dimensional Objects Taking Account of Shadows and Interreflection. In
Computer Graphics (ACM SIGGRAPH ’85 Proceedings), volume 19, pages 23–
30, July 1985.5

[NVI01] NVIDIA. Per pixel lighting in opengl. 2001. http://developer.nvidia.com/-
view.asp?IO=gdc2001_perpixellighting.3

[Pho75] B.-T. Phong. Illumination for computer generated pictures.Communications of
the ACM, 18(6):311–317, June 1975.2

[Rog97] D.F. Rogers.Procedural Elements for Computer Graphics, 2ed.McGraw Hill,
New York, 1997. 1

[RTL84] R.L.Cook, T.Porter, and L.Carpenter. Distributed ray tracing. volume 18, pages
137–145, July 1984.4

[SAG94] Brian Smits, James Arvo, and Donald Greenberg. A Clustering Algorithm for
Radiosity in Complex Environments. InComputer Graphics Proceedings, Annual
Conference Series, 1994 (ACM SIGGRAPH ’94 Proceedings), pages 435–442,
1994. 6, 7, 27, 34, 35

[Sam94] H. Samet.The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, 1994.39

[Sch97] G. Schaufler. Nailboards: A rendering primitive for image caching in dynamic
scenes. InRendering Techniques ’97 (Proceedings of the Eighth Eurographics
Workshop on Rendering), pages 151–162, 1997.51

[Sch00] S. Schäfer.Efficient Object-Based Hierarchical Radiosity Methods. Ph. D. thesis,
Institut für ComputerGraphik, Technische Universität Braunschweig, 2000.5, 6

[SG96] O. Sudarsky and C. Gotsman. Output-Sensitive Visibility Algorithms for Dynamic
Scenes with Applications to Virtual Reality. InProc. of Eurographics, pages 249–
258, 1996. 40

[SGI97] SGI. OpenGL Optimizer Manual. Silicon Graphics Inc., Mountain View, 1997.
40

[Sil95] Francois Sillion. A Unified Hierarchical Algorithm for Global Illumination with
Scattering Volumes and Object Clusters.IEEE Transactions on Visualization and
Computer Graphics, 1(3), September 1995.6, 7, 27, 34, 35

68

BIBLIOGRAPHY

[SL98] J. Snyder and J. Lengyel. Visibility Sorting and Compositing without Splitting
for Image Layer Decompositions. InProc. of ACM SIGGRAPH, pages 219–231,
1998. 40

[SOG98] N. Scott, D. Olsen, and E. Gannett. An Overview of the VISUALIZE fx Graphics
Accelerator Hardware.The Hewlett-Packard Journal, (May):28–34, 1998. 40,
53, 58

[SP94] Francois Sillion and Claude Puech.Radiosity and Global Illumination. Morgan
Kaufmann, San Francisco, CA, 1994.35

[Spa90] J. N. Spackman.Scene Decompositions for Accelerated Ray Tracing. PhD thesis,
England, February 1990.21

[SS92] K. Sung and P. Shirley. Ray tracing with the bsp tree. In D. Kirk, editor,Graphic
Gems III, pages 271–274. Academic Press, San Diego, 1992.23

[SS96] G. Schaufler and W. Stürzlinger. A three dimensional image cache for virtual
reality. In Computer Graphics Forum (Proc. Eurographics ’96), pages 227–236,
1996. 51

[SSS98] Marc Stamminger, Philipp Slusallek, and Hans-Peter Seidel. Bounded cluster-
ing: Finding good bounds on clustered light transport. InPacific Graphics ’98,
Singapore, October 1998.28

[TS91] S. Teller and C.H. Sequin. Visibility Pre-processing for Interactive Walkthroughs.
In Proc. of ACM SIGGRAPH, pages 61–69, 1991.40, 51

[WBWS01] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek. Interac-
tive rendering with coherent ray tracing. In Alan Chalmers and Theresa-Marie
Rhyne, editors,Computer Graphics Forum (Proceedings of EUROGRAPHICS
2001), volume 20, pages 153–164. Blackwell Publishers, Oxford, 2001. avail-
able at http://graphics.cs.uni-sb.de/ wald/Publications.62

[Whi80] Turner Whitted. An improved illumination model for shaded display.Communi-
cations of the ACM, 23(6):343–349, June 1980.4, 14

[WSB01] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive distributed ray trac-
ing of highly complex models. In S.J.Gortler and K.Myszkowski, editors,Ren-
dering Techniques 2001 (Proceedings of the 12th EUROGRAPHICS Workshop on
Rendering), pages 277–288. Springer, 2001. available at http://graphics.cs.uni-
sb.de/ wald/Publications.62

[WWS01] P. Wonka, M. Wimmer, and F.X. Sillion. Instant visibility.EUROGRAPHICS
2001, 20(3), 2001.51

[ZMHH97] H. Zhang, D. Manocha, T. Hudson, and Kenneth E. Hoff. Visibility Culling Using
Hierarchical Occlusion Maps. InProc. of ACM SIGGRAPH, pages 77–88, 1997.
39, 40, 53

69

BIBLIOGRAPHY

[ZSD+00] D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, and W. Sweldens. Sub-
division for Modeling and Animation. InACM SIGGRAPH Course 23, 2000.
39

70

Publications

Journals and Books

D. W. FELLNER, S. HAVEMANN , G. MÜLLER: Modeling of and Navigation in Complex 3D
Documents.Computers & Graphics, Vol. 22, No. 6, pp. 645–653, December 1998.

G. MÜLLER, S. SCHÄFER, D.W. FELLNER: Automatic Creation of Object Hierarchies for
Radiosity Clustering.Computer Graphics forum, Vol. 19, No.4, number 4, pp. 213-221,
December 2000.

D.W. FELLNER, J. HABER, S. HAVEMANN , L. KOBBELT, H.P.A. LENSCH, G. MÜLLER,
I. PETER, R. SCHNEIDER, H.-P. SEIDEL, W. STRASSER: Beiträge der Computergraphik zur
Realisierung eines verallgemeinerten Dokumentbegriffs,Informationstechnik und Technische
Informatik (it+ti), Vol. 42, No. 6, pp. 8–16, Oldenbourg Verlag, 2000. (in German)

D. BARTZ, M. MEISSNER, G. MÜLLER Efficient Occlusion Culling for Large Model
Visualization, In Frits Post, Georges-Pierre Bonneau, and Gregory M. Nielson (Editors),
Scientific Visualization (Dagstuhl 2000), 2000.

G. MÜLLER, D.W. FELLNER: An Adaptive Hierarchical Occlusion Culling Algorithm for
Interactive Large Model Visualization,Computer Graphics forum, 2001. (submitted)

Conference Proceedings and Technical Reports

G. MÜLLER, D.W. FELLNER: Hybrid Scene Structuring with Application to Ray Tracing.
Proceedings of International Conference on Visual Computing (ICVC’99), pp. 19–26, Goa,
India, February 1999.

M. MEISSNER, D. BARTZ, T. HÜTTNER, G. MÜLLER, J. EINIGHA MMER: Generation of
Decomposition Hierarchies for Efficient Occlusion Culling of Large Polygonal Models,
WSI/GRIS technical report, University of Tübingen, WSI-99-13, ISSN 0946-3852, June 1999.

G. MÜLLER., S. SCHÄFER , D.W. FELLNER: A Rapid Clustering Algorithm for Efficient
Rendering.Short Papers and Demos (Eurographics ’99), 1999.

G. MÜLLER, S. SCHÄFER, D.W. FELLNER: Automatic Creation of Object Hierarchies for

71

BIBLIOGRAPHY

Radiosity Clustering.Proceedings of Pacific Graphics ’99 (Seventh Pacific Conference on
Computer Graphics and Applications), IEEE Computer Society Press, Seoul, Korea, October
1999.

M. MEISSNER, D. BARTZ, T. HÜTTNER, G. MÜLLER, J. EINIGHA MMER: Generation of
Decomposition Hierarchies for Efficient Occlusion Culling of Large Polygonal Models,
Vision, Modeling, and Visualization (VMV 2001), Stuttgart, November 2001.

72

	 List of Figures
	 List of Tables
	 Acknowledgements
	1 Introduction
	1.1 Three-Dimensional Image Synthesis
	1.2 The Graphics Rendering Pipeline
	1.3 Illumination algorithms
	1.3.1 Real-Time Rendering
	1.3.2 Ray Tracing
	1.3.3 Radiosity

	1.4 Thesis contribution and outline

	2 Object Hierarchies
	2.1 Bounding Volumes
	2.1.1 Bounding Volumes and Visibility
	2.1.2 Selected Bounding Volume Types

	2.2 Hierarchical Bounding Volumes
	2.3 Hierarchy Generation
	2.3.1 Median Cut
	2.3.2 OBBTree
	2.3.3 k-DOPTree
	2.3.4 Bounding volume optimization
	2.3.5 Space Subdivision

	3 Ray Tracing
	3.1 Introduction
	3.2 Hybrid Scene Structuring
	3.2.1 Hierarchical Bounding Volume Optimization
	3.2.2 Classifying Scene Nodes
	3.2.3 Locally Uniform Space Subdivision

	3.3 Results
	3.3.1 Description of Compared Acceleration Techniques
	3.3.2 Comparision of Run-Time Efficiency

	3.4 A Framework for Scene Structuring
	3.5 Conclusion and Further Work

	4 Hierarchical Radiosity
	4.1 Introduction
	4.2 Finding Object Clusters
	4.2.1 Overview
	4.2.2 Construction
	4.2.3 Optimizing Ray Acceleration

	4.3 Radiosity with Optimized Clusters
	4.3.1 Overview of the Implementation
	4.3.2 Using the Cluster Hierarchy

	4.4 Results
	4.5 Discussion

	5 Occlusion Culling Hierarchies
	5.1 Introduction
	5.1.1 Related Work

	5.2 Occlusion Culling
	5.3 Generating Hierarchies
	5.3.1 Dimension-oriented Bounding Volume Decomposition (D-BVD)
	5.3.2 Polygon-based Hierarchical Bounding Volume Optimization (p-HBVO)
	5.3.3 Octree-based Regular Space Decomposition (ORSD)
	5.3.4 SGI's opoptimize (SGI)

	5.4 Results
	5.5 Conclusion and Future Work

	6 Occlusion Culling Traversal
	6.1 Introduction
	6.2 Hierarchical Occlusion Culling
	6.2.1 Object Hierarchy Generation
	6.2.2 Tree Traversal
	6.2.3 Analysis

	6.3 Dynamic Occluder Selection
	6.3.1 Visibility Sampling
	6.3.2 Exploiting Frame-to-Frame Coherence

	6.4 Frame Coherent Control
	6.4.1 Node Activation Oracle

	6.5 Results
	6.6 Conclusions

	7 Conclusion
	7.1 Thesis Summary
	7.1.1 Ray Acceleration
	7.1.2 Hierarchical Radiosity
	7.1.3 Occlusion Culling

	7.2 Future Work
	7.3 Acknowledgments

	 Bibliography
	 Publications

