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Abstract. Isosurface extraction is an important and useful visualization method.
Over the past ten years, the field has seen numerous isosurface techniques pub-
lished, leaving the user in a quandary about which one should be used. Some pa-
pers have published complexity analysis of the techniques, yet empirical evidence
comparing different methods is lacking. This case study presents a comparative
study of several representative isosurface extraction algorithms. It reports and an-
alyzes empirical measurements of execution times and memory behavior for each
algorithm. The results show that asymptotically optimal techniques may not be
the best choice when implemented on modern computer architectures.

1 Introduction

Researchers in many science and engineering fields rely on insight gained from in-
struments and simulations that produce discrete samplings of three-dimensional scalar
fields. Visualization methods allow for more efficient data analysis and can guide re-
searchers to new insights. Isosurface extraction is an important technique for visualiz-
ing three-dimensional scalar fields. By exposing contours of constant value, isosurfaces
provide a mechanism for understanding the structure of the scalar field. These contours
isolate surfaces of interest, focusing attention on important features in the data such as
material boundaries and shock waves while suppressing extraneous information. Sev-
eral disciplines, including medicine [10, 17], computational fluid dynamics (CFD) [4,
5], and molecular dynamics [8, 12], have used this method effectively.

The original Marching Cubes algorithm [11, 20] for isosurface extraction examined
all cells in the data set. A tremendous amount of research has focused on reducing the
number of cells visited while constructing an isosurface [1, 2, 9, 15, 19]. These methods
utilize auxiliary data structures to examine only those cells that contain a portion of the



isosurface. While the search structures introduced by many of these methods increase
the storage requirements, the acceleration gained by the isosurfacing technique offsets
this overhead.

Algorithms that use data structures to accelerate isosurface extraction generally pro-
vide lower latency than simple marching methods in visualization applications. In the
context of isosurface extraction, latency is defined as the elapsed time between receiving
a query and returning a complete isosurface. Reducing latency greatly improves interac-
tivity, providing researchers with a better understanding of their data. The visualization
literature lacks studies or surveys comparing the latency and overall performance of the
many different three-dimensional isosurface extraction algorithms. Authors of isosur-
facing papers usually compare their algorithm’s performance only with that of March-
ing Cubes. Analysis of theoretical average- and worst-case efficiency also plays a large
role in the literature. Unfortunately, different implementations and different platforms
make objective, empirical comparisons between algorithms difficult. Memory behavior
on modern computer architectures, for example, plays a crucial role in an application’s
performance, but an analysis of this important factor rarely appears.

This paper presents a comparative study of several representative isosurface extrac-
tion algorithms. Each algorithm uses a different data structure to accelerate the search
for cells containing an isosurface, then computes the surface using a Marching Cubes-
style interpolation. This paper reports and analyzes empirical measurements of execu-
tion times and memory behavior for each of these algorithms. Section 2 describes the
algorithms tested, along with implementation details of each. Section 3 describes the
experiments and presents the results. Section 4 summarizes the paper and draws con-
clusions.

2 Isosurface Extraction Techniques

Visualization applications in many fields [5, 8, 10] use the Marching Cubes [11, 20]
algorithm to extract isosurfaces from volumetric data. Marching Cubes and other al-
gorithms use a voxel representation of the volume, considering each data point as the
vertex of some geometric primitive, such as a cube or tetrahedron. These primitives, or
cells, subdivide the volume and provide a useful abstraction for computing isosurfaces.
The Marching Cubes algorithm tests each cell in the volume for intersection with the
isosurface. By visiting cells in an order based on their position, this method can ex-
ploit the spatial coherence of the isosurface by reusing interpolation calculations along
edges shared by two or more cells. However, the Marching Cubes method spends a high
percentage of time visiting cells that do not contain portions of the isosurface.

Researchers have introduced a number of techniques to increase the efficiency of
isosurface extraction over the linear search proposed in the Marching Cubes algorithm.
These methods fall into two general categories, characterized by the criteria used to
partition the cells. Geometric techniques retain the original representation of the vol-
ume and partition along divisions in the geometric mesh. Span space decomposition
techniques create and manipulate abstract representations of the cells. Both geometric
and span space methods can extract isosurfaces from unstructured grids as well as reg-



ular grids (see [13, 16] for geometric decomposition techniques for unstructured grids).
Sections 2.1 and 2.2 describe representative methods from these two categories.

2.1 Geometric Decomposition Techniques

Wilhelms and van Gelder [19] describe the branch-on-need octree (BONO), a space-
efficient variation on the traditional octree. Their data structure partitions the cells in
the data based on their geometric positions. Extreme values (minimums and maxi-
mums) propagate up the tree during construction, enabling the extraction phase to prune
branches of the tree. The extraction algorithm traverses only those nodes whose values
span the isovalue, i.e. those withminvalue < isovalue < maxvalue. The branch-on-
need strategy partitions the volume such that the “lower” subdivision in each direction
covers the largest possible power of two cells. This results in fewer nodes when the
dimensions of the volume do not equal powers of two, making the tree traversal more
efficient. Leaf nodes in the branch-on-need octree generally reference eight cells (nodes
may reference fewer cells along the edges of the volume). This greatly reduces the mem-
ory required, as one pair of extreme values covers eight cells. In the original paper, a
hash table of edges was used to exploit spatial coherence. After the initial interpola-
tion of a point along an edge, cells that share that edge access its hash entry to avoid
recomputing the interpolation.

Another technique involves propagating the isosurface from a set of seed cells. This
method combines aspects of both geometric decomposition techniques and span space
algorithms1. A seed set must contain at least one cell per connected component of each
isosurface. The algorithm groups seed cells into a hierarchical search structure, then tra-
verses that structure to find all seeds that intersect the current isosurface. Construction
of the isosurface begins at these seeds and propagates through neighboring cells using
adjacency and intersection information. The difficult portion of the surface propagation
algorithm lies in locating and selecting the seed cells. Itoh et al. [6, 7] find the local
extremum points in the data and connect them with a graph in the spatial domain. The
seed set consists of the cells containing extremum points, plus all cells intersected by
the arcs of the graph and some cells along the boundaries if the volume has “holes”.
A thinning algorithm, commonly used in image processing, can then generate a skele-
ton of the seed set that connects all extremum points, yet contains fewer cells. van
Kreveld et al. [18] also use a graph of local extremum points, but add saddle points to
create a contour tree. Bajaj et al. [1] use set theory to find seed cells and a segment
tree to organize and traverse them. Both structured and unstructured meshes can utilize
these techniques, which theoretically provide near-optimal worst-case time complexity.
However, noisy data may disturb the complicated seed set construction process. Mea-
surement data such as MRI and CT scans can cause these algorithms to produce large
numbers of seed cells, causing slower preprocessing time.

1 Seed sets contain aspects of span space techniques, but surface propagation requires informa-
tion about the structure of the volume, establishing it as an inherently geometric technique.



2.2 Span Space Decomposition Techniques

Span space techniques partition cells based on their extreme values. Livnat et al. [9]
introduce the span space, where each cell maps to a point in 2D space. The cell’s min-
imum value defines thex-coordinate of the point, and the maximum value determines
they-coordinate. All points in span space lie above they = x line. For a given isovalue
v, the points representing cells which intersect the isosurface havey � v andx � v.
The NOISE algorithm described in [9] overlays a kd-tree on the points. This structure
organizes the points such that during traversal, the algorithm needs to test only one of
the two extreme values at each node in the tree. The authors use a pointerless represen-
tation of the kd-tree to avoid the additional overhead of pointer traversal. Constructing
this array involves sorting the cells based on their extreme values. Sorting in a prepro-
cess minimizes the effect on isosurface extraction performance.

Shen et al. [15] use a lattice subdivision of span space in their ISSUE algorithm.
The user defines a lattice resolutionL and the algorithm divides the span space points
into one of theL� L lattice elements. Given an isovaluev, the ISSUE method assigns
each lattice element to one of five categories. The algorithm trivially excludes cells in
region 1 and trivially includes those in region 2. Cells in region 3 require a test against
their maximum value, those in region 4 require a test against their minimum. Only
region 5 requires a full min-max search of its cells. Shen proposed a modified version
of the ISSUE algorithm [14] which creates search structures only at the lattice elements
along the diagonal region 5 and coalesces lattice elements at other regions into sorted
linear arrays. These modifications are implemented by building a kd-tree for each lattice
element along they = x line, since only these elements may fall into the region 5
classification. This method simplifies and accelerates the search phase of isosurface
extraction, but this acceleration comes at the cost of a higher memory requirement than
the NOISE algorithm. The lattice structure itself requires additional memory and by
creating a search structure in lattice elements that may require a full min-max search,
further memory overhead is introduced. However, simple division of lattice elements
among parallel processors makes this algorithm easily parallelizable. The authors report
near-linear speedups using this parallel algorithm [15].

The Interval Tree technique introduced by Cignoni et al. [2, 3] guarantees that the
worst-case efficiency is asymptotically optimal. This algorithm groups cells, repre-
sented by the intervals defined by their extreme values, at the nodes of a balanced binary
tree. Each node contains two lists, one sorted in ascending order of cell minima, the
other sorted in descending order of cell maxima. For any isovalue query, the algorithm
traverses at most one branch from a node after scanning through one of the lists. The
number of nodes created depends on the number of distinct interval extremes, usually
much smaller than the number of cells in the volume. The memory requirements for
representing intervals and for the two lists at each node dominate. The authors propose
improvements specific to the underlying geometry (structured or unstructured mesh).
A hash table of edges exploits spatial coherence in unstructured meshes, while regular
grids can utilize a form of local surface propagation.



3 Experimental Results

Both geometric and span space techniques accelerate isosurface extraction by limit-
ing the number of cells examined. This acceleration is usually described in terms of
average- and worst-case algorithm complexity. The analysis of asymptotic complexity
given by various authors [1, 2, 9, 15] shows that in the limit, the Interval Tree [2, 3] and
seed set [1] algorithms guarantee worse-case optimal efficiency while the NOISE [9] al-
gorithm provides near-optimal complexity. However, no quantitative performance com-
parison between the different algorithms exists, since most authors compare their tech-
nique only with Marching Cubes. This section describes the comparative performance
of various three-dimensional isosurface extraction techniques, each implemented and
tested using the same hardware and software framework. Marching Cubes [11, 20],
the branch-on-need octree (BONO) [19], and a surface propagation algorithm using
seed sets [1] represent the geometric decomposition techniques, while NOISE [9], IS-
SUE [15], and the Interval Tree [2, 3] represent span space algorithms. The NOISE
implementation uses a pointerless representation of the kd-tree. A similar data struc-
ture could be used by the other span space algorithms, but since span space algorithms
must always index cells, a certain amount of memory overhead is unavoidable. Each
implementation includes the optimizations given in the paper, with the exception of
techniques explicitly designed to exploit spatial coherence, such as those given in [19]
and [3]. Every algorithm would benefit from these improvements, so fairness dictates
their omission. Each algorithm performs both the isosurface query and triangle con-
struction and thus are representative of execution times for the isosurface generation
process.

The test data consists of both a noisy, measurement data set and a simulation data
set that contains a continuous scalar field. The Head128 data set contains results from a
CT scan of a human head and consists of128�128�128points. The Rage256 data set
represents a CFD simulation of the classic Rayleigh-Taylor hydrodynamic instability,
in which two fluids of differing densities mix. This data set contains256� 256� 256

points. Figure 4 (see color plate) shows a sample isosurface from each data set. The
strikingly different characteristics of these data sets can be seen in Figure 5 (see color
plate). These images show the density of points in span space for each data set. The
Head128 data set shows a nonuniform density, characteristic of noisy measurement,
with large empty areas gradually coalescing into two hot spots. The Rage256 data set
contains much more uniform data spread over the entire range of values, with very
localized hot spots at the extremes.

Experimental results allow comparison of both execution time and memory system
behavior from execution on a single dedicated processor of an SGI Origin 2000 with
8GB of memory. The Origin 2000 is a commonly used visualization system with a
memory hierarchy typical among high end systems. Table 1 shows execution times for
each algorithm using the Head128 data set. Table 2 displays results from the Rage256
data set. Results in Table 1 represent averages from ten repeated executions of ten rep-
resentative isovalue queries. Table 2 represents averages from ten executions of five
representative isovalue queries.

All algorithms exhibit significant speedup over Marching Cubes. Most algorithms
perform similarly for the Head128 data set, as shown in Table 1. However, for the



Table 1.Experimental results from the Head128 data set.

Type Algorithm Average execution time (s)
Standard Marching Cubes 2.13

GeometricBONO 0.58
Seed Set 0.66
ISSUE 0.57

Span SpaceInterval Tree 0.56
NOISE 0.51

Table 2.Experimental results from the Rage256 data set.

Type Algorithm Average execution time (s)
Standard Marching Cubes 17.31

GeometricBONO 4.92
Seed Set 6.67
ISSUE 5.60

Span SpaceInterval Tree 8.84
NOISE 5.04

Rage256 data set, large disparities in performance exist. Table 2 shows that BONO, IS-
SUE, and NOISE present the largest speedups, with the Branch-on-Need Octree provid-
ing the best performance. The surface propagation code used for the seed set technique
contains a large number of branches. Since the processor cannot readily predict the out-
come of these branches, this algorithm performs poorly. The Interval Tree technique,
although provably optimal in the limit, actually executes slower than every algorithm
but Marching Cubes for the Rage256 data set. To discover the causes of this result,
each implementation used the performance counters on the R10000 to track the number
of clock cycles, TLB misses, and L1 and L2 cache misses during execution. Figure 6
shows the experimental results for the Head128 data set. Figure 7 shows the results ob-
tained from the Rage256 data set. The clock cycles charted in Figures 6(a) and 7(a)
correspond closely to the execution times given in Tables 1 and 2. Figure 6(b) shows
that the span space techniques have a high TLB miss rate for the Head128 data set, but
Figures 6(c) and 6(d) demonstrate no such distinctions in L1 and L2 cache behavior.
Figures 7(b), 7(c), and 7(d) uncover the reason for the Interval Tree’s low performance
in the Rage256 data set — the algorithm’s poor memory behavior. The large number
of TLB and cache misses imply that this algorithm visits data in a different order than
that adhered to by the data in memory. The severity of this difference in marching or-
der requires processing to stall repeatedly as the operating system swaps information in
and out of these hardware structures. In contrast, the BONO and Marching Cubes al-
gorithms visit data in an order similar to that of the data in memory, since they traverse
the geometric volume. These two algorithms have low instances of TLB and L2 cache
misses, which incur high penalties.

To demonstrate the tradeoff between performance and storage space, Figure 8 shows
the amount of memory overhead required by each algorithm for both test data sets.
These figures do not include the memory required to store the data set, nor the mem-
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Fig. 6.Experimental results from the Head128 data set. B = BONO, I = ISSUE, T = Interval Tree,
M = Marching Cubes, N = NOISE, S = Seed Set/Surface Propagation.
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ory consumed by storing the triangles that compose the isosurface, since all algorithms
require this memory. BONO uses the least amount of additional memory, which is to
be expected since it retains the original representation of the data volume. The seed
set method has nearly as much memory overhead as the NOISE algorithm because a
extrema data structure is used. In these implementations, the ISSUE and Interval Tree
algorithms consume large amounts of memory, approximately five times the amount re-
quired to store the original data. In fairness, this is due to implementation details. Both
ISSUE and the Interval tree could use a pointerless data structure which would reduce
the amount of memory overhead. Also, the span space methods as implemented use in-
dices to individual cells while BONO indexes eight cell simultaneously. An interesting
comparison would be to raise the index to groups of cells rather than individual cells.

These experiments show that data structures increase the memory required to ex-
tract isosurfaces, but allow the computation to execute more quickly than in a simple
marching method. However, algorithms that consume larger amounts of memory do not
necessarily yield better performance.

4 Conclusion

The comparison of multiple isosurface extraction algorithms has not been previously
available. This case study performs such a comparison with several data sets and at-
tempts to show the empirical performance differences on both measurement data and
simulation data. Based on the data structures required, the large constant for prov-
ably optimal algorithms is amplified by modern computer architectures where cache
and page misses induce large performance penalties. With such architectures being the
prevalent compute platform, the theoretical gains do not appear in practice.

While this case study relates a relatively fair comparison of different isosurface tech-
niques, several enhancements can be made. Most importantly, this comparison should
be repeated for more data sets and on different compute platforms. This would better
demonstrate the variations caused by diverse data sets and by other memory hierarchy
designs.



The span space methods could benefit from indexing to groups of cells, as the
BONO algorithm does, rather than to single voxels. The implementation of the NOISE
algorithm uses a pointerless data structure while the BONO, ISSUE and Interval Tree
implementations do not. These algorithms could use pointerless data structures which
would improve their memory overhead and performance. The memory overhead for IS-
SUE and the Interval Tree would still be higher than NOISE due to the required data
structures.

This case study points out the value of performing empirical comparisons of pub-
lished algorithms. Such comparisons should not be limited to isosurface techniques but
should also be performed for other visualization algorithms to examine the practicality
of such techniques.
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(a) (b)

Fig. 4. Isosurfaces from simulation and measurement sources. (a) depicts an isosurface from the
RAGE computational fluid dynamics simulation, showing the bubbles formed by Rayleigh-Taylor
instability. (b) shows the skin isosurface from the volumetric data set produced by a CT scan.

(a) (b)

Fig. 5.Span space representations of the (a) Head128 and (b) Rage256 data sets. Blue represents
low density of points, white represents high density.


