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Abstract

The Willmore energy of a surfacé(H2 — K)dA, as a function of mean and Gaussian curvature, captures the
deviation of a surface from (local) sphericity. As such this energy and its associated gradient flow play an impor-
tant role in digital geometry processing, geometric modeling, and physical simulation. In this paper we consider
a discreteWillmore energy and its flow. In contrast to traditional approaches it is not based on a finite ele-
ment discretization, but rather on an ab initio discrete formulation which preserves the Mobius symmetries of
the underlying continuous theory in the discrete setting. We derive the relevant gradient expressions including a

linearization (approximation of the Hessian), which are required for non-linear numerical solvers. As examples
we demonstrate the utility of our approach for surface restoration, n-sided hole filling, and non-shrinking surface

smoothing.

Categories and Subject Descript@ascording to ACM CCS) G.1.8 [Numerical Analysis]: Partial Differential Equa-
tions; 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; 1.6.8 [Simulation and Model-

ing]: Types of Simulation.

Keywords: Geometric Flow; Discrete Differential Geometry; Willmore Energy; Variational Surface Modeling;

Digital Geometry Processing.

1. Introduction

TheWillmoreenergy of a surfacB c R? is given as
Ew(S) = [(H2=K)dA=1/4 [ (k1 2)dA

where k1 and x» denote the principal curvature$] =
1/2(x1 + k») andK = k3 k» the mean and Gaussian curva-
ture respectively, andA the surface area element. Immer-
sions of surfaces which minimize this energy are of great
interest in several areas:

e Theory of surfaces the Willmore energy of a surface
is conformally invariant Bla29 making it an important
functional in the study of conformal geometiv{l00];

e Geometric modeling for compact surfaces with fixed
boundary a minimizer offw(S) is also a minimizer
of total curvaturefsxl2 + k2dA which is a stan-
dard functional in variationally optimal surface model-
ing [LP88 WW94, Gre94;

e Physical modeling thin flexible structures are governed
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by a surface energy of the form
E(S) = /Soc+/3(H ~Ho)? — yKdA

the so-called Canham-Helfrich modeC4n7Q Hel73
(Ho denotes the “spontaneous” curvature
which  plays an important role in thin-
shells [GKS02 BMF03, GHDS03). For o« = Hp = 0,

B = vy the Canham-Helfrich model reduces to the
Willmore energy.

In all of these application areas one typically deals with the
associated geometric flow

S=—0E(S),

(time derivatives are denoted by an overdot) which drives
the surface to a minimum of the potential energy given by
E(S). In the theory of surfaces as well as in geometric mod-
eling one is interested in critical points B{S). In physical
modeling the solution shape is characterized by a balance of
external and internal forces. In this setting the internal forces
are a function of the Willmore gradient.
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Contributions In this paper we explore a novel, discrete and Kobbelt 5K01], Xu et al.[XPB05, and Yoshizawa and
Willmore energy Bob0§ and introduce the associatge- Belyaev [YB02]. In each case the approach was based on
ometric flowfor piecewise linear, simplicial, 2-manifold  taking the square of a discrete Laplace-Beltrami operator
meshes. In contrast to earlier approaches the discrete flowcombined with additional simplifications to ease implemen-
is not defined through assemblies of lower level discrete op- tation. Unfortunately surface diffusion flow can lead to sin-
erators, nor does the numerical treatment employ operator gularities in finite time MS0Q leading to “pinching off” of
splitting approaches. Instead the discrete Willmore energy, surfaces which are too thin. Yoshizawa and Belyaés(2]
defined as a function of the vertices of a triangle mesh, is demonstrate this behavior and show the comparison with
used directly in a non-linear numerical solver to affect the Willmore flow, which leads to much better results in this re-
associated flow as well as solve the static problem. Since the gard. This difference in behavior between surface diffusion
discrete formulation has the same symmetries as the continu-and Willmore flows is due to the additional terms appearing

ous problemi.e., it is M&bius invariant, the associated prop-
erties, such as invariance under scaling, carry evactly
to the discrete setting of meshes. To deal effectively with

boundaries we introduce appropriate boundary conditions.

in the Euler-Lagrange (EL) equation of the Willmore flow
AsH +2H(H?2 —K) =0.

Yoshizawa and Belyaev took the EL equation as their start-

These include position and tangency constraints as well asing point and defined a discrete Willmore flow by assem-
a free boundary condition. We demonstrate the method with blying the components from individual, well known discrete

some examples from digital geometry processing and geo-

metric modeling.

1.1. Related Work
We distinguish here betweatiscretegeometric flowsj.e.,

flows based on discrete analogues of continuous differential

geometry quantities, and those baseddistretizationsof

continuous systems. The guiding principle in the construc-
tion of the former is the preservation of symmetries of the
original continuous system, while the latter is based on tra-
ditional finite element or finite difference approaches which

operators. Unfortunately in that discrete setting properties
such a2 — K > 0 can no longer be guaranteed. In contrast
we define our discrete Willmore energy directly using the
Mébius invariance of the integrar(@i? — K)dA as the fun-
damental principle. Among other properties one achieves the
H2 —K > 0 always, as expected (see Sec®n

Discretized Flows Both surface diffusion and Willmore
flows have been treated numerically through a variety of dis-
cretizations. For example, Tasdizeh al. [TWBOO03 and
Chopp and SethianCS99 use a level set formulation for
surface diffusion flow, while MayeiMay01] uses finite dif-

in general do not preserve the underlying symmetries. There ferences, and Deckelnigk al.[DDEO3 use finite elements.

is also a broad body of literature which uses linearized ver-
sions of the typically non-linear geometric functionals. Such

For Willmore flow finite element approaches were pursued
by Hariet al.[HGROJ and Clarenzt al.[CDD*04]. A level

approaches are not based on intrinsic geometric propertiesset formulation was given by Droske and RumpR04. In

(e.q, replacing curvatures with second derivatives) but rather

these approaches no attempt is made to preserve the Mébius

depend on the particular parameterization chosen. For this Symmetries. On the other hand they do have the advantage

reason we will not further consider them here.

Discrete FlowsIn the context of mesh based geometric
modeling a number of discrete flows have been consid-
ered. For example, Desbrwet al. [DMSB99 used mean
curvature flow & = 1, B = y = Hp = 0) to achieve de-
noising of geometry. Pinkall and PolthiePP93 used a
related approach, area minimizing flow, to construct dis-
crete minimal surfaces. Critical points of the area functional
also play an important role in the construction of discrete
harmonic functions PCDS97, their use in parameteriza-
tions [EDD*95, DMAO2], and the construction of confor-
mal structures for discrete surfacéddr01, GY03]. Since
the underlying “membrane” energy is second order only, it
cannot accomodat&! continuity conditions at the bound-
ary of the domain. These are important in geometric mod-
eling for the construction of tangent plane continuous sur-

faces. Fourth order flows on the other hand can accomo-
date position and tangency conditions at the boundary. Per-

haps the simplest fourth order flowssrface diffusioni.e.,
flow by the Laplace-Beltrami operator of mean curvature,
S= —AgH. Such discrete flows were studied by Schneider

that a rich body of literature applies when it comes to er-
ror and convergence analysis. Our approach as of now lacks
a complete analysis of this type. Partial results on the con-
vergence of the discrete Willmore energy to the continuous
Willmore energy are discussed at the end of Sec@ion

2. Discrete Willmore Energy

In this section we recall the definition of the discrete Will-
more energy and some of its relevant properties.

The derivation of the discrete Willmore energy is based on
the observation that the integrand

(H?—K)dA

is invariant under Mo6bius transformation8l§29, i.e,
translations, rotations, uniform scale, and inversion. The first
two are obvious and the latter two follow from the change
of variable formula Che73. This immediately implies that
Ew (9 itself is a conformal invariant of the surface. Note that
for compact closed surfaces we also hBygS) = [gH2dA

as a conformal invarianifhi73]. However thentegrandof
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En (S) is not Mdbius invariant. It is for this reason that we
preferEw overEy (the latter is used by some authors as the
definition of the Willmore energy).

The Mdbius invariance is a natural mathematical discretiza-
tion principle. The importance of this property depends on
the particular application one is interested in. For the nu-
merical construction of Willmore surfaces, which are criti-
cal points (in particular minima) of the Willmore energy, it

is essential. For applications such as smoothing and denois-
ing of meshes (see Sectidha concrete benefit is the scale
invariance of the Willmore energy.

We are interested in evaluating this energy for discrete sur-
faces,i.e, surfaces given as topological 2-manifold config-
urations of simplicies. Such a “mesh” consists of vertices
vi = (x,¥i,z)" (i=1,...,N) and the topological complex is
given as a set of edges connectingy; with vj and trian-
glestj; bounded by verticeg, vj andv; and edgesj, €j;,
ande; (see Figurel). For notational simplicity we assume
that the surface is closedd., each edge; is bounded by
exactly two triangles;; andtjic) and that triangles incident
on a given edge are consistently oriented (note however that
we do not assume global orientability). Boundaries will be
discussed in SectioB.3.

Figure 1:Notation for vertices, edges and triangles in the
vicinity of a given edge & (vi,vj) = &j; a=&;j, b=¢gj,
c=gj, d=ek.

The discrete Willmore energy on a mesh is defined at each
vertexv; as

W= Bj -2,
8

i.e,, a sum over the edges incidentioof certain anglegﬁli,
which measure the angle between the circumcircles defined
by the two triangles;; andt;y incident to the given edge

& (see Figure?). ObviouslyW is Mobius invariant since its
definition is based on angles between circles. The Willmore
energy of the entire mesh is then simply the sWns 3 W.

For later use we also recall the definition of discrete Gauss
curvature at a vertex

K]

Hereaf(j denotes the Euclidean anglei atside the triangle
tikj -
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Figure 2:Geometry of3!.

The geometric picture is as follows. A given edge has two in-
cident triangles. Each triangle has a circumcircle. Since the
four vertices forming the two triangles are (generically) on a
common sphere (possibly at infinity) the two circumcircles
are also on this sphere. The two circles meet in the vertices
vi andv; where they intersect. Consider a tangent vector to
each circle at;. These two tangent vectors make the angle
B} which lies in the tangent plane to the sphere at that point.

Note that this geometric setup implies tifat= 5. Suppose
nowv; and all its neighbors; (i.e., corresponding to edges
&j) lie on a common sphere and that the (embedded) 1-ring
of vj is convex. In that case it is easy to see thai;ﬁheeatly

add up to exactly 2 in the tangent plane a4 and hence

W = 0 (see Figure) as expected. Now suppose tlraand

its neighboring vertices do not share a common sphere. In
that cas&\ > 0. To see this use the Mébius invariance of the
energy and map the central pointto infinity by a Mdbius
transformation. All circles passing through are mapped

to straight lines and the energy becomes the g;rﬁ} of

the external angles of a non-planar closed polygon in three
space. In that interpretation the inequalﬁyﬁ} > 2rn fol-

lows easily Bob0§ (this inequality is a polygonal version of
Fenchel's theorenHen29 Spi79). With the same argument
one also concludes tha{ +K; > 0,i.e, 5| ﬁ} —3kj ocliq- >0,

reflecting the fact thati2dAis always non-negative.

Finally we observe thatd > 0 and that it vanishes iff; and

all its edge neighborg; lie on a common sphere and the ver-
texv; is convex. These two conditions are equivalent to the
condition that the triangles meeting atbuild a Delaunay
triangulation on a sphere.

Smooth Limit The discrete Willmore enerdi is not only

an analogue of the continuous one. It approximates the con-
tinuous Willmore energy” in a “natural” limit. Let(u,v) —
f(u,v) be a curvature line parameterization of a surface.
Without loss of generality consider the vicinity of the ori-
gin (u,v) = (0,0) in the tangent plane where we have

u,v, }(Kluz—k V) 4 o(U? +V?)),

2
with x1,x» denoting the principal curvatures of the sur-
face at the point0,0). Now consider a triangular lattice
Le = {e(la+mb+nc) : 1,mn € Z} in the parameter plane
generated by three vectad, cwith a+b-+c= 0. Heree is

a small parameter. Consider the hexaBernin the parameter

(Uv) = (
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Figure 3: Geometry ofzaj [3} around a vertex. The an-
gles between subsequent circumcircles—appropriate tan-
gent vectors are indicated with colors corresponding to the
circumcircles of each triangle—neatly add up 2a if all
vertices are co-spherical.

plane with verticep; = €a, pp = —€c, p3 = ¢€b, ps = —¢€a,

ps = €c, ps = —¢eb and its imagef (D¢) on the surface.
Let #(D¢) be the smooth Willmore energy df(D¢). On

the other hand, the verticdgp;), i = 1,...,6 together with
f(0) build a simplicial surface with six triangles. Denote by
W(D¢) the discrete Willmore energy of this surface and con-
sider the quotient of the discrete and smooth Willmore ener-
gies of such an infinitesimal hexagon

e W(Dg)
R=lm %7 ©%)

A direct but rather complicated computation leads to the fol-
lowing conclusions:

1. Ris independent of the curvatures, ko,

2. R>1, andR= 1 iff the latticeL, has two of its directions
aligned with the curvature lines of the surface (two of the

vectorsa, b, c are curvature line directions).

Thus, after sufficiently many 4 4 refinements of the
smooth surface the discrete Willmore energy approximates
the smooth one if the curvature line net is triangulated, oth-
erwise the discrete energy is larger.

The question whether the discrete Willmore energy can be
used as a variational method for computation of curvature
line nets is currently under investigation (see also Fig8res
and9).

3. Evaluation

For the numerical treatment of discrete Willmore flow and

the solution of energy minimization problems we need ef-

fective evaluation procedures for the Willmore energy and
its derivatives. To simplify the implementation of these func-

tions we begin with a discussion of the definition of the an-

glesﬁji and some of the consequent symmetries in the ex-
pressions.

3.1. Definition of Intersection Angles

Consider edge;j and its two incident trianglegy, andt;j
with associated verticeg, vj, v|, andv; (see Figurel).
Defining the four directed edge vectors

Al d_ Vi g_ b _ ¥y
lal ™ Ivi—wl ol = m—v;]

_ C _ Vi=Vv _d _ WV
C=g=mw DP=ma=mw

the angles follow as

—R(Q) = —R(ABcD™?)
<A7C><B, D> - <A7 B> <C7 D> - <B,C><D,A>7

cosp]

where (.,.) denotes the usual Euclidean dot product and
R(Q) the real part of the normalized cross ratio of the four
edges bounding the “diamond” formed by the two trian-
gles incident on edgej. This cross ratio is defined in
terms of quaternion algebra with the standard identifica-
tion of 3-vectors with imaginary quaternior2® = I (H),

vie (0,ix, jy, k2T (i?= j?=k?=—1,ij =k, jk=i,ki=j).

The subsequent expression of this quaternion cross ratio in
terms of Euclidean inner products follows from the rules of
guaternion multiplication and Lagrange’s identity for the in-
ner product between two cross products. More details can be
found in Bob0§.

Properties of [3} and its Derivatives A number of surpris-
ing facts—which we exploit to significantly simplify the ex-
pressions needed by the numerical solver—are immediately
obvious from the above definition. To clarify these we make
all arguments explicitﬁJi = B(k, j,l,i) going around the di-
amond in counter clockwise order. We already noted earlier
that B(k, j,I,i) = B(l,i,k, j). In fact from the formula for
cosB(k, j,l,i) it terms of scalar products it is immediately
clear thatB (k, j,l,i) is invariant under all cyclic permuta-
tions and reflections of its arguments. In particular if we flip
the edgesj — g the cosine of the angle remains the same.

From the invariance under cyclic and reflection permutations
of its arguments it also follows that all first derivatives can

be written as a single functiofy (., .,.,.) with suitably per-
muted arguments
Bx= ik j,1,i) Bj=f(j1,i,k)
Bi=fa(li,k j) Bi=fali,kj,0).

(Here and in what follows we use comma notation to denote
partial derivatives with respect to the corresponding argu-
ment and write8 := BJ! to reduce clutter.)

3.2. Energy Gradient

For gradient flow numerical computations we require the
gradient of the discrete Willmore energy. A direct calcula-
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tion readily yields

_Sin(B)x = (— - Pa(C)(B.D)+ (AC) =

la] d|
+ipA(B) (C,D) — (A, B)iPD(C)

lal |d|
—(B,.C) (75 P (A) — = Pa(D))).
d| |l
Here we use® =1 — X® X as shorthand for the projection
operator into the orthogonal complement of (the unit vector)
X.

Po(B)

1 1

Remarkably, if we separate out the linear dependence of this

expression om, b, ¢, andd we arrive at ascalarlinear com-
bination

~sinp)pi = (T~ e
ol + T
et + TR
oF e

In a semi-implicit time stepping algorithm this amounts to
requiring only the solution of a sparse linear system of size
n x n rather than(3n) x (3n) for n vertices, a very attractive
feature. In fact Equatioth can serve as a linearized version
of the Hessian of the energy. See Sectdor further com-
ments on this fact.

Vi

Mobius transformed picture. Send the pointo infinity by
the inversion in a sphere centered/atBoth circles in Fig-
ure4 become straight lines. L&, Vi,V be the images of the
verticesvj, v,V under this Mobius transformation. For the
case off = 0 both circles in Figurel are coincident—call
this common circleC—and the pointw/j’ Vi, andvi become
collinear: they lie on the straight linewhich is the Mobius
image of the circleC. The only direction of varying/in
which the angle does not change is along the straightline
Variations in all orthogonal directions increase the angle at
equal rate.

Vi
Vi ’

\7.
Vi / !
Figure 4:After sending vto infinity, the two circles have
been mapped to two lines which intersect with arijle

Consider now a given vertex and assume for the moment
that only onef contributing to the gradient computation
atv; vanishes. LeC > v; be the corresponding circle with
four vertices lying on it. Let all other, well defined, negative
gradient directions sum tg. Decompose a variation direc-
tion G = Go + Gp of v; into the parts orthogonab, L C
and parallelGy, || C to the tangent of the circle i and let

g = go + 9p be the same decomposition@fThe contribu-

For the free boundary treatment we also need expressionstion to the gradient from all “regular” (non-vanishin@s is
for the gradient of the angle between two edges. Desbrun —(9;G) and the contribution of the vanishirfyis R| Go |

and co-workerslPMAO02] (Appendix B) derive these and we
will not repeat them here.

Gradient Singularity If v, vj, vi, andv; are co-circular then
B =0 andpB is not defined. For vertices in general posi-

tions this does not occur. However, in practice the case that

the four vertices of a diamond are nearly co-circular, while

with someR > 0. For the whole gradient this implies
—GpYp+ (| Go | R—(Go,9o))-

Thus the total negative gradient direction, i.e. the direction
in which the energy decreases the mogijgparallel toC)
if R>[go |andgp+0o(1—R/|go|) if R<|go .

rare, does occur. For some inputs it can in fact be a frequent The case of multiplg’s in the support of the gradient ¥}

occurance (see for example Figur®. Consider a quadran-
gulation of a smooth surface which is turned into a triangle
mesh through insertion of diagonals in each quad. In this
setting the diagonal edges very often hfveearly equal to
zero.

Keeping in mind that in the end we care about the direction
of negative gradienti.e., steepest descent, of the discrete
Willmore energy we make the following geometric obser-
vation. In casg3 = 0 there is one direction of varying in
which the angle does not change (infinitesimally). This is the
tangential direction to the circlé passing through the points
Vi, Vj,Vk andy;. For (infinitesimal) unit motions in all or-
thogonal directions the ang[gincreases at equal rate. This

with respect to the given vertex vanishing, is more com-
plicated. One can get the negative gradient direction (if it ex-
ists) in this case from the following non-linear minimization
process. To each of the edgaswith vanishingf(e,) =0
there corresponds a circ@&, throughv;. For the variation

G the contribution to the gradient of this edge B, x G |
whereR, is a vector tangent t6,. We define

Y IRa x G| - (G,9)

= min
|G|=1,(G,g)>0
where the sum is taken over all vanishifidgrom the 1-ring
with flaps ofvj. The first term measures the length of the pro-
jection of G into the orthogonal complement B, i.e., the
amount of (infinitesimal) increase of energy while the sec-

property of the gradient is conformal and thus preserved un- ond term measures the decrease in energy for the direction
der Mdbius transformations. It can be seen more easily in a G. If § > 0 no motion exists which decreases the energy and
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the direction of steepest descent is the zero vect@r.<f0
the directionG which achieves the minimum is our sought
after steepest descent direction with magnitjéle

The case that a§ in the support of the gradient gf vanish
simultaneously, corresponds to a configuration which puts
all vertices in the 1-ring with flaps of; includingv; itself
onto a common circle. In this case no direction decreasing
the Willmore energy af; exists.

In our implementation we have experimented with the non-
linear minimization to find a valid direction of energy de-
crease (or zero if none exists) but found it to give the same
results (numerically) as a far simpler heuristid:sinf| < €

set the corresponding gradient to zero. We foanrd 108

to give reliable results in double precision for all our experi-
ments.

3.3. Boundary Conditions

So far we have implemented two types of boundary condi-
tions.

G!-boundary The variational problem we are dealing with
is a fourth order system. To be well posed it requires two
independent boundary conditions. The most natural choice
here is to fix positions and normals at a boundary. We spec-
ify this kind of boundary data on a mesh by fixing posi-
tions of the boundary vertices and those vertices within one
edge distance from the boundary. The normals of the tri-
angles of this boundary strip can be treated as normals on
the boundary. This boundary condition fits perfectly &
gluing of surfaces. Typical applications are surface restora-
tion and smooth filling of a hole (see Figur#8 and 11).
Note that the method requires no conditions on the topol-
ogy of the mesh. In particular one can fix some “islands” of
internal vertices (or faces) of the required surface.

Free Boundary Alternatively we have experimented with
closing boundary curves by adding a vertex at infinity to
each boundary loop. This is an unusual treatment since it ac-
tually removes the boundary and adds a Dirichlet condition
at infinity. The idea comes from Mébius geometry where the
infinity point is not distinguished.

Figure 5:Free boundary conditions. Boundary edges e and
€, and a boundary vertex, with the angleg, and f33.

For simplicity consider a surface with one boundary curve.

By adding the infinity point and connecting it to each bound-
ary vertex we obtain a closed surface. We distinguish three
types of edges of this surfade = E; U E, U Ex: internal
edgeds;, boundary edgely, of the original surface and new
edgesE., incident to the infinity point. The circumcircles
passing through the infinity point are straight lines. The dis-
crete Willmore energy of the closed surface consists of three

terms
e; Ba(e) + e;m Ba(e).

%

The first term is just the discrete Willmore energy of the orig-
inal surface. The anglesy(e) are associated to the bound-
ary edgese € E, and are the intersection angles of these
edges with the circumcircles of the corresponding bound-
ary triangles. Another interpretation fp(e) is that this is

7 minus the angle of the boundary triangle opposite to the
edgee € Ey,. Finally the anglg3s(e) is associated to the ad-
ditional edgee € E,, connectingw to a boundary verteyy,.
Equivalently it can be associated to the boundary vertex
This is the intersection angle of two circumcircles (which are
straight lines in this case) passing througtande, i.e., the
intersection angle of two boundary edges meeting, §see
Figureb).

The resulting behavior is that of a free boundary (see Fig-
ure7; right column).

B(e)= 3 Bi(e)+

eck;

4. Numerical Experiments

We have implemented the discrete Willmore gradient flow
using linear and non-linear solvers from the excellent
PETSc BBE*04] and TAO BMMSO04] libraries, allowing
us to experiment with a wide variety of pre-canned solvers,
while needing to supply only the gradient, respectively the
approximation of the Hessian (Equatidi. For the time
discretization we experimented with both the forward and
backward Euler method. For the forward Euler method the
time step limitation imposed by the Courant condition for
fourth order problems—time increments must be of the or-
der of the fourth power of the shortest edge in the mesh—
is too severe to be practical except for very simple meshes.
The backward Euler method leads to a non-linear problem
at each step. These can be solved with a full Newton method
requiring evaluation of the Hessian of the energy at each iter-
ation step. We did derive the expressions for the Hessian, but
found that the effort was not justified as a function of eval-
uation cost and numerical behavior. The latter was no better
in our experiments than a much simpler approach based on
a semi-implicit time discretization using the linearized ver-
sion of the gradient (Equatial). In that setup only éinear
system must be solved at each time step to find the position
incrementAx®
1

(dt
Heredt is the time step and a super scrijtdenotes quan-
tities evaluated at time The matrixK is n x n wheren is

I+Kaxt = —pe®.
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the number of (free) vertices and collects the terms of Equa-
tion 1. Assuming an average valence of six, each row of the
matrix contains (on average) thirteen non-zero entries (1-
ring with flaps plus the center vertex). The full Hessian has
non-trivial 3x 3 blocks instead and results in a linear system
of size(3n) x (3n).

The use of such approximations is well established and
works well in practice though the usual convergence guar-

e

e

Figure 6: Subdivided

antees of Newton methods are missing. Desbrun and co- gppere.

workers PMSB99 used a similar approach when they per-
formed implicit mean curvature flow with a constant ma-
trix per time step. Recall that the coefficients of the “cotan
formula” change throughout the time step. Keeping them
constant corresponds to a similar linearization of the gra-
dient as we employed. For the particular case of problems
involving squared curvature bending energies Hauth and
co-workers HESO03, similarly found that inexact Newton
methods using even fairly aggressive linearizations of gradi-
ents work very well.

Figures6 and7 show some simple examples. The icosahe-
dron is subdivided linearly four times and becomes essen-
tially a perfect sphere within a few minimization steps (Fig-
ure6). After 24 steps convergence was achieved with a final
energy of 107 (a perfect sphere would be zero). The dif-
ference between fixed and free boundary conditions is illus-
trated with the cathead example (Figufe First the result

of flow with fixed boundaries then the result of keeping the
boundaries free (both intermediate and final state shown).
The latter evolves to a planar polygon with convex bound-
aries. In the latter example we show the circumcircles for all
triangles.

Figure 8 shows the evolution of a torus. The initial mesh
is a coarse torus linearly subdivided twice. Almost immedi-
ately the vertices flow to the surface of a geometric torus.
Subsequent evolution aligns edges with the principal curva-
ture directions (and “fattens” the torus). The edge alignment
also becomes apparent in the flat-shaded highlights. F&yure
shows a pipe with two boundary loops which are circular (in
essence half the torus example with fixed boundaries). The
same evolution as with the torus can be observed with the
long term behavior evolving towards a “fat” pipe.

Figure 10 shows a standard benchmark example from k-
sided (six in this case) hole filling. An initial triangulation
with boundaries coming from a Loop subdivision surface is
relaxed under the Willmore flow. With the two outermost
“rows” of vertices fixed tangent continuity across the bound-
ary is assured. Note that this example starts in a configura-
tion with many edges havinf = 0. Our simple strategy of
setting these gradients to zero works quite well in this exam-
ple. After a few steps aff angles have become sufficiently
non-zero (above our threshold ef= 10-%) that the flow
proceeds as expected.

Figure 11 shows an example of mesh restoration. A set of
triangles is marked as free while all others are held fixed.

(© The Eurographics Association 2005.

Figure 7:Cathead evolved with fixed boundaries (left col-
umn) and free boundaries (right column). In each case the
original mesh is followed by an intermediate state of the evo-
lution and the final state.

The free vertices flow to “repair” the scar with a surface sec-
tion which smoothly GY) interpolates the surrounding fixed
surface (compare to the example @)D*04]).

Finally Figure 12 shows an example of geometry denois-
ing. The mesh smoothed in this case is the raw result of a
light field scanner with typically small amplitude noise due
to measurement error. In particular for examples of this type
the non-shrinking nature of the Willmore flow (the energy is
scale invariant) favors it over standard approaches based on
mean curvature flow. The mesh contains over 37k vertices
(and 88 boundary loops). This mesh is particularly chal-
lenging since it contains many edges wfimear zero: the
original mesh is a triangulated quadrangulation. It also has
many triangles with very high aspect ratio right next to small,
round triangles. Figur&2 shows the original mesh followed
by the results of 10 respectively 100 smoothing steps.
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Figure 8:A twice linearly subdivided torus mesh evolves
quickly towards a geometric torus with long term flow
changing the shapes of triangles so as to align edges with
principal curvature directions.

&
ol o

Figure 9:Time evolution of a pipe with circular boundary
conditions. Compare with Figuré
5. Conclusion

Figure 10:Smooth filling of a six sided hole. On the upper
left the original configuration showing the underlying mesh.
The boundary triangles follow a smooth outline and fix po-
sition and tangency constraints (all other vertices are un-
constrained). Evolution to the energy minimum is illustrated
through a number of intermediate steps with the final hole
fill in the lower right. All shaded images use triangle nor-

mals for shading without interpolation.

In this paper we have considered a discrete Willmore flow.
The discrete energy is expressed in terms of circles and the
angles they make with one another and therefore Mébius in-
variant, reproducing the symmetries of the continous energy.
The discrete energy approaches the continuous energy in the
infinitesimal limit for regular triangulations with two edges
aligned with principal curvature directions. We have exper-
imented with a number of different linear and non-linear
solvers and found a simple linear approximation of the Hes-
sian to be sufficient in our experiments.

Ongoing investigations are geared towards more powerful
numerical methods. Especially for large meshes a multi-
grid solver for the linear systems arising in the semi-implicit
time stepping method may well provide significant speedups
over our current (unoptimized) implementation. Possible fu-
ture directions include the use of Willmore gradient flow for
the construction of variational subdivision schemes which
would optimize functionals such gsc 2 + k.2 dAin a fully
non-linear fashion. Another interesting avenue is the use
of the Willmore functional to construct curvature line nets.
We have observed that the discrete Willmore flow leads to

Figure 11:Surface restoration for the Egea model. A region
to be restored is outlined (top). All vertices in the blue trian-
gles are unconstrained with the surrounding vertices provid-
ing position and tangency constraints. Results of the energy
minimization (before and after; bottom).
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