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Abstract
The Willmore energy of a surface,

∫
(H2−K)dA, as a function of mean and Gaussian curvature, captures the

deviation of a surface from (local) sphericity. As such this energy and its associated gradient flow play an impor-
tant role in digital geometry processing, geometric modeling, and physical simulation. In this paper we consider
a discreteWillmore energy and its flow. In contrast to traditional approaches it is not based on a finite ele-
ment discretization, but rather on an ab initio discrete formulation which preserves the Möbius symmetries of
the underlying continuous theory in the discrete setting. We derive the relevant gradient expressions including a
linearization (approximation of the Hessian), which are required for non-linear numerical solvers. As examples
we demonstrate the utility of our approach for surface restoration, n-sided hole filling, and non-shrinking surface
smoothing.

Categories and Subject Descriptors(according to ACM CCS): G.1.8 [Numerical Analysis]: Partial Differential Equa-
tions; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; I.6.8 [Simulation and Model-
ing]: Types of Simulation.

Keywords: Geometric Flow; Discrete Differential Geometry; Willmore Energy; Variational Surface Modeling;
Digital Geometry Processing.

1. Introduction

TheWillmoreenergy of a surfaceS⊂ R3 is given as

EW(S) =
∫

S
(H2−K)dA= 1/4

∫
S
(κ1−κ2)2dA,

where κ1 and κ2 denote the principal curvatures,H =
1/2(κ1 + κ2) andK = κ1κ2 the mean and Gaussian curva-
ture respectively, anddA the surface area element. Immer-
sions of surfaces which minimize this energy are of great
interest in several areas:

• Theory of surfaces: the Willmore energy of a surface
is conformally invariant [Bla29] making it an important
functional in the study of conformal geometry [Wil00];

• Geometric modeling: for compact surfaces with fixed
boundary a minimizer ofEW(S) is also a minimizer
of total curvature

∫
Sκ1

2 + κ2
2dA which is a stan-

dard functional in variationally optimal surface model-
ing [LP88, WW94, Gre94];

• Physical modeling: thin flexible structures are governed

by a surface energy of the form

E(S) =
∫

S
α +β (H−H0)2− γK dA,

the so-called Canham-Helfrich model [Can70, Hel73]
(H0 denotes the “spontaneous” curvature
which plays an important role in thin-
shells [GKS02, BMF03, GHDS03]). For α = H0 = 0,
β = γ the Canham-Helfrich model reduces to the
Willmore energy.

In all of these application areas one typically deals with the
associated geometric flow

Ṡ=−∇E(S),

(time derivatives are denoted by an overdot) which drives
the surface to a minimum of the potential energy given by
E(S). In the theory of surfaces as well as in geometric mod-
eling one is interested in critical points ofE(S). In physical
modeling the solution shape is characterized by a balance of
external and internal forces. In this setting the internal forces
are a function of the Willmore gradient.
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Contributions In this paper we explore a novel, discrete
Willmore energy [Bob05] and introduce the associatedge-
ometric flow for piecewise linear, simplicial, 2-manifold
meshes. In contrast to earlier approaches the discrete flow
is not defined through assemblies of lower level discrete op-
erators, nor does the numerical treatment employ operator
splitting approaches. Instead the discrete Willmore energy,
defined as a function of the vertices of a triangle mesh, is
used directly in a non-linear numerical solver to affect the
associated flow as well as solve the static problem. Since the
discrete formulation has the same symmetries as the continu-
ous problem,i.e., it is Möbius invariant, the associated prop-
erties, such as invariance under scaling, carry overexactly
to the discrete setting of meshes. To deal effectively with
boundaries we introduce appropriate boundary conditions.
These include position and tangency constraints as well as
a free boundary condition. We demonstrate the method with
some examples from digital geometry processing and geo-
metric modeling.

1.1. Related Work

We distinguish here betweendiscretegeometric flows,i.e.,
flows based on discrete analogues of continuous differential
geometry quantities, and those based ondiscretizationsof
continuous systems. The guiding principle in the construc-
tion of the former is the preservation of symmetries of the
original continuous system, while the latter is based on tra-
ditional finite element or finite difference approaches which
in general do not preserve the underlying symmetries. There
is also a broad body of literature which uses linearized ver-
sions of the typically non-linear geometric functionals. Such
approaches are not based on intrinsic geometric properties
(e.g., replacing curvatures with second derivatives) but rather
depend on the particular parameterization chosen. For this
reason we will not further consider them here.

Discrete Flows In the context of mesh based geometric
modeling a number of discrete flows have been consid-
ered. For example, Desbrunet al. [DMSB99] used mean
curvature flow (α = 1, β = γ = H0 = 0) to achieve de-
noising of geometry. Pinkall and Polthier [PP93] used a
related approach, area minimizing flow, to construct dis-
crete minimal surfaces. Critical points of the area functional
also play an important role in the construction of discrete
harmonic functions [DCDS97], their use in parameteriza-
tions [EDD∗95, DMA02], and the construction of confor-
mal structures for discrete surfaces [Mer01, GY03]. Since
the underlying “membrane” energy is second order only, it
cannot accomodateG1 continuity conditions at the bound-
ary of the domain. These are important in geometric mod-
eling for the construction of tangent plane continuous sur-
faces. Fourth order flows on the other hand can accomo-
date position and tangency conditions at the boundary. Per-
haps the simplest fourth order flow issurface diffusion, i.e.,
flow by the Laplace-Beltrami operator of mean curvature,
Ṡ= −∆SH. Such discrete flows were studied by Schneider

and Kobbelt [SK01], Xu et al. [XPB05], and Yoshizawa and
Belyaev [YB02]. In each case the approach was based on
taking the square of a discrete Laplace-Beltrami operator
combined with additional simplifications to ease implemen-
tation. Unfortunately surface diffusion flow can lead to sin-
gularities in finite time [MS00] leading to “pinching off” of
surfaces which are too thin. Yoshizawa and Belyaev [YB02]
demonstrate this behavior and show the comparison with
Willmore flow, which leads to much better results in this re-
gard. This difference in behavior between surface diffusion
and Willmore flows is due to the additional terms appearing
in the Euler-Lagrange (EL) equation of the Willmore flow

∆SH +2H(H2−K) = 0.

Yoshizawa and Belyaev took the EL equation as their start-
ing point and defined a discrete Willmore flow by assem-
blying the components from individual, well known discrete
operators. Unfortunately in that discrete setting properties
such asH2−K ≥ 0 can no longer be guaranteed. In contrast
we define our discrete Willmore energy directly using the
Möbius invariance of the integrand(H2−K)dA as the fun-
damental principle. Among other properties one achieves the
H2−K ≥ 0 always, as expected (see Section2).

Discretized Flows Both surface diffusion and Willmore
flows have been treated numerically through a variety of dis-
cretizations. For example, Tasdizenet al. [TWBO03] and
Chopp and Sethian [CS99] use a level set formulation for
surface diffusion flow, while Mayer [May01] uses finite dif-
ferences, and Deckelnicket al.[DDE03] use finite elements.
For Willmore flow finite element approaches were pursued
by Hariet al.[HGR01] and Clarenzet al.[CDD∗04]. A level
set formulation was given by Droske and Rumpf [DR04]. In
these approaches no attempt is made to preserve the Möbius
symmetries. On the other hand they do have the advantage
that a rich body of literature applies when it comes to er-
ror and convergence analysis. Our approach as of now lacks
a complete analysis of this type. Partial results on the con-
vergence of the discrete Willmore energy to the continuous
Willmore energy are discussed at the end of Section2.

2. Discrete Willmore Energy

In this section we recall the definition of the discrete Will-
more energy and some of its relevant properties.

The derivation of the discrete Willmore energy is based on
the observation that the integrand

(H2−K)dA

is invariant under Möbius transformations [Bla29], i.e.,
translations, rotations, uniform scale, and inversion. The first
two are obvious and the latter two follow from the change
of variable formula [Che73]. This immediately implies that
EW(S) itself is a conformal invariant of the surface. Note that
for compact closed surfaces we also haveEH(S) =

∫
SH2dA

as a conformal invariant [Whi73]. However theintegrandof
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EH(S) is not Möbius invariant. It is for this reason that we
preferEW overEH (the latter is used by some authors as the
definition of the Willmore energy).

The Möbius invariance is a natural mathematical discretiza-
tion principle. The importance of this property depends on
the particular application one is interested in. For the nu-
merical construction of Willmore surfaces, which are criti-
cal points (in particular minima) of the Willmore energy, it
is essential. For applications such as smoothing and denois-
ing of meshes (see Section4) a concrete benefit is the scale
invariance of the Willmore energy.

We are interested in evaluating this energy for discrete sur-
faces,i.e., surfaces given as topological 2-manifold config-
urations of simplicies. Such a “mesh” consists of vertices
vi = (xi ,yi ,zi)T (i = 1, . . . ,N) and the topological complex is
given as a set of edgesei j connectingvi with v j and trian-
glesti jl bounded by verticesvi , v j andvl and edgesei j , ejl ,
andeli (see Figure1). For notational simplicity we assume
that the surface is closed (i.e., each edgeei j is bounded by
exactly two triangles,ti jl andt jik ) and that triangles incident
on a given edge are consistently oriented (note however that
we do not assume global orientability). Boundaries will be
discussed in Section3.3.

vk
t jik

ti jl

a

d

e

b

c

vl

vi

v j

Figure 1:Notation for vertices, edges and triangles in the
vicinity of a given edge e= (vi ,v j ) = ei j ; a = ek j, b = ejl ,
c = eli , d = eik.

The discrete Willmore energy on a mesh is defined at each
vertexvi as

Wi = ∑
ei j

β
i
j −2π,

i.e., a sum over the edges incident tovi of certain anglesβ i
j ,

which measure the angle between the circumcircles defined
by the two trianglesti jl and t jik incident to the given edge
ei j (see Figure2). ObviouslyWi is Möbius invariant since its
definition is based on angles between circles. The Willmore
energy of the entire mesh is then simply the sum,W = ∑i Wi .
For later use we also recall the definition of discrete Gauss
curvature at a vertexvi

Ki = 2π−∑
tik j

α
i
k j.

Hereα i
k j denotes the Euclidean angle ati inside the triangle

tik j .

β i
j

vk

v j

vl

vi

Figure 2:Geometry ofβ i
j .

The geometric picture is as follows. A given edge has two in-
cident triangles. Each triangle has a circumcircle. Since the
four vertices forming the two triangles are (generically) on a
common sphere (possibly at infinity) the two circumcircles
are also on this sphere. The two circles meet in the vertices
vi andv j where they intersect. Consider a tangent vector to
each circle atvi . These two tangent vectors make the angle
β i

j which lies in the tangent plane to the sphere at that point.

Note that this geometric setup implies thatβ i
j = β

j
i . Suppose

now vi and all its neighborsv j (i.e., corresponding to edges
ei j ) lie on a common sphere and that the (embedded) 1-ring
of vi is convex. In that case it is easy to see that theβ i

j neatly
add up to exactly 2π in the tangent plane atvi and hence
Wi = 0 (see Figure3) as expected. Now suppose thatvi and
its neighboring vertices do not share a common sphere. In
that caseWi > 0. To see this use the Möbius invariance of the
energy and map the central pointvi to infinity by a Möbius
transformation. All circles passing throughvi are mapped
to straight lines and the energy becomes the sum∑ j β i

j of
the external angles of a non-planar closed polygon in three
space. In that interpretation the inequality∑ j β i

j ≥ 2π fol-
lows easily [Bob05] (this inequality is a polygonal version of
Fenchel’s theorem [Fen29, Spi75]). With the same argument
one also concludes thatWi +Ki ≥ 0, i.e., ∑ j β i

j−∑k j α
i
k j ≥ 0,

reflecting the fact thatH2dA is always non-negative.

Finally we observe thatWi ≥ 0 and that it vanishes iffvi and
all its edge neighborsv j lie on a common sphere and the ver-
tex vi is convex. These two conditions are equivalent to the
condition that the triangles meeting atvi build a Delaunay
triangulation on a sphere.

Smooth Limit The discrete Willmore energyW is not only
an analogue of the continuous one. It approximates the con-
tinuous Willmore energyW in a “natural” limit. Let(u,v) 7→
f (u,v) be a curvature line parameterization of a surface.
Without loss of generality consider the vicinity of the ori-
gin (u,v) = (0,0) in the tangent plane where we have

(u,v) 7→ (u,v,
1
2
(κ1u2 +κ2v2)+o(u2 +v2)),

with κ1,κ2 denoting the principal curvatures of the sur-
face at the point(0,0). Now consider a triangular lattice
Lε = {ε(la + mb+ nc) : l ,m,n∈ Z} in the parameter plane
generated by three vectorsa,b,c with a+b+c= 0. Hereε is
a small parameter. Consider the hexagonDε in the parameter
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Figure 3: Geometry of∑ei j
β i

j around a vertex. The an-
gles between subsequent circumcircles—appropriate tan-
gent vectors are indicated with colors corresponding to the
circumcircles of each triangle—neatly add up to2π if all
vertices are co-spherical.
plane with verticesp1 = εa, p2 =−εc, p3 = εb, p4 =−εa,
p5 = εc, p6 = −εb and its imagef (Dε ) on the surface.
Let W (Dε ) be the smooth Willmore energy off (Dε ). On
the other hand, the verticesf (pi), i = 1, . . . ,6 together with
f (0) build a simplicial surface with six triangles. Denote by
W(Dε ) the discrete Willmore energy of this surface and con-
sider the quotient of the discrete and smooth Willmore ener-
gies of such an infinitesimal hexagon

R= lim
ε→0

W(Dε )
W (Dε )

.

A direct but rather complicated computation leads to the fol-
lowing conclusions:

1. R is independent of the curvaturesκ1,κ2,

2. R≥ 1, andR= 1 iff the latticeLε has two of its directions
aligned with the curvature lines of the surface (two of the
vectorsa,b,c are curvature line directions).

Thus, after sufficiently many 1→ 4 refinements of the
smooth surface the discrete Willmore energy approximates
the smooth one if the curvature line net is triangulated, oth-
erwise the discrete energy is larger.

The question whether the discrete Willmore energy can be
used as a variational method for computation of curvature
line nets is currently under investigation (see also Figures8
and9).

3. Evaluation

For the numerical treatment of discrete Willmore flow and
the solution of energy minimization problems we need ef-
fective evaluation procedures for the Willmore energy and
its derivatives. To simplify the implementation of these func-
tions we begin with a discussion of the definition of the an-
glesβ i

j and some of the consequent symmetries in the ex-
pressions.

3.1. Definition of Intersection Angles

Consider edgeei j and its two incident trianglest jik andti jl
with associated verticesvk, v j , vl , and vi (see Figure1).
Defining the four directed edge vectors

A = a
|a| = v j−vk

|v j−vk| B = b
|b| = vl−v j

|vl−v j |

C = c
|c| = vi−vl

|vi−vl | D = d
|d| = vk−vi

|vk−vi |

the angles follow as

cosβ
i
j = −R(Q) =−R(AB−1CD−1)

= 〈A,C〉〈B,D〉−〈A,B〉〈C,D〉−〈B,C〉〈D,A〉,

where 〈., .〉 denotes the usual Euclidean dot product and
R(Q) the real part of the normalized cross ratio of the four
edges bounding the “diamond” formed by the two trian-
gles incident on edgeei j . This cross ratio is defined in
terms of quaternion algebra with the standard identifica-
tion of 3-vectors with imaginary quaternions,R3 ≡ I(H),
v 7→ (0, ix, jy,kz)T (i2 = j2 = k2 =−1, i j = k, jk = i, ki = j).
The subsequent expression of this quaternion cross ratio in
terms of Euclidean inner products follows from the rules of
quaternion multiplication and Lagrange’s identity for the in-
ner product between two cross products. More details can be
found in [Bob05].

Properties of β i
j and its DerivativesA number of surpris-

ing facts—which we exploit to significantly simplify the ex-
pressions needed by the numerical solver—are immediately
obvious from the above definition. To clarify these we make
all arguments explicit,β i

j = β (k, j, l , i) going around the di-
amond in counter clockwise order. We already noted earlier
that β (k, j, l , i) = β (l , i,k, j). In fact from the formula for
cosβ (k, j, l , i) it terms of scalar products it is immediately
clear thatβ (k, j, l , i) is invariant under all cyclic permuta-
tions and reflections of its arguments. In particular if we flip
the edgeei j 7→ ekl the cosine of the angle remains the same.

From the invariance under cyclic and reflection permutations
of its arguments it also follows that all first derivatives can
be written as a single functionf1(., ., ., .) with suitably per-
muted arguments

β,k = f1(k, j, l , i) β, j = f1( j, l , i,k)

β,l = f1(l , i,k, j) β,i = f1(i,k, j, l).

(Here and in what follows we use comma notation to denote
partial derivatives with respect to the corresponding argu-
ment and writeβ := β i

j to reduce clutter.)

3.2. Energy Gradient

For gradient flow numerical computations we require the
gradient of the discrete Willmore energy. A direct calcula-
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tion readily yields

−sin(β )β,k = (− 1
|a|

PA(C)〈B,D〉+ 〈A,C〉 1
|d|

PD(B)

+
1
|a|

PA(B)〈C,D〉−〈A,B〉 1
|d|

PD(C)

−〈B,C〉( 1
|d|

PD(A)− 1
|a|

PA(D))).

Here we usedPX = I−X⊗X as shorthand for the projection
operator into the orthogonal complement of (the unit vector)
X.

Remarkably, if we separate out the linear dependence of this
expression ona, b, c, andd we arrive at ascalar linear com-
bination

−sin(β )β,k = (
cosβ

|a|2
− 〈B,C〉
|a||d|

)a

+(
〈A,C〉
|b||d|

+
〈C,D〉
|b||a|

)b

−(
〈A,B〉
|c||d|

+
〈B,D〉
|c||a|

)c

−(
cosβ

|d|2
− 〈B,C〉
|a||d|

)d. (1)

In a semi-implicit time stepping algorithm this amounts to
requiring only the solution of a sparse linear system of size
n×n rather than(3n)× (3n) for n vertices, a very attractive
feature. In fact Equation1 can serve as a linearized version
of the Hessian of the energy. See Section4 for further com-
ments on this fact.

For the free boundary treatment we also need expressions
for the gradient of the angle between two edges. Desbrun
and co-workers [DMA02] (Appendix B) derive these and we
will not repeat them here.

Gradient Singularity If vk, v j , vl , andvi are co-circular then
β = 0 andβ,k is not defined. For vertices in general posi-
tions this does not occur. However, in practice the case that
the four vertices of a diamond are nearly co-circular, while
rare, does occur. For some inputs it can in fact be a frequent
occurance (see for example Figure12). Consider a quadran-
gulation of a smooth surface which is turned into a triangle
mesh through insertion of diagonals in each quad. In this
setting the diagonal edges very often haveβ nearly equal to
zero.

Keeping in mind that in the end we care about the direction
of negative gradient, i.e., steepest descent, of the discrete
Willmore energy we make the following geometric obser-
vation. In caseβ = 0 there is one direction of varyingvk in
which the angle does not change (infinitesimally). This is the
tangential direction to the circleC passing through the points
vi ,v j ,vk and vl . For (infinitesimal) unit motions in all or-
thogonal directions the angleβ increases at equal rate. This
property of the gradient is conformal and thus preserved un-
der Möbius transformations. It can be seen more easily in a

Möbius transformed picture. Send the pointvi to infinity by
the inversion in a sphere centered atvi . Both circles in Fig-
ure4 become straight lines. Let ˜v j , ṽk, ṽl be the images of the
verticesv j ,vk,vl under this Möbius transformation. For the
case ofβ = 0 both circles in Figure4 are coincident—call
this common circleC—and the points ˜v j , ṽk andṽl become
collinear: they lie on the straight lineL which is the Möbius
image of the circleC. The only direction of varying ˜vk in
which the angle does not change is along the straight lineL.
Variations in all orthogonal directions increase the angle at
equal rate.

vk

v j

vl

vi

ṽk

ṽ j

ṽl
β

Figure 4:After sending vi to infinity, the two circles have
been mapped to two lines which intersect with angleβ .

Consider now a given vertexvi and assume for the moment
that only oneβ contributing to the gradient computation
at vi vanishes. LetC 3 vi be the corresponding circle with
four vertices lying on it. Let all other, well defined, negative
gradient directions sum tog. Decompose a variation direc-
tion G = Go + Gp of vi into the parts orthogonalGo ⊥ C
and parallelGp ‖C to the tangent of the circle invi and let
g = go +gp be the same decomposition ofg. The contribu-
tion to the gradient from all “regular” (non-vanishing)β ’s is
−〈g,G〉 and the contribution of the vanishingβ is R | Go |
with someR> 0. For the whole gradient this implies

−Gpgp +(|Go | R−〈Go,go〉).

Thus the total negative gradient direction, i.e. the direction
in which the energy decreases the most isgp (parallel toC)
if R>| go | andgp +go(1−R/ | go |) if R<| go |.

The case of multipleβ ’s in the support of the gradient ofWi
with respect to the given vertexvi vanishing, is more com-
plicated. One can get the negative gradient direction (if it ex-
ists) in this case from the following non-linear minimization
process. To each of the edgesen with vanishingβ (en) = 0
there corresponds a circleCn throughvi . For the variation
G the contribution to the gradient of this edge is| Rn×G |
whereRn is a vector tangent toCn. We define

δ = min
|G|=1,〈G,g〉≥0

∑
n
|Rn×G|− 〈G,g〉

where the sum is taken over all vanishingβ from the 1-ring
with flaps ofvi . The first term measures the length of the pro-
jection ofG into the orthogonal complement ofRn, i.e., the
amount of (infinitesimal) increase of energy while the sec-
ond term measures the decrease in energy for the direction
G. If δ > 0 no motion exists which decreases the energy and
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the direction of steepest descent is the zero vector. Ifδ < 0
the directionG which achieves the minimum is our sought
after steepest descent direction with magnitude|δ |.

The case that allβ in the support of the gradient ofvi vanish
simultaneously, corresponds to a configuration which puts
all vertices in the 1-ring with flaps ofvi including vi itself
onto a common circle. In this case no direction decreasing
the Willmore energy atvi exists.

In our implementation we have experimented with the non-
linear minimization to find a valid direction of energy de-
crease (or zero if none exists) but found it to give the same
results (numerically) as a far simpler heuristic: if|sinβ |< ε

set the corresponding gradient to zero. We foundε = 10−6

to give reliable results in double precision for all our experi-
ments.

3.3. Boundary Conditions

So far we have implemented two types of boundary condi-
tions.

G1-boundary The variational problem we are dealing with
is a fourth order system. To be well posed it requires two
independent boundary conditions. The most natural choice
here is to fix positions and normals at a boundary. We spec-
ify this kind of boundary data on a mesh by fixing posi-
tions of the boundary vertices and those vertices within one
edge distance from the boundary. The normals of the tri-
angles of this boundary strip can be treated as normals on
the boundary. This boundary condition fits perfectly forG1-
gluing of surfaces. Typical applications are surface restora-
tion and smooth filling of a hole (see Figures10 and 11).
Note that the method requires no conditions on the topol-
ogy of the mesh. In particular one can fix some “islands” of
internal vertices (or faces) of the required surface.

Free Boundary Alternatively we have experimented with
closing boundary curves by adding a vertex at infinity to
each boundary loop. This is an unusual treatment since it ac-
tually removes the boundary and adds a Dirichlet condition
at infinity. The idea comes from Möbius geometry where the
infinity point is not distinguished.

e

β2(e)

vb

β3(vb)

ẽ

Figure 5:Free boundary conditions. Boundary edges e and
ẽ, and a boundary vertex vb with the anglesβ2 andβ3.

For simplicity consider a surface with one boundary curve.

By adding the infinity point and connecting it to each bound-
ary vertex we obtain a closed surface. We distinguish three
types of edges of this surfaceE = Ei ∪Eb ∪E∞: internal
edgesEi , boundary edgesEb of the original surface and new
edgesE∞ incident to the infinity point. The circumcircles
passing through the infinity point are straight lines. The dis-
crete Willmore energy of the closed surface consists of three
terms

∑
e∈E

β (e) = ∑
e∈Ei

β1(e)+ ∑
e∈Eb

β2(e)+ ∑
e∈E∞

β3(e).

The first term is just the discrete Willmore energy of the orig-
inal surface. The anglesβ2(e) are associated to the bound-
ary edgese∈ Eb and are the intersection angles of these
edges with the circumcircles of the corresponding bound-
ary triangles. Another interpretation forβ2(e) is that this is
π minus the angle of the boundary triangle opposite to the
edgee∈ Eb. Finally the angleβ3(e) is associated to the ad-
ditional edgee∈ E∞ connecting∞ to a boundary vertexvb.
Equivalently it can be associated to the boundary vertexvb.
This is the intersection angle of two circumcircles (which are
straight lines in this case) passing throughvb and∞, i.e., the
intersection angle of two boundary edges meeting atvb (see
Figure5).

The resulting behavior is that of a free boundary (see Fig-
ure7; right column).

4. Numerical Experiments

We have implemented the discrete Willmore gradient flow
using linear and non-linear solvers from the excellent
PETSc [BBE∗04] and TAO [BMMS04] libraries, allowing
us to experiment with a wide variety of pre-canned solvers,
while needing to supply only the gradient, respectively the
approximation of the Hessian (Equation1). For the time
discretization we experimented with both the forward and
backward Euler method. For the forward Euler method the
time step limitation imposed by the Courant condition for
fourth order problems—time increments must be of the or-
der of the fourth power of the shortest edge in the mesh—
is too severe to be practical except for very simple meshes.
The backward Euler method leads to a non-linear problem
at each step. These can be solved with a full Newton method
requiring evaluation of the Hessian of the energy at each iter-
ation step. We did derive the expressions for the Hessian, but
found that the effort was not justified as a function of eval-
uation cost and numerical behavior. The latter was no better
in our experiments than a much simpler approach based on
a semi-implicit time discretization using the linearized ver-
sion of the gradient (Equation1). In that setup only alinear
system must be solved at each time step to find the position
increment∆x(t)

(
1
dt

I+K(t))∆x(t) =−∇E(t).

Heredt is the time step and a super script(t) denotes quan-
tities evaluated at timet. The matrixK is n×n wheren is
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the number of (free) vertices and collects the terms of Equa-
tion 1. Assuming an average valence of six, each row of the
matrix contains (on average) thirteen non-zero entries (1-
ring with flaps plus the center vertex). The full Hessian has
non-trivial 3×3 blocks instead and results in a linear system
of size(3n)× (3n).

The use of such approximations is well established and
works well in practice though the usual convergence guar-
antees of Newton methods are missing. Desbrun and co-
workers [DMSB99] used a similar approach when they per-
formed implicit mean curvature flow with a constant ma-
trix per time step. Recall that the coefficients of the “cotan
formula” change throughout the time step. Keeping them
constant corresponds to a similar linearization of the gra-
dient as we employed. For the particular case of problems
involving squared curvature bending energies Hauth and
co-workers [HES03], similarly found that inexact Newton
methods using even fairly aggressive linearizations of gradi-
ents work very well.

Figures6 and7 show some simple examples. The icosahe-
dron is subdivided linearly four times and becomes essen-
tially a perfect sphere within a few minimization steps (Fig-
ure6). After 24 steps convergence was achieved with a final
energy of 10−7 (a perfect sphere would be zero). The dif-
ference between fixed and free boundary conditions is illus-
trated with the cathead example (Figure7). First the result
of flow with fixed boundaries then the result of keeping the
boundaries free (both intermediate and final state shown).
The latter evolves to a planar polygon with convex bound-
aries. In the latter example we show the circumcircles for all
triangles.

Figure 8 shows the evolution of a torus. The initial mesh
is a coarse torus linearly subdivided twice. Almost immedi-
ately the vertices flow to the surface of a geometric torus.
Subsequent evolution aligns edges with the principal curva-
ture directions (and “fattens” the torus). The edge alignment
also becomes apparent in the flat-shaded highlights. Figure9
shows a pipe with two boundary loops which are circular (in
essence half the torus example with fixed boundaries). The
same evolution as with the torus can be observed with the
long term behavior evolving towards a “fat” pipe.

Figure 10 shows a standard benchmark example from k-
sided (six in this case) hole filling. An initial triangulation
with boundaries coming from a Loop subdivision surface is
relaxed under the Willmore flow. With the two outermost
“rows” of vertices fixed tangent continuity across the bound-
ary is assured. Note that this example starts in a configura-
tion with many edges havingβ = 0. Our simple strategy of
setting these gradients to zero works quite well in this exam-
ple. After a few steps allβ angles have become sufficiently
non-zero (above our threshold ofε = 10−6) that the flow
proceeds as expected.

Figure11 shows an example of mesh restoration. A set of
triangles is marked as free while all others are held fixed.

Figure 6: Subdivided icosahedron rapidly evolves to a
sphere.

Figure 7:Cathead evolved with fixed boundaries (left col-
umn) and free boundaries (right column). In each case the
original mesh is followed by an intermediate state of the evo-
lution and the final state.

The free vertices flow to “repair” the scar with a surface sec-
tion which smoothly (G1) interpolates the surrounding fixed
surface (compare to the example in [CDD∗04]).

Finally Figure12 shows an example of geometry denois-
ing. The mesh smoothed in this case is the raw result of a
light field scanner with typically small amplitude noise due
to measurement error. In particular for examples of this type
the non-shrinking nature of the Willmore flow (the energy is
scale invariant) favors it over standard approaches based on
mean curvature flow. The mesh contains over 37k vertices
(and 88 boundary loops). This mesh is particularly chal-
lenging since it contains many edges withβ near zero: the
original mesh is a triangulated quadrangulation. It also has
many triangles with very high aspect ratio right next to small,
round triangles. Figure12shows the original mesh followed
by the results of 10 respectively 100 smoothing steps.
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Figure 8: A twice linearly subdivided torus mesh evolves
quickly towards a geometric torus with long term flow
changing the shapes of triangles so as to align edges with
principal curvature directions.

Figure 9:Time evolution of a pipe with circular boundary
conditions. Compare with Figure8.

5. Conclusion

In this paper we have considered a discrete Willmore flow.
The discrete energy is expressed in terms of circles and the
angles they make with one another and therefore Möbius in-
variant, reproducing the symmetries of the continous energy.
The discrete energy approaches the continuous energy in the
infinitesimal limit for regular triangulations with two edges
aligned with principal curvature directions. We have exper-
imented with a number of different linear and non-linear
solvers and found a simple linear approximation of the Hes-
sian to be sufficient in our experiments.

Ongoing investigations are geared towards more powerful
numerical methods. Especially for large meshes a multi-
grid solver for the linear systems arising in the semi-implicit
time stepping method may well provide significant speedups
over our current (unoptimized) implementation. Possible fu-
ture directions include the use of Willmore gradient flow for
the construction of variational subdivision schemes which
would optimize functionals such as

∫
κ1

2 +κ2
2dA in a fully

non-linear fashion. Another interesting avenue is the use
of the Willmore functional to construct curvature line nets.
We have observed that the discrete Willmore flow leads to

Figure 10:Smooth filling of a six sided hole. On the upper
left the original configuration showing the underlying mesh.
The boundary triangles follow a smooth outline and fix po-
sition and tangency constraints (all other vertices are un-
constrained). Evolution to the energy minimum is illustrated
through a number of intermediate steps with the final hole
fill in the lower right. All shaded images use triangle nor-
mals for shading without interpolation.

Figure 11:Surface restoration for the Egea model. A region
to be restored is outlined (top). All vertices in the blue trian-
gles are unconstrained with the surrounding vertices provid-
ing position and tangency constraints. Results of the energy
minimization (before and after; bottom).
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Figure 12:Denoising of scanned geometry. On the left the
original mesh with noise due to an active light stripe based
scanner. Followed by the results of 10 and 100 smoothing
steps (37k vertices; 88 boundary loops).

meshes aligned with the curvature lines of the surface. This
phenomenon, theoretically partially explained in Section2,
is quite natural since the curvature lines are also a subject of
Möbius geometry. A closely related problem, currently un-
der investigation, is the definition of the discrete Willmore
energy for quadrilateral meshes, which in a sense would be
more natural for curvature line nets.
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